Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Programming Language—Common Lisp

16. Strings

Strings i

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

ii Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

16.1 String Concepts

16.1.1 Implications of Strings Being Arrays

Since all strings are arrays, all rules which apply generally to arrays also apply to strings. See
Section 15.1 (Array Concepts).

For example, strings can have fill pointers, and strings are also subject to the rules of element
type upgrading that apply to arrays.

16.1.2 Subtypes of STRING

All functions that operate on strings will operate on subtypes of string as well.

However, the consequences are undefined if a character is inserted into a string for which the
element type of the string does not include that character.

Strings 16—1

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

string System Class

Class Precedence List:

string, vector, array, sequence, t

Description:

A string is a specialized vector whose elements are of type character or a subtype of type
character. When used as a type specifier for object creation, string means (vector character).

Compound Type Specifier Kind:
Abbreviating.

Compound Type Specifier Syntax:

(string [sizel)

Compound Type Specifier Arguments:

size—a non-negative fixnum, or the symbol *.

Compound Type Specifier Description:

This denotes the union of all types (array c (size)) for all subtypes c of character; that is, the
set of strings of size size.

See Also:
Section 16.1 (String Concepts), Section 2.4.5 (Double-Quote), Section 22.1.3.4 (Printing Strings)

base-string Type

Supertypes:

base-string, string, vector, array, sequence, t

Description:

The type base-string is equivalent to (vector base-char). The base string representation is the
most efficient string representation that can hold an arbitrary sequence of standard characters.

Compound Type Specifier Kind:
Abbreviating.

Compound Type Specifier Syntax:

(base-string [size])

16—2 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Compound Type Specifier Arguments:

size—a non-negative fixnum, or the symbol *.

Compound Type Specifier Description:

This is equivalent to the type (vector base-char size); that is, the set of base strings of size size.

simple-string Type

Supertypes:

simple-string, string, vector, simple-array, array, sequence, t

Description:

A simple string is a specialized one-dimensional simple array whose elements are of type
character or a subtype of type character. When used as a type specifier for object creation,
simple-string means (simple-array character (size)).

Compound Type Specifier Kind:
Abbreviating.

Compound Type Specifier Syntax:

(simple-string [size])

Compound Type Specifier Arguments:

size—a non-negative firnum, or the symbol *.

Compound Type Specifier Description:

This denotes the union of all types (simple-array c¢ (size)) for all subtypes c of character; that
is, the set of simple strings of size size.

Strings 16-3

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

simple-base-string Type

Supertypes:

simple-base-string, base-string, simple-string, string, vector, simple-array, array, sequence, t

Description:
The type simple-base-string is equivalent to (simple-array base-char (*)).

Compound Type Specifier Kind:
Abbreviating.

Compound Type Specifier Syntax:

(simple-base-string [size])

Compound Type Specifier Arguments:

size—a non-negative fixnum, or the symbol *.

Compound Type Specifier Description:

This is equivalent to the type (simple-array base-char (size)); that is, the set of simple base
strings of size size.

simple-string-p Function

Syntax:

simple-string-p object — generalized-boolean

Arguments and Values:
object—an object.

generalized-boolean—a generalized boolean.

Description:
Returns true if object is of type simple-string; otherwise, returns false.

Examples:
(simple-string-p "aaaaaa") — {rue
(simple-string-p (make-array 6

:element-type ’character
:fill-pointer t)) — false

16—4 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Notes:

(simple-string-p object) = (typep object ’simple-string)

char, schar Accessor

Syntax:

char string index — character
schar string index — character

(setf (char string index) new-character)
(setf (schar string index) new-character)

Arguments and Values:
string—for char, a string; for schar, a simple string.

index—a wvalid array index for the string.
character, new-character—a character.

Description:
char and schar access the element of string specified by index.

char ignores fill pointers when accessing elements.

Examples:

(setq my-simple-string (make-string 6 :initial-element #\A)) — "AAAAAA"
(schar my-simple-string 4) — #\A
(setf (schar my-simple-string 4) #\B) — #\B
my-simple-string — "AAAABA"
(setq my-filled-string
(make-array 6 :element-type ’character
:fill-pointer 5
:initial-contents my-simple-string))
— "AAAAB"
(char my-filled-string 4) — #\B
(char my-filled-string 5) — #\A
(setf (char my-filled-string 3) #\C) — #\C
(setf (char my-filled-string 5) #\D) — #\D
(setf (fill-pointer my-filled-string) 6) — 6
my-filled-string — "AAACBD"

Strings

16-5

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

See Also:
aref, elt, Section 3.2.1 (Compiler Terminology)
Notes:
(char s j) = (aref (the string s) j)
strlng Function
Syntax:

string x — string

Arguments and Values:
x—a string, a symbol, or a character.

string—a string.

Description:
Returns a string described by x; specifically:

o If x is a string, it is returned.
o If x is a symbol, its name is returned.
e If x is a character, then a string containing that one character is returned.

e string might perform additional, implementation-defined conversions.
Examples:

(string "already a string") — "already a string"
(string ’elm) — "ELM"
(string #\c) — "c"

Exceptional Situations:

In the case where a conversion is defined neither by this specification nor by the implementation,
an error of type type-error is signaled.

See Also:

coerce, string (type).

Notes:

coerce can be used to convert a sequence of characters to a string.

16—6 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

prinl-to-string, princ-to-string, write-to-string, or format (with a first argument of nil) can be
used to get a string representation of a number or any other object.

string-upcase, string-downcase, string-capitalize,
nstring-upcase, nstring-downcase, nstring-
capitalize Function

Syntax:

string-upcase string &key start end — cased-string
string-downcase string &key start end — cased-string
string-capitalize string &key start end — cased-string

nstring-upcase string &key start end — string
nstring-downcase string &key start end — string
nstring-capitalize string &key start end — string

Arguments and Values:

string—a string designator. For nstring-upcase, nstring-downcase, and nstring-capitalize, the
string designator must be a string.

start, end—bounding index designators of string. The defaults for start and end are 0 and nil,
respectively.

cased-string—a string.

Description:
string-upcase, string-downcase, string-capitalize, nstring-upcase, nstring-downcase,
nstring-capitalize change the case of the subsequence of string bounded by start and end as
follows:

string-upcase

string-upcase returns a string just like string with all lowercase characters replaced by
the corresponding uppercase characters. More precisely, each character of the result string
is produced by applying the function char-upcase to the corresponding character of
string.

string-downcase

string-downcase is like string-upcase except that all uppercase characters are replaced
by the corresponding lowercase characters (using char-downcase).

Strings 16-7

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

string-upcase, string-downcase, string-capitalize,

string-capitalize

string-capitalize produces a copy of string such that, for every word in the copy, the first
character of the “word,” if it has case, is uppercase and any other characters with case in
the word are lowercase. For the purposes of string-capitalize, a “word” is defined to be
a consecutive subsequence consisting of alphanumeric characters, delimited at each end
either by a non-alphanumeric character or by an end of the string.

nstring-upcase, nstring-downcase, nstring-capitalize

nstring-upcase, nstring-downcase, and nstring-capitalize are identical to
string-upcase, string-downcase, and string-capitalize respectively except that they
modify string.

For string-upcase, string-downcase, and string-capitalize, string is not modified. However, if
no characters in string require conversion, the result may be either string or a copy of it, at the
implementation’s discretion.

Examples:

(string-upcase "abcde") — "ABCDE"

(string-upcase "Dr. Livingston, I presume?")
— "DR. LIVINGSTON, I PRESUME?"

(string-upcase "Dr. Livingston, I presume?" :start 6 :end 10)
— "Dr. LiVINGston, I presume?"

(string-downcase "Dr. Livingston, I presume?")
— "dr. livingston, i presume?"

(string-capitalize "elm 13c arthur;fig don’t") — "Elm 13c Arthur;Fig Don’T"

(string-capitalize " hello ") — " Hello "

(string-capitalize "occlUDeD cASEmenTs FOreSTAll iNADVertent DEFenestraTION")
— "Occluded Casements Forestall Inadvertent Defenestration"

(string-capitalize ’kludgy-hash-search) — "Kludgy-Hash-Search"

(string-capitalize "DON’T!") — "Don’T!" ;not "Don’t!"

(string-capitalize "pipe 13a, fool6c") — "Pipe 13a, Fool6c"

(setq str (copy-seq "0123ABCD890a")) — "0123ABCD890a"
(nstring-downcase str :start 5 :end 7) — "0123AbcD890a"
str — "0123AbcD890a"

Side Effects:

nstring-upcase, nstring-downcase, and nstring-capitalize modify string as appropriate rather
than constructing a new string.

See Also:

char-upcase, char-downcase

16-8 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Notes:
The result is always of the same length as string.
string-trim, string-left-trim, string-right-trim Func-
tion
Syntax:
string-trim character-bag string — trimmed-string

string-left-trim character-bag string ~ — trimmed-string
string-right-trim character-bag string — trimmed-string

Arguments and Values:
character-bag—a sequence containing characters.

string—a string designator.
trimmed-string—a string.

Description:

string-trim returns a substring of string, with all characters in character-bag stripped off the

beginning and end. string-left-trim is similar but strips characters off only the beginning;

string-right-trim strips off only the end.

If no characters need to be trimmed from the string, then either string itself or a copy of it may

be returned, at the discretion of the implementation.
All of these functions observe the fill pointer.
Examples:

(string-trim "abc" "abcaakaaakabcaaa") — "kaaak"
(string-trim ’ (#\Space #\Tab #\Newline) " garbanzo beans
") — "garbanzo beans"
(string-trim " (*x)" " (*three (silly) words*) ")
— "three (silly) words"

(string-left-trim "abc" "labcabcabc") — "labcabcabc"
(string-left-trim " (*x)" " (*three (silly) words*) ")
— "three (silly) words*) "

(string-right-trim " (*)" " (*three (silly) wordsx*) ")
— " (xthree (silly) words"

Strings

16-9

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Affected By:

The implementation.

string=, string/=, string<, string>, string<=,
string>—=, string-equal, string-not-equal, string-
lessp, string-greaterp, string-not-greaterp, string-
not-lessp Function

Syntax:
string= stringl string2 &key startl endl start? end2 — generalized-boolean

string/= stringl string2 &key startl endl start2 end2 — mismatch-index
string< stringl string2 &key startl endl start2 end2 — mismatch-index
string> stringl string2 &key startl endl start2 end2 — mismatch-index
string<= stringl string2 &key startl endl start2 end2 — mismatch-index
string>= stringl string2 &key startl endl start2 end2 — mismatch-index

string-equal stringl string2 &key startl endl start2 end?2 — generalized-boolean

string-not-equal stringl string2 &key startl endl start2 end?2 — mismatch-index
string-lessp stringl string2 &key startl endl start2 end2 — mismatch-index
string-greaterp stringl string2 &key startl endl start2 end2 — mismatch-index
string-not-greaterp stringl string2 &key startl endl start?2 end2 — mismatch-index
string-not-lessp stringl string2 &key startl endl start2 end2 — mismatch-index

Arguments and Values:
stringl—a string designator.

string2—a string designator.

startl, endl—bounding index designators of stringl. The defaults for start and end are 0 and nil,
respectively.

start2, end2—bounding index designators of string2. The defaults for start and end are 0 and nil,
respectively.

generalized-boolean—a generalized boolean.

mismatch-index—a bounding index of stringl, or nil.

Description:

These functions perform lexicographic comparisons on stringl and string2. string= and
string-equal are called equality functions; the others are called inequality functions. The compar-

16-10 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

string=, string/=, string<, string>, string<=, ...

ison operations these functions perform are restricted to the subsequence of stringl bounded by
start! and endl and to the subsequence of string? bounded by start? and end2.

A string a is equal to a string b if it contains the same number of characters, and the correspond-
ing characters are the same under char= or char-equal, as appropriate.

A string a is less than a string b if in the first position in which they differ the character of a is
less than the corresponding character of b according to char< or char-lessp as appropriate, or if
string a is a proper prefix of string b (of shorter length and matching in all the characters of a).

The equality functions return a generalized boolean that is true if the strings are equal, or false
otherwise.

The inequality functions return a mismatch-index that is true if the strings are not equal, or
false otherwise. When the mismatch-index is true, it is an integer representing the first character
position at which the two substrings differ, as an offset from the beginning of stringl.

The comparison has one of the following results:
string=

string= is true if the supplied substrings are of the same length and contain the same
characters in corresponding positions; otherwise it is false.

string/=

string/= is true if the supplied substrings are different; otherwise it is false.

string-equal

string-equal is just like string= except that differences in case are ignored; two charac-
ters are considered to be the same if char-equal is true of them.

string<

string< is true if substringl is less than substring2; otherwise it is false.
string>

string> is true if substringl is greater than substring2; otherwise it is false.

string-lessp, string-greaterp

string-lessp and string-greaterp are exactly like string< and string>, respectively,
except that distinctions between uppercase and lowercase letters are ignored. It is as if
char-lessp were used instead of char< for comparing characters.

string<=

string<= is true if substringl is less than or equal to substring2; otherwise it is false.

Strings 16-11

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

string>=

string>= is true if substringl is greater than or equal to substring2; otherwise it is false.

string-not-greaterp, string-not-lessp

string-not-greaterp and string-not-lessp are exactly like string<= and string>=,
respectively, except that distinctions between uppercase and lowercase letters are ignored.
It is as if char-lessp were used instead of char< for comparing characters.

Examples:

(string=
(string=
(string=
(string=

"foo" "foo") — true
"foo" "Foo") — false
"foo" "bar") — false
"together" "frog" :startl 1 :endl 3 :start2 2) — {rue

(string-equal "foo" "Foo") — {true

(string=
(string<

"abcd" "01234abcd9012" :start2 5 :end2 9) — true
"aaaa" "aaab") — 3

(string>= "aaaaa" "aaaa") — 4
(string-not-greaterp "Abcde" "abcdE") — 5
(string-lessp "012AAAA789" "Olaaab6" :startl 3 :endl 7

:start2 2 :end2 6) — 6

(string-not-equal "AAAA" "aaaA") — false

See Also:

char=

Notes:

equal calls string= if applied to two strings.

stringp Function

Syntax:

stringp object — generalized-boolean

Arguments and Values:
object—an object.

generalized-boolean—a generalized boolean.

Description:

Returns true if object is of type string; otherwise, returns false.

16-12 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:

(stringp "aaaaaa") — tlrue
(stringp #\a) — false

See Also:
typep, string (type)

Notes:

(stringp object) = (typep object ’string)

make-string Function

Syntax:

make-string size &key initial-element element-type — string

Arguments and Values:
size—a wvalid array dimension.

initial-element—a character. The default is implementation-dependent.
element-type—a type specifier. The default is character.
string—a simple string.

Description:

make-string returns a simple string of length size whose elements have been initialized to initial-
element.

The element-type names the type of the elements of the string; a string is constructed of the most
specialized type that can accommodate elements of the given type.

Examples:

(make-string 10 :initial-element #\5) — "5555555555"
(length (make-string 10)) — 10

Affected By:

The implementation.

Strings 16—13

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

16-14 Programming Language—Common Lisp

