
Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Programming Language—Common Lisp

5. Data and Control Flow

Data and Control Flow i

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

ii Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

5.1 Generalized Reference

5.1.1 Overview of Places and Generalized Reference
A generalized reference is the use of a form, sometimes called a place, as if it were a variable
that could be read and written. The value of a place is the object to which the place form eval-
uates. The value of a place can be changed by using setf . The concept of binding a place is not
defined in Common Lisp, but an implementation is permitted to extend the language by defining
this concept.

Figure 5–1 contains examples of the use of setf . Note that the values returned by evaluating the
forms in column two are not necessarily the same as those obtained by evaluating the forms in
column three. In general, the exact macro expansion of a setf form is not guaranteed and can
even be implementation-dependent ; all that is guaranteed is that the expansion is an update form
that works for that particular implementation, that the left-to-right evaluation of subforms is
preserved, and that the ultimate result of evaluating setf is the value or values being stored.

Access function Update Function Update using setf

x (setq x datum) (setf x datum)

(car x) (rplaca x datum) (setf (car x) datum)

(symbol-value x) (set x datum) (setf (symbol-value x) datum)

Figure 5–1. Examples of setf

Figure 5–2 shows operators relating to places and generalized reference.

assert defsetf push
ccase get-setf-expansion remf
ctypecase getf rotatef
decf incf setf
define-modify-macro pop shiftf
define-setf-expander psetf

Figure 5–2. Operators relating to places and generalized reference.

Some of the operators above manipulate places and some manipulate setf expanders. A setf
expansion can be derived from any place. New setf expanders can be defined by using defsetf and
define-setf-expander.

Data and Control Flow 5–1

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

5.1.1.1 Evaluation of Subforms to Places

The following rules apply to the evaluation of subforms in a place:

1. The evaluation ordering of subforms within a place is determined by the order specified
by the second value returned by get-setf-expansion. For all places defined by this
specification (e.g., getf , ldb, . . .), this order of evaluation is left-to-right. When a place is
derived from a macro expansion, this rule is applied after the macro is expanded to find
the appropriate place.

Places defined by using defmacro or define-setf-expander use the evaluation order
defined by those definitions. For example, consider the following:

(defmacro wrong-order (x y) ‘(getf ,y ,x))

This following form evaluates place2 first and then place1 because that is the order they
are evaluated in the macro expansion:

(push value (wrong-order place1 place2))

2. For the macros that manipulate places (push, pushnew, remf , incf , decf , shiftf ,
rotatef , psetf , setf , pop, and those defined by define-modify-macro) the subforms
of the macro call are evaluated exactly once in left-to-right order, with the subforms of
the places evaluated in the order specified in (1).

push, pushnew, remf , incf , decf , shiftf , rotatef , psetf , pop evaluate all subforms before
modifying any of the place locations. setf (in the case when setf has more than two
arguments) performs its operation on each pair in sequence. For example, in

(setf place1 value1 place2 value2 ...)

the subforms of place1 and value1 are evaluated, the location specified by place1 is
modified to contain the value returned by value1, and then the rest of the setf form is
processed in a like manner.

3. For check-type, ctypecase, and ccase, subforms of the place are evaluated once as in (1),
but might be evaluated again if the type check fails in the case of check-type or none of
the cases hold in ctypecase and ccase.

4. For assert, the order of evaluation of the generalized references is not specified.

Rules 2, 3 and 4 cover all standardized macros that manipulate places.

5.1.1.1.1 Examples of Evaluation of Subforms to Places

(let ((ref2 (list ’())))

(push (progn (princ "1") ’ref-1)

5–2 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(car (progn (princ "2") ref2))))

. 12

→ (REF1)

(let (x)

(push (setq x (list ’a))

(car (setq x (list ’b))))

x)

→ (((A) . B))

push first evaluates (setq x (list ’a)) → (a), then evaluates (setq x (list ’b)) → (b), then
modifies the car of this latest value to be ((a) . b).

5.1.1.2 Setf Expansions

Sometimes it is possible to avoid evaluating subforms of a place multiple times or in the wrong
order. A setf expansion for a given access form can be expressed as an ordered collection of five
objects:

List of temporary variables

a list of symbols naming temporary variables to be bound sequentially, as if by let*, to
values resulting from value forms.

List of value forms

a list of forms (typically, subforms of the place) which when evaluated yield the values to
which the corresponding temporary variables should be bound.

List of store variables

a list of symbols naming temporary store variables which are to hold the new values that
will be assigned to the place.

Storing form

a form which can reference both the temporary and the store variables, and which
changes the value of the place and guarantees to return as its values the values of the
store variables, which are the correct values for setf to return.

Accessing form

a form which can reference the temporary variables, and which returns the value of the
place.

The value returned by the accessing form is affected by execution of the storing form, but either
of these forms might be evaluated any number of times.

Data and Control Flow 5–3

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

It is possible to do more than one setf in parallel via psetf , shiftf , and rotatef . Because of
this, the setf expander must produce new temporary and store variable names every time. For
examples of how to do this, see gensym.

For each standardized accessor function F , unless it is explicitly documented otherwise, it is
implementation-dependent whether the ability to use an F form as a setf place is implemented by
a setf expander or a setf function. Also, it follows from this that it is implementation-dependent
whether the name (setf F) is fbound .

5.1.1.2.1 Examples of Setf Expansions

Examples of the contents of the constituents of setf expansions follow.

For a variable x :

() ;list of temporary variables
() ;list of value forms
(g0001) ;list of store variables
(setq x g0001) ;storing form
x ;accessing form

Figure 5–3. Sample Setf Expansion of a Variable

For (car exp):

(g0002) ;list of temporary variables
(exp) ;list of value forms
(g0003) ;list of store variables
(progn (rplaca g0002 g0003) g0003) ;storing form
(car g0002) ;accessing form

Figure 5–4. Sample Setf Expansion of a CAR Form

For (subseq seq s e):

(g0004 g0005 g0006) ;list of temporary variables
(seq s e) ;list of value forms
(g0007) ;list of store variables
(progn (replace g0004 g0007 :start1 g0005 :end1 g0006) g0007)

;storing form
(subseq g0004 g0005 g0006) ; accessing form

Figure 5–5. Sample Setf Expansion of a SUBSEQ Form

5–4 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

In some cases, if a subform of a place is itself a place, it is necessary to expand the subform in
order to compute some of the values in the expansion of the outer place. For (ldb bs (car exp)):

(g0001 g0002) ;list of temporary variables
(bs exp) ;list of value forms
(g0003) ;list of store variables
(progn (rplaca g0002 (dpb g0003 g0001 (car g0002))) g0003)

;storing form
(ldb g0001 (car g0002)) ; accessing form

Figure 5–6. Sample Setf Expansion of a LDB Form

5.1.2 Kinds of Places
Several kinds of places are defined by Common Lisp; this section enumerates them. This set can
be extended by implementations and by programmer code.

5.1.2.1 Variable Names as Places

The name of a lexical variable or dynamic variable can be used as a place.

5.1.2.2 Function Call Forms as Places

A function form can be used as a place if it falls into one of the following categories:

• A function call form whose first element is the name of any one of the functions in Figure
5–7.

Data and Control Flow 5–5

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

aref cdadr get
bit cdar gethash
caaaar cddaar logical-pathname-translations
caaadr cddadr macro-function
caaar cddar ninth
caadar cdddar nth
caaddr cddddr readtable-case
caadr cdddr rest
caar cddr row-major-aref
cadaar cdr sbit
cadadr char schar
cadar class-name second
caddar compiler-macro-function seventh
cadddr documentation sixth
caddr eighth slot-value
cadr elt subseq
car fdefinition svref
cdaaar fifth symbol-function
cdaadr fill-pointer symbol-plist
cdaar find-class symbol-value
cdadar first tenth
cdaddr fourth third

Figure 5–7. Functions that setf can be used with—1

In the case of subseq, the replacement value must be a sequence whose elements might
be contained by the sequence argument to subseq, but does not have to be a sequence of
the same type as the sequence of which the subsequence is specified. If the length of the
replacement value does not equal the length of the subsequence to be replaced, then the
shorter length determines the number of elements to be stored, as for replace.

• A function call form whose first element is the name of a selector function constructed by
defstruct. The function name must refer to the global function definition, rather than a
locally defined function.

• A function call form whose first element is the name of any one of the functions in Figure
5–8, provided that the supplied argument to that function is in turn a place form; in this
case the new place has stored back into it the result of applying the supplied “update”
function.

5–6 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Function name Argument that is a place Update function used
ldb second dpb
mask-field second deposit-field
getf first implementation-dependent

Figure 5–8. Functions that setf can be used with—2

During the setf expansion of these forms, it is necessary to call get-setf-expansion in
order to figure out how the inner, nested generalized variable must be treated.

The information from get-setf-expansion is used as follows.

ldb

In a form such as:

(setf (ldb byte-spec place-form) value-form)

the place referred to by the place-form must always be both read and written;
note that the update is to the generalized variable specified by place-form, not to
any object of type integer.

Thus this setf should generate code to do the following:

1. Evaluate byte-spec (and bind it into a temporary variable).
2. Bind the temporary variables for place-form.
3. Evaluate value-form (and bind its value or values into the store variable).

4. Do the read from place-form.
5. Do the write into place-form with the given bits of the integer fetched in

step 4 replaced with the value from step 3.

If the evaluation of value-form in step 3 alters what is found in place-form, such as
setting different bits of integer , then the change of the bits denoted by byte-spec
is to that altered integer , because step 4 is done after the value-form evaluation.
Nevertheless, the evaluations required for binding the temporary variables are
done in steps 1 and 2, and thus the expected left-to-right evaluation order is seen.
For example:

(setq integer #x69) → #x69

(rotatef (ldb (byte 4 4) integer)

(ldb (byte 4 0) integer))

integer → #x96

;;; This example is trying to swap two independent bit fields

;;; in an integer. Note that the generalized variable of

Data and Control Flow 5–7

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

;;; interest here is just the (possibly local) program variable

;;; integer.

mask-field

This case is the same as ldb in all essential aspects.

getf

In a form such as:

(setf (getf place-form ind-form) value-form)

the place referred to by place-form must always be both read and written; note
that the update is to the generalized variable specified by place-form, not neces-
sarily to the particular list that is the property list in question.

Thus this setf should generate code to do the following:

1. Bind the temporary variables for place-form.
2. Evaluate ind-form (and bind it into a temporary variable).
3. Evaluate value-form (and bind its value or values into the store variable).

4. Do the read from place-form.
5. Do the write into place-form with a possibly-new property list obtained

by combining the values from steps 2, 3, and 4. (Note that the phrase
“possibly-new property list” can mean that the former property list is
somehow destructively re-used, or it can mean partial or full copying of
it. Since either copying or destructive re-use can occur, the treatment of
the resultant value for the possibly-new property list must proceed as if
it were a different copy needing to be stored back into the generalized
variable.)

If the evaluation of value-form in step 3 alters what is found in place-form, such
as setting a different named property in the list, then the change of the property
denoted by ind-form is to that altered list, because step 4 is done after the value-
form evaluation. Nevertheless, the evaluations required for binding the temporary
variables are done in steps 1 and 2, and thus the expected left-to-right evaluation
order is seen.

For example:

(setq s (setq r (list (list ’a 1 ’b 2 ’c 3)))) → ((a 1 b 2 c 3))

(setf (getf (car r) ’b)

(progn (setq r nil) 6)) → 6

r → NIL

5–8 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

s → ((A 1 B 6 C 3))

;;; Note that the (setq r nil) does not affect the actions of

;;; the SETF because the value of R had already been saved in

;;; a temporary variable as part of the step 1. Only the CAR

;;; of this value will be retrieved, and subsequently modified

;;; after the value computation.

5.1.2.3 VALUES Forms as Places

A values form can be used as a place, provided that each of its subforms is also a place form.

A form such as

(setf (values place-1 . . . place-n) values-form)

does the following:

1. The subforms of each nested place are evaluated in left-to-right order.
2. The values-form is evaluated, and the first store variable from each place is bound to its

return values as if by multiple-value-bind.
3. If the setf expansion for any place involves more than one store variable, then the addi-

tional store variables are bound to nil.
4. The storing forms for each place are evaluated in left-to-right order.

The storing form in the setf expansion of values returns as multiple values2 the values of the store
variables in step 2. That is, the number of values returned is the same as the number of place
forms. This may be more or fewer values than are produced by the values-form.

5.1.2.4 THE Forms as Places

A the form can be used as a place, in which case the declaration is transferred to the newvalue
form, and the resulting setf is analyzed. For example,

(setf (the integer (cadr x)) (+ y 3))

is processed as if it were

(setf (cadr x) (the integer (+ y 3)))

Data and Control Flow 5–9

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

5.1.2.5 APPLY Forms as Places

The following situations involving setf of apply must be supported:

• (setf (apply #’aref array {subscript}* more-subscripts) new-element)

• (setf (apply #’bit array {subscript}* more-subscripts) new-element)

• (setf (apply #’sbit array {subscript}* more-subscripts) new-element)

In all three cases, the element of array designated by the concatenation of subscripts and more-
subscripts (i.e., the same element which would be read by the call to apply if it were not part of
a setf form) is changed to have the value given by new-element. For these usages, the function
name (aref , bit, or sbit) must refer to the global function definition, rather than a locally defined
function.

No other standardized function is required to be supported, but an implementation may define
such support. An implementation may also define support for implementation-defined operators.

If a user-defined function is used in this context, the following equivalence is true, except that
care is taken to preserve proper left-to-right evaluation of argument subforms:

(setf (apply #’name {arg}*) val)
≡ (apply #’(setf name) val {arg}*)

5.1.2.6 Setf Expansions and Places

Any compound form for which the operator has a setf expander defined can be used as a place.
The operator must refer to the global function definition, rather than a locally defined function or
macro.

5.1.2.7 Macro Forms as Places

A macro form can be used as a place, in which case Common Lisp expands the macro form as if
by macroexpand-1 and then uses the macro expansion in place of the original place. Such macro
expansion is attempted only after exhausting all other possibilities other than expanding into a
call to a function named (setf reader).

5.1.2.8 Symbol Macros as Places

A reference to a symbol that has been established as a symbol macro can be used as a place. In
this case, setf expands the reference and then analyzes the resulting form.

5–10 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

5.1.2.9 Other Compound Forms as Places

For any other compound form for which the operator is a symbol f , the setf form expands into a
call to the function named (setf f). The first argument in the newly constructed function form
is newvalue and the remaining arguments are the remaining elements of place. This expansion
occurs regardless of whether f or (setf f) is defined as a function locally, globally, or not at all.
For example,

(setf (f arg1 arg2 ...) new-value)

expands into a form with the same effect and value as

(let ((#:temp-1 arg1) ;force correct order of evaluation

(#:temp-2 arg2)

...

(#:temp-0 new-value))
(funcall (function (setf f)) #:temp-0 #:temp-1 #:temp-2...))

A function named (setf f) must return its first argument as its only value in order to preserve
the semantics of setf .

5.1.3 Treatment of Other Macros Based on SETF
For each of the “read-modify-write” operators in Figure 5–9, and for any additional macros
defined by the programmer using define-modify-macro, an exception is made to the normal rule
of left-to-right evaluation of arguments. Evaluation of argument forms occurs in left-to-right
order, with the exception that for the place argument , the actual read of the “old value” from
that place happens after all of the argument form evaluations, and just before a “new value” is
computed and written back into the place.

Specifically, each of these operators can be viewed as involving a form with the following general
syntax:

(operator {preceding-form}* place {following-form}*)
The evaluation of each such form proceeds like this:

1. Evaluate each of the preceding-forms, in left-to-right order.
2. Evaluate the subforms of the place, in the order specified by the second value of the setf

expansion for that place.
3. Evaluate each of the following-forms, in left-to-right order.
4. Read the old value from place.
5. Compute the new value.
6. Store the new value into place.

Data and Control Flow 5–11

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

decf pop pushnew
incf push remf

Figure 5–9. Read-Modify-Write Macros

5–12 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

5.2 Transfer of Control to an Exit Point
When a transfer of control is initiated by go, return-from, or throw the following events occur in
order to accomplish the transfer of control. Note that for go, the exit point is the form within the
tagbody that is being executed at the time the go is performed; for return-from, the exit point is
the corresponding block form; and for throw, the exit point is the corresponding catch form.

1. Intervening exit points are “abandoned” (i.e., their extent ends and it is no longer valid
to attempt to transfer control through them).

2. The cleanup clauses of any intervening unwind-protect clauses are evaluated.

3. Intervening dynamic bindings of special variables, catch tags, condition handlers, and
restarts are undone.

4. The extent of the exit point being invoked ends, and control is passed to the target.

The extent of an exit being “abandoned” because it is being passed over ends as soon as the
transfer of control is initiated. That is, event 1 occurs at the beginning of the initiation of the
transfer of control. The consequences are undefined if an attempt is made to transfer control to
an exit point whose dynamic extent has ended.

Events 2 and 3 are actually performed interleaved, in the order corresponding to the reverse
order in which they were established. The effect of this is that the cleanup clauses of an
unwind-protect see the same dynamic bindings of variables and catch tags as were visible when
the unwind-protect was entered.

Event 4 occurs at the end of the transfer of control.

Data and Control Flow 5–13

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

apply Function

Syntax:
apply function &rest args+ → {result}*

Arguments and Values:
function—a function designator .

args—a spreadable argument list designator .

results—the values returned by function.

Description:
Applies the function to the args.

When the function receives its arguments via &rest, it is permissible (but not required) for
the implementation to bind the rest parameter to an object that shares structure with the last
argument to apply. Because a function can neither detect whether it was called via apply nor
whether (if so) the last argument to apply was a constant , conforming programs must neither rely
on the list structure of a rest list to be freshly consed, nor modify that list structure.

setf can be used with apply in certain circumstances; see Section 5.1.2.5 (APPLY Forms as
Places).

Examples:

(setq f ’+) → +

(apply f ’(1 2)) → 3

(setq f #’-) → #<FUNCTION ->

(apply f ’(1 2)) → -1

(apply #’max 3 5 ’(2 7 3)) → 7

(apply ’cons ’((+ 2 3) 4)) → ((+ 2 3) . 4)

(apply #’+ ’()) → 0

(defparameter *some-list* ’(a b c))

(defun strange-test (&rest x) (eq x *some-list*))

(apply #’strange-test *some-list*) → implementation-dependent

(defun bad-boy (&rest x) (rplacd x ’y))

(bad-boy ’a ’b ’c) has undefined consequences.

(apply #’bad-boy *some-list*) has undefined consequences.

(defun foo (size &rest keys &key double &allow-other-keys)

(let ((v (apply #’make-array size :allow-other-keys t keys)))

(if double (concatenate (type-of v) v v) v)))

5–14 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(foo 4 :initial-contents ’(a b c d) :double t)

→ #(A B C D A B C D)

See Also:
funcall, fdefinition, function, Section 3.1 (Evaluation), Section 5.1.2.5 (APPLY Forms as Places)

defun Macro

Syntax:
defun function-name lambda-list [[{declaration}* | documentation]] {form}*
→ function-name

Arguments and Values:
function-name—a function name.

lambda-list—an ordinary lambda list .

declaration—a declare expression; not evaluated.

documentation—a string ; not evaluated.

forms—an implicit progn.

block-name—the function block name of the function-name.

Description:
Defines a new function named function-name in the global environment . The body of the function
defined by defun consists of forms; they are executed as an implicit progn when the function is
called. defun can be used to define a new function, to install a corrected version of an incorrect
definition, to redefine an already-defined function, or to redefine a macro as a function.

defun implicitly puts a block named block-name around the body forms (but not the forms in the
lambda-list) of the function defined.

Documentation is attached as a documentation string to name (as kind function) and to the
function object .

Evaluating defun causes function-name to be a global name for the function specified by the
lambda expression

(lambda lambda-list
[[{declaration}* | documentation]]
(block block-name {form}*))

processed in the lexical environment in which defun was executed.

Data and Control Flow 5–15

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

defun

(None of the arguments are evaluated at macro expansion time.)

defun is not required to perform any compile-time side effects. In particular, defun does not
make the function definition available at compile time. An implementation may choose to store
information about the function for the purposes of compile-time error-checking (such as checking
the number of arguments on calls), or to enable the function to be expanded inline.

Examples:

(defun recur (x)

(when (> x 0)

(recur (1- x)))) → RECUR

(defun ex (a b &optional c (d 66) &rest keys &key test (start 0))

(list a b c d keys test start)) → EX

(ex 1 2) → (1 2 NIL 66 NIL NIL 0)

(ex 1 2 3 4 :test ’equal :start 50)

→ (1 2 3 4 (:TEST EQUAL :START 50) EQUAL 50)

(ex :test 1 :start 2) → (:TEST 1 :START 2 NIL NIL 0)

;; This function assumes its callers have checked the types of the

;; arguments, and authorizes the compiler to build in that assumption.

(defun discriminant (a b c)

(declare (number a b c))

"Compute the discriminant for a quadratic equation."

(- (* b b) (* 4 a c))) → DISCRIMINANT

(discriminant 1 2/3 -2) → 76/9

;; This function assumes its callers have not checked the types of the

;; arguments, and performs explicit type checks before making any assumptions.

(defun careful-discriminant (a b c)

"Compute the discriminant for a quadratic equation."

(check-type a number)

(check-type b number)

(check-type c number)

(locally (declare (number a b c))

(- (* b b) (* 4 a c)))) → CAREFUL-DISCRIMINANT

(careful-discriminant 1 2/3 -2) → 76/9

See Also:
flet, labels, block, return-from, declare, documentation, Section 3.1 (Evaluation), Section 3.4.1
(Ordinary Lambda Lists), Section 3.4.11 (Syntactic Interaction of Documentation Strings and
Declarations)

Notes:
return-from can be used to return prematurely from a function defined by defun.

5–16 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Additional side effects might take place when additional information (typically debugging infor-
mation) about the function definition is recorded.

fdefinition Accessor

Syntax:
fdefinition function-name → definition

(setf (fdefinition function-name) new-definition)

Arguments and Values:
function-name—a function name. In the non-setf case, the name must be fbound in the global
environment .

definition—Current global function definition named by function-name.

new-definition—a function.

Description:
fdefinition accesses the current global function definition named by function-name. The definition
may be a function or may be an object representing a special form or macro. The value returned
by fdefinition when fboundp returns true but the function-name denotes a macro or special form
is not well-defined, but fdefinition does not signal an error.

Exceptional Situations:
Should signal an error of type type-error if function-name is not a function name.

An error of type undefined-function is signaled in the non-setf case if function-name is not
fbound .

See Also:
fboundp, fmakunbound, macro-function, special-operator-p, symbol-function

Notes:
fdefinition cannot access the value of a lexical function name produced by flet or labels; it can
access only the global function value.

setf can be used with fdefinition to replace a global function definition when the function-name’s
function definition does not represent a special form. setf of fdefinition requires a function as the
new value. It is an error to set the fdefinition of a function-name to a symbol , a list , or the value
returned by fdefinition on the name of a macro or special form.

Data and Control Flow 5–17

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

fboundp

fboundp Function

Syntax:
fboundp name → generalized-boolean

Pronunciation:
[ef bau̇ndpē]

Arguments and Values:
name—a function name.

generalized-boolean—a generalized boolean.

Description:
Returns true if name is fbound ; otherwise, returns false.

Examples:

(fboundp ’car) → true
(fboundp ’nth-value) → false
(fboundp ’with-open-file) → true
(fboundp ’unwind-protect) → true
(defun my-function (x) x) → MY-FUNCTION

(fboundp ’my-function) → true
(let ((saved-definition (symbol-function ’my-function)))

(unwind-protect (progn (fmakunbound ’my-function)

(fboundp ’my-function))

(setf (symbol-function ’my-function) saved-definition)))

→ false
(fboundp ’my-function) → true
(defmacro my-macro (x) ‘’,x) → MY-MACRO

(fboundp ’my-macro) → true
(fmakunbound ’my-function) → MY-FUNCTION

(fboundp ’my-function) → false
(flet ((my-function (x) x))

(fboundp ’my-function)) → false

Exceptional Situations:
Should signal an error of type type-error if name is not a function name.

See Also:
symbol-function, fmakunbound, fdefinition

5–18 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Notes:
It is permissible to call symbol-function on any symbol that is fbound .

fboundp is sometimes used to “guard” an access to the function cell , as in: (if (fboundp x)

(symbol-function x))

Defining a setf expander F does not cause the setf function (setf F) to become defined.

fmakunbound Function

Syntax:
fmakunbound name → name

Pronunciation:
[ef makεn bau̇nd] or [ef mākεn bau̇nd]

Arguments and Values:
name—a function name.

Description:
Removes the function or macro definition, if any, of name in the global environment .

Examples:

(defun add-some (x) (+ x 19)) → ADD-SOME

(fboundp ’add-some) → true
(flet ((add-some (x) (+ x 37)))

(fmakunbound ’add-some)

(add-some 1)) → 38

(fboundp ’add-some) → false

Exceptional Situations:
Should signal an error of type type-error if name is not a function name.

The consequences are undefined if name is a special operator .

See Also:
fboundp, makunbound

Data and Control Flow 5–19

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

flet, labels, macrolet

flet, labels, macrolet Special Operator

Syntax:
flet ({(function-name lambda-list [[{local-declaration}* | local-documentation]] {local-form}*)}*)

{declaration}* {form}*
→ {result}*

labels ({(function-name lambda-list [[{local-declaration}* | local-documentation]] {local-form}*)}*)
{declaration}* {form}*

→ {result}*
macrolet ({(name lambda-list [[{local-declaration}* | local-documentation]] {local-form}*)}*)

{declaration}* {form}*
→ {result}*

Arguments and Values:
function-name—a function name.

name—a symbol .

lambda-list—a lambda list ; for flet and labels, it is an ordinary lambda list ; for macrolet, it is a
macro lambda list .

local-declaration—a declare expression; not evaluated.

declaration—a declare expression; not evaluated.

local-documentation—a string ; not evaluated.

local-forms, forms—an implicit progn.

results—the values of the forms.

Description:
flet, labels, and macrolet define local functions and macros, and execute forms using the local
definitions. Forms are executed in order of occurrence.

The body forms (but not the lambda list) of each function created by flet and labels and each
macro created by macrolet are enclosed in an implicit block whose name is the function block
name of the function-name or name, as appropriate.

The scope of the declarations between the list of local function/macro definitions and the body
forms in flet and labels does not include the bodies of the locally defined functions, except that

5–20 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

flet, labels, macrolet

for labels, any inline, notinline, or ftype declarations that refer to the locally defined functions
do apply to the local function bodies. That is, their scope is the same as the function name that
they affect. The scope of these declarations does not include the bodies of the macro expander
functions defined by macrolet.

flet

flet defines locally named functions and executes a series of forms with these definition
bindings. Any number of such local functions can be defined.

The scope of the name binding encompasses only the body. Within the body of flet,
function-names matching those defined by flet refer to the locally defined functions rather
than to the global function definitions of the same name. Also, within the scope of flet,
global setf expander definitions of the function-name defined by flet do not apply. Note
that this applies to (defsetf f ...), not (defmethod (setf f) ...).

The names of functions defined by flet are in the lexical environment ; they retain their
local definitions only within the body of flet. The function definition bindings are visible
only in the body of flet, not the definitions themselves. Within the function definitions,
local function names that match those being defined refer to functions or macros defined
outside the flet. flet can locally shadow a global function name, and the new definition
can refer to the global definition.

Any local-documentation is attached to the corresponding local function (if one is actually
created) as a documentation string .

labels

labels is equivalent to flet except that the scope of the defined function names for labels
encompasses the function definitions themselves as well as the body.

macrolet

macrolet establishes local macro definitions, using the same format used by defmacro.

Within the body of macrolet, global setf expander definitions of the names defined by the
macrolet do not apply; rather, setf expands the macro form and recursively process the
resulting form.

The macro-expansion functions defined by macrolet are defined in the lexical en-
vironment in which the macrolet form appears. Declarations and macrolet and
symbol-macrolet definitions affect the local macro definitions in a macrolet, but the
consequences are undefined if the local macro definitions reference any local variable or
function bindings that are visible in that lexical environment .

Any local-documentation is attached to the corresponding local macro function as a
documentation string .

Data and Control Flow 5–21

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

flet, labels, macrolet

Examples:

(defun foo (x flag)

(macrolet ((fudge (z)

;The parameters x and flag are not accessible

; at this point; a reference to flag would be to

; the global variable of that name.

‘(if flag (* ,z ,z) ,z)))

;The parameters x and flag are accessible here.

(+ x

(fudge x)

(fudge (+ x 1)))))

≡
(defun foo (x flag)

(+ x

(if flag (* x x) x)

(if flag (* (+ x 1) (+ x 1)) (+ x 1))))

after macro expansion. The occurrences of x and flag legitimately refer to the parameters of the
function foo because those parameters are visible at the site of the macro call which produced the
expansion.

(flet ((flet1 (n) (+ n n)))

(flet ((flet1 (n) (+ 2 (flet1 n))))

(flet1 2))) → 6

(defun dummy-function () ’top-level) → DUMMY-FUNCTION

(funcall #’dummy-function) → TOP-LEVEL

(flet ((dummy-function () ’shadow))

(funcall #’dummy-function)) → SHADOW

(eq (funcall #’dummy-function) (funcall ’dummy-function))

→ true
(flet ((dummy-function () ’shadow))

(eq (funcall #’dummy-function)

(funcall ’dummy-function)))

→ false

(defun recursive-times (k n)

(labels ((temp (n)

(if (zerop n) 0 (+ k (temp (1- n))))))

(temp n))) → RECURSIVE-TIMES

(recursive-times 2 3) → 6

(defmacro mlets (x &environment env)

(let ((form ‘(babbit ,x)))

(macroexpand form env))) → MLETS

5–22 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

flet, labels, macrolet

(macrolet ((babbit (z) ‘(+ ,z ,z))) (mlets 5)) → 10

(flet ((safesqrt (x) (sqrt (abs x))))

;; The safesqrt function is used in two places.

(safesqrt (apply #’+ (map ’list #’safesqrt ’(1 2 3 4 5 6)))))

→ 3.291173

(defun integer-power (n k)

(declare (integer n))

(declare (type (integer 0 *) k))

(labels ((expt0 (x k a)

(declare (integer x a) (type (integer 0 *) k))

(cond ((zerop k) a)

((evenp k) (expt1 (* x x) (floor k 2) a))

(t (expt0 (* x x) (floor k 2) (* x a)))))

(expt1 (x k a)

(declare (integer x a) (type (integer 0 *) k))

(cond ((evenp k) (expt1 (* x x) (floor k 2) a))

(t (expt0 (* x x) (floor k 2) (* x a))))))

(expt0 n k 1))) → INTEGER-POWER

(defun example (y l)

(flet ((attach (x)

(setq l (append l (list x)))))

(declare (inline attach))

(dolist (x y)

(unless (null (cdr x))

(attach x)))

l))

(example ’((a apple apricot) (b banana) (c cherry) (d) (e))

’((1) (2) (3) (4 2) (5) (6 3 2)))

→ ((1) (2) (3) (4 2) (5) (6 3 2) (A APPLE APRICOT) (B BANANA) (C CHERRY))

See Also:
declare, defmacro, defun, documentation, let, Section 3.1 (Evaluation), Section 3.4.11 (Syntac-
tic Interaction of Documentation Strings and Declarations)

Notes:
It is not possible to define recursive functions with flet. labels can be used to define mutually
recursive functions.

If a macrolet form is a top level form, the body forms are also processed as top level forms. See
Section 3.2.3 (File Compilation).

Data and Control Flow 5–23

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

funcall Function

Syntax:
funcall function &rest args → {result}*

Arguments and Values:
function—a function designator .

args—arguments to the function.

results—the values returned by the function.

Description:
funcall applies function to args. If function is a symbol , it is coerced to a function as if by finding
its functional value in the global environment .

Examples:

(funcall #’+ 1 2 3) → 6

(funcall ’car ’(1 2 3)) → 1

(funcall ’position 1 ’(1 2 3 2 1) :start 1) → 4

(cons 1 2) → (1 . 2)

(flet ((cons (x y) ‘(kons ,x ,y)))

(let ((cons (symbol-function ’+)))

(funcall #’cons

(funcall ’cons 1 2)

(funcall cons 1 2))))

→ (KONS (1 . 2) 3)

Exceptional Situations:
An error of type undefined-function should be signaled if function is a symbol that does not have
a global definition as a function or that has a global definition as a macro or a special operator .

See Also:
apply, function, Section 3.1 (Evaluation)

Notes:

(funcall function arg1 arg2 ...)

≡ (apply function arg1 arg2 ... nil)

≡ (apply function (list arg1 arg2 ...))

The difference between funcall and an ordinary function call is that in the former case the

5–24 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

function is obtained by ordinary evaluation of a form, and in the latter case it is obtained by the
special interpretation of the function position that normally occurs.

function Special Operator

Syntax:
function name → function

Arguments and Values:
name—a function name or lambda expression.

function—a function object .

Description:
The value of function is the functional value of name in the current lexical environment .

If name is a function name, the functional definition of that name is that established by the
innermost lexically enclosing flet, labels, or macrolet form, if there is one. Otherwise the global
functional definition of the function name is returned.

If name is a lambda expression, then a lexical closure is returned. In situations where a closure
over the same set of bindings might be produced more than once, the various resulting closures
might or might not be eq.

It is an error to use function on a function name that does not denote a function in the lexical
environment in which the function form appears. Specifically, it is an error to use function on a
symbol that denotes a macro or special form. An implementation may choose not to signal this
error for performance reasons, but implementations are forbidden from defining the failure to
signal an error as a useful behavior.

Examples:

(defun adder (x) (function (lambda (y) (+ x y))))

The result of (adder 3) is a function that adds 3 to its argument:

(setq add3 (adder 3))

(funcall add3 5) → 8

This works because function creates a closure of the lambda expression that is able to refer to the
value 3 of the variable x even after control has returned from the function adder.

See Also:
defun, fdefinition, flet, labels, symbol-function, Section 3.1.2.1.1 (Symbols as Forms), Section
2.4.8.2 (Sharpsign Single-Quote), Section 22.1.3.13 (Printing Other Objects)

Data and Control Flow 5–25

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Notes:
The notation #’name may be used as an abbreviation for (function name).

function-lambda-expression Function

Syntax:
function-lambda-expression function
→ lambda-expression, closure-p, name

Arguments and Values:
function—a function.

lambda-expression—a lambda expression or nil.

closure-p—a generalized boolean.

name—an object .

Description:
Returns information about function as follows:

The primary value, lambda-expression, is function’s defining lambda expression, or nil if the
information is not available. The lambda expression may have been pre-processed in some ways,
but it should remain a suitable argument to compile or function. Any implementation may
legitimately return nil as the lambda-expression of any function.

The secondary value, closure-p, is nil if function’s definition was enclosed in the null lexical
environment or something non-nil if function’s definition might have been enclosed in some non-
null lexical environment . Any implementation may legitimately return true as the closure-p of any
function.

The tertiary value, name, is the “name” of function. The name is intended for debugging only
and is not necessarily one that would be valid for use as a name in defun or function, for ex-
ample. By convention, nil is used to mean that function has no name. Any implementation may
legitimately return nil as the name of any function.

Examples:
The following examples illustrate some possible return values, but are not intended to be exhaus-
tive:

5–26 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(function-lambda-expression #’(lambda (x) x))

→ NIL, false, NIL
or→ NIL, true, NIL
or→ (LAMBDA (X) X), true, NIL
or→ (LAMBDA (X) X), false, NIL

(function-lambda-expression

(funcall #’(lambda () #’(lambda (x) x))))

→ NIL, false, NIL
or→ NIL, true, NIL
or→ (LAMBDA (X) X), true, NIL
or→ (LAMBDA (X) X), false, NIL

(function-lambda-expression

(funcall #’(lambda (x) #’(lambda () x)) nil))

→ NIL, true, NIL
or→ (LAMBDA () X), true, NIL
not→ NIL, false, NIL
not→ (LAMBDA () X), false, NIL

(flet ((foo (x) x))

(setf (symbol-function ’bar) #’foo)

(function-lambda-expression #’bar))

→ NIL, false, NIL
or→ NIL, true, NIL
or→ (LAMBDA (X) (BLOCK FOO X)), true, NIL
or→ (LAMBDA (X) (BLOCK FOO X)), false, FOO
or→ (SI::BLOCK-LAMBDA FOO (X) X), false, FOO

(defun foo ()

(flet ((bar (x) x))

#’bar))

(function-lambda-expression (foo))

→ NIL, false, NIL
or→ NIL, true, NIL
or→ (LAMBDA (X) (BLOCK BAR X)), true, NIL
or→ (LAMBDA (X) (BLOCK BAR X)), true, (:INTERNAL FOO 0 BAR)
or→ (LAMBDA (X) (BLOCK BAR X)), false, "BAR in FOO"

Notes:
Although implementations are free to return “nil, true, nil” in all cases, they are encouraged to
return a lambda expression as the primary value in the case where the argument was created by a
call to compile or eval (as opposed to being created by loading a compiled file).

Data and Control Flow 5–27

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

functionp Function

Syntax:
functionp object → generalized-boolean

Arguments and Values:
object—an object .

generalized-boolean—a generalized boolean.

Description:
Returns true if object is of type function; otherwise, returns false.

Examples:

(functionp ’append) → false
(functionp #’append) → true
(functionp (symbol-function ’append)) → true
(flet ((f () 1)) (functionp #’f)) → true
(functionp (compile nil ’(lambda () 259))) → true
(functionp nil) → false
(functionp 12) → false
(functionp ’(lambda (x) (* x x))) → false
(functionp #’(lambda (x) (* x x))) → true

Notes:

(functionp object) ≡ (typep object ’function)

compiled-function-p Function

Syntax:
compiled-function-p object → generalized-boolean

Arguments and Values:
object—an object .

generalized-boolean—a generalized boolean.

Description:
Returns true if object is of type compiled-function; otherwise, returns false.

5–28 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:

(defun f (x) x) → F

(compiled-function-p #’f)

→ false
or→ true
(compiled-function-p ’f) → false
(compile ’f) → F

(compiled-function-p #’f) → true
(compiled-function-p ’f) → false
(compiled-function-p (compile nil ’(lambda (x) x)))

→ true
(compiled-function-p #’(lambda (x) x))

→ false
or→ true
(compiled-function-p ’(lambda (x) x)) → false

See Also:
compile, compile-file, compiled-function

Notes:

(compiled-function-p object) ≡ (typep object ’compiled-function)

call-arguments-limit Constant Variable

Constant Value:
An integer not smaller than 50 and at least as great as the value of lambda-parameters-limit,
the exact magnitude of which is implementation-dependent .

Description:
The upper exclusive bound on the number of arguments that may be passed to a function.

See Also:
lambda-parameters-limit, multiple-values-limit

Data and Control Flow 5–29

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

lambda-list-keywords Constant Variable

Constant Value:
a list , the elements of which are implementation-dependent , but which must contain at least
the symbols &allow-other-keys, &aux, &body, &environment, &key, &optional, &rest, and
&whole.

Description:
A list of all the lambda list keywords used in the implementation, including the additional ones
used only by macro definition forms.

See Also:
defun, flet, defmacro, macrolet, Section 3.1.2 (The Evaluation Model)

lambda-parameters-limit Constant Variable

Constant Value:
implementation-dependent , but not smaller than 50.

Description:
A positive integer that is the upper exclusive bound on the number of parameter names that can
appear in a single lambda list .

See Also:
call-arguments-limit

Notes:
Implementors are encouraged to make the value of lambda-parameters-limit as large as possible.

5–30 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

defconstant

defconstant Macro

Syntax:
defconstant name initial-value [documentation] → name

Arguments and Values:
name—a symbol ; not evaluated.

initial-value—a form; evaluated.

documentation—a string ; not evaluated.

Description:
defconstant causes the global variable named by name to be given a value that is the result of
evaluating initial-value.

A constant defined by defconstant can be redefined with defconstant. However, the consequences
are undefined if an attempt is made to assign a value to the symbol using another operator, or to
assign it to a different value using a subsequent defconstant.

If documentation is supplied, it is attached to name as a documentation string of kind variable.

defconstant normally appears as a top level form, but it is meaningful for it to appear as a
non-top-level form. However, the compile-time side effects described below only take place when
defconstant appears as a top level form.

The consequences are undefined if there are any bindings of the variable named by name at the
time defconstant is executed or if the value is not eql to the value of initial-value.

The consequences are undefined when constant symbols are rebound as either lexical or dynamic
variables. In other words, a reference to a symbol declared with defconstant always refers to its
global value.

The side effects of the execution of defconstant must be equivalent to at least the side effects of
the execution of the following code:

(setf (symbol-value ’name) initial-value)
(setf (documentation ’name ’variable) ’documentation)

If a defconstant form appears as a top level form, the compiler must recognize that name names
a constant variable. An implementation may choose to evaluate the value-form at compile time,
load time, or both. Therefore, users must ensure that the initial-value can be evaluated at compile
time (regardless of whether or not references to name appear in the file) and that it always
evaluates to the same value.

Data and Control Flow 5–31

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:

(defconstant this-is-a-constant ’never-changing "for a test") → THIS-IS-A-CONSTANT

this-is-a-constant → NEVER-CHANGING

(documentation ’this-is-a-constant ’variable) → "for a test"

(constantp ’this-is-a-constant) → true

See Also:
declaim, defparameter, defvar, documentation, proclaim, Section 3.1.2.1.1.3 (Constant Vari-
ables), Section 3.2 (Compilation)

defparameter, defvar Macro

Syntax:
defparameter name initial-value [documentation] → name

defvar name [initial-value [documentation]] → name

Arguments and Values:
name—a symbol ; not evaluated.

initial-value—a form; for defparameter, it is always evaluated , but for defvar it is evaluated only
if name is not already bound .

documentation—a string ; not evaluated.

Description:
defparameter and defvar establish name as a dynamic variable.

defparameter unconditionally assigns the initial-value to the dynamic variable named name.
defvar, by contrast, assigns initial-value (if supplied) to the dynamic variable named name only if
name is not already bound .

If no initial-value is supplied, defvar leaves the value cell of the dynamic variable named name
undisturbed; if name was previously bound , its old value persists, and if it was previously un-
bound , it remains unbound .

If documentation is supplied, it is attached to name as a documentation string of kind variable.

defparameter and defvar normally appear as a top level form, but it is meaningful for them to
appear as non-top-level forms. However, the compile-time side effects described below only take
place when they appear as top level forms.

5–32 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

defparameter, defvar

Examples:

(defparameter *p* 1) → *P*

p → 1

(constantp ’*p*) → false
(setq *p* 2) → 2

(defparameter *p* 3) → *P*

p → 3

(defvar *v* 1) → *V*

v → 1

(constantp ’*v*) → false
(setq *v* 2) → 2

(defvar *v* 3) → *V*

v → 2

(defun foo ()

(let ((*p* ’p) (*v* ’v))

(bar))) → FOO

(defun bar () (list *p* *v*)) → BAR

(foo) → (P V)

The principal operational distinction between defparameter and defvar is that defparameter
makes an unconditional assignment to name, while defvar makes a conditional one. In practice,
this means that defparameter is useful in situations where loading or reloading the definition
would want to pick up a new value of the variable, while defvar is used in situations where the
old value would want to be retained if the file were loaded or reloaded. For example, one might
create a file which contained:

(defvar *the-interesting-numbers* ’())

(defmacro define-interesting-number (name n)

‘(progn (defvar ,name ,n)

(pushnew ,name *the-interesting-numbers*)

’,name))

(define-interesting-number *my-height* 168) ;cm

(define-interesting-number *my-weight* 13) ;stones

Here the initial value, (), for the variable *the-interesting-numbers* is just a seed that we are
never likely to want to reset to something else once something has been grown from it. As such,
we have used defvar to avoid having the *interesting-numbers* information reset if the file is
loaded a second time. It is true that the two calls to define-interesting-number here would
be reprocessed, but if there were additional calls in another file, they would not be and that
information would be lost. On the other hand, consider the following code:

(defparameter *default-beep-count* 3)

(defun beep (&optional (n *default-beep-count*))

(dotimes (i n) (si:%beep 1000. 100000.) (sleep 0.1)))

Data and Control Flow 5–33

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

defparameter, defvar

Here we could easily imagine editing the code to change the initial value of *default-beep-count*,
and then reloading the file to pick up the new value. In order to make value updating easy, we
have used defparameter.

On the other hand, there is potential value to using defvar in this situation. For example, sup-
pose that someone had predefined an alternate value for *default-beep-count*, or had loaded
the file and then manually changed the value. In both cases, if we had used defvar instead of
defparameter, those user preferences would not be overridden by (re)loading the file.

The choice of whether to use defparameter or defvar has visible consequences to programs, but
is nevertheless often made for subjective reasons.

Side Effects:
If a defvar or defparameter form appears as a top level form, the compiler must recognize that
the name has been proclaimed special. However, it must neither evaluate the initial-value form
nor assign the dynamic variable named name at compile time.

There may be additional (implementation-defined) compile-time or run-time side effects, as long
as such effects do not interfere with the correct operation of conforming programs.

Affected By:
defvar is affected by whether name is already bound .

See Also:
declaim, defconstant, documentation, Section 3.2 (Compilation)

Notes:
It is customary to name dynamic variables with an asterisk at the beginning and end of the
name. e.g., *foo* is a good name for a dynamic variable, but not for a lexical variable; foo is
a good name for a lexical variable, but not for a dynamic variable. This naming convention
is observed for all defined names in Common Lisp; however, neither conforming programs nor
conforming implementations are obliged to adhere to this convention.

The intent of the permission for additional side effects is to allow implementations to do normal
“bookkeeping” that accompanies definitions. For example, the macro expansion of a defvar or
defparameter form might include code that arranges to record the name of the source file in
which the definition occurs.

defparameter and defvar might be defined as follows:

(defmacro defparameter (name initial-value

&optional (documentation nil documentation-p))

‘(progn (declaim (special ,name))

(setf (symbol-value ’,name) ,initial-value)

,(when documentation-p

‘(setf (documentation ’,name ’variable) ’,documentation))

’,name))

5–34 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(defmacro defvar (name &optional

(initial-value nil initial-value-p)

(documentation nil documentation-p))

‘(progn (declaim (special ,name))

,(when initial-value-p

‘(unless (boundp ’,name)

(setf (symbol-value ’,name) ,initial-value)))

,(when documentation-p

‘(setf (documentation ’,name ’variable) ’,documentation))

’,name))

destructuring-bind Macro

Syntax:
destructuring-bind lambda-list expression {declaration}* {form}*
→ {result}*

Arguments and Values:
lambda-list—a destructuring lambda list .

expression—a form.

declaration—a declare expression; not evaluated.

forms—an implicit progn.

results—the values returned by the forms.

Description:
destructuring-bind binds the variables specified in lambda-list to the corresponding values in
the tree structure resulting from the evaluation of expression; then destructuring-bind evaluates
forms.

The lambda-list supports destructuring as described in Section 3.4.5 (Destructuring Lambda
Lists).

Examples:

(defun iota (n) (loop for i from 1 to n collect i)) ;helper

(destructuring-bind ((a &optional (b ’bee)) one two three)

‘((alpha) ,@(iota 3))

(list a b three two one)) → (ALPHA BEE 3 2 1)

Data and Control Flow 5–35

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Exceptional Situations:
If the result of evaluating the expression does not match the destructuring pattern, an error of
type error should be signaled.

See Also:
macrolet, defmacro

let, let∗ Special Operator

Syntax:
let ({var | (var [init-form])}*) {declaration}* {form}* → {result}*
let* ({var | (var [init-form])}*) {declaration}* {form}* → {result}*

Arguments and Values:
var—a symbol .

init-form—a form.

declaration—a declare expression; not evaluated.

form—a form.

results—the values returned by the forms.

Description:
let and let* create new variable bindings and execute a series of forms that use these bindings.
let performs the bindings in parallel and let* does them sequentially.

The form

(let ((var1 init-form-1)
(var2 init-form-2)
...

(varm init-form-m))

declaration1
declaration2
...

declarationp
form1
form2
...

formn)

5–36 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

let, let∗
first evaluates the expressions init-form-1 , init-form-2 , and so on, in that order, saving the result-
ing values. Then all of the variables varj are bound to the corresponding values; each binding is
lexical unless there is a special declaration to the contrary. The expressions formk are then evalu-
ated in order; the values of all but the last are discarded (that is, the body of a let is an implicit
progn).

let* is similar to let, but the bindings of variables are performed sequentially rather than in
parallel. The expression for the init-form of a var can refer to vars previously bound in the let*.

The form

(let* ((var1 init-form-1)
(var2 init-form-2)
...

(varm init-form-m))

declaration1
declaration2
...

declarationp
form1
form2
...

formn)

first evaluates the expression init-form-1 , then binds the variable var1 to that value; then it
evaluates init-form-2 and binds var2 , and so on. The expressions formj are then evaluated in
order; the values of all but the last are discarded (that is, the body of let* is an implicit progn).

For both let and let*, if there is not an init-form associated with a var , var is initialized to nil.

The special form let has the property that the scope of the name binding does not include any
initial value form. For let*, a variable’s scope also includes the remaining initial value forms for
subsequent variable bindings.

Examples:

(setq a ’top) → TOP

(defun dummy-function () a) → DUMMY-FUNCTION

(let ((a ’inside) (b a))

(format nil "~S ~S ~S" a b (dummy-function))) → "INSIDE TOP TOP"

(let* ((a ’inside) (b a))

(format nil "~S ~S ~S" a b (dummy-function))) → "INSIDE INSIDE TOP"

(let ((a ’inside) (b a))

(declare (special a))

(format nil "~S ~S ~S" a b (dummy-function))) → "INSIDE TOP INSIDE"

The code

Data and Control Flow 5–37

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(let (x)

(declare (integer x))

(setq x (gcd y z))

...)

is incorrect; although x is indeed set before it is used, and is set to a value of the declared type
integer , nevertheless x initially takes on the value nil in violation of the type declaration.

See Also:
progv

progv Special Operator

Syntax:
progv symbols values {form}* → {result}*

Arguments and Values:
symbols—a list of symbols; evaluated.

values—a list of objects; evaluated.

forms—an implicit progn.

results—the values returned by the forms.

Description:
progv creates new dynamic variable bindings and executes each form using those bindings. Each
form is evaluated in order.

progv allows binding one or more dynamic variables whose names may be determined at run
time. Each form is evaluated in order with the dynamic variables whose names are in symbols
bound to corresponding values. If too few values are supplied, the remaining symbols are bound
and then made to have no value. If too many values are supplied, the excess values are ignored.
The bindings of the dynamic variables are undone on exit from progv.

Examples:

(setq *x* 1) → 1

(progv ’(*x*) ’(2) *x*) → 2

x → 1

Assuming *x* is not globally special,

(let ((*x* 3))

(progv ’(*x*) ’(4)

5–38 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(list *x* (symbol-value ’*x*)))) → (3 4)

See Also:
let, Section 3.1 (Evaluation)

Notes:
Among other things, progv is useful when writing interpreters for languages embedded in Lisp; it
provides a handle on the mechanism for binding dynamic variables.

setq Special Form

Syntax:
setq {↓pair}* → result

pair ::=var form

Pronunciation:
[set kyü]

Arguments and Values:
var—a symbol naming a variable other than a constant variable.

form—a form.

result—the primary value of the last form, or nil if no pairs were supplied.

Description:
Assigns values to variables.

(setq var1 form1 var2 form2 ...) is the simple variable assignment statement of Lisp. First
form1 is evaluated and the result is stored in the variable var1 , then form2 is evaluated and the
result stored in var2 , and so forth. setq may be used for assignment of both lexical and dynamic
variables.

If any var refers to a binding made by symbol-macrolet, then that var is treated as if setf (not
setq) had been used.

Examples:

;; A simple use of SETQ to establish values for variables.

(setq a 1 b 2 c 3) → 3

a → 1

b → 2

c → 3

Data and Control Flow 5–39

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

;; Use of SETQ to update values by sequential assignment.

(setq a (1+ b) b (1+ a) c (+ a b)) → 7

a → 3

b → 4

c → 7

;; This illustrates the use of SETQ on a symbol macro.

(let ((x (list 10 20 30)))

(symbol-macrolet ((y (car x)) (z (cadr x)))

(setq y (1+ z) z (1+ y))

(list x y z)))

→ ((21 22 30) 21 22)

Side Effects:
The primary value of each form is assigned to the corresponding var .

See Also:
psetq, set, setf

psetq Macro

Syntax:
psetq {↓pair}* → nil

pair ::=var form

Pronunciation:
psetq: [pē set kyü]

Arguments and Values:
var—a symbol naming a variable other than a constant variable.

form—a form.

Description:
Assigns values to variables.

This is just like setq, except that the assignments happen “in parallel.” That is, first all of the
forms are evaluated, and only then are the variables set to the resulting values. In this way, the
assignment to one variable does not affect the value computation of another in the way that
would occur with setq’s sequential assignment.

5–40 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

If any var refers to a binding made by symbol-macrolet, then that var is treated as if psetf (not
psetq) had been used.

Examples:

;; A simple use of PSETQ to establish values for variables.

;; As a matter of style, many programmers would prefer SETQ

;; in a simple situation like this where parallel assignment

;; is not needed, but the two have equivalent effect.

(psetq a 1 b 2 c 3) → NIL

a → 1

b → 2

c → 3

;; Use of PSETQ to update values by parallel assignment.

;; The effect here is very different than if SETQ had been used.

(psetq a (1+ b) b (1+ a) c (+ a b)) → NIL

a → 3

b → 2

c → 3

;; Use of PSETQ on a symbol macro.

(let ((x (list 10 20 30)))

(symbol-macrolet ((y (car x)) (z (cadr x)))

(psetq y (1+ z) z (1+ y))

(list x y z)))

→ ((21 11 30) 21 11)

;; Use of parallel assignment to swap values of A and B.

(let ((a 1) (b 2))

(psetq a b b a)

(values a b))

→ 2, 1

Side Effects:
The values of forms are assigned to vars.

See Also:
psetf , setq

Data and Control Flow 5–41

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

block

block Special Operator

Syntax:
block name form* → {result}*

Arguments and Values:
name—a symbol .

form—a form.

results—the values of the forms if a normal return occurs, or else, if an explicit return occurs, the
values that were transferred.

Description:
block establishes a block named name and then evaluates forms as an implicit progn.

The special operators block and return-from work together to provide a structured, lexical, non-
local exit facility. At any point lexically contained within forms, return-from can be used with
the given name to return control and values from the block form, except when an intervening
block with the same name has been established , in which case the outer block is shadowed by the
inner one.

The block named name has lexical scope and dynamic extent .

Once established, a block may only be exited once, whether by normal return or explicit return.

Examples:

(block empty) → NIL

(block whocares (values 1 2) (values 3 4)) → 3, 4

(let ((x 1))

(block stop (setq x 2) (return-from stop) (setq x 3))

x) → 2

(block early (return-from early (values 1 2)) (values 3 4)) → 1, 2

(block outer (block inner (return-from outer 1)) 2) → 1

(block twin (block twin (return-from twin 1)) 2) → 2

;; Contrast behavior of this example with corresponding example of CATCH.

(block b

(flet ((b1 () (return-from b 1)))

(block b (b1) (print ’unreachable))

2)) → 1

See Also:
return, return-from, Section 3.1 (Evaluation)

5–42 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Notes:

catch Special Operator

Syntax:
catch tag {form}* → {result}*

Arguments and Values:
tag—a catch tag ; evaluated.

forms—an implicit progn.

results—if the forms exit normally, the values returned by the forms; if a throw occurs to the tag ,
the values that are thrown.

Description:
catch is used as the destination of a non-local control transfer by throw. Tags are used
to find the catch to which a throw is transferring control. (catch ’foo form) catches a
(throw ’foo form) but not a (throw ’bar form).

The order of execution of catch follows:

1. Tag is evaluated. It serves as the name of the catch.

2. Forms are then evaluated as an implicit progn, and the results of the last form are
returned unless a throw occurs.

3. If a throw occurs during the execution of one of the forms, control is transferred to the
catch form whose tag is eq to the tag argument of the throw and which is the most
recently established catch with that tag . No further evaluation of forms occurs.

4. The tag established by catch is disestablished just before the results are returned.

If during the execution of one of the forms, a throw is executed whose tag is eq to the catch tag,
then the values specified by the throw are returned as the result of the dynamically most recently
established catch form with that tag.

The mechanism for catch and throw works even if throw is not within the lexical scope of catch.
throw must occur within the dynamic extent of the evaluation of the body of a catch with a
corresponding tag .

Examples:

(catch ’dummy-tag 1 2 (throw ’dummy-tag 3) 4) → 3

Data and Control Flow 5–43

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(catch ’dummy-tag 1 2 3 4) → 4

(defun throw-back (tag) (throw tag t)) → THROW-BACK

(catch ’dummy-tag (throw-back ’dummy-tag) 2) → T

;; Contrast behavior of this example with corresponding example of BLOCK.

(catch ’c

(flet ((c1 () (throw ’c 1)))

(catch ’c (c1) (print ’unreachable))

2)) → 2

Exceptional Situations:
An error of type control-error is signaled if throw is done when there is no suitable catch tag .

See Also:
throw, Section 3.1 (Evaluation)

Notes:
It is customary for symbols to be used as tags, but any object is permitted. However, numbers
should not be used because the comparison is done using eq.

catch differs from block in that catch tags have dynamic scope while block names have lexical
scope.

go Special Operator

Syntax:
go tag →

Arguments and Values:
tag—a go tag .

Description:
go transfers control to the point in the body of an enclosing tagbody form labeled by a tag eql to
tag . If there is no such tag in the body, the bodies of lexically containing tagbody forms (if any)
are examined as well. If several tags are eql to tag , control is transferred to whichever matching
tag is contained in the innermost tagbody form that contains the go. The consequences are
undefined if there is no matching tag lexically visible to the point of the go.

The transfer of control initiated by go is performed as described in Section 5.2 (Transfer of
Control to an Exit Point).

Examples:

(tagbody

5–44 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(setq val 2)

(go lp)

(incf val 3)

lp (incf val 4)) → NIL

val → 6

The following is in error because there is a normal exit of the tagbody before the go is executed.

(let ((a nil))

(tagbody t (setq a #’(lambda () (go t))))

(funcall a))

The following is in error because the tagbody is passed over before the go form is executed.

(funcall (block nil

(tagbody a (return #’(lambda () (go a))))))

See Also:
tagbody

return-from Special Operator

Syntax:
return-from name [result] →

Arguments and Values:
name—a block tag ; not evaluated.

result—a form; evaluated. The default is nil.

Description:
Returns control and multiple values2 from a lexically enclosing block .

A block form named name must lexically enclose the occurrence of return-from; any values
yielded by the evaluation of result are immediately returned from the innermost such lexically
enclosing block .

The transfer of control initiated by return-from is performed as described in Section 5.2 (Trans-
fer of Control to an Exit Point).

Examples:

(block alpha (return-from alpha) 1) → NIL

(block alpha (return-from alpha 1) 2) → 1

Data and Control Flow 5–45

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

return-from

(block alpha (return-from alpha (values 1 2)) 3) → 1, 2

(let ((a 0))

(dotimes (i 10) (incf a) (when (oddp i) (return)))

a) → 2

(defun temp (x)

(if x (return-from temp ’dummy))

44) → TEMP

(temp nil) → 44

(temp t) → DUMMY

(block out

(flet ((exit (n) (return-from out n)))

(block out (exit 1)))

2) → 1

(block nil

(unwind-protect (return-from nil 1)

(return-from nil 2)))

→ 2

(dolist (flag ’(nil t))

(block nil

(let ((x 5))

(declare (special x))

(unwind-protect (return-from nil)

(print x))))

(print ’here))

. 5

. HERE

. 5

. HERE

→ NIL

(dolist (flag ’(nil t))

(block nil

(let ((x 5))

(declare (special x))

(unwind-protect

(if flag (return-from nil))

(print x))))

(print ’here))

. 5

. HERE

. 5

. HERE

→ NIL

The following has undefined consequences because the block form exits normally before the
return-from form is attempted.

5–46 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(funcall (block nil #’(lambda () (return-from nil)))) is an error.

See Also:
block, return, Section 3.1 (Evaluation)

return Macro

Syntax:
return [result] →

Arguments and Values:
result—a form; evaluated. The default is nil.

Description:
Returns, as if by return-from, from the block named nil.

Examples:

(block nil (return) 1) → NIL

(block nil (return 1) 2) → 1

(block nil (return (values 1 2)) 3) → 1, 2

(block nil (block alpha (return 1) 2)) → 1

(block alpha (block nil (return 1)) 2) → 2

(block nil (block nil (return 1) 2)) → 1

See Also:
block, return-from, Section 3.1 (Evaluation)

Notes:

(return) ≡ (return-from nil)

(return form) ≡ (return-from nil form)

The implicit blocks established by macros such as do are often named nil, so that return can be
used to exit from such forms.

Data and Control Flow 5–47

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

tagbody

tagbody Special Operator

Syntax:
tagbody {tag | statement}* → nil

Arguments and Values:
tag—a go tag ; not evaluated.

statement—a compound form; evaluated as described below.

Description:
Executes zero or more statements in a lexical environment that provides for control transfers to
labels indicated by the tags.

The statements in a tagbody are evaluated in order from left to right, and their values are
discarded. If at any time there are no remaining statements, tagbody returns nil. However, if
(go tag) is evaluated , control jumps to the part of the body labeled with the tag . (Tags are
compared with eql.)

A tag established by tagbody has lexical scope and has dynamic extent . Once tagbody has
been exited, it is no longer valid to go to a tag in its body. It is permissible for go to jump to
a tagbody that is not the innermost tagbody containing that go; the tags established by a
tagbody only shadow other tags of like name.

The determination of which elements of the body are tags and which are statements is made prior
to any macro expansion of that element. If a statement is a macro form and its macro expansion
is an atom, that atom is treated as a statement, not a tag .

Examples:

(let (val)

(tagbody

(setq val 1)

(go point-a)

(incf val 16)

point-c

(incf val 04)

(go point-b)

(incf val 32)

point-a

(incf val 02)

(go point-c)

(incf val 64)

point-b

(incf val 08))

5–48 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

val)

→ 15

(defun f1 (flag)

(let ((n 1))

(tagbody

(setq n (f2 flag #’(lambda () (go out))))

out

(prin1 n))))

→ F1

(defun f2 (flag escape)

(if flag (funcall escape) 2))

→ F2

(f1 nil)

. 2

→ NIL

(f1 t)

. 1

→ NIL

See Also:
go

Notes:
The macros in Figure 5–10 have implicit tagbodies.

do do-external-symbols dotimes
do* do-symbols prog
do-all-symbols dolist prog*

Figure 5–10. Macros that have implicit tagbodies.

throw Special Operator

Syntax:
throw tag result-form →

Arguments and Values:
tag—a catch tag ; evaluated.

result-form—a form; evaluated as described below.

Data and Control Flow 5–49

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

throw

Description:
throw causes a non-local control transfer to a catch whose tag is eq to tag .

Tag is evaluated first to produce an object called the throw tag; then result-form is evaluated, and
its results are saved. If the result-form produces multiple values, then all the values are saved. The
most recent outstanding catch whose tag is eq to the throw tag is exited; the saved results are
returned as the value or values of catch.

The transfer of control initiated by throw is performed as described in Section 5.2 (Transfer of
Control to an Exit Point).

Examples:

(catch ’result

(setq i 0 j 0)

(loop (incf j 3) (incf i)

(if (= i 3) (throw ’result (values i j))))) → 3, 9

(catch nil

(unwind-protect (throw nil 1)

(throw nil 2))) → 2

The consequences of the following are undefined because the catch of b is passed over by the first
throw, hence portable programs must assume that its dynamic extent is terminated. The binding
of the catch tag is not yet disestablished and therefore it is the target of the second throw.

(catch ’a

(catch ’b

(unwind-protect (throw ’a 1)

(throw ’b 2))))

The following prints “The inner catch returns :SECOND-THROW” and then returns :outer-catch.

(catch ’foo

(format t "The inner catch returns ~s.~%"

(catch ’foo

(unwind-protect (throw ’foo :first-throw)

(throw ’foo :second-throw))))

:outer-catch)

. The inner catch returns :SECOND-THROW

→ :OUTER-CATCH

Exceptional Situations:
If there is no outstanding catch tag that matches the throw tag, no unwinding of the stack

5–50 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

is performed, and an error of type control-error is signaled. When the error is signaled, the
dynamic environment is that which was in force at the point of the throw.

See Also:
block, catch, return-from, unwind-protect, Section 3.1 (Evaluation)

Notes:
catch and throw are normally used when the exit point must have dynamic scope (e.g., the
throw is not lexically enclosed by the catch), while block and return are used when lexical scope
is sufficient.

unwind-protect Special Operator

Syntax:
unwind-protect protected-form {cleanup-form}* → {result}*

Arguments and Values:
protected-form—a form.

cleanup-form—a form.

results—the values of the protected-form.

Description:
unwind-protect evaluates protected-form and guarantees that cleanup-forms are executed before
unwind-protect exits, whether it terminates normally or is aborted by a control transfer of some
kind. unwind-protect is intended to be used to make sure that certain side effects take place
after the evaluation of protected-form.

If a non-local exit occurs during execution of cleanup-forms, no special action is taken. The
cleanup-forms of unwind-protect are not protected by that unwind-protect.

unwind-protect protects against all attempts to exit from protected-form, including go,
handler-case, ignore-errors, restart-case, return-from, throw, and with-simple-restart.

Undoing of handler and restart bindings during an exit happens in parallel with the undoing
of the bindings of dynamic variables and catch tags, in the reverse order in which they were
established. The effect of this is that cleanup-form sees the same handler and restart bindings, as
well as dynamic variable bindings and catch tags, as were visible when the unwind-protect was
entered.

Examples:

(tagbody

Data and Control Flow 5–51

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

unwind-protect

(let ((x 3))

(unwind-protect

(if (numberp x) (go out))

(print x)))

out

...)

When go is executed, the call to print is executed first, and then the transfer of control to the tag
out is completed.

(defun dummy-function (x)

(setq state ’running)

(unless (numberp x) (throw ’abort ’not-a-number))

(setq state (1+ x))) → DUMMY-FUNCTION

(catch ’abort (dummy-function 1)) → 2

state → 2

(catch ’abort (dummy-function ’trash)) → NOT-A-NUMBER

state → RUNNING

(catch ’abort (unwind-protect (dummy-function ’trash)

(setq state ’aborted))) → NOT-A-NUMBER

state → ABORTED

The following code is not correct:

(unwind-protect

(progn (incf *access-count*)

(perform-access))

(decf *access-count*))

If an exit occurs before completion of incf , the decf form is executed anyway, resulting in an
incorrect value for *access-count*. The correct way to code this is as follows:

(let ((old-count *access-count*))

(unwind-protect

(progn (incf *access-count*)

(perform-access))

(setq *access-count* old-count)))

;;; The following returns 2.

(block nil

(unwind-protect (return 1)

(return 2)))

;;; The following has undefined consequences.

(block a

(block b

5–52 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

unwind-protect

(unwind-protect (return-from a 1)

(return-from b 2))))

;;; The following returns 2.

(catch nil

(unwind-protect (throw nil 1)

(throw nil 2)))

;;; The following has undefined consequences because the catch of B is

;;; passed over by the first THROW, hence portable programs must assume

;;; its dynamic extent is terminated. The binding of the catch tag is not

;;; yet disestablished and therefore it is the target of the second throw.

(catch ’a

(catch ’b

(unwind-protect (throw ’a 1)

(throw ’b 2))))

;;; The following prints "The inner catch returns :SECOND-THROW"

;;; and then returns :OUTER-CATCH.

(catch ’foo

(format t "The inner catch returns ~s.~%"

(catch ’foo

(unwind-protect (throw ’foo :first-throw)

(throw ’foo :second-throw))))

:outer-catch)

;;; The following returns 10. The inner CATCH of A is passed over, but

;;; because that CATCH is disestablished before the THROW to A is executed,

;;; it isn’t seen.

(catch ’a

(catch ’b

(unwind-protect (1+ (catch ’a (throw ’b 1)))

(throw ’a 10))))

;;; The following has undefined consequences because the extent of

;;; the (CATCH ’BAR ...) exit ends when the (THROW ’FOO ...)

;;; commences.

(catch ’foo

(catch ’bar

(unwind-protect (throw ’foo 3)

(throw ’bar 4)

(print ’xxx))))

Data and Control Flow 5–53

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

;;; The following returns 4; XXX is not printed.

;;; The (THROW ’FOO ...) has no effect on the scope of the BAR

;;; catch tag or the extent of the (CATCH ’BAR ...) exit.

(catch ’bar

(catch ’foo

(unwind-protect (throw ’foo 3)

(throw ’bar 4)

(print ’xxx))))

;;; The following prints 5.

(block nil

(let ((x 5))

(declare (special x))

(unwind-protect (return)

(print x))))

See Also:
catch, go, handler-case, restart-case, return, return-from, throw, Section 3.1 (Evaluation)

nil Constant Variable

Constant Value:
nil.

Description:
nil represents both boolean (and generalized boolean) false and the empty list .

Examples:

nil → NIL

See Also:
t

5–54 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

not Function

Syntax:
not x → boolean

Arguments and Values:
x—a generalized boolean (i.e., any object).

boolean—a boolean.

Description:
Returns t if x is false; otherwise, returns nil.

Examples:

(not nil) → T

(not ’()) → T

(not (integerp ’sss)) → T

(not (integerp 1)) → NIL

(not 3.7) → NIL

(not ’apple) → NIL

See Also:
null

Notes:
not is intended to be used to invert the ‘truth value’ of a boolean (or generalized boolean) whereas
null is intended to be used to test for the empty list . Operationally, not and null compute the
same result; which to use is a matter of style.

t Constant Variable

Constant Value:
t.

Description:
The boolean representing true, and the canonical generalized boolean representing true. Although
any object other than nil is considered true, t is generally used when there is no special reason to
prefer one such object over another.

Data and Control Flow 5–55

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

The symbol t is also sometimes used for other purposes as well. For example, as the name of a
class, as a designator (e.g., a stream designator) or as a special symbol for some syntactic reason
(e.g., in case and typecase to label the otherwise-clause).

Examples:

t → T

(eq t ’t) → true
(find-class ’t) → #<CLASS T 610703333>

(case ’a (a 1) (t 2)) → 1

(case ’b (a 1) (t 2)) → 2

(prin1 ’hello t)

. HELLO

→ HELLO

See Also:
nil

eq Function

Syntax:
eq x y → generalized-boolean

Arguments and Values:
x—an object .

y—an object .

generalized-boolean—a generalized boolean.

Description:
Returns true if its arguments are the same, identical object ; otherwise, returns false.

Examples:

(eq ’a ’b) → false
(eq ’a ’a) → true
(eq 3 3)

→ true
or→ false
(eq 3 3.0) → false
(eq 3.0 3.0)

→ true
or→ false

5–56 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

eq

(eq #c(3 -4) #c(3 -4))

→ true
or→ false
(eq #c(3 -4.0) #c(3 -4)) → false
(eq (cons ’a ’b) (cons ’a ’c)) → false
(eq (cons ’a ’b) (cons ’a ’b)) → false
(eq ’(a . b) ’(a . b))

→ true
or→ false
(progn (setq x (cons ’a ’b)) (eq x x)) → true
(progn (setq x ’(a . b)) (eq x x)) → true
(eq #\A #\A)

→ true
or→ false
(let ((x "Foo")) (eq x x)) → true
(eq "Foo" "Foo")

→ true
or→ false
(eq "Foo" (copy-seq "Foo")) → false
(eq "FOO" "foo") → false
(eq "string-seq" (copy-seq "string-seq")) → false
(let ((x 5)) (eq x x))

→ true
or→ false

See Also:
eql, equal, equalp, =, Section 3.2 (Compilation)

Notes:
Objects that appear the same when printed are not necessarily eq to each other. Symbols that
print the same usually are eq to each other because of the use of the intern function. However,
numbers with the same value need not be eq, and two similar lists are usually not identical .

An implementation is permitted to make “copies” of characters and numbers at any time. The
effect is that Common Lisp makes no guarantee that eq is true even when both its arguments are
“the same thing” if that thing is a character or number .

Most Common Lisp operators use eql rather than eq to compare objects, or else they default to
eql and only use eq if specifically requested to do so. However, the following operators are defined
to use eq rather than eql in a way that cannot be overridden by the code which employs them:

catch getf throw
get remf
get-properties remprop

Figure 5–11. Operators that always prefer EQ over EQL

Data and Control Flow 5–57

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

eql Function

Syntax:
eql x y → generalized-boolean

Arguments and Values:
x—an object .

y—an object .

generalized-boolean—a generalized boolean.

Description:
The value of eql is true of two objects, x and y , in the folowing cases:

1. If x and y are eq.
2. If x and y are both numbers of the same type and the same value.
3. If they are both characters that represent the same character.

Otherwise the value of eql is false.

If an implementation supports positive and negative zeros as distinct values, then (eql 0.0 -0.0)

returns false. Otherwise, when the syntax -0.0 is read it is interpreted as the value 0.0, and so
(eql 0.0 -0.0) returns true.

Examples:

(eql ’a ’b) → false
(eql ’a ’a) → true
(eql 3 3) → true
(eql 3 3.0) → false
(eql 3.0 3.0) → true
(eql #c(3 -4) #c(3 -4)) → true
(eql #c(3 -4.0) #c(3 -4)) → false
(eql (cons ’a ’b) (cons ’a ’c)) → false
(eql (cons ’a ’b) (cons ’a ’b)) → false
(eql ’(a . b) ’(a . b))

→ true
or→ false
(progn (setq x (cons ’a ’b)) (eql x x)) → true
(progn (setq x ’(a . b)) (eql x x)) → true
(eql #\A #\A) → true

5–58 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(eql "Foo" "Foo")

→ true
or→ false
(eql "Foo" (copy-seq "Foo")) → false
(eql "FOO" "foo") → false

Normally (eql 1.0s0 1.0d0) is false, under the assumption that 1.0s0 and 1.0d0 are of distinct
data types. However, implementations that do not provide four distinct floating-point formats
are permitted to “collapse” the four formats into some smaller number of them; in such an
implementation (eql 1.0s0 1.0d0) might be true.

See Also:
eq, equal, equalp, =, char=

Notes:
eql is the same as eq, except that if the arguments are characters or numbers of the same type
then their values are compared. Thus eql tells whether two objects are conceptually the same,
whereas eq tells whether two objects are implementationally identical. It is for this reason that
eql, not eq, is the default comparison predicate for operators that take sequences as arguments.

eql may not be true of two floats even when they represent the same value. = is used to compare
mathematical values.

Two complex numbers are considered to be eql if their real parts are eql and their imaginary
parts are eql. For example, (eql #C(4 5) #C(4 5)) is true and (eql #C(4 5) #C(4.0 5.0)) is
false. Note that while (eql #C(5.0 0.0) 5.0) is false, (eql #C(5 0) 5) is true. In the case of
(eql #C(5.0 0.0) 5.0) the two arguments are of different types, and so cannot satisfy eql. In the
case of (eql #C(5 0) 5), #C(5 0) is not a complex number, but is automatically reduced to the
integer 5.

equal Function

Syntax:
equal x y → generalized-boolean

Arguments and Values:
x—an object .

y—an object .

generalized-boolean—a generalized boolean.

Data and Control Flow 5–59

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

equal

Description:
Returns true if x and y are structurally similar (isomorphic) objects. Objects are treated as
follows by equal.

Symbols, Numbers, and Characters

equal is true of two objects if they are symbols that are eq, if they are numbers that are
eql, or if they are characters that are eql.

Conses

For conses, equal is defined recursively as the two cars being equal and the two cdrs
being equal.

Arrays

Two arrays are equal only if they are eq, with one exception: strings and bit vectors
are compared element-by-element (using eql). If either x or y has a fill pointer , the fill
pointer limits the number of elements examined by equal. Uppercase and lowercase
letters in strings are considered by equal to be different.

Pathnames

Two pathnames are equal if and only if all the corresponding components (host, device,
and so on) are equivalent. Whether or not uppercase and lowercase letters are considered
equivalent in strings appearing in components is implementation-dependent . pathnames
that are equal should be functionally equivalent.

Other (Structures, hash-tables, instances, . . .)

Two other objects are equal only if they are eq.

equal does not descend any objects other than the ones explicitly specified above. Figure 5–12
summarizes the information given in the previous list. In addition, the figure specifies the priority
of the behavior of equal, with upper entries taking priority over lower ones.

5–60 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

equal

Type Behavior
number uses eql
character uses eql
cons descends
bit vector descends
string descends
pathname “functionally equivalent”
structure uses eq
Other array uses eq
hash table uses eq
Other object uses eq

Figure 5–12. Summary and priorities of behavior of equal

Any two objects that are eql are also equal.

equal may fail to terminate if x or y is circular.

Examples:

(equal ’a ’b) → false
(equal ’a ’a) → true
(equal 3 3) → true
(equal 3 3.0) → false
(equal 3.0 3.0) → true
(equal #c(3 -4) #c(3 -4)) → true
(equal #c(3 -4.0) #c(3 -4)) → false
(equal (cons ’a ’b) (cons ’a ’c)) → false
(equal (cons ’a ’b) (cons ’a ’b)) → true
(equal #\A #\A) → true
(equal #\A #\a) → false
(equal "Foo" "Foo") → true
(equal "Foo" (copy-seq "Foo")) → true
(equal "FOO" "foo") → false
(equal "This-string" "This-string") → true
(equal "This-string" "this-string") → false

See Also:
eq, eql, equalp, =, string=, string-equal, char=, char-equal, tree-equal

Notes:
Object equality is not a concept for which there is a uniquely determined correct algorithm. The
appropriateness of an equality predicate can be judged only in the context of the needs of some
particular program. Although these functions take any type of argument and their names sound

Data and Control Flow 5–61

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

very generic, equal and equalp are not appropriate for every application.

A rough rule of thumb is that two objects are equal if and only if their printed representations are
the same.

equalp Function

Syntax:
equalp x y → generalized-boolean

Arguments and Values:
x—an object .

y—an object .

generalized-boolean—a generalized boolean.

Description:
Returns true if x and y are equal, or if they have components that are of the same type as each
other and if those components are equalp; specifically, equalp returns true in the following cases:

Characters

If two characters are char-equal.

Numbers

If two numbers are the same under =.

Conses

If the two cars in the conses are equalp and the two cdrs in the conses are equalp.

Arrays

If two arrays have the same number of dimensions, the dimensions match, and the
corresponding active elements are equalp. The types for which the arrays are specialized
need not match; for example, a string and a general array that happens to contain the
same characters are equalp. Because equalp performs element-by-element comparisons
of strings and ignores the case of characters, case distinctions are ignored when equalp
compares strings.

5–62 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

equalp

Structures

If two structures S1 and S2 have the same class and the value of each slot in S1 is the
same under equalp as the value of the corresponding slot in S2.

Hash Tables

equalp descends hash-tables by first comparing the count of entries and the :test func-
tion; if those are the same, it compares the keys of the tables using the :test function
and then the values of the matching keys using equalp recursively.

equalp does not descend any objects other than the ones explicitly specified above. Figure 5–13
summarizes the information given in the previous list. In addition, the figure specifies the priority
of the behavior of equalp, with upper entries taking priority over lower ones.

Type Behavior
number uses =
character uses char-equal
cons descends
bit vector descends
string descends
pathname same as equal
structure descends, as described above
Other array descends
hash table descends, as described above
Other object uses eq

Figure 5–13. Summary and priorities of behavior of equalp

Examples:

(equalp ’a ’b) → false
(equalp ’a ’a) → true
(equalp 3 3) → true
(equalp 3 3.0) → true
(equalp 3.0 3.0) → true
(equalp #c(3 -4) #c(3 -4)) → true
(equalp #c(3 -4.0) #c(3 -4)) → true
(equalp (cons ’a ’b) (cons ’a ’c)) → false
(equalp (cons ’a ’b) (cons ’a ’b)) → true
(equalp #\A #\A) → true
(equalp #\A #\a) → true
(equalp "Foo" "Foo") → true
(equalp "Foo" (copy-seq "Foo")) → true

Data and Control Flow 5–63

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(equalp "FOO" "foo") → true

(setq array1 (make-array 6 :element-type ’integer

:initial-contents ’(1 1 1 3 5 7)))

→ #(1 1 1 3 5 7)

(setq array2 (make-array 8 :element-type ’integer

:initial-contents ’(1 1 1 3 5 7 2 6)

:fill-pointer 6))

→ #(1 1 1 3 5 7)

(equalp array1 array2) → true
(setq vector1 (vector 1 1 1 3 5 7)) → #(1 1 1 3 5 7)

(equalp array1 vector1) → true

See Also:
eq, eql, equal, =, string=, string-equal, char=, char-equal

Notes:
Object equality is not a concept for which there is a uniquely determined correct algorithm. The
appropriateness of an equality predicate can be judged only in the context of the needs of some
particular program. Although these functions take any type of argument and their names sound
very generic, equal and equalp are not appropriate for every application.

identity Function

Syntax:
identity object → object

Arguments and Values:
object—an object .

Description:
Returns its argument object.

Examples:

(identity 101) → 101

(mapcan #’identity (list (list 1 2 3) ’(4 5 6))) → (1 2 3 4 5 6)

Notes:
identity is intended for use with functions that require a function as an argument.

(eql x (identity x)) returns true for all possible values of x , but (eq x (identity x)) might
return false when x is a number or character .

5–64 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

identity could be defined by

(defun identity (x) x)

complement Function

Syntax:
complement function → complement-function

Arguments and Values:
function—a function.

complement-function—a function.

Description:
Returns a function that takes the same arguments as function, and has the same side-effect
behavior as function, but returns only a single value: a generalized boolean with the opposite
truth value of that which would be returned as the primary value of function. That is, when the
function would have returned true as its primary value the complement-function returns false, and
when the function would have returned false as its primary value the complement-function returns
true.

Examples:

(funcall (complement #’zerop) 1) → true
(funcall (complement #’characterp) #\A) → false
(funcall (complement #’member) ’a ’(a b c)) → false
(funcall (complement #’member) ’d ’(a b c)) → true

See Also:
not

Notes:

(complement x) ≡ #’(lambda (&rest arguments) (not (apply x arguments)))

In Common Lisp, functions with names like “xxx-if-not” are related to functions with names like
“xxx-if” in that

(xxx-if-not f . arguments) ≡ (xxx-if (complement f) . arguments)

For example,

(find-if-not #’zerop ’(0 0 3)) ≡

Data and Control Flow 5–65

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(find-if (complement #’zerop) ’(0 0 3)) → 3

Note that since the “xxx-if-not” functions and the :test-not arguments have been deprecated,
uses of “xxx-if” functions or :test arguments with complement are preferred.

constantly Function

Syntax:
constantly value → function

Arguments and Values:
value—an object .

function—a function.

Description:
constantly returns a function that accepts any number of arguments, that has no side-effects, and
that always returns value.

Examples:

(mapcar (constantly 3) ’(a b c d)) → (3 3 3 3)

(defmacro with-vars (vars &body forms)

‘((lambda ,vars ,@forms) ,@(mapcar (constantly nil) vars)))

→ WITH-VARS

(macroexpand ’(with-vars (a b) (setq a 3 b (* a a)) (list a b)))

→ ((LAMBDA (A B) (SETQ A 3 B (* A A)) (LIST A B)) NIL NIL), true

See Also:
identity

Notes:
constantly could be defined by:

(defun constantly (object)

#’(lambda (&rest arguments) object))

5–66 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

every, some, notevery, notany

every, some, notevery, notany Function

Syntax:
every predicate &rest sequences+ → generalized-boolean

some predicate &rest sequences+ → result

notevery predicate &rest sequences+ → generalized-boolean

notany predicate &rest sequences+ → generalized-boolean

Arguments and Values:
predicate—a designator for a function of as many arguments as there are sequences.

sequence—a sequence.

result—an object .

generalized-boolean—a generalized boolean.

Description:
every, some, notevery, and notany test elements of sequences for satisfaction of a given pred-
icate. The first argument to predicate is an element of the first sequence; each succeeding argu-
ment is an element of a succeeding sequence.

Predicate is first applied to the elements with index 0 in each of the sequences, and possibly then
to the elements with index 1, and so on, until a termination criterion is met or the end of the
shortest of the sequences is reached.

every returns false as soon as any invocation of predicate returns false. If the end of a sequence is
reached, every returns true. Thus, every returns true if and only if every invocation of predicate
returns true.

some returns the first non-nil value which is returned by an invocation of predicate. If the end of
a sequence is reached without any invocation of the predicate returning true, some returns false.
Thus, some returns true if and only if some invocation of predicate returns true.

notany returns false as soon as any invocation of predicate returns true. If the end of a sequence
is reached, notany returns true. Thus, notany returns true if and only if it is not the case that
any invocation of predicate returns true.

notevery returns true as soon as any invocation of predicate returns false. If the end of a se-
quence is reached, notevery returns false. Thus, notevery returns true if and only if it is not the
case that every invocation of predicate returns true.

Data and Control Flow 5–67

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:

(every #’characterp "abc") → true
(some #’= ’(1 2 3 4 5) ’(5 4 3 2 1)) → true
(notevery #’< ’(1 2 3 4) ’(5 6 7 8) ’(9 10 11 12)) → false
(notany #’> ’(1 2 3 4) ’(5 6 7 8) ’(9 10 11 12)) → true

Exceptional Situations:
Should signal type-error if its first argument is neither a symbol nor a function or if any subse-
quent argument is not a proper sequence.

Other exceptional situations are possible, depending on the nature of the predicate.

See Also:
and, or, Section 3.6 (Traversal Rules and Side Effects)

Notes:

(notany predicate {sequence}*) ≡ (not (some predicate {sequence}*))
(notevery predicate {sequence}*) ≡ (not (every predicate {sequence}*))

and Macro

Syntax:
and {form}* → {result}*

Arguments and Values:
form—a form.

results—the values resulting from the evaluation of the last form, or the symbols nil or t.

Description:
The macro and evaluates each form one at a time from left to right. As soon as any form eval-
uates to nil, and returns nil without evaluating the remaining forms. If all forms but the last
evaluate to true values, and returns the results produced by evaluating the last form.

If no forms are supplied, (and) returns t.

and passes back multiple values from the last subform but not from subforms other than the last.

Examples:

(if (and (>= n 0)

5–68 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(< n (length a-simple-vector))

(eq (elt a-simple-vector n) ’foo))

(princ "Foo!"))

The above expression prints Foo! if element n of a-simple-vector is the symbol foo, provided also
that n is indeed a valid index for a-simple-vector. Because and guarantees left-to-right testing of
its parts, elt is not called if n is out of range.

(setq temp1 1 temp2 1 temp3 1) → 1

(and (incf temp1) (incf temp2) (incf temp3)) → 2

(and (eql 2 temp1) (eql 2 temp2) (eql 2 temp3)) → true
(decf temp3) → 1

(and (decf temp1) (decf temp2) (eq temp3 ’nil) (decf temp3)) → NIL

(and (eql temp1 temp2) (eql temp2 temp3)) → true
(and) → T

See Also:
cond, every, if , or, when

Notes:

(and form) ≡ (let () form)

(and form1 form2 ...) ≡ (when form1 (and form2 ...))

cond Macro

Syntax:
cond {↓clause}* → {result}*

clause::=(test-form {form}*)

Arguments and Values:
test-form—a form.

forms—an implicit progn.

results—the values of the forms in the first clause whose test-form yields true, or the primary
value of the test-form if there are no forms in that clause, or else nil if no test-form yields true.

Description:
cond allows the execution of forms to be dependent on test-form.

Data and Control Flow 5–69

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Test-forms are evaluated one at a time in the order in which they are given in the argument list
until a test-form is found that evaluates to true.

If there are no forms in that clause, the primary value of the test-form is returned by the cond
form. Otherwise, the forms associated with this test-form are evaluated in order, left to right, as
an implicit progn, and the values returned by the last form are returned by the cond form.

Once one test-form has yielded true, no additional test-forms are evaluated . If no test-form yields
true, nil is returned.

Examples:

(defun select-options ()

(cond ((= a 1) (setq a 2))

((= a 2) (setq a 3))

((and (= a 3) (floor a 2)))

(t (floor a 3)))) → SELECT-OPTIONS

(setq a 1) → 1

(select-options) → 2

a → 2

(select-options) → 3

a → 3

(select-options) → 1

(setq a 5) → 5

(select-options) → 1, 2

See Also:
if , case.

if Special Operator

Syntax:
if test-form then-form [else-form] → {result}*

Arguments and Values:
Test-form—a form.

Then-form—a form.

Else-form—a form. The default is nil.

results—if the test-form yielded true, the values returned by the then-form; otherwise, the values
returned by the else-form.

5–70 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Description:
if allows the execution of a form to be dependent on a single test-form.

First test-form is evaluated. If the result is true, then then-form is selected; otherwise else-form is
selected. Whichever form is selected is then evaluated.

Examples:

(if t 1) → 1

(if nil 1 2) → 2

(defun test ()

(dolist (truth-value ’(t nil 1 (a b c)))

(if truth-value (print ’true) (print ’false))

(prin1 truth-value))) → TEST

(test)

. TRUE T

. FALSE NIL

. TRUE 1

. TRUE (A B C)

→ NIL

See Also:
cond, unless, when

Notes:

(if test-form then-form else-form)

≡ (cond (test-form then-form) (t else-form))

or Macro

Syntax:
or {form}* → {results}*

Arguments and Values:
form—a form.

results—the values or primary value (see below) resulting from the evaluation of the last form
executed or nil.

Description:
or evaluates each form, one at a time, from left to right. The evaluation of all forms terminates
when a form evaluates to true (i.e., something other than nil).

Data and Control Flow 5–71

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

If the evaluation of any form other than the last returns a primary value that is true, or imme-
diately returns that value (but no additional values) without evaluating the remaining forms. If
every form but the last returns false as its primary value, or returns all values returned by the
last form. If no forms are supplied, or returns nil.

Examples:

(or) → NIL

(setq temp0 nil temp1 10 temp2 20 temp3 30) → 30

(or temp0 temp1 (setq temp2 37)) → 10

temp2 → 20

(or (incf temp1) (incf temp2) (incf temp3)) → 11

temp1 → 11

temp2 → 20

temp3 → 30

(or (values) temp1) → 11

(or (values temp1 temp2) temp3) → 11

(or temp0 (values temp1 temp2)) → 11, 20

(or (values temp0 temp1) (values temp2 temp3)) → 20, 30

See Also:
and, some, unless

when, unless Macro

Syntax:
when test-form {form}* → {result}*
unless test-form {form}* → {result}*

Arguments and Values:
test-form—a form.

forms—an implicit progn.

results—the values of the forms in a when form if the test-form yields true or in an unless form
if the test-form yields false; otherwise nil.

Description:
when and unless allow the execution of forms to be dependent on a single test-form.

In a when form, if the test-form yields true, the forms are evaluated in order from left to right
and the values returned by the forms are returned from the when form. Otherwise, if the test-
form yields false, the forms are not evaluated , and the when form returns nil.

5–72 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

when, unless

In an unless form, if the test-form yields false, the forms are evaluated in order from left to
right and the values returned by the forms are returned from the unless form. Otherwise, if the
test-form yields false, the forms are not evaluated , and the unless form returns nil.

Examples:

(when t ’hello) → HELLO

(unless t ’hello) → NIL

(when nil ’hello) → NIL

(unless nil ’hello) → HELLO

(when t) → NIL

(unless nil) → NIL

(when t (prin1 1) (prin1 2) (prin1 3))

. 123

→ 3

(unless t (prin1 1) (prin1 2) (prin1 3)) → NIL

(when nil (prin1 1) (prin1 2) (prin1 3)) → NIL

(unless nil (prin1 1) (prin1 2) (prin1 3))

. 123

→ 3

(let ((x 3))

(list (when (oddp x) (incf x) (list x))

(when (oddp x) (incf x) (list x))

(unless (oddp x) (incf x) (list x))

(unless (oddp x) (incf x) (list x))

(if (oddp x) (incf x) (list x))

(if (oddp x) (incf x) (list x))

(if (not (oddp x)) (incf x) (list x))

(if (not (oddp x)) (incf x) (list x))))

→ ((4) NIL (5) NIL 6 (6) 7 (7))

See Also:
and, cond, if , or

Notes:

(when test {form}+) ≡ (and test (progn {form}+))

(when test {form}+) ≡ (cond (test {form}+))

(when test {form}+) ≡ (if test (progn {form}+) nil)

(when test {form}+) ≡ (unless (not test) {form}+)

(unless test {form}+) ≡ (cond ((not test) {form}+))

(unless test {form}+) ≡ (if test nil (progn {form}+))

(unless test {form}+) ≡ (when (not test) {form}+)

Data and Control Flow 5–73

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

case, ccase, ecase Macro

Syntax:
case keyform {↓normal-clause}* [↓otherwise-clause] → {result}*
ccase keyplace {↓normal-clause}* → {result}*
ecase keyform {↓normal-clause}* → {result}*

normal-clause::=(keys {form}*)

otherwise-clause::=({otherwise | t} {form}*)

clause::=normal-clause | otherwise-clause

Arguments and Values:
keyform—a form; evaluated to produce a test-key .

keyplace—a form; evaluated initially to produce a test-key . Possibly also used later as a place if
no keys match.

test-key—an object produced by evaluating keyform or keyplace.

keys—a designator for a list of objects. In the case of case, the symbols t and otherwise may not
be used as the keys designator . To refer to these symbols by themselves as keys, the designators
(t) and (otherwise), respectively, must be used instead.

forms—an implicit progn.

results—the values returned by the forms in the matching clause.

Description:
These macros allow the conditional execution of a body of forms in a clause that is selected by
matching the test-key on the basis of its identity.

The keyform or keyplace is evaluated to produce the test-key .

Each of the normal-clauses is then considered in turn. If the test-key is the same as any key for
that clause, the forms in that clause are evaluated as an implicit progn, and the values it returns
are returned as the value of the case, ccase, or ecase form.

These macros differ only in their behavior when no normal-clause matches; specifically:

case

If no normal-clause matches, and there is an otherwise-clause, then that otherwise-clause

5–74 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

case, ccase, ecase

automatically matches; the forms in that clause are evaluated as an implicit progn, and
the values it returns are returned as the value of the case.

If there is no otherwise-clause, case returns nil.

ccase

If no normal-clause matches, a correctable error of type type-error is signaled.
The offending datum is the test-key and the expected type is type equivalent to
(member key1 key2 ...). The store-value restart can be used to correct the error.

If the store-value restart is invoked, its argument becomes the new test-key , and is stored
in keyplace as if by (setf keyplace test-key). Then ccase starts over, considering each
clause anew.

The subforms of keyplace might be evaluated again if none of the cases holds.

ecase

If no normal-clause matches, a non-correctable error of type type-error is signaled.
The offending datum is the test-key and the expected type is type equivalent to
(member key1 key2 ...).

Note that in contrast with ccase, the caller of ecase may rely on the fact that ecase does
not return if a normal-clause does not match.

Examples:

(dolist (k ’(1 2 3 :four #\v () t ’other))

(format t "~S "

(case k ((1 2) ’clause1)

(3 ’clause2)

(nil ’no-keys-so-never-seen)

((nil) ’nilslot)

((:four #\v) ’clause4)

((t) ’tslot)

(otherwise ’others))))

. CLAUSE1 CLAUSE1 CLAUSE2 CLAUSE4 CLAUSE4 NILSLOT TSLOT OTHERS

→ NIL

(defun add-em (x) (apply #’+ (mapcar #’decode x)))

→ ADD-EM

(defun decode (x)

(ccase x

((i uno) 1)

((ii dos) 2)

((iii tres) 3)

((iv cuatro) 4)))

→ DECODE

Data and Control Flow 5–75

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(add-em ’(uno iii)) → 4

(add-em ’(uno iiii))

. Error: The value of X, IIII, is not I, UNO, II, DOS, III,

. TRES, IV, or CUATRO.

. 1: Supply a value to use instead.

. 2: Return to Lisp Toplevel.

. Debug> :CONTINUE 1

. Value to evaluate and use for X: ’IV

→ 5

Side Effects:
The debugger might be entered. If the store-value restart is invoked, the value of keyplace might
be changed.

Affected By:
ccase and ecase, since they might signal an error, are potentially affected by existing handlers and
debug-io.

Exceptional Situations:
ccase and ecase signal an error of type type-error if no normal-clause matches.

See Also:
cond, typecase, setf , Section 5.1 (Generalized Reference)

Notes:

(case test-key
{(({key}*) {form}*)}*)

≡
(let ((#1=#:g0001 test-key))

(cond {((member #1# ’({key}*)) {form}*)}*))
The specific error message used by ecase and ccase can vary between implementations. In
situations where control of the specific wording of the error message is important, it is better to
use case with an otherwise-clause that explicitly signals an error with an appropriate message.

typecase, ctypecase, etypecase Macro

Syntax:
typecase keyform {↓normal-clause}* [↓otherwise-clause] → {result}*
ctypecase keyplace {↓normal-clause}* → {result}*
etypecase keyform {↓normal-clause}* → {result}*

5–76 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

typecase, ctypecase, etypecase

normal-clause::=(type {form}*)

otherwise-clause::=({otherwise | t} {form}*)

clause::=normal-clause | otherwise-clause

Arguments and Values:
keyform—a form; evaluated to produce a test-key .

keyplace—a form; evaluated initially to produce a test-key . Possibly also used later as a place if
no types match.

test-key—an object produced by evaluating keyform or keyplace.

type—a type specifier .

forms—an implicit progn.

results—the values returned by the forms in the matching clause.

Description:
These macros allow the conditional execution of a body of forms in a clause that is selected by
matching the test-key on the basis of its type.

The keyform or keyplace is evaluated to produce the test-key .

Each of the normal-clauses is then considered in turn. If the test-key is of the type given by
the clauses’s type, the forms in that clause are evaluated as an implicit progn, and the values it
returns are returned as the value of the typecase, ctypecase, or etypecase form.

These macros differ only in their behavior when no normal-clause matches; specifically:

typecase

If no normal-clause matches, and there is an otherwise-clause, then that otherwise-clause
automatically matches; the forms in that clause are evaluated as an implicit progn, and
the values it returns are returned as the value of the typecase.

If there is no otherwise-clause, typecase returns nil.

ctypecase

If no normal-clause matches, a correctable error of type type-error is signaled.
The offending datum is the test-key and the expected type is type equivalent to
(or type1 type2 ...). The store-value restart can be used to correct the error.

If the store-value restart is invoked, its argument becomes the new test-key , and is stored
in keyplace as if by (setf keyplace test-key). Then ctypecase starts over, considering
each clause anew.

Data and Control Flow 5–77

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

typecase, ctypecase, etypecase

If the store-value restart is invoked interactively, the user is prompted for a new test-key
to use.

The subforms of keyplace might be evaluated again if none of the cases holds.

etypecase

If no normal-clause matches, a non-correctable error of type type-error is signaled.
The offending datum is the test-key and the expected type is type equivalent to
(or type1 type2 ...).

Note that in contrast with ctypecase, the caller of etypecase may rely on the fact that
etypecase does not return if a normal-clause does not match.

In all three cases, is permissible for more than one clause to specify a matching type, particularly
if one is a subtype of another; the earliest applicable clause is chosen.

Examples:

;;; (Note that the parts of this example which use TYPE-OF

;;; are implementation-dependent.)

(defun what-is-it (x)

(format t "~&~S is ~A.~%"

x (typecase x

(float "a float")

(null "a symbol, boolean false, or the empty list")

(list "a list")

(t (format nil "a(n) ~(~A~)" (type-of x))))))

→ WHAT-IS-IT

(map ’nil #’what-is-it ’(nil (a b) 7.0 7 box))

. NIL is a symbol, boolean false, or the empty list.

. (A B) is a list.

. 7.0 is a float.

. 7 is a(n) integer.

. BOX is a(n) symbol.

→ NIL

(setq x 1/3)

→ 1/3

(ctypecase x

(integer (* x 4))

(symbol (symbol-value x)))

. Error: The value of X, 1/3, is neither an integer nor a symbol.

. To continue, type :CONTINUE followed by an option number:

. 1: Specify a value to use instead.

. 2: Return to Lisp Toplevel.

. Debug> :CONTINUE 1

. Use value: 3.7

5–78 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

. Error: The value of X, 3.7, is neither an integer nor a symbol.

. To continue, type :CONTINUE followed by an option number:

. 1: Specify a value to use instead.

. 2: Return to Lisp Toplevel.

. Debug> :CONTINUE 1

. Use value: 12

→ 48

x → 12

Affected By:
ctypecase and etypecase, since they might signal an error, are potentially affected by existing
handlers and *debug-io*.

Exceptional Situations:
ctypecase and etypecase signal an error of type type-error if no normal-clause matches.

The compiler may choose to issue a warning of type style-warning if a clause will never be
selected because it is completely shadowed by earlier clauses.

See Also:
case, cond, setf , Section 5.1 (Generalized Reference)

Notes:

(typecase test-key
{(type {form}*)}*)

≡
(let ((#1=#:g0001 test-key))

(cond {((typep #1# ’type) {form}*)}*))
The specific error message used by etypecase and ctypecase can vary between implementations.
In situations where control of the specific wording of the error message is important, it is better
to use typecase with an otherwise-clause that explicitly signals an error with an appropriate
message.

multiple-value-bind Macro

Syntax:
multiple-value-bind ({var}*) values-form {declaration}* {form}*
→ {result}*

Arguments and Values:
var—a symbol naming a variable; not evaluated.

Data and Control Flow 5–79

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

values-form—a form; evaluated.

declaration—a declare expression; not evaluated.

forms—an implicit progn.

results—the values returned by the forms.

Description:
Creates new variable bindings for the vars and executes a series of forms that use these bindings.

The variable bindings created are lexical unless special declarations are specified.

Values-form is evaluated, and each of the vars is bound to the respective value returned by that
form. If there are more vars than values returned, extra values of nil are given to the remaining
vars. If there are more values than vars, the excess values are discarded. The vars are bound to
the values over the execution of the forms, which make up an implicit progn. The consequences
are unspecified if a type declaration is specified for a var , but the value to which that var is bound
is not consistent with the type declaration.

The scopes of the name binding and declarations do not include the values-form.

Examples:

(multiple-value-bind (f r)

(floor 130 11)

(list f r)) → (11 9)

See Also:
let, multiple-value-call

Notes:

(multiple-value-bind ({var}*) values-form {form}*)
≡ (multiple-value-call #’(lambda (&optional {var}* &rest #1=#:ignore)

(declare (ignore #1#))

{form}*)
values-form)

5–80 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

multiple-value-call Special Operator

Syntax:
multiple-value-call function-form form* → {result}*

Arguments and Values:
function-form—a form; evaluated to produce function.

function—a function designator resulting from the evaluation of function-form.

form—a form.

results—the values returned by the function.

Description:
Applies function to a list of the objects collected from groups of multiple values2.

multiple-value-call first evaluates the function-form to obtain function, and then evaluates each
form. All the values of each form are gathered together (not just one value from each) and given
as arguments to the function.

Examples:

(multiple-value-call #’list 1 ’/ (values 2 3) ’/ (values) ’/ (floor 2.5))

→ (1 / 2 3 / / 2 0.5)

(+ (floor 5 3) (floor 19 4)) ≡ (+ 1 4)

→ 5

(multiple-value-call #’+ (floor 5 3) (floor 19 4)) ≡ (+ 1 2 4 3)

→ 10

See Also:
multiple-value-list, multiple-value-bind

multiple-value-list Macro

Syntax:
multiple-value-list form → list

Arguments and Values:
form—a form; evaluated as described below.

list—a list of the values returned by form.

Data and Control Flow 5–81

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Description:
multiple-value-list evaluates form and creates a list of the multiple values2 it returns.

Examples:

(multiple-value-list (floor -3 4)) → (-1 1)

See Also:
values-list, multiple-value-call

Notes:
multiple-value-list and values-list are inverses of each other.

(multiple-value-list form) ≡ (multiple-value-call #’list form)

multiple-value-prog1 Special Operator

Syntax:
multiple-value-prog1 first-form {form}* → first-form-results

Arguments and Values:
first-form—a form; evaluated as described below.

form—a form; evaluated as described below.

first-form-results—the values resulting from the evaluation of first-form.

Description:
multiple-value-prog1 evaluates first-form and saves all the values produced by that form. It then
evaluates each form from left to right, discarding their values.

Examples:

(setq temp ’(1 2 3)) → (1 2 3)

(multiple-value-prog1

(values-list temp)

(setq temp nil)

(values-list temp)) → 1, 2, 3

See Also:
prog1

5–82 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

multiple-value-setq

multiple-value-setq Macro

Syntax:
multiple-value-setq vars form → result

Arguments and Values:
vars—a list of symbols that are either variable names or names of symbol macros.

form—a form.

result—The primary value returned by the form.

Description:
multiple-value-setq assigns values to vars.

The form is evaluated, and each var is assigned to the corresponding value returned by that form.
If there are more vars than values returned, nil is assigned to the extra vars. If there are more
values than vars, the extra values are discarded.

If any var is the name of a symbol macro, then it is assigned as if by setf . Specifically,

(multiple-value-setq (symbol1 ... symboln) value-producing-form)

is defined to always behave in the same way as

(values (setf (values symbol1 ... symboln) value-producing-form))

in order that the rules for order of evaluation and side-effects be consistent with those used by
setf . See Section 5.1.2.3 (VALUES Forms as Places).

Examples:

(multiple-value-setq (quotient remainder) (truncate 3.2 2)) → 1

quotient → 1

remainder → 1.2

(multiple-value-setq (a b c) (values 1 2)) → 1

a → 1

b → 2

c → NIL

(multiple-value-setq (a b) (values 4 5 6)) → 4

a → 4

b → 5

See Also:
setq, symbol-macrolet

Data and Control Flow 5–83

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

values Accessor

Syntax:
values &rest object → {object}*
(setf (values &rest place) new-values)

Arguments and Values:
object—an object .

place—a place.

new-value—an object .

Description:
values returns the objects as multiple values2.

setf of values is used to store the multiple values2 new-values into the places. See Section 5.1.2.3
(VALUES Forms as Places).

Examples:

(values) → 〈no values〉
(values 1) → 1

(values 1 2) → 1, 2

(values 1 2 3) → 1, 2, 3

(values (values 1 2 3) 4 5) → 1, 4, 5

(defun polar (x y)

(values (sqrt (+ (* x x) (* y y))) (atan y x))) → POLAR

(multiple-value-bind (r theta) (polar 3.0 4.0)

(vector r theta))

→ #(5.0 0.927295)

Sometimes it is desirable to indicate explicitly that a function returns exactly one value. For
example, the function

(defun foo (x y)

(floor (+ x y) y)) → FOO

returns two values because floor returns two values. It may be that the second value makes no
sense, or that for efficiency reasons it is desired not to compute the second value. values is the
standard idiom for indicating that only one value is to be returned:

5–84 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(defun foo (x y)

(values (floor (+ x y) y))) → FOO

This works because values returns exactly one value for each of args; as for any function call, if
any of args produces more than one value, all but the first are discarded.

See Also:
values-list, multiple-value-bind, multiple-values-limit, Section 3.1 (Evaluation)

Notes:
Since values is a function, not a macro or special form, it receives as arguments only the primary
values of its argument forms.

values-list Function

Syntax:
values-list list → {element}*

Arguments and Values:
list—a list .

elements—the elements of the list.

Description:
Returns the elements of the list as multiple values2.

Examples:

(values-list nil) → 〈no values〉
(values-list ’(1)) → 1

(values-list ’(1 2)) → 1, 2

(values-list ’(1 2 3)) → 1, 2, 3

Exceptional Situations:
Should signal type-error if its argument is not a proper list .

See Also:
multiple-value-bind, multiple-value-list, multiple-values-limit, values

Notes:

(values-list list) ≡ (apply #’values list)

(equal x (multiple-value-list (values-list x))) returns true for all lists x .

Data and Control Flow 5–85

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

multiple-values-limit Constant Variable

Constant Value:
An integer not smaller than 20, the exact magnitude of which is implementation-dependent .

Description:
The upper exclusive bound on the number of values that may be returned from a function, bound
or assigned by multiple-value-bind or multiple-value-setq, or passed as a first argument to
nth-value. (If these individual limits might differ, the minimum value is used.)

See Also:
lambda-parameters-limit, call-arguments-limit

Notes:
Implementors are encouraged to make this limit as large as possible.

nth-value Macro

Syntax:
nth-value n form → object

Arguments and Values:
n—a non-negative integer ; evaluated.

form—a form; evaluated as described below.

object—an object .

Description:
Evaluates n and then form, returning as its only value the nth value yielded by form, or nil if n
is greater than or equal to the number of values returned by form. (The first returned value is
numbered 0.)

Examples:

(nth-value 0 (values ’a ’b)) → A

(nth-value 1 (values ’a ’b)) → B

(nth-value 2 (values ’a ’b)) → NIL

(let* ((x 83927472397238947423879243432432432)

(y 32423489732)

5–86 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(a (nth-value 1 (floor x y)))

(b (mod x y)))

(values a b (= a b)))

→ 3332987528, 3332987528, true

See Also:
multiple-value-list, nth

Notes:
Operationally, the following relationship is true, although nth-value might be more efficient in
some implementations because, for example, some consing might be avoided.

(nth-value n form) ≡ (nth n (multiple-value-list form))

prog, prog∗ Macro

Syntax:
prog ({var | (var [init-form])}*) {declaration}* {tag | statement}*
→ {result}*

prog* ({var | (var [init-form])}*) {declaration}* {tag | statement}*
→ {result}*

Arguments and Values:
var—variable name.

init-form—a form.

declaration—a declare expression; not evaluated.

tag—a go tag ; not evaluated.

statement—a compound form; evaluated as described below.

results—nil if a normal return occurs, or else, if an explicit return occurs, the values that were
transferred.

Description:
Three distinct operations are performed by prog and prog*: they bind local variables, they
permit use of the return statement, and they permit use of the go statement. A typical prog
looks like this:

(prog (var1 var2 (var3 init-form-3) var4 (var5 init-form-5))

{declaration}*

Data and Control Flow 5–87

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

prog, prog∗
statement1

tag1

statement2

statement3

statement4

tag2

statement5

...

)

For prog, init-forms are evaluated first, in the order in which they are supplied. The vars are then
bound to the corresponding values in parallel. If no init-form is supplied for a given var , that var
is bound to nil.

The body of prog is executed as if it were a tagbody form; the go statement can be used to
transfer control to a tag . Tags label statements.

prog implicitly establishes a block named nil around the entire prog form, so that return can be
used at any time to exit from the prog form.

The difference between prog* and prog is that in prog* the binding and initialization of the vars
is done sequentially , so that the init-form for each one can use the values of previous ones.

Examples:

(prog* ((y z) (x (car y)))

(return x))

returns the car of the value of z.

(setq a 1) → 1

(prog ((a 2) (b a)) (return (if (= a b) ’= ’/=))) → /=

(prog* ((a 2) (b a)) (return (if (= a b) ’= ’/=))) → =

(prog () ’no-return-value) → NIL

(defun king-of-confusion (w)

"Take a cons of two lists and make a list of conses.

Think of this function as being like a zipper."

(prog (x y z) ;Initialize x, y, z to NIL

(setq y (car w) z (cdr w))

loop

(cond ((null y) (return x))

((null z) (go err)))

rejoin

(setq x (cons (cons (car y) (car z)) x))

(setq y (cdr y) z (cdr z))

(go loop)

err

5–88 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(cerror "Will self-pair extraneous items"

"Mismatch - gleep! ~S" y)

(setq z y)

(go rejoin))) → KING-OF-CONFUSION

This can be accomplished more perspicuously as follows:

(defun prince-of-clarity (w)

"Take a cons of two lists and make a list of conses.

Think of this function as being like a zipper."

(do ((y (car w) (cdr y))

(z (cdr w) (cdr z))

(x ’() (cons (cons (car y) (car z)) x)))

((null y) x)

(when (null z)

(cerror "Will self-pair extraneous items"

"Mismatch - gleep! ~S" y)

(setq z y)))) → PRINCE-OF-CLARITY

See Also:
block, let, tagbody, go, return, Section 3.1 (Evaluation)

Notes:
prog can be explained in terms of block, let, and tagbody as follows:

(prog variable-list declaration . body)
≡ (block nil (let variable-list declaration (tagbody . body)))

prog1, prog2 Macro

Syntax:
prog1 first-form {form}* → result-1

prog2 first-form second-form {form}* → result-2

Arguments and Values:
first-form—a form; evaluated as described below.

second-form—a form; evaluated as described below.

forms—an implicit progn; evaluated as described below.

result-1—the primary value resulting from the evaluation of first-form.

Data and Control Flow 5–89

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

prog1, prog2

result-2—the primary value resulting from the evaluation of second-form.

Description:
prog1 evaluates first-form and then forms, yielding as its only value the primary value yielded by
first-form.

prog2 evaluates first-form, then second-form, and then forms, yielding as its only value the pri-
mary value yielded by first-form.

Examples:

(setq temp 1) → 1

(prog1 temp (print temp) (incf temp) (print temp))

. 1

. 2

→ 1

(prog1 temp (setq temp nil)) → 2

temp → NIL

(prog1 (values 1 2 3) 4) → 1

(setq temp (list ’a ’b ’c))

(prog1 (car temp) (setf (car temp) ’alpha)) → A

temp → (ALPHA B C)

(flet ((swap-symbol-values (x y)

(setf (symbol-value x)

(prog1 (symbol-value y)

(setf (symbol-value y) (symbol-value x))))))

(let ((*foo* 1) (*bar* 2))

(declare (special *foo* *bar*))

(swap-symbol-values ’*foo* ’*bar*)

(values *foo* *bar*)))

→ 2, 1

(setq temp 1) → 1

(prog2 (incf temp) (incf temp) (incf temp)) → 3

temp → 4

(prog2 1 (values 2 3 4) 5) → 2

See Also:
multiple-value-prog1, progn

Notes:
prog1 and prog2 are typically used to evaluate one or more forms with side effects and return a
value that must be computed before some or all of the side effects happen.

(prog1 {form}*) ≡ (values (multiple-value-prog1 {form}*))
(prog2 form1 {form}*) ≡ (let () form1 (prog1 {form}*))

5–90 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

progn Special Operator

Syntax:
progn {form}* → {result}*

Arguments and Values:
forms—an implicit progn.

results—the values of the forms.

Description:
progn evaluates forms, in the order in which they are given.

The values of each form but the last are discarded.

If progn appears as a top level form, then all forms within that progn are considered by the
compiler to be top level forms.

Examples:

(progn) → NIL

(progn 1 2 3) → 3

(progn (values 1 2 3)) → 1, 2, 3

(setq a 1) → 1

(if a

(progn (setq a nil) ’here)

(progn (setq a t) ’there)) → HERE

a → NIL

See Also:
prog1, prog2, Section 3.1 (Evaluation)

Notes:
Many places in Common Lisp involve syntax that uses implicit progns. That is, part of their
syntax allows many forms to be written that are to be evaluated sequentially, discarding the
results of all forms but the last and returning the results of the last form. Such places include,
but are not limited to, the following: the body of a lambda expression; the bodies of various
control and conditional forms (e.g., case, catch, progn, and when).

Data and Control Flow 5–91

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

define-modify-macro

define-modify-macro Macro

Syntax:
define-modify-macro name lambda-list function [documentation] → name

Arguments and Values:
name—a symbol .

lambda-list—a define-modify-macro lambda list

function—a symbol .

documentation—a string ; not evaluated.

Description:
define-modify-macro defines a macro named name to read and write a place.

The arguments to the new macro are a place, followed by the arguments that are supplied in
lambda-list. Macros defined with define-modify-macro correctly pass the environment parameter
to get-setf-expansion.

When the macro is invoked, function is applied to the old contents of the place and the lambda-list
arguments to obtain the new value, and the place is updated to contain the result.

Except for the issue of avoiding multiple evaluation (see below), the expansion of a
define-modify-macro is equivalent to the following:

(defmacro name (reference . lambda-list)
documentation
‘(setf ,reference

(function ,reference ,arg1 ,arg2 ...)))

where arg1, arg2, ..., are the parameters appearing in lambda-list; appropriate provision is made
for a rest parameter .

The subforms of the macro calls defined by define-modify-macro are evaluated as specified in
Section 5.1.1.1 (Evaluation of Subforms to Places).

Documentation is attached as a documentation string to name (as kind function) and to the
macro function.

If a define-modify-macro form appears as a top level form, the compiler must store the macro
definition at compile time, so that occurrences of the macro later on in the file can be expanded
correctly.

5–92 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:

(define-modify-macro appendf (&rest args)

append "Append onto list") → APPENDF

(setq x ’(a b c) y x) → (A B C)

(appendf x ’(d e f) ’(1 2 3)) → (A B C D E F 1 2 3)

x → (A B C D E F 1 2 3)

y → (A B C)

(define-modify-macro new-incf (&optional (delta 1)) +)

(define-modify-macro unionf (other-set &rest keywords) union)

Side Effects:
A macro definition is assigned to name.

See Also:
defsetf , define-setf-expander, documentation, Section 3.4.11 (Syntactic Interaction of Documen-
tation Strings and Declarations)

defsetf Macro

Syntax:
The “short form”:

defsetf access-fn update-fn [documentation]
→ access-fn

The “long form”:

defsetf access-fn lambda-list ({store-variable}*) [[{declaration}* | documentation]] {form}*
→ access-fn

Arguments and Values:
access-fn—a symbol which names a function or a macro.

update-fn—a symbol naming a function or macro.

lambda-list—a defsetf lambda list .

store-variable—a symbol (a variable name).

declaration—a declare expression; not evaluated.

documentation—a string ; not evaluated.

form—a form.

Data and Control Flow 5–93

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

defsetf

Description:
defsetf defines how to setf a place of the form (access-fn ...) for relatively simple cases. (See
define-setf-expander for more general access to this facility.) It must be the case that the
function or macro named by access-fn evaluates all of its arguments.

defsetf may take one of two forms, called the “short form” and the “long form,” which are
distinguished by the type of the second argument .

When the short form is used, update-fn must name a function (or macro) that takes one more
argument than access-fn takes. When setf is given a place that is a call on access-fn, it expands
into a call on update-fn that is given all the arguments to access-fn and also, as its last argument,
the new value (which must be returned by update-fn as its value).

The long form defsetf resembles defmacro. The lambda-list describes the arguments of access-
fn. The store-variables describe the value or values to be stored into the place. The body must
compute the expansion of a setf of a call on access-fn. The expansion function is defined in the
same lexical environment in which the defsetf form appears.

During the evaluation of the forms, the variables in the lambda-list and the store-variables are
bound to names of temporary variables, generated as if by gensym or gentemp, that will be
bound by the expansion of setf to the values of those subforms. This binding permits the forms
to be written without regard for order-of-evaluation issues. defsetf arranges for the temporary
variables to be optimized out of the final result in cases where that is possible.

The body code in defsetf is implicitly enclosed in a block whose name is access-fn

defsetf ensures that subforms of the place are evaluated exactly once.

Documentation is attached to access-fn as a documentation string of kind setf .

If a defsetf form appears as a top level form, the compiler must make the setf expander avail-
able so that it may be used to expand calls to setf later on in the file. Users must ensure that
the forms, if any, can be evaluated at compile time if the access-fn is used in a place later in
the same file. The compiler must make these setf expanders available to compile-time calls to
get-setf-expansion when its environment argument is a value received as the environment param-
eter of a macro.

Examples:
The effect of

(defsetf symbol-value set)

is built into the Common Lisp system. This causes the form (setf (symbol-value foo) fu) to
expand into (set foo fu).

Note that

(defsetf car rplaca)

5–94 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

defsetf

would be incorrect because rplaca does not return its last argument.

(defun middleguy (x) (nth (truncate (1- (list-length x)) 2) x)) → MIDDLEGUY

(defun set-middleguy (x v)

(unless (null x)

(rplaca (nthcdr (truncate (1- (list-length x)) 2) x) v))

v) → SET-MIDDLEGUY

(defsetf middleguy set-middleguy) → MIDDLEGUY

(setq a (list ’a ’b ’c ’d)

b (list ’x)

c (list 1 2 3 (list 4 5 6) 7 8 9)) → (1 2 3 (4 5 6) 7 8 9)

(setf (middleguy a) 3) → 3

(setf (middleguy b) 7) → 7

(setf (middleguy (middleguy c)) ’middleguy-symbol) → MIDDLEGUY-SYMBOL

a → (A 3 C D)

b → (7)

c → (1 2 3 (4 MIDDLEGUY-SYMBOL 6) 7 8 9)

An example of the use of the long form of defsetf :

(defsetf subseq (sequence start &optional end) (new-sequence)

‘(progn (replace ,sequence ,new-sequence

:start1 ,start :end1 ,end)

,new-sequence)) → SUBSEQ

(defvar *xy* (make-array ’(10 10)))

(defun xy (&key ((x x) 0) ((y y) 0)) (aref *xy* x y)) → XY

(defun set-xy (new-value &key ((x x) 0) ((y y) 0))

(setf (aref *xy* x y) new-value)) → SET-XY

(defsetf xy (&key ((x x) 0) ((y y) 0)) (store)

‘(set-xy ,store ’x ,x ’y ,y)) → XY

(get-setf-expansion ’(xy a b))

→ (#:t0 #:t1),

(a b),

(#:store),

((lambda (&key ((x #:x)) ((y #:y)))

(set-xy #:store ’x #:x ’y #:y))

#:t0 #:t1),

(xy #:t0 #:t1)

(xy ’x 1) → NIL

(setf (xy ’x 1) 1) → 1

(xy ’x 1) → 1

(let ((a ’x) (b ’y))

(setf (xy a 1 b 2) 3)

(setf (xy b 5 a 9) 14))

→ 14

(xy ’y 0 ’x 1) → 1

Data and Control Flow 5–95

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(xy ’x 1 ’y 2) → 3

See Also:
documentation, setf , define-setf-expander, get-setf-expansion, Section 5.1 (Generalized Refer-
ence), Section 3.4.11 (Syntactic Interaction of Documentation Strings and Declarations)

Notes:
forms must include provision for returning the correct value (the value or values of store-variable).
This is handled by forms rather than by defsetf because in many cases this value can be returned
at no extra cost, by calling a function that simultaneously stores into the place and returns the
correct value.

A setf of a call on access-fn also evaluates all of access-fn’s arguments; it cannot treat any of them
specially. This means that defsetf cannot be used to describe how to store into a generalized
reference to a byte, such as (ldb field reference). define-setf-expander is used to handle
situations that do not fit the restrictions imposed by defsetf and gives the user additional control.

define-setf-expander Macro

Syntax:
define-setf-expander access-fn lambda-list

[[{declaration}* | documentation]] {form}*
→ access-fn

Arguments and Values:
access-fn—a symbol that names a function or macro.

lambda-list – macro lambda list .

declaration—a declare expression; not evaluated.

documentation—a string ; not evaluated.

forms—an implicit progn.

Description:
define-setf-expander specifies the means by which setf updates a place that is referenced by
access-fn.

When setf is given a place that is specified in terms of access-fn and a new value for the place, it
is expanded into a form that performs the appropriate update.

The lambda-list supports destructuring. See Section 3.4.4 (Macro Lambda Lists).

5–96 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

define-setf-expander

Documentation is attached to access-fn as a documentation string of kind setf .

Forms constitute the body of the setf expander definition and must compute the setf expansion
for a call on setf that references the place by means of the given access-fn. The setf expander
function is defined in the same lexical environment in which the define-setf-expander form
appears. While forms are being executed, the variables in lambda-list are bound to parts of
the place form. The body forms (but not the lambda-list) in a define-setf-expander form are
implicitly enclosed in a block whose name is access-fn.

The evaluation of forms must result in the five values described in Section 5.1.1.2 (Setf Expan-
sions).

If a define-setf-expander form appears as a top level form, the compiler must make the setf ex-
pander available so that it may be used to expand calls to setf later on in the file. Programmers
must ensure that the forms can be evaluated at compile time if the access-fn is used in a place
later in the same file. The compiler must make these setf expanders available to compile-time
calls to get-setf-expansion when its environment argument is a value received as the environment
parameter of a macro.

Examples:

(defun lastguy (x) (car (last x))) → LASTGUY

(define-setf-expander lastguy (x &environment env)

"Set the last element in a list to the given value."

(multiple-value-bind (dummies vals newval setter getter)

(get-setf-expansion x env)

(let ((store (gensym)))

(values dummies

vals

‘(,store)

‘(progn (rplaca (last ,getter) ,store) ,store)

‘(lastguy ,getter))))) → LASTGUY

(setq a (list ’a ’b ’c ’d)

b (list ’x)

c (list 1 2 3 (list 4 5 6))) → (1 2 3 (4 5 6))

(setf (lastguy a) 3) → 3

(setf (lastguy b) 7) → 7

(setf (lastguy (lastguy c)) ’lastguy-symbol) → LASTGUY-SYMBOL

a → (A B C 3)

b → (7)

c → (1 2 3 (4 5 LASTGUY-SYMBOL))

;;; Setf expander for the form (LDB bytespec int).

;;; Recall that the int form must itself be suitable for SETF.

(define-setf-expander ldb (bytespec int &environment env)

(multiple-value-bind (temps vals stores

Data and Control Flow 5–97

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

store-form access-form)

(get-setf-expansion int env);Get setf expansion for int.

(let ((btemp (gensym)) ;Temp var for byte specifier.

(store (gensym)) ;Temp var for byte to store.

(stemp (first stores))) ;Temp var for int to store.

(if (cdr stores) (error "Can’t expand this."))

;;; Return the setf expansion for LDB as five values.

(values (cons btemp temps) ;Temporary variables.

(cons bytespec vals) ;Value forms.

(list store) ;Store variables.

‘(let ((,stemp (dpb ,store ,btemp ,access-form)))

,store-form

,store) ;Storing form.

‘(ldb ,btemp ,access-form) ;Accessing form.

))))

See Also:
setf , defsetf , documentation, get-setf-expansion, Section 3.4.11 (Syntactic Interaction of
Documentation Strings and Declarations)

Notes:
define-setf-expander differs from the long form of defsetf in that while the body is being exe-
cuted the variables in lambda-list are bound to parts of the place form, not to temporary vari-
ables that will be bound to the values of such parts. In addition, define-setf-expander does not
have defsetf ’s restriction that access-fn must be a function or a function-like macro; an arbitrary
defmacro destructuring pattern is permitted in lambda-list.

get-setf-expansion Function

Syntax:
get-setf-expansion place &optional environment
→ vars, vals, store-vars, writer-form, reader-form

Arguments and Values:
place—a place.

environment—an environment object .

vars, vals, store-vars, writer-form, reader-form—a setf expansion.

5–98 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Description:
Determines five values constituting the setf expansion for place in environment; see Section 5.1.1.2
(Setf Expansions).

If environment is not supplied or nil, the environment is the null lexical environment .

Examples:

(get-setf-expansion ’x)

→ NIL, NIL, (#:G0001), (SETQ X #:G0001), X

;;; This macro is like POP

(defmacro xpop (place &environment env)

(multiple-value-bind (dummies vals new setter getter)

(get-setf-expansion place env)

‘(let* (,@(mapcar #’list dummies vals) (,(car new) ,getter))

(if (cdr new) (error "Can’t expand this."))

(prog1 (car ,(car new))

(setq ,(car new) (cdr ,(car new)))

,setter))))

(defsetf frob (x) (value)

‘(setf (car ,x) ,value)) → FROB

;;; The following is an error; an error might be signaled at macro expansion time

(flet ((frob (x) (cdr x))) ;Invalid

(xpop (frob z)))

See Also:
defsetf , define-setf-expander, setf

Notes:
Any compound form is a valid place, since any compound form whose operator f has no setf
expander are expanded into a call to (setf f).

setf, psetf Macro

Syntax:
setf {↓pair}* → {result}*

Data and Control Flow 5–99

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

setf, psetf

psetf {↓pair}* → nil

pair ::=place newvalue

Arguments and Values:
place—a place.

newvalue—a form.

results—the multiple values2 returned by the storing form for the last place, or nil if there are no
pairs.

Description:
setf changes the value of place to be newvalue.

(setf place newvalue) expands into an update form that stores the result of evaluating newvalue
into the location referred to by place. Some place forms involve uses of accessors that take
optional arguments. Whether those optional arguments are permitted by setf , or what their use
is, is up to the setf expander function and is not under the control of setf . The documentation
for any function that accepts &optional, &rest, or &key arguments and that claims to be usable
with setf must specify how those arguments are treated.

If more than one pair is supplied, the pairs are processed sequentially; that is,

(setf place-1 newvalue-1

place-2 newvalue-2

...

place-N newvalue-N)

is precisely equivalent to

(progn (setf place-1 newvalue-1)

(setf place-2 newvalue-2)

...

(setf place-N newvalue-N))

For psetf , if more than one pair is supplied then the assignments of new values to places are done
in parallel. More precisely, all subforms (in both the place and newvalue forms) that are to be
evaluated are evaluated from left to right; after all evaluations have been performed, all of the
assignments are performed in an unpredictable order.

For detailed treatment of the expansion of setf and psetf , see Section 5.1.2 (Kinds of Places).

Examples:

(setq x (cons ’a ’b) y (list 1 2 3)) → (1 2 3)

(setf (car x) ’x (cadr y) (car x) (cdr x) y) → (1 X 3)

x → (X 1 X 3)

5–100 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

y → (1 X 3)

(setq x (cons ’a ’b) y (list 1 2 3)) → (1 2 3)

(psetf (car x) ’x (cadr y) (car x) (cdr x) y) → NIL

x → (X 1 A 3)

y → (1 A 3)

Affected By:
define-setf-expander, defsetf , *macroexpand-hook*

See Also:
define-setf-expander, defsetf , macroexpand-1, rotatef , shiftf , Section 5.1 (Generalized Refer-
ence)

shiftf Macro

Syntax:
shiftf {place}+ newvalue → old-value-1

Arguments and Values:
place—a place.

newvalue—a form; evaluated.

old-value-1—an object (the old value of the first place).

Description:
shiftf modifies the values of each place by storing newvalue into the last place, and shifting the
values of the second through the last place into the remaining places.

If newvalue produces more values than there are store variables, the extra values are ignored. If
newvalue produces fewer values than there are store variables, the missing values are set to nil.

In the form (shiftf place1 place2 ... placen newvalue), the values in place1 through placen
are read and saved, and newvalue is evaluated, for a total of n+1 values in all. Values 2 through
n+1 are then stored into place1 through placen, respectively. It is as if all the places form a shift
register; the newvalue is shifted in from the right, all values shift over to the left one place, and
the value shifted out of place1 is returned.

For information about the evaluation of subforms of places, see Section 5.1.1.1 (Evaluation of
Subforms to Places).

Examples:

(setq x (list 1 2 3) y ’trash) → TRASH

Data and Control Flow 5–101

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(shiftf y x (cdr x) ’(hi there)) → TRASH

x → (2 3)

y → (1 HI THERE)

(setq x (list ’a ’b ’c)) → (A B C)

(shiftf (cadr x) ’z) → B

x → (A Z C)

(shiftf (cadr x) (cddr x) ’q) → Z

x → (A (C) . Q)

(setq n 0) → 0

(setq x (list ’a ’b ’c ’d)) → (A B C D)

(shiftf (nth (setq n (+ n 1)) x) ’z) → B

x → (A Z C D)

Affected By:
define-setf-expander, defsetf , *macroexpand-hook*

See Also:
setf , rotatef , Section 5.1 (Generalized Reference)

Notes:
The effect of (shiftf place1 place2 ... placen newvalue) is roughly equivalent to

(let ((var1 place1)
(var2 place2)
...

(varn placen)
(var0 newvalue))

(setf place1 var2)

(setf place2 var3)

...

(setf placen var0)

var1)

except that the latter would evaluate any subforms of each place twice, whereas shiftf evaluates
them once. For example,

(setq n 0) → 0

(setq x (list ’a ’b ’c ’d)) → (A B C D)

(prog1 (nth (setq n (+ n 1)) x)

(setf (nth (setq n (+ n 1)) x) ’z)) → B

x → (A B Z D)

5–102 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

rotatef

rotatef Macro

Syntax:
rotatef {place}* → nil

Arguments and Values:
place—a place.

Description:
rotatef modifies the values of each place by rotating values from one place into another.

If a place produces more values than there are store variables, the extra values are ignored. If a
place produces fewer values than there are store variables, the missing values are set to nil.

In the form (rotatef place1 place2 ... placen), the values in place1 through placen are read
and written. Values 2 through n and value 1 are then stored into place1 through placen. It is as
if all the places form an end-around shift register that is rotated one place to the left, with the
value of place1 being shifted around the end to placen.

For information about the evaluation of subforms of places, see Section 5.1.1.1 (Evaluation of
Subforms to Places).

Examples:

(let ((n 0)

(x (list ’a ’b ’c ’d ’e ’f ’g)))

(rotatef (nth (incf n) x)

(nth (incf n) x)

(nth (incf n) x))

x) → (A C D B E F G)

See Also:
define-setf-expander, defsetf , setf , shiftf , *macroexpand-hook*, Section 5.1 (Generalized
Reference)

Notes:
The effect of (rotatef place1 place2 ... placen) is roughly equivalent to

(psetf place1 place2
place2 place3
...

placen place1)

except that the latter would evaluate any subforms of each place twice, whereas rotatef evaluates
them once.

Data and Control Flow 5–103

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

control-error Condition Type

Class Precedence List:
control-error, error, serious-condition, condition, t

Description:
The type control-error consists of error conditions that result from invalid dynamic transfers of
control in a program. The errors that result from giving throw a tag that is not active or from
giving go or return-from a tag that is no longer dynamically available are of type control-error.

program-error Condition Type

Class Precedence List:
program-error, error, serious-condition, condition, t

Description:
The type program-error consists of error conditions related to incorrect program syntax. The
errors that result from naming a go tag or a block tag that is not lexically apparent are of type
program-error.

undefined-function Condition Type

Class Precedence List:
undefined-function, cell-error, error, serious-condition, condition, t

Description:
The type undefined-function consists of error conditions that represent attempts to read the
definition of an undefined function.

The name of the cell (see cell-error) is the function name which was funbound .

See Also:
cell-error-name

5–104 Programming Language—Common Lisp

