Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Programming Language—Common Lisp

15. Arrays

Arrays i



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

ii Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

15.1 Array Concepts

15.1.1 Array Elements

An array contains a set of objects called elements that can be referenced individually according to
a rectilinear coordinate system.

15.1.1.1 Array Indices

An array element is referred to by a (possibly empty) series of indices. The length of the series
must equal the rank of the array. Each index must be a non-negative fiznum less than the
corresponding array dimension. Array indexing is zero-origin.

15.1.1.2 Array Dimensions

An axis of an array is called a dimension.

Each dimension is a non-negative fiznum; if any dimension of an array is zero, the array has no
elements. It is permissible for a dimension to be zero, in which case the array has no elements,
and any attempt to access an element is an error. However, other properties of the array, such as
the dimensions themselves, may be used.

15.1.1.2.1 Implementation Limits on Individual Array Dimensions

An implementation may impose a limit on dimensions of an array, but there is a minimum
requirement on that limit. See the variable array-dimension-limit.

15.1.1.3 Array Rank

An array can have any number of dimensions (including zero). The number of dimensions is
called the rank.

If the rank of an array is zero then the array is said to have no dimensions, and the product of
the dimensions (see array-total-size) is then 1; a zero-rank array therefore has a single element.

15.1.1.3.1 Vectors

An array of rank one (i.e., a one-dimensional array) is called a vector.

Arrays 15-1



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

15.1.1.3.1.1 Fill Pointers

A fill pointer is a non-negative integer no larger than the total number of elements in a vector.
Not all vectors have fill pointers. See the functions make-array and adjust-array.

An element of a vector is said to be active if it has an index that is greater than or equal to
zero, but less than the fill pointer (if any). For an array that has no fill pointer, all elements are
considered active.

Only vectors may have fill pointers; multidimensional arrays may not. A multidimensional array
that is displaced to a vector that has a fill pointer can be created.

15.1.1.3.2 Multidimensional Arrays

15.1.1.3.2.1 Storage Layout for Multidimensional Arrays

Multidimensional arrays store their components in row-major order; that is, internally a mul-
tidimensional array is stored as a one-dimensional array, with the multidimensional index sets
ordered lexicographically, last index varying fastest.

15.1.1.3.2.2 Implementation Limits on Array Rank

15.1.2

An implementation may impose a limit on the rank of an array, but there is a minimum require-
ment on that limit. See the variable array-rank-limit.

Specialized Arrays

An array can be a general array, meaning each element may be any object, or it may be a
specialized array, meaning that each element must be of a restricted type.

The phrasing “an array specialized to type ((type)” is sometimes used to emphasize the element
type of an array. This phrasing is tolerated even when the (type)) is t, even though an array
specialized to type t is a general array, not a specialized array.

Figure 15-1 lists some defined names that are applicable to array creation, access, and informa-
tion operations.

adjust-array array-has-fill-pointer-p make-array
adjustable-array-p array-in-bounds-p svref

aref array-rank upgraded-array-element-type
array-dimension array-rank-limit upgraded-complex-part-type
array-dimension-limit array-row-major-index vector

array-dimensions array-total-size vector-pop
array-displacement array-total-size-limit vector-push
array-element-type fill-pointer vector-push-extend

Figure 15—1. General Purpose Array-Related Defined Names

15-2 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

15.1.2.1 Array Upgrading

The upgraded array element type of a type T} is a type Ty that is a supertype of T} and that
is used instead of 77 whenever 77 is used as an array element type for object creation or type
discrimination.

During creation of an array, the element type that was requested is called the expressed array
element type. The upgraded array element type of the expressed array element type becomes the
actual array element type of the array that is created.

Type upgrading implies a movement upwards in the type hierarchy lattice. A type is always a
subtype of its upgraded array element type. Also, if a type T, is a subtype of another type T}, then
the upgraded array element type of T, must be a subtype of the upgraded array element type of T,,.
Two disjoint types can be upgraded to the same type.

The upgraded array element type To of a type T3 is a function only of T} itself; that is, it is inde-
pendent of any other property of the array for which T will be used, such as rank, adjustability,
fill pointers, or displacement. The function upgraded-array-element-type can be used by con-
forming programs to predict how the implementation will upgrade a given type.

15.1.2.2 Required Kinds of Specialized Arrays

Vectors whose elements are restricted to type character or a subtype of character are called
strings. Strings are of type string. Figure 15-2 lists some defined names related to strings.

Strings are specialized arrays and might logically have been included in this chapter. However,
for purposes of readability most information about strings does not appear in this chapter; see
instead Chapter 16 (Strings).

char string-equal string-upcase
make-string string-greaterp string/=
nstring-capitalize string-left-trim string<
nstring-downcase string-lessp string<=
nstring-upcase string-not-equal string=

schar string-not-greaterp string>

string string-not-lessp string>=
string-capitalize string-right-trim

string-downcase string-trim

Figure 15—-2. Operators that Manipulate Strings

Vectors whose elements are restricted to type bit are called bit vectors. Bit vectors are of type
bit-vector. Figure 15-3 lists some defined names for operations on bit arrays.

Arrays 153



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

bit
bit-and
bit-andcl
bit-andc2
bit-eqv

bit-ior
bit-nand
bit-nor
bit-not
bit-orcl

bit-orc2
bit-xor
sbit

Figure 15-3. Operators that Manipulate Bit Arrays

15-4 Programming Language—Common Lisp




Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

array System Class

Class Precedence List:

array, t

Description:
An array contains objects arranged according to a Cartesian coordinate system. An array pro-
vides mappings from a set of fitnums {ig,41,...,4r—1} to corresponding elements of the array,

where 0 < i; < dj, 7 is the rank of the array, and d; is the size of dimension j of the array.

When an array is created, the program requesting its creation may declare that all elements are
of a particular type, called the expressed array element type. The implementation is permitted to
upgrade this type in order to produce the actual array element type, which is the element type for
the array is actually specialized. See the function upgraded-array-element-type.

Compound Type Specifier Kind:

Specializing.

Compound Type Specifier Syntax:

(array [{element-type | *} [dimension-spec]1)

dimension-spec::=rank | * | ({dimension | *}*)

Compound Type Specifier Arguments:

dimension—a valid array dimension.
element-type—a type specifier.
rank—a non-negative fiznum.

Compound Type Specifier Description:

This denotes the set of arrays whose element type, rank, and dimensions match any given
element-type, rank, and dimensions. Specifically:

If element-type is the symbol *, arrays are not excluded on the basis of their element type. Oth-
erwise, only those arrays are included whose actual array element type is the result of upgrading
element-type; see Section 15.1.2.1 (Array Upgrading).

If the dimension-spec is a rank, the set includes only those arrays having that rank. If the
dimension-spec is a list of dimensions, the set includes only those arrays having a rank given

by the length of the dimensions, and having the indicated dimensions; in this case, * matches
any value for the corresponding dimension. If the dimension-spec is the symbol *, the set is not
restricted on the basis of rank or dimension.

Arrays 15-5



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

See Also:

*print-array*, aref, make-array, vector, Section 2.4.8.12 (Sharpsign A), Section 22.1.3.8 (Print-
ing Other Arrays)

Notes:

Note that the type (array t) is a proper subtype of the type (array *). The reason is that the
type (array t) is the set of arrays that can hold any object (the elements are of type t, which
includes all objects). On the other hand, the type (array *) is the set of all arrays whatsoever,
including for example arrays that can hold only characters. The type (array character) is not a
subtype of the type (array t); the two sets are disjoint because the type (array character) is not
the set of all arrays that can hold characters, but rather the set of arrays that are specialized to
hold precisely characters and no other objects.

simple-array Type

Supertypes:

simple-array, array, t

Description:

The type of an array that is not displaced to another array, has no fill pointer, and is not ex-
pressly adjustable is a subtype of type simple-array. The concept of a simple array exists to
allow the implementation to use a specialized representation and to allow the user to declare that
certain values will always be simple arrays.

The types simple-vector, simple-string, and simple-bit-vector are disjoint subtypes of
type simple-array, for they respectively mean (simple-array t (*)), the union of all
(simple-array c¢ (*)) for any c¢ being a subtype of type character, and (simple-array bit (*)).

Compound Type Specifier Kind:

Specializing.

Compound Type Specifier Syntax:

(simple-array [{element-type | *} [dimension-spec|])

dimension-spec::=rank | * | ({dimension | *}*)

Compound Type Specifier Arguments:

dimension—a valid array dimension.
element-type—a type specifier.

rank—a non-negative fiznum.

15-6 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Compound Type Specifier Description:
This compound type specifier is treated exactly as the corresponding compound type specifier for
type array would be treated, except that the set is further constrained to include only simple
arrays.

Notes:

It is implementation-dependent whether displaced arrays, vectors with fill pointers, or arrays that
are actually adjustable are simple arrays.

(simple-array *) refers to all simple arrays regardless of element type, (simple-array type-
specifier) refers only to those simple arrays that can result from giving type-specifier as the
:element-type argument to make-array.

vector System Class

Class Precedence List:

vector, array, sequence, t

Description:
Any one-dimensional array is a vector.

The type vector is a subtype of type array; for all types x, (vector x) is the same as (array x
(*)).

The type (vector t), the type string, and the type bit-vector are disjoint subtypes of type vector.

Compound Type Specifier Kind:

Specializing.

Compound Type Specifier Syntax:
(vector [{element-type | *} [{size | *}]1)

Compound Type Specifier Arguments:

size—a non-negative fiznum.
element-type—a type specifier.

Compound Type Specifier Description:

This denotes the set of specialized vectors whose element type and dimension match the specified
values. Specifically:

Arrays 15-7



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

If element-type is the symbol *, vectors are not excluded on the basis of their element type. Oth-
erwise, only those vectors are included whose actual array element type is the result of upgrading
element-type; see Section 15.1.2.1 (Array Upgrading).

If a size is specified, the set includes only those vectors whose only dimension is size. If the
symbol * is specified instead of a size, the set is not restricted on the basis of dimension.

See Also:

Section 15.1.2.2 (Required Kinds of Specialized Arrays), Section 2.4.8.3 (Sharpsign Left-
Parenthesis), Section 22.1.3.7 (Printing Other Vectors), Section 2.4.8.12 (Sharpsign A)

Notes:
The type (vector e s) is equivalent to the type (array e (s)).

The type (vector bit) has the name bit-vector.
The union of all types (vector C'), where C is any subtype of character, has the name string.

(vector *) refers to all vectors regardless of element type, (vector type-specifier) refers only
to those vectors that can result from giving type-specifier as the :element-type argument to
make-array.

simple-vector Type

Supertypes:

simple-vector, vector, simple-array, array, sequence, t

Description:

The type of a vector that is not displaced to another array, has no fill pointer, is not expressly
adjustable and is able to hold elements of any type is a subtype of type simple-vector.

The type simple-vector is a subtype of type vector, and is a subtype of type (vector t).

Compound Type Specifier Kind:

Specializing.

Compound Type Specifier Syntax:

(simple-vector [sizel)

Compound Type Specifier Arguments:

size—a non-negative fixnum, or the symbol *. The default is the symbol *.

15-8 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Compound Type Specifier Description:

This is the same as (simple-array t (size)).

bit-vector System Class

Class Precedence List:

bit-vector, vector, array, sequence, t

Description:
A bit vector is a vector the element type of which is bit.

The type bit-vector is a subtype of type vector, for bit-vector means (vector bit).

Compound Type Specifier Kind:
Abbreviating.

Compound Type Specifier Syntax:

(bit-vector [sizel)

Compound Type Specifier Arguments:

size—a non-negative fixnum, or the symbol *.

Compound Type Specifier Description:

This denotes the same type as the type (array bit (size)); that is, the set of bit vectors of size
size.

See Also:

Section 2.4.8.4 (Sharpsign Asterisk), Section 22.1.3.6 (Printing Bit Vectors), Section 15.1.2.2
(Required Kinds of Specialized Arrays)

Arrays 15-9



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

simple-bit-vector Type

Supertypes:

simple-bit-vector, bit-vector, vector, simple-array, array, sequence, t

Description:

The type of a bit vector that is not displaced to another array, has no fill pointer, and is not
expressly adjustable is a subtype of type simple-bit-vector.

Compound Type Specifier Kind:
Abbreviating.

Compound Type Specifier Syntax:

(simple-bit-vector [sizel)

Compound Type Specifier Arguments:

size—a non-negative fiznum, or the symbol *. The default is the symbol *.

Compound Type Specifier Description:

This denotes the same type as the type (simple-array bit (size)); that is, the set of simple bit
vectors of size size.

make- array Function

Syntax:

make-array dimensions &key element-type
initial-element
initial-contents
adjustable
fill-pointer
displaced-to
displaced-index-offset

— new-array

Arguments and Values:
dimensions—a, designator for a list of valid array dimensions.

element-type—a type specifier. The default is t.

initial-element—an object.

15-10 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

make-array

initial-contents—an object.
adjustable—a generalized boolean. The default is nil.
fill-pointer—a wvalid fill pointer for the array to be created, or t or nil. The default is nil.

displaced-to—an array or nil. The default is nil. This option must not be supplied if either
initial-element or initial-contents is supplied.

displaced-index-offset—a valid array row-major index for displaced-to. The default is 0. This
option must not be supplied unless a non-nil displaced-to is supplied.

new-array—an array.

Description:
Creates and returns an array constructed of the most specialized type that can accommodate
elements of type given by element-type. If dimensions is nil then a zero-dimensional array is
created.

Dimensions represents the dimensionality of the new array.

element-type indicates the type of the elements intended to be stored in the new-array. The new-
array can actually store any objects of the type which results from upgrading element-type; see
Section 15.1.2.1 (Array Upgrading).

If initial-element is supplied, it is used to initialize each element of new-array. If initial-element

is supplied, it must be of the type given by element-type. initial-element cannot be supplied if
either the :initial-contents option is supplied or displaced-to is non-nil. If initial-element is not
supplied, the consequences of later reading an uninitialized element of new-array are undefined
unless either initial-contents is supplied or displaced-to is non-nil.

initial-contents is used to initialize the contents of array. For example:

(make-array ’(4 2 3) :initial-contents
’(((abc) (123))
(def) (312))
((gh i) (231))
(G k1) (000N

initial-contents is composed of a nested structure of sequences. The numbers of levels in the struc-
ture must equal the rank of array. Each leaf of the nested structure must be of the type given by
element-type. If array is zero-dimensional, then initial-contents specifies the single element. Other-
wise, initial-contents must be a sequence whose length is equal to the first dimension; each element
must be a nested structure for an array whose dimensions are the remaining dimensions, and so
on. Initial-contents cannot be supplied if either initial-element is supplied or displaced-to is non-nil.
If initial-contents is not supplied, the consequences of later reading an uninitialized element of
new-array are undefined unless either initial-element is supplied or displaced-to is non-nil.

If adjustable is non-nil, the array is expressly adjustable (and so actually adjustable); otherwise,

Arrays 15-11



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

make-array

the array is not expressly adjustable (and it is implementation-dependent whether the array is
actually adjustable).

If fill-pointer is mon-nil, the array must be one-dimensional; that is, the array must be a vector.
If fill-pointer is t, the length of the vector is used to initialize the fill pointer. If fill-pointer is an
integer, it becomes the initial fill pointer for the vector.

If displaced-to is mon-nil, make-array will create a displaced array and displaced-to is the target of
that displaced array. In that case, the consequences are undefined if the actual array element type
of displaced-to is not type equivalent to the actual array element type of the array being created.
If displaced-to is nil, the array is not a displaced array.

The displaced-index-offset is made to be the index offset of the array. When an array A is given
as the :displaced-to argument to make-array when creating array B, then array B is said to be
displaced to array A. The total number of elements in an array, called the total size of the array,
is calculated as the product of all the dimensions. It is required that the total size of A be no
smaller than the sum of the total size of B plus the offset n supplied by the displaced-index-offset.
The effect of displacing is that array B does not have any elements of its own, but instead maps
accesses to itself into accesses to array A. The mapping treats both arrays as if they were one-
dimensional by taking the elements in row-major order, and then maps an access to element k of
array B to an access to element k+n of array A.

If make-array is called with adjustable, fill-pointer, and displaced-to each nil, then the result is a
simple array. If make-array is called with one or more of adjustable, fill-pointer, or displaced-to
being true, whether the resulting array is a simple array is implementation-dependent.

When an array A is given as the :displaced-to argument to make-array when creating array B,
then array B is said to be displaced to array A. The total number of elements in an array, called
the total size of the array, is calculated as the product of all the dimensions. The consequences
are unspecified if the total size of A is smaller than the sum of the total size of B plus the offset

n supplied by the displaced-index-offset. The effect of displacing is that array B does not have any
elements of its own, but instead maps accesses to itself into accesses to array A. The mapping
treats both arrays as if they were one-dimensional by taking the elements in row-major order, and
then maps an access to element k of array B to an access to element k+n of array A.

Examples:

(make-array 5) ;; Creates a one-dimensional array of five elements.
(make-array ’(3 4) :element-type ’(mod 16)) ;; Creates a

; ;two-dimensional array, 3 by 4, with four-bit elements.
(make-array 5 :element-type ’single-float) ;; Creates an array of single-floats.

(make-array nil :initial-element nil) — #OANIL
(make-array 4 :initial-element nil) — #(NIL NIL NIL NIL)
(make-array ’(2 4)

:element-type ’(unsigned-byte 2)

15-12 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

make-array

rinitial-contents ’((0 1 2 3) (3 2 1 0)))
— #24((0 1 2 3) (321 0))
(make-array 6
:element-type ’character
rinitial-element #\a
:fill-pointer 3) — "aaa"

The following is an example of making a displaced array.

(setq a (make-array ’(4 3)))
— #<ARRAY 4x3 simple 32546632>
(dotimes (i 4)
(dotimes (j 3)
(setf (aref a i j) (list i ’x j ’= (* i j)))))
— NIL
(setq b (make-array 8 :displaced-to a
:displaced-index-offset 2))
— #<ARRAY 8 indirect 32550757>
(dotimes (i 8)
(print (list i (aref b i))))

> (0 (0 X 2=0))
> (1 (1 X0=0))
> (2 (1 X1=1))
> (3 (1 X2=2)
> (4 (2 X0=0))
> (5 (2X1=2))
> (6 (2 X2=4))
> (7 (3X0=0))
— NIL

The last example depends on the fact that arrays are, in effect, stored in row-major order.

(setq al (make-array 50))
— #<ARRAY 50 simple 32562043>

(setq bl (make-array 20 :displaced-to al :displaced-index-offset 10))
— #<ARRAY 20 indirect 32563346>

(length b1) — 20

(setq a2 (make-array 50 :fill-pointer 10))
— #<ARRAY 50 fill-pointer 10 46100216>

(setq b2 (make-array 20 :displaced-to a2 :displaced-index-offset 10))
— #<ARRAY 20 indirect 46104010>

(length a2) — 10

(length b2) — 20

Arrays 15-13



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(setq a3 (make-array 50 :fill-pointer 10))
— #<ARRAY 50 fill-pointer 10 46105663>
(setq b3 (make-array 20 :displaced-to a3 :displaced-index-offset 10
:fill-pointer 5))
— #<ARRAY 20 indirect, fill-pointer 5 46107432>
(length a3) — 10
(length b3) — 5

See Also:

adjustable-array-p, aref, arrayp, array-element-type, array-rank-limit, array-dimension-limit,
fill-pointer, upgraded-array-element-type

Notes:
There is no specified way to create an array for which adjustable-array-p definitely returns false.
There is no specified way to create an array that is not a simple array.
adjust-array Function
Syntax:

adjust-array array new-dimensions &key element-type
initial-element
initial-contents
fill-pointer
displaced-to
displaced-index-offset

— adjusted-array

Arguments and Values:
array—an array.

new-dimensions—a valid array dimension or a list of valid array dimensions.
element-type—a type specifier.

initial-element—an object. Initial-element must not be supplied if either initial-contents or
displaced-to is supplied.

initial-contents—an object. If array has rank greater than zero, then initial-contents is composed
of nested sequences, the depth of which must equal the rank of array. Otherwise, array is zero-
dimensional and initial-contents supplies the single element. initial-contents must not be supplied if
either initial-element or displaced-to is given.

fill-pointer—a wvalid fill pointer for the array to be created, or t, or nil. The default is nil.

15-14 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

adjust-array

displaced-to—an array or nil. initial-elements and initial-contents must not be supplied if displaced-
to is supplied.

displaced-index-offset—an object of type (fixnum 0 n) where n is (array-total-size displaced-to).
displaced-index-offset may be supplied only if displaced-to is supplied.

adjusted-array—an array.

Description:
adjust-array changes the dimensions or elements of array. The result is an array of the same type
and rank as array, that is either the modified array, or a newly created array to which array can
be displaced, and that has the given new-dimensions.

New-dimensions specify the size of each dimension of array.

Element-type specifies the type of the elements of the resulting array. If element-type is supplied,
the consequences are unspecified if the upgraded array element type of element-type is not the
same as the actual array element type of array.

If initial-contents is supplied, it is treated as for make-array. In this case none of the original
contents of array appears in the resulting array.

If fill-pointer is an integer, it becomes the fill pointer for the resulting array. If fill-pointer is the
symbol t, it indicates that the size of the resulting array should be used as the fill pointer. If
fill-pointer is nil, it indicates that the fill pointer should be left as it is.

If displaced-to non-nil, a displaced array is created. The resulting array shares its contents

with the array given by displaced-to. The resulting array cannot contain more elements than
the array it is displaced to. If displaced-to is not supplied or nil, the resulting array is not a
displaced array. If array A is created displaced to array B and subsequently array B is given

to adjust-array, array A will still be displaced to array B. Although array might be a displaced
array, the resulting array is not a displaced array unless displaced-to is supplied and not nil.
The interaction between adjust-array and displaced arrays is as follows given three arrays, A, B,
and C:

A is not displaced before or after the call
(adjust-array A ...)

The dimensions of A are altered, and the contents rearranged as appropriate. Additional
elements of A are taken from initial-element. The use of initial-contents causes all old
contents to be discarded.

A is not displaced before, but is displaced to C after the call
(adjust-array A ... :displaced-to C)

None of the original contents of A appears in A afterwards; A now contains the contents of
C, without any rearrangement of C.

Arrays 15-15



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

adjust-array

A is displaced to B before the call, and is displaced to C after the call

(adjust-array A ... :displaced-to B)
(adjust-array A ... :displaced-to C)

B and C might be the same. The contents of B do not appear in A afterward unless
such contents also happen to be in C If displaced-index-offset is not supplied in the
adjust-array call, it defaults to zero; the old offset into B is not retained.

A is displaced to B before the call, but not displaced afterward.

(adjust-array A ... :displaced-to B)
(adjust-array A ... :displaced-to nil)

A gets a new “data region,” and contents of B are copied into it as appropriate to main-
tain the existing old contents; additional elements of A are taken from initial-element if
supplied. However, the use of initial-contents causes all old contents to be discarded.

If displaced-index-offset is supplied, it specifies the offset of the resulting array from the beginning
of the array that it is displaced to. If displaced-index-offset is not supplied, the offset is 0. The
size of the resulting array plus the offset value cannot exceed the size of the array that it is
displaced to.

If only new-dimensions and an initial-element argument are supplied, those elements of array that
are still in bounds appear in the resulting array. The elements of the resulting array that are
not in the bounds of array are initialized to initial-element; if initial-element is not provided, the
consequences of later reading any such new element of new-array before it has been initialized are
undefined.

If initial-contents or displaced-to is supplied, then none of the original contents of array appears in
the new array.

The consequences are unspecified if array is adjusted to a size smaller than its fill pointer without
supplying the fill-pointer argument so that its fill-pointer is properly adjusted in the process.

If A is displaced to B, the consequences are unspecified if B is adjusted in such a way that it no
longer has enough elements to satisfy A.

If adjust-array is applied to an array that is actually adjustable, the array returned is identical
to array. If the array returned by adjust-array is distinct from array, then the argument array is
unchanged.

Note that if an array A is displaced to another array B, and B is displaced to another array C,
and B is altered by adjust-array, A must now refer to the adjust contents of B. This means that
an implementation cannot collapse the chain to make A refer to C' directly and forget that the
chain of reference passes through B. However, caching techniques are permitted as long as they
preserve the semantics specified here.

15-16 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:

(adjustable-array-p
(setq ada (adjust-array
(make-array ’(2 3)
:adjustable t
:initial-contents ’((a b c) (1 2 3)))
(4 6)))) — T
(array-dimensions ada) — (4 6)
(aref ada 1 1) — 2
(setq beta (make-array ’(2 3) :adjustable t))
— #2A((NIL NIL NIL) (NIL NIL NIL))
(adjust-array beta ’(4 6) :displaced-to ada)
— #2A((A B C NIL NIL NIL)
(1 2 3 NIL NIL NIL)
(NIL NIL NIL NIL NIL NIL)
(NIL NIL NIL NIL NIL NIL))
(array-dimensions beta) — (4 6)
(aref beta 1 1) — 2

Suppose that the 4-by-4 array in m looks like this:

#2A(( alpha beta gamma delta )
( epsilon  zeta eta theta )
( iota kappa lambda mu )
( nu xi omicron pi )

Then the result of
(adjust-array m ’(3 5) :initial-element ’baz)

is a 3-by-b array with contents

#2A(( alpha beta gamma delta baz )
( epsilon  zeta eta theta baz )
( iota kappa lambda mu baz ))

Exceptional Situations:

An error of type error is signaled if fill-pointer is supplied and non-nil but array has no fill
pointer.

See Also:

adjustable-array-p, make-array, array-dimension-limit, array-total-size-limit, array

Arrays

15-17



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

adjustable-array-p Function

Syntax:

adjustable-array-p array — generalized-boolean

Arguments and Values:
array—an array.

generalized-boolean—a generalized boolean.

Description:

Returns true if and only if adjust-array could return a value which is identical to array when
given that array as its first argument.

Examples:

(adjustable-array-p
(make-array 5
:element-type ’character
:adjustable t
:fill-pointer 3)) — true
(adjustable-array-p (make-array 4)) — implementation-dependent

Exceptional Situations:
Should signal an error of type type-error if its argument is not an array.

See Also:

adjust-array, make-array

aref Accessor

Syntax:

aref array &rest subscripts — element

(setf (aref array &rest subscripts) new-element)

Arguments and Values:
array—an array.

subscripts—a list of valid array indices for the array.

element, new-element—an object.

15-18 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Description:

Accesses the array element specified by the subscripts. If no subscripts are supplied and array is
zero rank, aref accesses the sole element of array.

aref ignores fill pointers. It is permissible to use aref to access any array element, whether active
or not.

Examples:
If the variable foo names a 3-by-5 array, then the first index could be 0, 1, or 2, and then second
index could be 0, 1, 2, 3, or 4. The array elements can be referred to by using the function aref;
for example, (aref foo 2 1) refers to element (2, 1) of the array.

(aref (setq alpha (make-array 4)) 3) — implementation-dependent

(setf (aref alpha 3) ’sirens) — SIRENS

(aref alpha 3) — SIRENS

(aref (setq beta (make-array ’(2 4)
:element-type ’(unsigned-byte 2)
:initial-contents ’((0 1 2 3) (3 21 0))))

12) — 1

(setq gamma °’ (0 2))

(apply #’aref beta gamma) — 2

(setf (apply #’aref beta gamma) 3) — 3

(apply #’aref beta gamma) — 3

(aref beta 0 2) — 3

See Also:

bit, char, elt, row-major-aref, svref, Section 3.2.1 (Compiler Terminology)

array-dimension Function

Syntax:

array-dimension array axis-number — dimension

Arguments and Values:
array—an array.

axis-number—an integer greater than or equal to zero and less than the rank of the array.
dimension—a non-negative integer.

Description:
array-dimension returns the axis-number dimensiony of array. (Any fill pointer is ignored.)

Arrays 15-19



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:

(array-dimension (make-array 4) 0) — 4
(array-dimension (make-array ’(2 3)) 1) — 3

Affected By:

None.
See Also:
array-dimensions, length
Notes:
(array-dimension array n) = (nth n (array-dimensions array))
array-dimensions Function
Syntax:

array-dimensions array — dimensions

Arguments and Values:
array—an array.

dimensions—a list of integers.

Description:

Returns a list of the dimensions of array. (If array is a vector with a fill pointer, that fill pointer
is ignored.)

Examples:

(array-dimensions (make-array 4)) — (4)
(array-dimensions (make-array ’(2 3))) — (2 3)
(array-dimensions (make-array 4 :fill-pointer 2)) — (4)

Exceptional Situations:
Should signal an error of type type-error if its argument is not an array.

See Also:

array-dimension

15-20 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

array-element-type Function

Syntax:

array-element-type array — typespec

Arguments and Values:
array—an array.

typespec—a type specifier.

Description:

Returns a type specifier which represents the actual array element type of the array, which is the
set of objects that such an array can hold. (Because of array upgrading, this type specifier can in
some cases denote a supertype of the expressed array element type of the array.)

Examples:

(array-element-type (make-array 4)) — T

(array-element-type (make-array 12 :element-type ’(unsigned-byte 8)))
— implementation-dependent

(array-element-type (make-array 12 :element-type ’(unsigned-byte 5)))
— implementation-dependent

(array-element-type (make-array 5 :element-type ’(mod 5)))
could be (mod 5), (mod 8), fixnum, t, or any other type of which (mod 5) is a subtype.

Affected By:

The implementation.

Exceptional Situations:
Should signal an error of type type-error if its argument is not an array.

See Also:

array, make-array, subtypep, upgraded-array-element-type

array-has-fill-pointer-p Function

Syntax:

array-has-fill-pointer-p array — generalized-boolean

Arrays 1521



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Arguments and Values:
array—an array.

generalized-boolean—a, generalized boolean.

Description:
Returns true if array has a fill pointer; otherwise returns false.

Examples:

(array-has-fill-pointer-p (make-array 4)) — implementation-dependent
(array-has-fill-pointer-p (make-array ’(2 3))) — false
(array-has-fill-pointer-p
(make-array 8
:fill-pointer 2
:initial-element ’filler)) — true

Exceptional Situations:
Should signal an error of type type-error if its argument is not an array.

See Also:

make-array, fill-pointer

Notes:
Since arrays of rank other than one cannot have a fill pointer, array-has-fill-pointer-p always
returns nil when its argument is such an array.
array-displacement PFunction
Syntax:

array-displacement array — displaced-to, displaced-index-offset

Arguments and Values:
array—an array.

displaced-to—an array or nil.
displaced-index-offset—a non-negative fiznum.

Description:

If the array is a displaced array, returns the values of the :displaced-to and
:displaced-index-offset options for the array (see the functions make-array and adjust-array).
If the array is not a displaced array, nil and 0 are returned.

15-22 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

If array-displacement is called on an array for which a non-nil object was provided as the
:displaced-to argument to make-array or adjust-array, it must return that object as its first
value. It is tmplementation-dependent whether array-displacement returns a non-nil primary
value for any other array.

Examples:

(setq al (make-array 5)) — #<ARRAY 5 simple 46115576>

(setq a2 (make-array 4 :displaced-to al
:displaced-index-offset 1))

— #<ARRAY 4 indirect 46117134>

(array-displacement a2)

— #<ARRAY 5 simple 46115576>, 1

(setq a3 (make-array 2 :displaced-to a2
:displaced-index-offset 2))

— #<ARRAY 2 indirect 46122527>

(array-displacement a3)

— #<ARRAY 4 indirect 46117134>, 2

Exceptional Situations:
Should signal an error of type type-error if array is not an array.

See Also:

make-array

array-in-bounds-p Function

Syntax:

array-in-bounds-p array &rest subscripts — generalized-boolean

Arguments and Values:
array—an array.

subscripts—a list of integers of length equal to the rank of the array.
generalized-boolean—a, generalized boolean.

Description:

Returns true if the subscripts are all in bounds for array; otherwise returns false. (If array is a
vector with a fill pointer, that fill pointer is ignored.)

Examples:

(setq a (make-array ’(7 11) :element-type ’string-char))

Arrays 15—23



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(array-in-bounds-p a 0 0) — true
(array-in-bounds-p a 6 10) — {rue
(array-in-bounds-p a 0 -1) — false
(array-in-bounds-p a 0 11) — false
(array-in-bounds-p a 7 0) — false

See Also:

array-dimensions

Notes:
(array-in-bounds-p array subscripts)
= (and (not (some #’minusp (list subscripts)))
(every #’< (list subscripts) (array-dimensions array)))
array-rank Function
Syntax:

array-rank array — rank

Arguments and Values:
array—an array.

rank—a non-negative integer.

Description:
Returns the number of dimensions of array.

Examples:

(array-rank (make-array ())) — O
(array-rank (make-array 4)) — 1
(array-rank (make-array ’(4))) — 1
(array-rank (make-array ’(2 3))) — 2

Exceptional Situations:
Should signal an error of type type-error if its argument is not an array.

See Also:

array-rank-limit, make-array

15-24 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

array-row-major-index Function

Syntax:

array-row-major-index array &rest subscripts — index

Arguments and Values:
array—an array.

subscripts—a list of valid array indices for the array.

index—a wvalid array row-major index for the array.

Description:
Computes the position according to the row-major ordering of array for the element that is
specified by subscripts, and returns the offset of the element in the computed position from the
beginning of array.

For a one-dimensional array, the result of array-row-major-index equals subscript.
array-row-major-index ignores fill pointers.
Examples:

(setq a (make-array ’(4 7) :element-type ’(unsigned-byte 8)))
(array-row-major-index a 1 2) — 9
(array-row-major-index
(make-array ’(2 3 4)
:element-type ’(unsigned-byte 8)
:displaced-to a
:displaced-index-offset 4)
021) — 9

Notes:

A possible definition of array-row-major-index, with no error-checking, is

(defun array-row-major-index (a &rest subscripts)
(apply #’+ (maplist #’(lambda (x y)
(* (car x) (apply #’* (cdr y))))
subscripts
(array-dimensions a))))

Arrays 15-25



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

array-total-size Function

Syntax:

array-total-size array — size

Arguments and Values:
array—an array.

size—a non-negative integer.

Description:
Returns the array total size of the array.

Examples:

(array-total-size (make-array 4)) — 4
(array-total-size (make-array 4 :fill-pointer 2)) — 4
(array-total-size (make-array 0)) — O
(array-total-size (make-array ’(4 2))) — 8
(array-total-size (make-array ’(4 0))) — 0
(array-total-size (make-array ’())) — 1

Exceptional Situations:
Should signal an error of type type-error if its argument is not an array.

See Also:

make-array, array-dimensions

Notes:

If the array is a vector with a fill pointer, the fill pointer is ignored when calculating the array
total size.

Since the product of no arguments is one, the array total size of a zero-dimensional array is one.

(array-total-size x)
(apply #’* (array-dimensions x))
(reduce #’* (array-dimensions x))

15-26 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

arrayp

Function

Syntax:

arrayp object — generalized-boolean

Arguments and Values:
object—an object.

generalized-boolean—a generalized boolean.

Description:

Returns true if object is of type array; otherwise, returns false.

Examples:

(arrayp (make-array ’(2 3 4) :adjustable t)) — {rue

(arrayp (make-array 6)) — {true
(arrayp #x1011) — {rue
(arrayp "hi") — true

(arrayp ’hi) — false

(arrayp 12) — false

See Also:
typep

Notes:

(arrayp object) = (typep object ’array)

fill-pointer

Accessor

Syntax:

fill-pointer vector — fill-pointer

(setf (fill-pointer vector) new-fill-pointer)

Arguments and Values:
vector—a, vector with a fill pointer.

fill-pointer, new-fill-pointer—a valid fill pointer for the vector.

Arrays

15-27



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Description:
Accesses the fill pointer of vector.

Examples:

(setq a (make-array 8 :fill-pointer 4)) — #(NIL NIL NIL NIL)
(fill-pointer a) — 4

(dotimes (i (length a)) (setf (aref a i) (* i i))) — NIL
a— #(0 1 4 9

(setf (fill-pointer a) 3) — 3

(fill-pointer a) — 3

a — #(0 1 4)

(setf (fill-pointer a) 8) — 8

a — #(0 1 4 9 NIL NIL NIL NIL)

Exceptional Situations:
Should signal an error of type type-error if vector is not a vector with a fill pointer.

See Also:

make-array, length

Notes:

There is no operator that will remove a vector’s fill pointer.

row-major-aref Accessor

Syntax:

row-major-aref array index — element

(setf (row-major-aref array index) new-element)

Arguments and Values:
array—an array.

index—a wvalid array row-major index for the array.
element, new-element—an object.

Description:

Considers array as a vector by viewing its elements in row-major order, and returns the element
of that vector which is referred to by the given index.

row-major-aref is valid for use with setf.

15-28 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

See Also:
aref, array-row-major-index
Notes:
(row-major-aref array index) =
(aref (make-array (array-total-size array)
:displaced-to array
:element-type (array-element-type array))
index)
(aref array il i2 ...) =
(row-major-aref array (array-row-major-index array il i2))
upgraded-array-element-type Function
Syntax:

upgraded-array-element-type typespec &optional environment — upgraded-typespec

Arguments and Values:
typespec—a type specifier.

environment—an environment object. The default is nil, denoting the null lexical environment
and the current global environment.

upgraded-typespec—a type specifier.

Description:

Returns the element type of the most specialized array representation capable of holding items of
the type denoted by typespec.

The typespec is a subtype of (and possibly type equivalent to) the upgraded-typespec.

If typespec is bit, the result is type equivalent to bit. If typespec is base-char, the result is type
equivalent to base-char. If typespec is character, the result is type equivalent to character.

The purpose of upgraded-array-element-type is to reveal how an implementation does its
upgrading.

The environment is used to expand any derived type specifiers that are mentioned in the typespec.

See Also:

array-element-type, make-array

Arrays 15—29



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Notes:

Except for storage allocation consequences and dealing correctly with the optional environment
argument, upgraded-array-element-type could be defined as:

(defun upgraded-array-element-type (type &optional environment)
(array-element-type (make-array O :element-type type)))

array-dimension-limit Constant Variable

Constant Value:

A positive fixnum, the exact magnitude of which is implementation-dependent, but which is not
less than 1024.

Description:
The upper exclusive bound on each individual dimension of an array.

See Also:

make-array

array—rank-limit Constant Variable

Constant Value:

A positive fixnum, the exact magnitude of which is implementation-dependent, but which is not
less than 8.

Description:
The upper exclusive bound on the rank of an array.

See Also:

make-array

15-30 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

array-tot al-size-limit Constant Variable

Constant Value:

A positive fixnum, the exact magnitude of which is implementation-dependent, but which is not
less than 1024.

Description:
The upper exclusive bound on the array total size of an array.

The actual limit on the array total size imposed by the implementation might vary according the
element type of the array; in this case, the value of array-total-size-limit will be the smallest of
these possible limits.

See Also:

make-array, array-element-type

simple-vector-p Function

Syntax:

simple-vector-p object — generalized-boolean

Arguments and Values:
object—an object.

generalized-boolean—a, generalized boolean.

Description:
Returns true if object is of type simple-vector; otherwise, returns false..

Examples:
(simple-vector-p (make-array 6)) — {rue

(simple-vector-p "aaaaaa") — false
(simple-vector-p (make-array 6 :fill-pointer t)) — false

See Also:

simple-vector
Notes:

(simple-vector-p object) = (typep object ’simple-vector)

Arrays 15-31



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

svref Accessor

Syntax:

svref simple-vector index — element

(setf (svref simple-vector index) new-element)

Arguments and Values:
simple-vector—a, simple vector.

index—a wvalid array index for the simple-vector.

element, new-element—an object (whose type is a subtype of the array element type of the simple-
vector).

Description:
Accesses the element of simple-vector specified by index.

Examples:

(simple-vector-p (setq v (vector 1 2 ’siremns))) — f{rue
(svref v 0) — 1

(svref v 2) — SIRENS

(setf (svref v 1) ’newcomer) — NEWCOMER

v — #(1 NEWCOMER SIRENS)

See Also:

aref, sbit, schar, vector, Section 3.2.1 (Compiler Terminology)

Notes:

svref is identical to aref except that it requires its first argument to be a simple vector.

(svref v i) = (aref (the simple-vector v) i)

15-32 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

vector

Function

Syntax:

vector &rest objects — vector

Arguments and Values:
object—an object.

vector—a wector of type (vector t *).

Description:

Creates a fresh simple general vector whose size corresponds to the number of objects.

The wvector is initialized to contain the objects.
Examples:

(arrayp (setq v (vector 1 2 ’sirems))) — {rue
(vectorp v) — true

(simple-vector-p v) — true

(length v) — 3

See Also:

make-array

Notes:

vector is analogous to list.

(vector aj; as ... ap)
= (make-array (list m) :element-type t
:initial-contents
(list a; ag ... ay))

vector-pop

Function

Syntax:

vector-pop vector — element

Arguments and Values:
vector—a vector with a fill pointer.

element—an object.

Arrays

15-33



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Description:

Decreases the fill pointer of vector by one, and retrieves the element of vector that is designated

by the new fill pointer.
Examples:

(vector-push (setq fable (list ’fable))
(setq fa (make-array 8
:fill-pointer 2
:initial-element ’sisyphus))) — 2
(fill-pointer fa) — 3
(eq (vector-pop fa) fable) — {rue
(vector-pop fa) — SISYPHUS
(fill-pointer fa) — 1

Side Effects:
The fill pointer is decreased by one.

Affected By:
The value of the fill pointer.

Exceptional Situations:

An error of type type-error is signaled if vector does not have a fill pointer.

If the fill pointer is zero, vector-pop signals an error of type error.

See Also:

vector-push, vector-push-extend, fill-pointer

vector-push, vector-push-extend

Function

Syntax:

vector-push new-element vector — new-index-p
vector-push-extend new-element vector &optional extension — new-index

Arguments and Values:
new-element—an object.

vector—a vector with a fill pointer.
extension—a positive integer. The default is implementation-dependent.

new-index-p—a wvalid array index for vector, or nil.

15-34 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

vector-push, vector-push-extend

new-index—a wvalid array index for vector.

Description:

vector-push and vector-push-extend store new-element in vector. vector-push attempts to store
new-element in the element of vector designated by the fill pointer, and to increase the fill pointer
by one. If the (>= (fill-pointer vector) (array-dimension vector 0)), neither vector nor its fill
pointer are affected. Otherwise, the store and increment take place and vector-push returns the
former value of the fill pointer which is one less than the one it leaves in vector.

vector-push-extend is just like vector-push except that if the fill pointer gets too large, vector
is extended using adjust-array so that it can contain more elements. Extension is the minimum
number of elements to be added to vector if it must be extended.

vector-push and vector-push-extend return the index of new-element in vector. If
(>= (fill-pointer vector) (array-dimension vector 0)), vector-push returns nil.

Examples:

(vector-push (setq fable (list ’fable))
(setq fa (make-array 8
:fill-pointer 2
:initial-element ’first-one))) — 2
(fill-pointer fa) — 3
(eq (aref fa 2) fable) — frue
(vector-push-extend #\X
(setq aa
(make-array 5
:element-type ’character
:adjustable t
:fill-pointer 3))) — 3
(fill-pointer aa) — 4
(vector-push-extend #\Y aa 4) — 4
(array-total-size aa) — at least 5
(vector-push-extend #\Z aa 4) — 5
(array-total-size aa) — 9 ;(or more)

Affected By:
The value of the fill pointer.

How vector was created.

Exceptional Situations:

An error of type error is signaled by vector-push-extend if it tries to extend vector and vector is
not actually adjustable.

An error of type error is signaled if vector does not have a fill pointer.

Arrays 15-35



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

See Also:

adjustable-array-p, fill-pointer, vector-pop

vectorp

Function

Syntax:

vectorp object — generalized-boolean

Arguments and Values:
object—an object.

generalized-boolean—a, generalized boolean.

Description:
Returns true if object is of type vector; otherwise, returns false.

Examples:

(vectorp "aaaaaa") — {rue

(vectorp (make-array 6 :fill-pointer t)) — true
(vectorp (make-array ’(2 3 4))) — false
(vectorp #x11) — {rue

(vectorp #b11) — false

Notes:

(vectorp object) = (typep object ’vector)

bit, sbit

Accessor

Syntax:

bit bit-array &rest subscripts —— bit
sbit bit-array &rest subscripts — bit

(setf (bit bit-array &rest subscripts) new-bit)
(setf (sbit bit-array &rest subscripts) new-bit)

Arguments and Values:
bit-array—for bit, a bit array; for sbit, a simple bit array.

15-36 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

subscripts—a list of valid array indices for the bit-array.

bit—a bit.

Description:

bit and sbit access the bit-array element specified by subscripts.

These functions ignore the fill pointer when accessing elements.

Examples:

(bit (setq ba (make-array 8
:element-type ’bit
:initial-element 1))

3) — 1

(setf (bit ba 3) 0) — 0

(bit ba 3) — 0

(sbit ba 5) — 1

(setf (sbit ba 5) 1) — 1

(sbit ba 5) — 1

See Also:
aref, Section 3.2.1 (Compiler Terminology)

Notes:
bit and sbit are like aref except that they require arrays to be a bit array and a simple bit array,
respectively.
bit and sbit, unlike char and schar, allow the first argument to be an array of any rank.
bit-and, bit-andcl, bit-andc2, bit-eqv, bit-ior, bit-
nand, bit-nor, bit-not, bit-orcl, bit-orc2, bit-xor
Function

Syntax:

bit-and bit-arrayl bit-array2 &optional opt-arg
bit-andcl bit-arrayl bit-array2 &optional opt-arg
bit-andc2 bit-arrayl bit-array2 &optional opt-arg
bit-eqv bit-arrayl bit-array2 &optional opt-arg
bit-ior bit-arrayl bit-array2 &optional opt-arg
bit-nand bit-arrayl bit-array2 &optional opt-arg
bit-nor bit-arrayl bit-array2 &optional opt-arg
bit-orcl bit-arrayl bit-array2 &optional opt-arg

resulting-bit-array
resulting-bit-array
resulting-bit-array
resulting-bit-array
resulting-bit-array
resulting-bit-array
resulting-bit-array
resulting-bit-array

L LU

Arrays 15-37



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

bit-and, bit-andcl, bit-andc2, bit-eqv, bit-ior,

bit-orc2 bit-arrayl bit-array2 &optional opt-arg  — resulting-bit-array
bit-xor bit-arrayl bit-array2 &optional opt-arg — resulting-bit-array

bit-not bit-array &optional opt-arg — resulting-bit-array

Arguments and Values:
bit-array, bit-arrayl, bit-array2—a bit array.
Opt-arg—a bit array, or t, or nil. The default is nil.

Bit-array, bit-arrayl, bit-array2, and opt-arg (if an array) must all be of the same rank and dimen-
StONS.

resulting-bit-array—a bit array.

Description:
These functions perform bit-wise logical operations on bit-arrayl and bit-array2 and return an
array of matching rank and dimensions, such that any given bit of the result is produced by
operating on corresponding bits from each of the arguments.

In the case of bit-not, an array of rank and dimensions matching bit-array is returned that
contains a copy of bit-array with all the bits inverted.

If opt-arg is of type (array bit) the contents of the result are destructively placed into opt-arg.
If opt-arg is the symbol t, bit-array or bit-arrayl is replaced with the result; if opt-arg is nil or
omitted, a new array is created to contain the result.

Figure 154 indicates the logical operation performed by each of the functions.

Function Operation

bit-and and

bit-eqv equivalence (exclusive nor)

bit-not complement

bit-ior inclusive or

bit-xor exclusive or

bit-nand complement of bit-arrayl and bit-array?2
bit-nor complement of bit-arrayl or bit-array2
bit-andcl and complement of bit-arrayl with bit-array2
bit-andc2 and bit-arrayl with complement of bit-array?2
bit-orcl or complement of bit-arrayl with bit-array2
bit-orc2 or bit-arrayl with complement of bit-array2

Figure 15—4. Bit-wise Logical Operations on Bit Arrays

15-38 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:

(bit-and (setq ba #¥11101010) #%01101011) — #%01101010
(bit-and #*1100 #*1010) — #x*x1000
(bit-andcl #%1100 #*1010) — #0010
(setq rba (bit-andc2 ba #*00110011 t)) — #x11001000
(eq rba ba) — true
(bit-not (setq ba #*11101010)) — #x00010101
(setq rba (bit-not ba
(setq tba (make-array 8
:element-type ’bit))))
— #x00010101
(equal rba tba) — {rue
(bit-xor #*1100 #*1010) — #x*0110

See Also:
lognot, logand

bit—vector-p Function

Syntax:

bit-vector-p object — generalized-boolean

Arguments and Values:
object—an object.

generalized-boolean—a, generalized boolean.

Description:
Returns true if object is of type bit-vector; otherwise, returns false.

Examples:

(bit-vector-p (make-array 6
:element-type ’bit
:fill-pointer t)) — true
(bit-vector-p #x) — {rue
(bit-vector-p (make-array 6)) — false

See Also:
typep

Arrays 15—-39



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Notes:

(bit-vector-p object) = (typep object ’bit-vector)

simple-bit-vector-p Function

Syntax:

simple-bit-vector-p object — generalized-boolean

Arguments and Values:
object—an object.

generalized-boolean—a. generalized boolean.

Description:
Returns true if object is of type simple-bit-vector; otherwise, returns false.

Examples:

(simple-bit-vector-p (make-array 6)) — false
(simple-bit-vector-p #*) — {rue

See Also:

simple-vector-p
Notes:

(simple-bit-vector-p object) = (typep object ’simple-bit-vector)

15-40 Programming Language—Common Lisp



