
Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Programming Language—Common Lisp

1. Introduction

Introduction i

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

ii Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.1 Scope, Purpose, and History

1.1.1 Scope and Purpose
The specification set forth in this document is designed to promote the portability of Common
Lisp programs among a variety of data processing systems. It is a language specification aimed
at an audience of implementors and knowledgeable programmers. It is neither a tutorial nor an
implementation guide.

1.1.2 History
Lisp is a family of languages with a long history. Early key ideas in Lisp were developed by John
McCarthy during the 1956 Dartmouth Summer Research Project on Artificial Intelligence. Mc-
Carthy’s motivation was to develop an algebraic list processing language for artificial intelligence
work. Implementation efforts for early dialects of Lisp were undertaken on the IBM 704, the
IBM 7090, the Digital Equipment Corporation (DEC) PDP-1, the DEC PDP-6, and the PDP-10.
The primary dialect of Lisp between 1960 and 1965 was Lisp 1.5. By the early 1970’s there were
two predominant dialects of Lisp, both arising from these early efforts: MacLisp and Interlisp.
For further information about very early Lisp dialects, see The Anatomy of Lisp or Lisp 1.5
Programmer’s Manual .

MacLisp improved on the Lisp 1.5 notion of special variables and error handling. MacLisp also
introduced the concept of functions that could take a variable number of arguments, macros,
arrays, non-local dynamic exits, fast arithmetic, the first good Lisp compiler, and an emphasis
on execution speed. By the end of the 1970’s, MacLisp was in use at over 50 sites. For further
information about Maclisp, see Maclisp Reference Manual, Revision 0 or The Revised Maclisp
Manual .

Interlisp introduced many ideas into Lisp programming environments and methodology. One of
the Interlisp ideas that influenced Common Lisp was an iteration construct implemented by War-
ren Teitelman that inspired the loop macro used both on the Lisp Machines and in MacLisp, and
now in Common Lisp. For further information about Interlisp, see Interlisp Reference Manual .

Although the first implementations of Lisp were on the IBM 704 and the IBM 7090, later work
focussed on the DEC PDP-6 and, later, PDP-10 computers, the latter being the mainstay of
Lisp and artificial intelligence work at such places as Massachusetts Institute of Technology
(MIT), Stanford University, and Carnegie Mellon University (CMU) from the mid-1960’s through
much of the 1970’s. The PDP-10 computer and its predecessor the PDP-6 computer were, by
design, especially well-suited to Lisp because they had 36-bit words and 18-bit addresses. This
architecture allowed a cons cell to be stored in one word; single instructions could extract the
car and cdr parts. The PDP-6 and PDP-10 had fast, powerful stack instructions that enabled
fast function calling. But the limitations of the PDP-10 were evident by 1973: it supported a
small number of researchers using Lisp, and the small, 18-bit address space (218 = 262,144 words)
limited the size of a single program. One response to the address space problem was the Lisp
Machine, a special-purpose computer designed to run Lisp programs. The other response was to

Introduction 1–1

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

use general-purpose computers with address spaces larger than 18 bits, such as the DEC VAX
and the S-1 Mark IIA. For further information about S-1 Common Lisp, see “S-1 Common Lisp
Implementation.”

The Lisp machine concept was developed in the late 1960’s. In the early 1970’s, Peter Deutsch,
working with Daniel Bobrow, implemented a Lisp on the Alto, a single-user minicomputer,
using microcode to interpret a byte-code implementation language. Shortly thereafter, Richard
Greenblatt began work on a different hardware and instruction set design at MIT. Although the
Alto was not a total success as a Lisp machine, a dialect of Interlisp known as Interlisp-D became
available on the D-series machines manufactured by Xerox—the Dorado, Dandelion, Dandetiger,
and Dove (or Daybreak). An upward-compatible extension of MacLisp called Lisp Machine Lisp
became available on the early MIT Lisp Machines. Commercial Lisp machines from Xerox, Lisp
Machines (LMI), and Symbolics were on the market by 1981. For further information about Lisp
Machine Lisp, see Lisp Machine Manual .

During the late 1970’s, Lisp Machine Lisp began to expand towards a much fuller language.
Sophisticated lambda lists, setf, multiple values, and structures like those in Common Lisp are
the results of early experimentation with programming styles by the Lisp Machine group. Jonl
White and others migrated these features to MacLisp. Around 1980, Scott Fahlman and others at
CMU began work on a Lisp to run on the Scientific Personal Integrated Computing Environment
(SPICE) workstation. One of the goals of the project was to design a simpler dialect than Lisp
Machine Lisp.

The Macsyma group at MIT began a project during the late 1970’s called the New Implemen-
tation of Lisp (NIL) for the VAX, which was headed by White. One of the stated goals of the
NIL project was to fix many of the historic, but annoying, problems with Lisp while retaining
significant compatibility with MacLisp. At about the same time, a research group at Stanford
University and Lawrence Livermore National Laboratory headed by Richard P. Gabriel began
the design of a Lisp to run on the S-1 Mark IIA supercomputer. S-1 Lisp, never completely
functional, was the test bed for adapting advanced compiler techniques to Lisp implementation.
Eventually the S-1 and NIL groups collaborated. For further information about the NIL project,
see “NIL—A Perspective.”

The first effort towards Lisp standardization was made in 1969, when Anthony Hearn and
Martin Griss at the University of Utah defined Standard Lisp—a subset of Lisp 1.5 and other
dialects—to transport REDUCE, a symbolic algebra system. During the 1970’s, the Utah group
implemented first a retargetable optimizing compiler for Standard Lisp, and then an extended
implementation known as Portable Standard Lisp (PSL). By the mid 1980’s, PSL ran on about
a dozen kinds of computers. For further information about Standard Lisp, see “Standard LISP
Report.”

PSL and Franz Lisp—a MacLisp-like dialect for Unix machines—were the first examples of widely
available Lisp dialects on multiple hardware platforms.

One of the most important developments in Lisp occurred during the second half of the 1970’s:
Scheme. Scheme, designed by Gerald J. Sussman and Guy L. Steele Jr., is a simple dialect of Lisp
whose design brought to Lisp some of the ideas from programming language semantics developed

1–2 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

in the 1960’s. Sussman was one of the prime innovators behind many other advances in Lisp
technology from the late 1960’s through the 1970’s. The major contributions of Scheme were
lexical scoping, lexical closures, first-class continuations, and simplified syntax (no separation of
value cells and function cells). Some of these contributions made a large impact on the design
of Common Lisp. For further information about Scheme, see IEEE Standard for the Scheme
Programming Language or “Revised3 Report on the Algorithmic Language Scheme.”

In the late 1970’s object-oriented programming concepts started to make a strong impact on
Lisp. At MIT, certain ideas from Smalltalk made their way into several widely used program-
ming systems. Flavors, an object-oriented programming system with multiple inheritance, was
developed at MIT for the Lisp machine community by Howard Cannon and others. At Xerox, the
experience with Smalltalk and Knowledge Representation Language (KRL) led to the develop-
ment of Lisp Object Oriented Programming System (LOOPS) and later Common LOOPS. For
further information on Smalltalk, see Smalltalk-80: The Language and its Implementation. For
further information on Flavors, see Flavors: A Non-Hierarchical Approach to Object-Oriented
Programming .

These systems influenced the design of the Common Lisp Object System (CLOS). CLOS was
developed specifically for this standardization effort, and was separately written up in “Common
Lisp Object System Specification.” However, minor details of its design have changed slightly
since that publication, and that paper should not be taken as an authoritative reference to the
semantics of the object system as described in this document.

In 1980 Symbolics and LMI were developing Lisp Machine Lisp; stock-hardware implementation
groups were developing NIL, Franz Lisp, and PSL; Xerox was developing Interlisp; and the SPICE
project at CMU was developing a MacLisp-like dialect of Lisp called SpiceLisp.

In April 1981, after a DARPA-sponsored meeting concerning the splintered Lisp community,
Symbolics, the SPICE project, the NIL project, and the S-1 Lisp project joined together to de-
fine Common Lisp. Initially spearheaded by White and Gabriel, the driving force behind this
grassroots effort was provided by Fahlman, Daniel Weinreb, David Moon, Steele, and Gabriel.
Common Lisp was designed as a description of a family of languages. The primary influences
on Common Lisp were Lisp Machine Lisp, MacLisp, NIL, S-1 Lisp, Spice Lisp, and Scheme.
Common Lisp: The Language is a description of that design. Its semantics were intentionally un-
derspecified in places where it was felt that a tight specification would overly constrain Common
Lisp research and use.

In 1986 X3J13 was formed as a technical working group to produce a draft for an ANSI Common
Lisp standard. Because of the acceptance of Common Lisp, the goals of this group differed from
those of the original designers. These new goals included stricter standardization for portability,
an object-oriented programming system, a condition system, iteration facilities, and a way to
handle large character sets. To accommodate those goals, a new language specification, this
document, was developed.

Introduction 1–3

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.2 Organization of the Document
This is a reference document, not a tutorial document. Where possible and convenient, the order
of presentation has been chosen so that the more primitive topics precede those that build upon
them; however, linear readability has not been a priority.

This document is divided into chapters by topic. Any given chapter might contain conceptual
material, dictionary entries, or both.

Defined names within the dictionary portion of a chapter are grouped in a way that brings re-
lated topics into physical proximity. Many such groupings were possible, and no deep significance
should be inferred from the particular grouping that was chosen. To see defined names grouped
alphabetically, consult the index. For a complete list of defined names, see Section 1.9 (Symbols
in the COMMON-LISP Package).

In order to compensate for the sometimes-unordered portions of this document, a glossary has
been provided; see Chapter 26 (Glossary). The glossary provides connectivity by providing easy
access to definitions of terms, and in some cases by providing examples or cross references to
additional conceptual material.

For information about notational conventions used in this document, see Section 1.4 (Definitions).

For information about conformance, see Section 1.5 (Conformance).

For information about extensions and subsets, see Section 1.6 (Language Extensions) and Section
1.7 (Language Subsets).

For information about how programs in the language are parsed by the Lisp reader , see Chapter 2
(Syntax).

For information about how programs in the language are compiled and executed , see Chapter 3
(Evaluation and Compilation).

For information about data types, see Chapter 4 (Types and Classes). Not all types and classes
are defined in this chapter; many are defined in chapter corresponding to their topic–for example,
the numeric types are defined in Chapter 12 (Numbers). For a complete list of standardized types,
see Figure 4–2.

For information about general purpose control and data flow, see Chapter 5 (Data and Control
Flow) or Chapter 6 (Iteration).

1–4 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.3 Referenced Publications

• The Anatomy of Lisp, John Allen, McGraw-Hill, Inc., 1978.

• The Art of Computer Programming, Volume 3 , Donald E. Knuth, Addison-Wesley Company
(Reading, MA), 1973.

• The Art of the Metaobject Protocol , Kiczales et al., MIT Press (Cambridge, MA), 1991.

• “Common Lisp Object System Specification,” D. Bobrow, L. DiMichiel, R.P. Gabriel, S.
Keene, G. Kiczales, D. Moon, SIGPLAN Notices V23, September, 1988.

• Common Lisp: The Language, Guy L. Steele Jr., Digital Press (Burlington, MA), 1984.

• Common Lisp: The Language, Second Edition, Guy L. Steele Jr., Digital Press (Bedford,
MA), 1990.

• Exceptional Situations in Lisp, Kent M. Pitman, Proceedings of the First European Confer-
ence on the Practical Application of LISP (EUROPAL ’90), Churchill College, Cambridge,
England, March 27-29, 1990.

• Flavors: A Non-Hierarchical Approach to Object-Oriented Programming , Howard I. Cannon,
1982.

• IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985, Institute of
Electrical and Electronics Engineers, Inc. (New York), 1985.

• IEEE Standard for the Scheme Programming Language, IEEE Std 1178-1990, Institute of
Electrical and Electronic Engineers, Inc. (New York), 1991.

• Interlisp Reference Manual , Third Revision, Teitelman, Warren, et al, Xerox Palo Alto
Research Center (Palo Alto, CA), 1978.

• ISO 6937/2, Information processing—Coded character sets for text communication—Part 2:
Latin alphabetic and non-alphabetic graphic characters, ISO, 1983.

• Lisp 1.5 Programmer’s Manual , John McCarthy, MIT Press (Cambridge, MA), August, 1962.

• Lisp Machine Manual , D.L. Weinreb and D.A. Moon, Artificial Intelligence Laboratory, MIT
(Cambridge, MA), July, 1981.

• Maclisp Reference Manual, Revision 0 , David A. Moon, Project MAC (Laboratory for
Computer Science), MIT (Cambridge, MA), March, 1974.

Introduction 1–5

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

• “NIL—A Perspective,” JonL White, Macsyma User’s Conference, 1979.

• Performance and Evaluation of Lisp Programs, Richard P. Gabriel, MIT Press (Cambridge,
MA), 1985.

• “Principal Values and Branch Cuts in Complex APL,” Paul Penfield Jr., APL 81 Conference
Proceedings, ACM SIGAPL (San Francisco, September 1981), 248-256. Proceedings published
as APL Quote Quad 12, 1 (September 1981).

• The Revised Maclisp Manual , Kent M. Pitman, Technical Report 295, Laboratory for Com-
puter Science, MIT (Cambridge, MA), May 1983.

• “Revised3 Report on the Algorithmic Language Scheme,” Jonathan Rees and William Clinger
(editors), SIGPLAN Notices V21, #12, December, 1986.

• “S-1 Common Lisp Implementation,” R.A. Brooks, R.P. Gabriel, and G.L. Steele, Conference
Record of the 1982 ACM Symposium on Lisp and Functional Programming, 108-113, 1982.

• Smalltalk-80: The Language and its Implementation, A. Goldberg and D. Robson, Addison-
Wesley, 1983.

• “Standard LISP Report,” J.B. Marti, A.C. Hearn, M.L. Griss, and C. Griss, SIGPLAN
Notices V14, #10, October, 1979.

• Webster’s Third New International Dictionary the English Language, Unabridged , Merriam
Webster (Springfield, MA), 1986.

• XP: A Common Lisp Pretty Printing System, R.C. Waters, Memo 1102a, Artificial Intelli-
gence Laboratory, MIT (Cambridge, MA), September 1989.

1–6 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.4 Definitions
This section contains notational conventions and definitions of terms used in this manual.

1.4.1 Notational Conventions
The following notational conventions are used throughout this document.

1.4.1.1 Font Key

Fonts are used in this document to convey information.

name

Denotes a formal term whose meaning is defined in the Glossary. When this font is used,
the Glossary definition takes precedence over normal English usage.

Sometimes a glossary term appears subscripted, as in “whitespace2.” Such a notation
selects one particular Glossary definition out of several, in this case the second. The
subscript notation for Glossary terms is generally used where the context might be
insufficient to disambiguate among the available definitions.

name

Denotes the introduction of a formal term locally to the current text. There is still a
corresponding glossary entry, and is formally equivalent to a use of “name,” but the hope
is that making such uses conspicuous will save the reader a trip to the glossary in some
cases.

name

Denotes a symbol in the COMMON-LISP package. For information about case conventions,
see Section 1.4.1.4.1 (Case in Symbols).

name

Denotes a sample name or piece of code that a programmer might write in Common Lisp.

This font is also used for certain standardized names that are not names of external sym-
bols of the COMMON-LISP package, such as keywords1, package names, and loop keywords.

name

Denotes the name of a parameter or value.

In some situations the notation “〈〈name〉〉” (i.e., the same font, but with surrounding
“angle brackets”) is used instead in order to provide better visual separation from sur-
rounding characters. These “angle brackets” are metasyntactic, and never actually appear
in program input or output.

Introduction 1–7

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.4.1.2 Modified BNF Syntax

This specification uses an extended Backus Normal Form (BNF) to describe the syntax of Com-
mon Lisp macro forms and special forms. This section discusses the syntax of BNF expressions.

1.4.1.2.1 Splicing in Modified BNF Syntax

The primary extension used is the following:

[[O]]

An expression of this form appears whenever a list of elements is to be spliced into a larger
structure and the elements can appear in any order. The symbol O represents a description of the
syntax of some number of syntactic elements to be spliced; that description must be of the form

O1 | . . . | Ol

where each Oi can be of the form S or of the form S* or of the form S1. The expression [[O]]
means that a list of the form

(Oi1 . . . Oij) 1 ≤ j

is spliced into the enclosing expression, such that if n 6= m and 1 ≤ n,m ≤ j, then either
Oin 6= Oim or Oin = Oim = Qk, where for some 1 ≤ k ≤ n, Ok is of the form Qk*. Furthermore,
for each Oin that is of the form Qk

1, that element is required to appear somewhere in the list to
be spliced.

For example, the expression

(x [[A | B* | C]] y)

means that at most one A, any number of B’s, and at most one C can occur in any order. It is a
description of any of these:

(x y)

(x B A C y)

(x A B B B B B C y)

(x C B A B B B y)

but not any of these:

(x B B A A C C y)

(x C B C y)

In the first case, both A and C appear too often, and in the second case C appears too often.

1–8 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

The notation [[O1 | O2 | . . .]]+ adds the additional restriction that at least one item from among
the possible choices must be used. For example:

(x [[A | B* | C]]+ y)

means that at most one A, any number of B’s, and at most one C can occur in any order, but that
in any case at least one of these options must be selected. It is a description of any of these:

(x B y)

(x B A C y)

(x A B B B B B C y)

(x C B A B B B y)

but not any of these:

(x y)

(x B B A A C C y)

(x C B C y)

In the first case, no item was used; in the second case, both A and C appear too often; and in the
third case C appears too often.

Also, the expression:

(x [[A1 | B1 | C]] y)

can generate exactly these and no others:

(x A B C y)

(x A C B y)

(x A B y)

(x B A C y)

(x B C A y)

(x B A y)

(x C A B y)

(x C B A y)

1.4.1.2.2 Indirection in Modified BNF Syntax

An indirection extension is introduced in order to make this new syntax more readable:

↓O

If O is a non-terminal symbol, the right-hand side of its definition is substituted for the entire
expression ↓O. For example, the following BNF is equivalent to the BNF in the previous example:

(x [[↓O]] y)

Introduction 1–9

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

O::=A | B* | C

1.4.1.2.3 Additional Uses for Indirect Definitions in Modified BNF Syntax

In some cases, an auxiliary definition in the BNF might appear to be unused within the BNF, but
might still be useful elsewhere. For example, consider the following definitions:

case keyform {↓normal-clause}* [↓otherwise-clause] → {result}*
ccase keyplace {↓normal-clause}* → {result}*
ecase keyform {↓normal-clause}* → {result}*

normal-clause::=(keys {form}*)

otherwise-clause::=({otherwise | t} {form}*)

clause::=normal-clause | otherwise-clause

Here the term “clause” might appear to be “dead” in that it is not used in the BNF. However,
the purpose of the BNF is not just to guide parsing, but also to define useful terms for reference
in the descriptive text which follows. As such, the term “clause” might appear in text that
follows, as shorthand for “normal-clause or otherwise-clause.”

1.4.1.3 Special Symbols

The special symbols described here are used as a notational convenience within this document,
and are part of neither the Common Lisp language nor its environment.

→
This indicates evaluation. For example:

(+ 4 5) → 9

This means that the result of evaluating the form (+ 4 5) is 9.

If a form returns multiple values, those values might be shown separated by spaces, line
breaks, or commas. For example:

(truncate 7 5)

→ 1 2

(truncate 7 5)

→ 1

2

(truncate 7 5)

→ 1, 2

Each of the above three examples is equivalent, and specifies that (truncate 7 5) returns
two values, which are 1 and 2.

1–10 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Some conforming implementations actually type an arrow (or some other indicator)
before showing return values, while others do not.

or→

The notation “or→” is used to denote one of several possible alternate results. The example

(char-name #\a)

→ NIL
or→ "LOWERCASE-a"
or→ "Small-A"
or→ "LA01"

indicates that nil, "LOWERCASE-a", "Small-A", "LA01" are among the possible results of
(char-name #\a)—each with equal preference. Unless explicitly specified otherwise, it
should not be assumed that the set of possible results shown is exhaustive. Formally, the
above example is equivalent to

(char-name #\a) → implementation-dependent

but it is intended to provide additional information to illustrate some of the ways in
which it is permitted for implementations to diverge.

not→

The notation “not→” is used to denote a result which is not possible. This might be used,
for example, in order to emphasize a situation where some anticipated misconception
might lead the reader to falsely believe that the result might be possible. For example,

(function-lambda-expression

(funcall #’(lambda (x) #’(lambda () x)) nil))

→ NIL, true, NIL
or→ (LAMBDA () X), true, NIL
not→ NIL, false, NIL
not→ (LAMBDA () X), false, NIL

≡
This indicates code equivalence. For example:

(gcd x (gcd y z)) ≡ (gcd (gcd x y) z)

This means that the results and observable side-effects of evaluating the form
(gcd x (gcd y z)) are always the same as the results and observable side-effects of
(gcd (gcd x y) z) for any x, y, and z.

.

Introduction 1–11

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Common Lisp specifies input and output with respect to a non-interactive stream model.
The specific details of how interactive input and output are mapped onto that non-
interactive model are implementation-defined .

For example, conforming implementations are permitted to differ in issues of how inter-
active input is terminated. For example, the function read terminates when the final
delimiter is typed on a non-interactive stream. In some implementations, an interactive
call to read returns as soon as the final delimiter is typed, even if that delimiter is not a
newline. In other implementations, a final newline is always required. In still other im-
plementations, there might be a command which “activates” a buffer full of input without
the command itself being visible on the program’s input stream.

In the examples in this document, the notation “.” precedes lines where interactive input
and output occurs. Within such a scenario, “this notation” notates user input.

For example, the notation

(+ 1 (print (+ (sqrt (read)) (sqrt (read)))))

. 9 16

. 7

→ 8

shows an interaction in which “(+ 1 (print (+ (sqrt (read)) (sqrt (read)))))” is a
form to be evaluated , “9 16 ” is interactive input, “7” is interactive output, and “8” is
the value yielded from the evaluation.

The use of this notation is intended to disguise small differences in interactive input and
output behavior between implementations.

Sometimes, the non-interactive stream model calls for a newline. How that newline
character is interactively entered is an implementation-defined detail of the user interface,
but in that case, either the notation “〈Newline〉” or “←↩” might be used.

(progn (format t "~&Who? ") (read-line))

. Who? Fred, Mary, and Sally←↩
→ "Fred, Mary, and Sally", false

1.4.1.4 Objects with Multiple Notations

Some objects in Common Lisp can be notated in more than one way. In such situations, the
choice of which notation to use is technically arbitrary, but conventions may exist which convey a
“point of view” or “sense of intent.”

1.4.1.4.1 Case in Symbols

While case is significant in the process of interning a symbol , the Lisp reader , by default, at-
tempts to canonicalize the case of a symbol prior to interning; see Section 23.1.2 (Effect of
Readtable Case on the Lisp Reader). As such, case in symbols is not, by default, significant.

1–12 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Throughout this document, except as explicitly noted otherwise, the case in which a symbol ap-
pears is not significant; that is, HELLO, Hello, hElLo, and hello are all equivalent ways to denote a
symbol whose name is "HELLO".

The characters backslash and vertical-bar are used to explicitly quote the case and other parsing-
related aspects of characters. As such, the notations |hello| and \h\e\l\l\o are equivalent ways
to refer to a symbol whose name is "hello", and which is distinct from any symbol whose name is
"HELLO".

The symbols that correspond to Common Lisp defined names have uppercase names even though
their names generally appear in lowercase in this document.

1.4.1.4.2 Numbers

Although Common Lisp provides a variety of ways for programs to manipulate the input and
output radix for rational numbers, all numbers in this document are in decimal notation unless
explicitly noted otherwise.

1.4.1.4.3 Use of the Dot Character

The dot appearing by itself in an expression such as

(item1 item2 . tail)

means that tail represents a list of objects at the end of a list. For example,

(A B C . (D E F))

is notationally equivalent to:

(A B C D E F)

Although dot is a valid constituent character in a symbol, no standardized symbols contain the
character dot , so a period that follows a reference to a symbol at the end of a sentence in this
document should always be interpreted as a period and never as part of the symbol ’s name. For
example, within this document, a sentence such as “This sample sentence refers to the symbol
car.” refers to a symbol whose name is "CAR" (with three letters), and never to a four-letter
symbol "CAR."

1.4.1.4.4 NIL

nil has a variety of meanings. It is a symbol in the COMMON-LISP package with the name "NIL", it is
boolean (and generalized boolean) false, it is the empty list , and it is the name of the empty type
(a subtype of all types).

Within Common Lisp, nil can be notated interchangeably as either NIL or (). By convention, the
choice of notation offers a hint as to which of its many roles it is playing.

Introduction 1–13

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

For Evaluation? Notation Typically Implied Role
Yes nil use as a boolean.
Yes ’nil use as a symbol .
Yes ’() use as an empty list
No nil use as a symbol or boolean.
No () use as an empty list .

Figure 1–1. Notations for NIL

Within this document only, nil is also sometimes notated as false to emphasize its role as a
boolean.

For example:

(print ()) ;avoided

(defun three nil 3) ;avoided

’(nil nil) ;list of two symbols

’(() ()) ;list of empty lists

(defun three () 3) ;Emphasize empty parameter list.

(append ’() ’()) → () ;Emphasize use of empty lists

(not nil) → true ;Emphasize use as Boolean false

(get ’nil ’color) ;Emphasize use as a symbol

A function is sometimes said to “be false” or “be true” in some circumstance. Since no function
object can be the same as nil and all function objects represent true when viewed as booleans, it
would be meaningless to say that the function was literally false and uninteresting to say that it
was literally true. Instead, these phrases are just traditional alternative ways of saying that the
function “returns false” or “returns true,” respectively.

1.4.1.5 Designators

A designator is an object that denotes another object .

Where a parameter of an operator is described as a designator , the description of the operator
is written in a way that assumes that the value of the parameter is the denoted object ; that is,
that the parameter is already of the denoted type. (The specific nature of the object denoted
by a “〈〈type〉〉 designator” or a “designator for a 〈〈type〉〉” can be found in the Glossary entry for
“〈〈type〉〉 designator .”)

For example, “nil” and “the value of *standard-output*” are operationally indistinguishable as
stream designators. Similarly, the symbol foo and the string "FOO" are operationally indistinguish-
able as string designators.

Except as otherwise noted, in a situation where the denoted object might be used multiple times,
it is implementation-dependent whether the object is coerced only once or whether the coercion
occurs each time the object must be used.

1–14 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

For example, mapcar receives a function designator as an argument, and its description is written
as if this were simply a function. In fact, it is implementation-dependent whether the function
designator is coerced right away or whether it is carried around internally in the form that it was
given as an argument and re-coerced each time it is needed. In most cases, conforming programs
cannot detect the distinction, but there are some pathological situations (particularly those
involving self-redefining or mutually-redefining functions) which do conform and which can detect
this difference. The following program is a conforming program, but might or might not have
portably correct results, depending on whether its correctness depends on one or the other of the
results:

(defun add-some (x)

(defun add-some (x) (+ x 2))

(+ x 1)) → ADD-SOME

(mapcar ’add-some ’(1 2 3 4))

→ (2 3 4 5)
or→ (2 4 5 6)

In a few rare situations, there may be a need in a dictionary entry to refer to the object that was
the original designator for a parameter . Since naming the parameter would refer to the denoted
object , the phrase “the 〈〈parameter-name〉〉 designator” can be used to refer to the designator
which was the argument from which the value of 〈〈parameter-name〉〉 was computed.

1.4.1.6 Nonsense Words

When a word having no pre-attached semantics is required (e.g., in an example), it is common in
the Lisp community to use one of the words “foo,” “bar,” “baz,” and “quux.” For example, in

(defun foo (x) (+ x 1))

the use of the name foo is just a shorthand way of saying “please substitute your favorite name
here.”

These nonsense words have gained such prevalance of usage, that it is commonplace for new-
comers to the community to begin to wonder if there is an attached semantics which they are
overlooking—there is not.

1.4.2 Error Terminology
Situations in which errors might, should, or must be signaled are described in the standard. The
wording used to describe such situations is intended to have precise meaning. The following list is
a glossary of those meanings.

Safe code

This is code processed with the safety optimization at its highest setting (3). safety is
a lexical property of code. The phrase “the function F should signal an error” means
that if F is invoked from code processed with the highest safety optimization, an error is
signaled. It is implementation-dependent whether F or the calling code signals the error.

Introduction 1–15

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Unsafe code

This is code processed with lower safety levels.

Unsafe code might do error checking. Implementations are permitted to treat all code as
safe code all the time.

An error is signaled

This means that an error is signaled in both safe and unsafe code. Conforming code
may rely on the fact that the error is signaled in both safe and unsafe code. Every
implementation is required to detect the error in both safe and unsafe code. For example,
“an error is signaled if unexport is given a symbol not accessible in the current package.”

If an explicit error type is not specified, the default is error.

An error should be signaled

This means that an error is signaled in safe code, and an error might be signaled in
unsafe code. Conforming code may rely on the fact that the error is signaled in safe code.
Every implementation is required to detect the error at least in safe code. When the error
is not signaled, the “consequences are undefined” (see below). For example, “+ should
signal an error of type type-error if any argument is not of type number.”

Should be prepared to signal an error

This is similar to “should be signaled” except that it does not imply that ‘extra effort’
has to be taken on the part of an operator to discover an erroneous situation if the
normal action of that operator can be performed successfully with only ‘lazy’ checking.
An implementation is always permitted to signal an error, but even in safe code, it is only
required to signal the error when failing to signal it might lead to incorrect results. In
unsafe code, the consequences are undefined.

For example, defining that “find should be prepared to signal an error of type type-error
if its second argument is not a proper list” does not imply that an error is always sig-
naled. The form

(find ’a ’(a b . c))

must either signal an error of type type-error in safe code, else return A. In unsafe code,
the consequences are undefined. By contrast,

(find ’d ’(a b . c))

must signal an error of type type-error in safe code. In unsafe code, the consequences are
undefined. Also,

(find ’d ’#1=(a b . #1#))

1–16 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

in safe code might return nil (as an implementation-defined extension), might never
return, or might signal an error of type type-error. In unsafe code, the consequences are
undefined.

Typically, the “should be prepared to signal” terminology is used in type checking
situations where there are efficiency considerations that make it impractical to detect
errors that are not relevant to the correct operation of the operator .

The consequences are unspecified

This means that the consequences are unpredictable but harmless. Implementations are
permitted to specify the consequences of this situation. No conforming code may depend
on the results or effects of this situation, and all conforming code is required to treat the
results and effects of this situation as unpredictable but harmless. For example, “if the
second argument to shared-initialize specifies a name that does not correspond to any
slots accessible in the object , the results are unspecified.”

The consequences are undefined

This means that the consequences are unpredictable. The consequences may range from
harmless to fatal. No conforming code may depend on the results or effects. Conforming
code must treat the consequences as unpredictable. In places where the words “must,”
“must not,” or “may not” are used, then “the consequences are undefined” if the stated
requirement is not met and no specific consequence is explicitly stated. An implementa-
tion is permitted to signal an error in this case.

For example: “Once a name has been declared by defconstant to be constant, any
further assignment or binding of that variable has undefined consequences.”

An error might be signaled

This means that the situation has undefined consequences; however, if an error is sig-
naled, it is of the specified type. For example, “open might signal an error of type
file-error.”

The return values are unspecified

This means that only the number and nature of the return values of a form are not
specified. However, the issue of whether or not any side-effects or transfer of control
occurs is still well-specified.

A program can be well-specified even if it uses a function whose returns values are
unspecified. For example, even if the return values of some function F are unspecified, an
expression such as (length (list (F))) is still well-specified because it does not rely on
any particular aspect of the value or values returned by F.

Implementations may be extended to cover this situation

Introduction 1–17

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

This means that the situation has undefined consequences; however, a conforming imple-
mentation is free to treat the situation in a more specific way. For example, an implemen-
tation might define that an error is signaled, or that an error should be signaled, or even
that a certain well-defined non-error behavior occurs.

No conforming code may depend on the consequences of such a situation; all conforming
code must treat the consequences of the situation as undefined. Implementations are
required to document how the situation is treated.

For example, “implementations may be extended to define other type specifiers to have a
corresponding class.”

Implementations are free to extend the syntax

This means that in this situation implementations are permitted to define unambiguous
extensions to the syntax of the form being described. No conforming code may depend
on this extension. Implementations are required to document each such extension. All
conforming code is required to treat the syntax as meaningless. The standard might
disallow certain extensions while allowing others. For example, “no implementation is free
to extend the syntax of defclass.”

A warning might be issued

This means that implementations are encouraged to issue a warning if the context
is appropriate (e.g., when compiling). However, a conforming implementation is not
required to issue a warning.

1.4.3 Sections Not Formally Part Of This Standard
Front matter and back matter, such as the “Table of Contents,” “Index,” “Figures,” “Credits,”
and “Appendix” are not considered formally part of this standard, so that we retain the flexibility
needed to update these sections even at the last minute without fear of needing a formal vote to
change those parts of the document. These items are quite short and very useful, however, and it
is not recommended that they be removed even in an abridged version of this document.

Within the concept sections, subsections whose names begin with the words “Note” or “Notes” or
“Example” or “Examples” are provided for illustration purposes only, and are not considered part
of the standard.

An attempt has been made to place these sections last in their parent section, so that they could
be removed without disturbing the contiguous numbering of the surrounding sections in order to
produce a document of smaller size.

Likewise, the “Examples” and “Notes” sections in a dictionary entry are not considered part of
the standard and could be removed if necessary.

Nevertheless, the examples provide important clarifications and consistency checks for the rest of
the material, and such abridging is not recommended unless absolutely unavoidable.

1–18 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.4.4 Interpreting Dictionary Entries
The dictionary entry for each defined name is partitioned into sections. Except as explicitly indi-
cated otherwise below, each section is introduced by a label identifying that section. The omission
of a section implies that the section is either not applicable, or would provide no interesting
information.

This section defines the significance of each potential section in a dictionary entry.

1.4.4.1 The “Affected By” Section of a Dictionary Entry

For an operator , anything that can affect the side effects of or values returned by the operator .

For a variable, anything that can affect the value of the variable including functions that bind or
assign it.

1.4.4.2 The “Arguments” Section of a Dictionary Entry

This information describes the syntax information of entries such as those for declarations and
special expressions which are never evaluated as forms, and so do not return values.

1.4.4.3 The “Arguments and Values” Section of a Dictionary Entry

An English language description of what arguments the operator accepts and what values it
returns, including information about defaults for parameters corresponding to omittable argu-
ments (such as optional parameters and keyword parameters). For special operators and macros,
their arguments are not evaluated unless it is explicitly stated in their descriptions that they are
evaluated .

Except as explicitly specified otherwise, the consequences are undefined if these type restrictions
are violated.

1.4.4.4 The “Binding Types Affected” Section of a Dictionary Entry

This information alerts the reader to the kinds of bindings that might potentially be affected by
a declaration. Whether in fact any particular such binding is actually affected is dependent on
additional factors as well. See the “Description” section of the declaration in question for details.

Introduction 1–19

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.4.4.5 The “Class Precedence List” Section of a Dictionary Entry

This appears in the dictionary entry for a class, and contains an ordered list of the classes defined
by Common Lisp that must be in the class precedence list of this class.

It is permissible for other (implementation-defined) classes to appear in the implementation’s
class precedence list for the class.

It is permissible for either standard-object or structure-object to appear in the implementa-
tion’s class precedence list ; for details, see Section 4.2.2 (Type Relationships).

Except as explicitly indicated otherwise somewhere in this specification, no additional standard-
ized classes may appear in the implementation’s class precedence list .

By definition of the relationship between classes and types, the classes listed in this section are
also supertypes of the type denoted by the class.

1.4.4.6 Dictionary Entries for Type Specifiers

The atomic type specifiers are those defined names listed in Figure 4–2. Such dictionary entries
are of kind “Class,” “Condition Type,” “System Class,” or “Type.” A description of how to
interpret a symbol naming one of these types or classes as an atomic type specifier is found in the
“Description” section of such dictionary entries.

The compound type specifiers are those defined names listed in Figure 4–3. Such dictionary
entries are of kind “Class,” “System Class,” “Type,” or “Type Specifier.” A description of
how to interpret as a compound type specifier a list whose car is such a symbol is found in the
“Compound Type Specifier Kind,” “Compound Type Specifier Syntax,” “Compound Type
Specifier Arguments,” and “Compound Type Specifier Description” sections of such dictionary
entries.

1.4.4.6.1 The “Compound Type Specifier Kind” Section of a Dictionary Entry

An “abbreviating” type specifier is one that describes a subtype for which it is in principle possi-
ble to enumerate the elements, but for which in practice it is impractical to do so.

A “specializing” type specifier is one that describes a subtype by restricting the type of one or
more components of the type, such as element type or complex part type.

A “predicating” type specifier is one that describes a subtype containing only those objects that
satisfy a given predicate.

A “combining” type specifier is one that describes a subtype in a compositional way, using com-
bining operations (such as “and,” “or,” and “not”) on other types.

1–20 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.4.4.6.2 The “Compound Type Specifier Syntax” Section of a Dictionary Entry

This information about a type describes the syntax of a compound type specifier for that type.

Whether or not the type is acceptable as an atomic type specifier is not represented here; see
Section 1.4.4.6 (Dictionary Entries for Type Specifiers).

1.4.4.6.3 The “Compound Type Specifier Arguments” Section of a Dictionary Entry

This information describes type information for the structures defined in the “Compound Type
Specifier Syntax” section.

1.4.4.6.4 The “Compound Type Specifier Description” Section of a Dictionary Entry

This information describes the meaning of the structures defined in the “Compound Type Speci-
fier Syntax” section.

1.4.4.7 The “Constant Value” Section of a Dictionary Entry

This information describes the unchanging type and value of a constant variable.

1.4.4.8 The “Description” Section of a Dictionary Entry

A summary of the operator and all intended aspects of the operator , but does not necessarily
include all the fields referenced below it (“Side Effects,” “Exceptional Situations,” etc.)

1.4.4.9 The “Examples” Section of a Dictionary Entry

Examples of use of the operator . These examples are not considered part of the standard; see
Section 1.4.3 (Sections Not Formally Part Of This Standard).

1.4.4.10 The “Exceptional Situations” Section of a Dictionary Entry

Three kinds of information may appear here:

• Situations that are detected by the function and formally signaled.

• Situations that are handled by the function.

• Situations that may be detected by the function.

This field does not include conditions that could be signaled by functions passed to and called
by this operator as arguments or through dynamic variables, nor by executing subforms of this
operator if it is a macro or special operator .

Introduction 1–21

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.4.4.11 The “Initial Value” Section of a Dictionary Entry

This information describes the initial value of a dynamic variable. Since this variable might
change, see type restrictions in the “Value Type” section.

1.4.4.12 The “Argument Precedence Order” Section of a Dictionary Entry

This information describes the argument precedence order . If it is omitted, the argument prece-
dence order is the default (left to right).

1.4.4.13 The “Method Signature” Section of a Dictionary Entry

The description of a generic function includes descriptions of the methods that are defined on
that generic function by the standard. A method signature is used to describe the parameters
and parameter specializers for each method . Methods defined for the generic function must be of
the form described by the method signature.

F (x class) (y t) &optional z &key k

This signature indicates that this method on the generic function F has two required parameters:
x , which must be a generalized instance of the class class; and y , which can be any object (i.e., a
generalized instance of the class t). In addition, there is an optional parameter z and a keyword
parameter k . This signature also indicates that this method on F is a primary method and has no
qualifiers.

For each parameter , the argument supplied must be in the intersection of the type specified in
the description of the corresponding generic function and the type given in the signature of some
method (including not only those methods defined in this specification, but also implementation-
defined or user-defined methods in situations where the definition of such methods is permitted).

1.4.4.14 The “Name” Section of a Dictionary Entry

This section introduces the dictionary entry. It is not explicitly labeled. It appears preceded and
followed by a horizontal bar.

In large print at left, the defined name appears; if more than one defined name is to be described
by the entry, all such names are shown separated by commas.

In somewhat smaller italic print at right is an indication of what kind of dictionary entry this is.
Possible values are:

Accessor

This is an accessor function.

Class

This is a class.

1–22 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Condition Type

This is a subtype of type condition.

Constant Variable

This is a constant variable.

Declaration

This is a declaration identifier .

Function

This is a function.

Local Function

This is a function that is defined only lexically within the scope of some other macro
form.

Local Macro

This is a macro that is defined only lexically within the scope of some other macro form.

Macro

This is a macro.

Restart

This is a restart .

Special Operator

This is a special operator .

Standard Generic Function

This is a standard generic function.

Symbol

This is a symbol that is specially recognized in some particular situation, such as the
syntax of a macro.

System Class

This is like class, but it identifies a class that is potentially a built-in class. (No class is
actually required to be a built-in class.)

Introduction 1–23

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Type

This is an atomic type specifier , and depending on information for each particular entry,
may subject to form other type specifiers.

Type Specifier

This is a defined name that is not an atomic type specifier , but that can be used in
constructing valid type specifiers.

Variable

This is a dynamic variable.

1.4.4.15 The “Notes” Section of a Dictionary Entry

Information not found elsewhere in this description which pertains to this operator . Among
other things, this might include cross reference information, code equivalences, stylistic hints,
implementation hints, typical uses. This information is not considered part of the standard; any
conforming implementation or conforming program is permitted to ignore the presence of this
information.

1.4.4.16 The “Pronunciation” Section of a Dictionary Entry

This offers a suggested pronunciation for defined names so that people not in verbal communi-
cation with the original designers can figure out how to pronounce words that are not in normal
English usage. This information is advisory only, and is not considered part of the standard. For
brevity, it is only provided for entries with names that are specific to Common Lisp and would
not be found in Webster’s Third New International Dictionary the English Language, Unabridged .

1.4.4.17 The “See Also” Section of a Dictionary Entry

List of references to other parts of this standard that offer information relevant to this operator .
This list is not part of the standard.

1.4.4.18 The “Side Effects” Section of a Dictionary Entry

Anything that is changed as a result of the evaluation of the form containing this operator .

1.4.4.19 The “Supertypes” Section of a Dictionary Entry

This appears in the dictionary entry for a type, and contains a list of the standardized types that
must be supertypes of this type.

In implementations where there is a corresponding class, the order of the classes in the class
precedence list is consistent with the order presented in this section.

1–24 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.4.4.20 The “Syntax” Section of a Dictionary Entry

This section describes how to use the defined name in code. The “Syntax” description for a
generic function describes the lambda list of the generic function itself, while the “Method
Signatures” describe the lambda lists of the defined methods. The “Syntax” description for an
ordinary function, a macro, or a special operator describes its parameters.

For example, an operator description might say:

F x y &optional z &key k

This description indicates that the function F has two required parameters, x and y . In addition,
there is an optional parameter z and a keyword parameter k .

For macros and special operators, syntax is given in modified BNF notation; see Section 1.4.1.2
(Modified BNF Syntax). For functions a lambda list is given. In both cases, however, the outer-
most parentheses are omitted, and default value information is omitted.

1.4.4.20.1 Special “Syntax” Notations for Overloaded Operators

If two descriptions exist for the same operation but with different numbers of arguments, then the
extra arguments are to be treated as optional. For example, this pair of lines:

file-position stream → position

file-position stream position-spec → success-p

is operationally equivalent to this line:

file-position stream &optional position-spec → result

and differs only in that it provides on opportunity to introduce different names for parameter and
values for each case. The separated (multi-line) notation is used when an operator is overloaded
in such a way that the parameters are used in different ways depending on how many arguments
are supplied (e.g., for the function /) or the return values are different in the two cases (e.g., for
the function file-position).

1.4.4.20.2 Naming Conventions for Rest Parameters

Within this specification, if the name of a rest parameter is chosen to be a plural noun, use of
that name in parameter font refers to the list to which the rest parameter is bound. Use of the
singular form of that name in parameter font refers to an element of that list .

For example, given a syntax description such as:

F &rest arguments

it is appropriate to refer either to the rest parameter named arguments by name, or to one of its
elements by speaking of “an argument,” “some argument,” “each argument” etc.

Introduction 1–25

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.4.4.20.3 Requiring Non-Null Rest Parameters in the “Syntax” Section

In some cases it is useful to refer to all arguments equally as a single aggregation using a rest
parameter while at the same time requiring at least one argument. A variety of imperative and
declarative means are available in code for expressing such a restriction, however they generally
do not manifest themselves in a lambda list . For descriptive purposes within this specification,

F &rest arguments+

means the same as

F &rest arguments

but introduces the additional requirement that there be at least one argument.

1.4.4.20.4 Return values in the “Syntax” Section

An evaluation arrow “→” precedes a list of values to be returned. For example:

F a b c → x

indicates that F is an operator that has three required parameters (i.e., a, b, and c) and that
returns one value (i.e., x). If more than one value is returned by an operator, the names of the
values are separated by commas, as in:

F a b c → x, y, z

1.4.4.20.4.1 No Arguments or Values in the “Syntax” Section

If no arguments are permitted, or no values are returned, a special notation is used to make this
more visually apparent. For example,

F 〈no arguments〉 → 〈no values〉
indicates that F is an operator that accepts no arguments and returns no values.

1.4.4.20.4.2 Unconditional Transfer of Control in the “Syntax” Section

Some operators perform an unconditional transfer of control, and so never have any return values.
Such operators are notated using a notation such as the following:

F a b c →

1.4.4.21 The “Valid Context” Section of a Dictionary Entry

This information is used by dictionary entries such as “Declarations” in order to restrict the
context in which the declaration may appear.

A given “Declaration” might appear in a declaration (i.e., a declare expression), a proclamation
(i.e., a declaim or proclaim form), or both.

1–26 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.4.4.22 The “Value Type” Section of a Dictionary Entry

This information describes any type restrictions on a dynamic variable.

Except as explicitly specified otherwise, the consequences are undefined if this type restriction is
violated.

Introduction 1–27

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.5 Conformance
This standard presents the syntax and semantics to be implemented by a conforming implementa-
tion (and its accompanying documentation). In addition, it imposes requirements on conforming
programs.

1.5.1 Conforming Implementations
A conforming implementation shall adhere to the requirements outlined in this section.

1.5.1.1 Required Language Features

A conforming implementation shall accept all features (including deprecated features) of the
language specified in this standard, with the meanings defined in this standard.

A conforming implementation shall not require the inclusion of substitute or additional lan-
guage elements in code in order to accomplish a feature of the language that is specified in this
standard.

1.5.1.2 Documentation of Implementation-Dependent Features

A conforming implementation shall be accompanied by a document that provides a definition of
all implementation-defined aspects of the language defined by this specification.

In addition, a conforming implementation is encouraged (but not required) to document items
in this standard that are identified as implementation-dependent , although in some cases such
documentation might simply identify the item as “undefined.”

1.5.1.3 Documentation of Extensions

A conforming implementation shall be accompanied by a document that separately describes any
features accepted by the implementation that are not specified in this standard, but that do not
cause any ambiguity or contradiction when added to the language standard. Such extensions shall
be described as being “extensions to Common Lisp as specified by ANSI 〈〈standard number〉〉.”

1.5.1.4 Treatment of Exceptional Situations

A conforming implementation shall treat exceptional situations in a manner consistent with this
specification.

1.5.1.4.1 Resolution of Apparent Conflicts in Exceptional Situations

If more than one passage in this specification appears to apply to the same situation but in
conflicting ways, the passage that appears to describe the situation in the most specific way
(not necessarily the passage that provides the most constrained kind of error detection) takes
precedence.

1–28 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.5.1.4.1.1 Examples of Resolution of Apparent Conflicts in Exceptional Situations

Suppose that function foo is a member of a set S of functions that operate on numbers. Suppose
that one passage states that an error must be signaled if any function in S is ever given an
argument of 17. Suppose that an apparently conflicting passage states that the consequences are
undefined if foo receives an argument of 17. Then the second passage (the one specifically about
foo) would dominate because the description of the situational context is the most specific, and it
would not be required that foo signal an error on an argument of 17 even though other functions
in the set S would be required to do so.

1.5.1.5 Conformance Statement

A conforming implementation shall produce a conformance statement as a consequence of using
the implementation, or that statement shall be included in the accompanying documentation. If
the implementation conforms in all respects with this standard, the conformance statement shall
be

“〈〈Implementation〉〉 conforms with the requirements of ANSI 〈〈standard number〉〉”
If the implementation conforms with some but not all of the requirements of this standard, then
the conformance statement shall be

“〈〈Implementation〉〉 conforms with the requirements of ANSI 〈〈standard number〉〉 with the
following exceptions: 〈〈reference to or complete list of the requirements of the standard with
which the implementation does not conform〉〉.”

1.5.2 Conforming Programs
Code conforming with the requirements of this standard shall adhere to the following:

1. Conforming code shall use only those features of the language syntax and semantics that
are either specified in this standard or defined using the extension mechanisms specified
in the standard.

2. Conforming code may use implementation-dependent features and values, but shall not
rely upon any particular interpretation of these features and values other than those that
are discovered by the execution of code.

3. Conforming code shall not depend on the consequences of undefined or unspecified
situations.

4. Conforming code does not use any constructions that are prohibited by the standard.

5. Conforming code does not depend on extensions included in an implementation.

Introduction 1–29

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.5.2.1 Use of Implementation-Defined Language Features

Note that conforming code may rely on particular implementation-defined values or features.
Also note that the requirements for conforming code and conforming implementations do not
require that the results produced by conforming code always be the same when processed by a
conforming implementation. The results may be the same, or they may differ.

Conforming code may run in all conforming implementations, but might have allowable
implementation-defined behavior that makes it non-portable code. For example, the following
are examples of forms that are conforming, but that might return different values in different
implementations:

(evenp most-positive-fixnum) → implementation-dependent
(random) → implementation-dependent
(> lambda-parameters-limit 93) → implementation-dependent
(char-name #\A) → implementation-dependent

1.5.2.1.1 Use of Read-Time Conditionals

Use of #+ and #- does not automatically disqualify a program from being conforming. A program
which uses #+ and #- is considered conforming if there is no set of features in which the program
would not be conforming. Of course, conforming programs are not necessarily working programs.
The following program is conforming:

(defun foo ()

#+ACME (acme:initialize-something)

(print ’hello-there))

However, this program might or might not work, depending on whether the presence of the
feature ACME really implies that a function named acme:initialize-something is present in the en-
vironment. In effect, using #+ or #- in a conforming program means that the variable *features*
becomes just one more piece of input data to that program. Like any other data coming into a
program, the programmer is responsible for assuring that the program does not make unwar-
ranted assumptions on the basis of input data.

1.5.2.2 Character Set for Portable Code

Portable code is written using only standard characters.

1–30 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.6 Language Extensions
A language extension is any documented implementation-defined behavior of a defined name
in this standard that varies from the behavior described in this standard, or a documented
consequence of a situation that the standard specifies as undefined, unspecified, or extendable
by the implementation. For example, if this standard says that “the results are unspecified,” an
extension would be to specify the results.

If the correct behavior of a program depends on the results provided by an extension, only
implementations with the same extension will execute the program correctly. Note that such a
program might be non-conforming. Also, if this standard says that “an implementation may be
extended,” a conforming, but possibly non-portable, program can be written using an extension.

An implementation can have extensions, provided they do not alter the behavior of conforming
code and provided they are not explicitly prohibited by this standard.

The term “extension” refers only to extensions available upon startup. An implementation is free
to allow or prohibit redefinition of an extension.

The following list contains specific guidance to implementations concerning certain types of
extensions.

Extra return values

An implementation must return exactly the number of return values specified by this
standard unless the standard specifically indicates otherwise.

Unsolicited messages

No output can be produced by a function other than that specified in the standard or due
to the signaling of conditions detected by the function.

Unsolicited output, such as garbage collection notifications and autoload heralds, should
not go directly to the stream that is the value of a stream variable defined in this stan-
dard, but can go indirectly to terminal I/O by using a synonym stream to *terminal-io*.

Progress reports from such functions as load and compile are considered solicited, and
are not covered by this prohibition.

Implementation of macros and special forms

Macros and special operators defined in this standard must not be functions.

Introduction 1–31

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.7 Language Subsets
The language described in this standard contains no subsets, though subsets are not forbidden.

For a language to be considered a subset, it must have the property that any valid program in
that language has equivalent semantics and will run directly (with no extralingual pre-processing,
and no special compatibility packages) in any conforming implementation of the full language.

A language that conforms to this requirement shall be described as being a “subset of Common
Lisp as specified by ANSI 〈〈standard number〉〉.”

1–32 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.8 Deprecated Language Features
Deprecated language features are not expected to appear in future Common Lisp standards, but
are required to be implemented for conformance with this standard; see Section 1.5.1.1 (Required
Language Features).

Conforming programs can use deprecated features; however, it is considered good programming
style to avoid them. It is permissible for the compiler to produce style warnings about the use of
such features at compile time, but there should be no such warnings at program execution time.

1.8.1 Deprecated Functions
The functions in Figure 1–2 are deprecated.

assoc-if-not nsubst-if-not require
count-if-not nsubstitute-if-not set
delete-if-not position-if-not subst-if-not
find-if-not provide substitute-if-not
gentemp rassoc-if-not
member-if-not remove-if-not

Figure 1–2. Deprecated Functions

1.8.2 Deprecated Argument Conventions
The ability to pass a numeric argument to gensym has been deprecated.

The :test-not argument to the functions in Figure 1–3 are deprecated.

adjoin nset-difference search
assoc nset-exclusive-or set-difference
count nsublis set-exclusive-or
delete nsubst sublis
delete-duplicates nsubstitute subsetp
find nunion subst
intersection position substitute
member rassoc tree-equal
mismatch remove union
nintersection remove-duplicates

Figure 1–3. Functions with Deprecated :TEST-NOT Arguments

The use of the situation names compile, load, and eval in eval-when is deprecated.

Introduction 1–33

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.8.3 Deprecated Variables
The variable *modules* is deprecated.

1.8.4 Deprecated Reader Syntax
The #S reader macro forces keyword names into the KEYWORD package; see Section 2.4.8.13 (Sharp-
sign S). This feature is deprecated; in the future, keyword names will be taken in the package
they are read in, so symbols that are actually in the KEYWORD package should be used if that is
what is desired.

1–34 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.9 Symbols in the COMMON-LISP Package
The figures on the next twelve pages contain a complete enumeration of the 978 external symbols
in the COMMON-LISP package.

&allow-other-keys *print-miser-width*
&aux *print-pprint-dispatch*
&body *print-pretty*
&environment *print-radix*
&key *print-readably*
&optional *print-right-margin*
&rest *query-io*
&whole *random-state*
* *read-base*
** *read-default-float-format*
*** *read-eval*
break-on-signals *read-suppress*
compile-file-pathname *readtable*
compile-file-truename *standard-input*
compile-print *standard-output*
compile-verbose *terminal-io*
debug-io *trace-output*
debugger-hook +
default-pathname-defaults ++
error-output +++
features -
gensym-counter /
load-pathname //
load-print ///
load-truename /=
load-verbose 1+
macroexpand-hook 1-
modules <
package <=
print-array =
print-base >
print-case >=
print-circle abort
print-escape abs
print-gensym acons
print-length acos
print-level acosh
print-lines add-method

Figure 1–4. Symbols in the COMMON-LISP package (part one of twelve).

Introduction 1–35

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

adjoin atom boundp
adjust-array base-char break
adjustable-array-p base-string broadcast-stream
allocate-instance bignum broadcast-stream-streams
alpha-char-p bit built-in-class
alphanumericp bit-and butlast
and bit-andc1 byte
append bit-andc2 byte-position
apply bit-eqv byte-size
apropos bit-ior caaaar
apropos-list bit-nand caaadr
aref bit-nor caaar
arithmetic-error bit-not caadar
arithmetic-error-operands bit-orc1 caaddr
arithmetic-error-operation bit-orc2 caadr
array bit-vector caar
array-dimension bit-vector-p cadaar
array-dimension-limit bit-xor cadadr
array-dimensions block cadar
array-displacement boole caddar
array-element-type boole-1 cadddr
array-has-fill-pointer-p boole-2 caddr
array-in-bounds-p boole-and cadr
array-rank boole-andc1 call-arguments-limit
array-rank-limit boole-andc2 call-method
array-row-major-index boole-c1 call-next-method
array-total-size boole-c2 car
array-total-size-limit boole-clr case
arrayp boole-eqv catch
ash boole-ior ccase
asin boole-nand cdaaar
asinh boole-nor cdaadr
assert boole-orc1 cdaar
assoc boole-orc2 cdadar
assoc-if boole-set cdaddr
assoc-if-not boole-xor cdadr
atan boolean cdar
atanh both-case-p cddaar

Figure 1–5. Symbols in the COMMON-LISP package (part two of twelve).

1–36 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

cddadr clear-input copy-tree
cddar clear-output cos
cdddar close cosh
cddddr clrhash count
cdddr code-char count-if
cddr coerce count-if-not
cdr compilation-speed ctypecase
ceiling compile debug
cell-error compile-file decf
cell-error-name compile-file-pathname declaim
cerror compiled-function declaration
change-class compiled-function-p declare
char compiler-macro decode-float
char-code compiler-macro-function decode-universal-time
char-code-limit complement defclass
char-downcase complex defconstant
char-equal complexp defgeneric
char-greaterp compute-applicable-methods define-compiler-macro
char-int compute-restarts define-condition
char-lessp concatenate define-method-combination
char-name concatenated-stream define-modify-macro
char-not-equal concatenated-stream-streams define-setf-expander
char-not-greaterp cond define-symbol-macro
char-not-lessp condition defmacro
char-upcase conjugate defmethod
char/= cons defpackage
char< consp defparameter
char<= constantly defsetf
char= constantp defstruct
char> continue deftype
char>= control-error defun
character copy-alist defvar
characterp copy-list delete
check-type copy-pprint-dispatch delete-duplicates
cis copy-readtable delete-file
class copy-seq delete-if
class-name copy-structure delete-if-not
class-of copy-symbol delete-package

Figure 1–6. Symbols in the COMMON-LISP package (part three of twelve).

Introduction 1–37

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

denominator eq
deposit-field eql
describe equal
describe-object equalp
destructuring-bind error
digit-char etypecase
digit-char-p eval
directory eval-when
directory-namestring evenp
disassemble every
division-by-zero exp
do export
do* expt
do-all-symbols extended-char
do-external-symbols fboundp
do-symbols fceiling
documentation fdefinition
dolist ffloor
dotimes fifth
double-float file-author
double-float-epsilon file-error
double-float-negative-epsilon file-error-pathname
dpb file-length
dribble file-namestring
dynamic-extent file-position
ecase file-stream
echo-stream file-string-length
echo-stream-input-stream file-write-date
echo-stream-output-stream fill
ed fill-pointer
eighth find
elt find-all-symbols
encode-universal-time find-class
end-of-file find-if
endp find-if-not
enough-namestring find-method
ensure-directories-exist find-package
ensure-generic-function find-restart

Figure 1–7. Symbols in the COMMON-LISP package (part four of twelve).

1–38 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

find-symbol get-internal-run-time
finish-output get-macro-character
first get-output-stream-string
fixnum get-properties
flet get-setf-expansion
float get-universal-time
float-digits getf
float-precision gethash
float-radix go
float-sign graphic-char-p
floating-point-inexact handler-bind
floating-point-invalid-operation handler-case
floating-point-overflow hash-table
floating-point-underflow hash-table-count
floatp hash-table-p
floor hash-table-rehash-size
fmakunbound hash-table-rehash-threshold
force-output hash-table-size
format hash-table-test
formatter host-namestring
fourth identity
fresh-line if
fround ignorable
ftruncate ignore
ftype ignore-errors
funcall imagpart
function import
function-keywords in-package
function-lambda-expression incf
functionp initialize-instance
gcd inline
generic-function input-stream-p
gensym inspect
gentemp integer
get integer-decode-float
get-decoded-time integer-length
get-dispatch-macro-character integerp
get-internal-real-time interactive-stream-p

Figure 1–8. Symbols in the COMMON-LISP package (part five of twelve).

Introduction 1–39

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

intern lisp-implementation-type
internal-time-units-per-second lisp-implementation-version
intersection list
invalid-method-error list*
invoke-debugger list-all-packages
invoke-restart list-length
invoke-restart-interactively listen
isqrt listp
keyword load
keywordp load-logical-pathname-translations
labels load-time-value
lambda locally
lambda-list-keywords log
lambda-parameters-limit logand
last logandc1
lcm logandc2
ldb logbitp
ldb-test logcount
ldiff logeqv
least-negative-double-float logical-pathname
least-negative-long-float logical-pathname-translations
least-negative-normalized-double-float logior
least-negative-normalized-long-float lognand
least-negative-normalized-short-float lognor
least-negative-normalized-single-float lognot
least-negative-short-float logorc1
least-negative-single-float logorc2
least-positive-double-float logtest
least-positive-long-float logxor
least-positive-normalized-double-float long-float
least-positive-normalized-long-float long-float-epsilon
least-positive-normalized-short-float long-float-negative-epsilon
least-positive-normalized-single-float long-site-name
least-positive-short-float loop
least-positive-single-float loop-finish
length lower-case-p
let machine-instance
let* machine-type

Figure 1–9. Symbols in the COMMON-LISP package (part six of twelve).

1–40 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

machine-version mask-field
macro-function max
macroexpand member
macroexpand-1 member-if
macrolet member-if-not
make-array merge
make-broadcast-stream merge-pathnames
make-concatenated-stream method
make-condition method-combination
make-dispatch-macro-character method-combination-error
make-echo-stream method-qualifiers
make-hash-table min
make-instance minusp
make-instances-obsolete mismatch
make-list mod
make-load-form most-negative-double-float
make-load-form-saving-slots most-negative-fixnum
make-method most-negative-long-float
make-package most-negative-short-float
make-pathname most-negative-single-float
make-random-state most-positive-double-float
make-sequence most-positive-fixnum
make-string most-positive-long-float
make-string-input-stream most-positive-short-float
make-string-output-stream most-positive-single-float
make-symbol muffle-warning
make-synonym-stream multiple-value-bind
make-two-way-stream multiple-value-call
makunbound multiple-value-list
map multiple-value-prog1
map-into multiple-value-setq
mapc multiple-values-limit
mapcan name-char
mapcar namestring
mapcon nbutlast
maphash nconc
mapl next-method-p
maplist nil

Figure 1–10. Symbols in the COMMON-LISP package (part seven of twelve).

Introduction 1–41

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

nintersection package-error
ninth package-error-package
no-applicable-method package-name
no-next-method package-nicknames
not package-shadowing-symbols
notany package-use-list
notevery package-used-by-list
notinline packagep
nreconc pairlis
nreverse parse-error
nset-difference parse-integer
nset-exclusive-or parse-namestring
nstring-capitalize pathname
nstring-downcase pathname-device
nstring-upcase pathname-directory
nsublis pathname-host
nsubst pathname-match-p
nsubst-if pathname-name
nsubst-if-not pathname-type
nsubstitute pathname-version
nsubstitute-if pathnamep
nsubstitute-if-not peek-char
nth phase
nth-value pi
nthcdr plusp
null pop
number position
numberp position-if
numerator position-if-not
nunion pprint
oddp pprint-dispatch
open pprint-exit-if-list-exhausted
open-stream-p pprint-fill
optimize pprint-indent
or pprint-linear
otherwise pprint-logical-block
output-stream-p pprint-newline
package pprint-pop

Figure 1–11. Symbols in the COMMON-LISP package (part eight of twelve).

1–42 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

pprint-tab read-char
pprint-tabular read-char-no-hang
prin1 read-delimited-list
prin1-to-string read-from-string
princ read-line
princ-to-string read-preserving-whitespace
print read-sequence
print-not-readable reader-error
print-not-readable-object readtable
print-object readtable-case
print-unreadable-object readtablep
probe-file real
proclaim realp
prog realpart
prog* reduce
prog1 reinitialize-instance
prog2 rem
progn remf
program-error remhash
progv remove
provide remove-duplicates
psetf remove-if
psetq remove-if-not
push remove-method
pushnew remprop
quote rename-file
random rename-package
random-state replace
random-state-p require
rassoc rest
rassoc-if restart
rassoc-if-not restart-bind
ratio restart-case
rational restart-name
rationalize return
rationalp return-from
read revappend
read-byte reverse

Figure 1–12. Symbols in the COMMON-LISP package (part nine of twelve).

Introduction 1–43

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

room simple-bit-vector
rotatef simple-bit-vector-p
round simple-condition
row-major-aref simple-condition-format-arguments
rplaca simple-condition-format-control
rplacd simple-error
safety simple-string
satisfies simple-string-p
sbit simple-type-error
scale-float simple-vector
schar simple-vector-p
search simple-warning
second sin
sequence single-float
serious-condition single-float-epsilon
set single-float-negative-epsilon
set-difference sinh
set-dispatch-macro-character sixth
set-exclusive-or sleep
set-macro-character slot-boundp
set-pprint-dispatch slot-exists-p
set-syntax-from-char slot-makunbound
setf slot-missing
setq slot-unbound
seventh slot-value
shadow software-type
shadowing-import software-version
shared-initialize some
shiftf sort
short-float space
short-float-epsilon special
short-float-negative-epsilon special-operator-p
short-site-name speed
signal sqrt
signed-byte stable-sort
signum standard
simple-array standard-char
simple-base-string standard-char-p

Figure 1–13. Symbols in the COMMON-LISP package (part ten of twelve).

1–44 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

standard-class sublis
standard-generic-function subseq
standard-method subsetp
standard-object subst
step subst-if
storage-condition subst-if-not
store-value substitute
stream substitute-if
stream-element-type substitute-if-not
stream-error subtypep
stream-error-stream svref
stream-external-format sxhash
streamp symbol
string symbol-function
string-capitalize symbol-macrolet
string-downcase symbol-name
string-equal symbol-package
string-greaterp symbol-plist
string-left-trim symbol-value
string-lessp symbolp
string-not-equal synonym-stream
string-not-greaterp synonym-stream-symbol
string-not-lessp t
string-right-trim tagbody
string-stream tailp
string-trim tan
string-upcase tanh
string/= tenth
string< terpri
string<= the
string= third
string> throw
string>= time
stringp trace
structure translate-logical-pathname
structure-class translate-pathname
structure-object tree-equal
style-warning truename

Figure 1–14. Symbols in the COMMON-LISP package (part eleven of twelve).

Introduction 1–45

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

truncate values-list
two-way-stream variable
two-way-stream-input-stream vector
two-way-stream-output-stream vector-pop
type vector-push
type-error vector-push-extend
type-error-datum vectorp
type-error-expected-type warn
type-of warning
typecase when
typep wild-pathname-p
unbound-slot with-accessors
unbound-slot-instance with-compilation-unit
unbound-variable with-condition-restarts
undefined-function with-hash-table-iterator
unexport with-input-from-string
unintern with-open-file
union with-open-stream
unless with-output-to-string
unread-char with-package-iterator
unsigned-byte with-simple-restart
untrace with-slots
unuse-package with-standard-io-syntax
unwind-protect write
update-instance-for-different-class write-byte
update-instance-for-redefined-class write-char
upgraded-array-element-type write-line
upgraded-complex-part-type write-sequence
upper-case-p write-string
use-package write-to-string
use-value y-or-n-p
user-homedir-pathname yes-or-no-p
values zerop

Figure 1–15. Symbols in the COMMON-LISP package (part twelve of twelve).

1–46 Programming Language—Common Lisp

