
Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Programming Language—Common Lisp

4. Types and Classes

Types and Classes i

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

ii Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

4.1 Introduction
A type is a (possibly infinite) set of objects. An object can belong to more than one type. Types
are never explicitly represented as objects by Common Lisp. Instead, they are referred to indi-
rectly by the use of type specifiers, which are objects that denote types.

New types can be defined using deftype, defstruct, defclass, and define-condition.

The function typep, a set membership test, is used to determine whether a given object is of a
given type. The function subtypep, a subset test, is used to determine whether a given type is a
subtype of another given type. The function type-of returns a particular type to which a given
object belongs, even though that object must belong to one or more other types as well. (For
example, every object is of type t, but type-of always returns a type specifier for a type more
specific than t.)

Objects, not variables, have types. Normally, any variable can have any object as its value. It
is possible to declare that a variable takes on only values of a given type by making an explicit
type declaration. Types are arranged in a directed acyclic graph, except for the presence of
equivalences.

Declarations can be made about types using declare, proclaim, declaim, or the. For more
information about declarations, see Section 3.3 (Declarations).

Among the fundamental objects of the object system are classes. A class determines the structure
and behavior of a set of other objects, which are called its instances. Every object is a direct
instance of a class. The class of an object determines the set of operations that can be performed
on the object . For more information, see Section 4.3 (Classes).

It is possible to write functions that have behavior specialized to the class of the objects which are
their arguments. For more information, see Section 7.6 (Generic Functions and Methods).

The class of the class of an object is called its metaclass. For more information about meta-
classes, see Section 7.4 (Meta-Objects).

Types and Classes 4–1

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

4.2 Types

4.2.1 Data Type Definition
Information about type usage is located in the sections specified in Figure 4–1. Figure 4–7 lists
some classes that are particularly relevant to the object system. Figure 9–1 lists the defined
condition types.

Section Data Type
Section 4.3 (Classes) Object System types
Section 7.5 (Slots) Object System types
Chapter 7 (Objects) Object System types
Section 7.6 (Generic Functions and Methods) Object System types
Section 9.1 (Condition System Concepts) Condition System types
Chapter 4 (Types and Classes) Miscellaneous types
Chapter 2 (Syntax) All types—read and print syntax
Section 22.1 (The Lisp Printer) All types—print syntax
Section 3.2 (Compilation) All types—compilation issues

Figure 4–1. Cross-References to Data Type Information

4.2.2 Type Relationships

• The types cons, symbol, array, number, character, hash-table, function, readtable,
package, pathname, stream, random-state, condition, restart, and any single other
type created by defstruct, define-condition, or defclass are pairwise disjoint , ex-
cept for type relations explicitly established by specifying superclasses in defclass or
define-condition or the :include option of destruct.

• Any two types created by defstruct are disjoint unless one is a supertype of the other by
virtue of the defstruct :include option.

• Any two distinct classes created by defclass or define-condition are disjoint unless they
have a common subclass or one class is a subclass of the other.

• An implementation may be extended to add other subtype relationships between the
specified types, as long as they do not violate the type relationships and disjointness
requirements specified here. An implementation may define additional types that are
subtypes or supertypes of any specified types, as long as each additional type is a subtype
of type t and a supertype of type nil and the disjointness requirements are not violated.

4–2 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

At the discretion of the implementation, either standard-object or structure-object
might appear in any class precedence list for a system class that does not already specify
either standard-object or structure-object. If it does, it must precede the class t and
follow all other standardized classes.

4.2.3 Type Specifiers
Type specifiers can be symbols, classes, or lists. Figure 4–2 lists symbols that are standardized
atomic type specifiers, and Figure 4–3 lists standardized compound type specifier names. For
syntax information, see the dictionary entry for the corresponding type specifier . It is possible to
define new type specifiers using defclass, define-condition, defstruct, or deftype.

Types and Classes 4–3

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

arithmetic-error function simple-condition
array generic-function simple-error
atom hash-table simple-string
base-char integer simple-type-error
base-string keyword simple-vector
bignum list simple-warning
bit logical-pathname single-float
bit-vector long-float standard-char
broadcast-stream method standard-class
built-in-class method-combination standard-generic-function
cell-error nil standard-method
character null standard-object
class number storage-condition
compiled-function package stream
complex package-error stream-error
concatenated-stream parse-error string
condition pathname string-stream
cons print-not-readable structure-class
control-error program-error structure-object
division-by-zero random-state style-warning
double-float ratio symbol
echo-stream rational synonym-stream
end-of-file reader-error t
error readtable two-way-stream
extended-char real type-error
file-error restart unbound-slot
file-stream sequence unbound-variable
fixnum serious-condition undefined-function
float short-float unsigned-byte
floating-point-inexact signed-byte vector
floating-point-invalid-operation simple-array warning
floating-point-overflow simple-base-string
floating-point-underflow simple-bit-vector

Figure 4–2. Standardized Atomic Type Specifiers

If a type specifier is a list , the car of the list is a symbol , and the rest of the list is subsidiary type
information. Such a type specifier is called a compound type specifier. Except as explicitly
stated otherwise, the subsidiary items can be unspecified. The unspecified subsidiary items are
indicated by writing *. For example, to completely specify a vector , the type of the elements and
the length of the vector must be present.

(vector double-float 100)

The following leaves the length unspecified:

4–4 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(vector double-float *)

The following leaves the element type unspecified:

(vector * 100)

Suppose that two type specifiers are the same except that the first has a * where the second has a
more explicit specification. Then the second denotes a subtype of the type denoted by the first.

If a list has one or more unspecified items at the end, those items can be dropped. If dropping
all occurrences of * results in a singleton list , then the parentheses can be dropped as well (the
list can be replaced by the symbol in its car). For example, (vector double-float *) can be
abbreviated to (vector double-float), and (vector * *) can be abbreviated to (vector) and then
to vector.

and long-float simple-base-string
array member simple-bit-vector
base-string mod simple-string
bit-vector not simple-vector
complex or single-float
cons rational string
double-float real unsigned-byte
eql satisfies values
float short-float vector
function signed-byte
integer simple-array

Figure 4–3. Standardized Compound Type Specifier Names

Figure 4–4 show the defined names that can be used as compound type specifier names but that
cannot be used as atomic type specifiers.

and mod satisfies
eql not values
member or

Figure 4–4. Standardized Compound-Only Type Specifier Names

New type specifiers can come into existence in two ways.

• Defining a structure by using defstruct without using the :type specifier or defining
a class by using defclass or define-condition automatically causes the name of the
structure or class to be a new type specifier symbol .

• deftype can be used to define derived type specifiers, which act as ‘abbreviations’ for
other type specifiers.

Types and Classes 4–5

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

A class object can be used as a type specifier . When used this way, it denotes the set of all
members of that class.

Figure 4–5 shows some defined names relating to types and declarations.

coerce defstruct subtypep
declaim deftype the
declare ftype type
defclass locally type-of
define-condition proclaim typep

Figure 4–5. Defined names relating to types and declarations.

Figure 4–6 shows all defined names that are type specifier names, whether for atomic type speci-
fiers or compound type specifiers; this list is the union of the lists in Figure 4–2 and Figure 4–3.

4–6 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

and function simple-array
arithmetic-error generic-function simple-base-string
array hash-table simple-bit-vector
atom integer simple-condition
base-char keyword simple-error
base-string list simple-string
bignum logical-pathname simple-type-error
bit long-float simple-vector
bit-vector member simple-warning
broadcast-stream method single-float
built-in-class method-combination standard-char
cell-error mod standard-class
character nil standard-generic-function
class not standard-method
compiled-function null standard-object
complex number storage-condition
concatenated-stream or stream
condition package stream-error
cons package-error string
control-error parse-error string-stream
division-by-zero pathname structure-class
double-float print-not-readable structure-object
echo-stream program-error style-warning
end-of-file random-state symbol
eql ratio synonym-stream
error rational t
extended-char reader-error two-way-stream
file-error readtable type-error
file-stream real unbound-slot
fixnum restart unbound-variable
float satisfies undefined-function
floating-point-inexact sequence unsigned-byte
floating-point-invalid-operation serious-condition values
floating-point-overflow short-float vector
floating-point-underflow signed-byte warning

Figure 4–6. Standardized Type Specifier Names

Types and Classes 4–7

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

4.3 Classes
While the object system is general enough to describe all standardized classes (including, for ex-
ample, number, hash-table, and symbol), Figure 4–7 contains a list of classes that are especially
relevant to understanding the object system.

built-in-class method-combination standard-object
class standard-class structure-class
generic-function standard-generic-function structure-object
method standard-method

Figure 4–7. Object System Classes

4.3.1 Introduction to Classes
A class is an object that determines the structure and behavior of a set of other objects, which
are called its instances.

A class can inherit structure and behavior from other classes. A class whose definition refers
to other classes for the purpose of inheriting from them is said to be a subclass of each of those
classes. The classes that are designated for purposes of inheritance are said to be superclasses of
the inheriting class.

A class can have a name. The function class-name takes a class object and returns its name.
The name of an anonymous class is nil. A symbol can name a class. The function find-class
takes a symbol and returns the class that the symbol names. A class has a proper name if the
name is a symbol and if the name of the class names that class. That is, a class C has the
proper name S if S = (class-name C) and C = (find-class S). Notice that it is possible for
(find-class S1) = (find-class S2) and S1 6= S2. If C = (find-class S), we say that C is the
class named S.

A class C1 is a direct superclass of a class C2 if C2 explicitly designates C1 as a superclass in
its definition. In this case C2 is a direct subclass of C1. A class Cn is a superclass of a class
C1 if there exists a series of classes C2, . . . , Cn−1 such that Ci+1 is a direct superclass of Ci for
1 ≤ i < n. In this case, C1 is a subclass of Cn. A class is considered neither a superclass nor a
subclass of itself. That is, if C1 is a superclass of C2, then C1 6= C2. The set of classes consisting
of some given class C along with all of its superclasses is called “C and its superclasses.”

Each class has a class precedence list, which is a total ordering on the set of the given class
and its superclasses. The total ordering is expressed as a list ordered from most specific to least
specific. The class precedence list is used in several ways. In general, more specific classes can
shadow1 features that would otherwise be inherited from less specific classes. The method
selection and combination process uses the class precedence list to order methods from most
specific to least specific.

4–8 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

When a class is defined, the order in which its direct superclasses are mentioned in the defining
form is important. Each class has a local precedence order, which is a list consisting of the
class followed by its direct superclasses in the order mentioned in the defining form.

A class precedence list is always consistent with the local precedence order of each class in the
list. The classes in each local precedence order appear within the class precedence list in the
same order. If the local precedence orders are inconsistent with each other, no class precedence
list can be constructed, and an error is signaled. The class precedence list and its computation is
discussed in Section 4.3.5 (Determining the Class Precedence List).

classes are organized into a directed acyclic graph. There are two distinguished classes, named
t and standard-object. The class named t has no superclasses. It is a superclass of every class
except itself. The class named standard-object is an instance of the class standard-class and is
a superclass of every class that is an instance of the class standard-class except itself.

There is a mapping from the object system class space into the type space. Many of the standard
types specified in this document have a corresponding class that has the same name as the type.
Some types do not have a corresponding class. The integration of the type and class systems is
discussed in Section 4.3.7 (Integrating Types and Classes).

Classes are represented by objects that are themselves instances of classes. The class of the class
of an object is termed the metaclass of that object . When no misinterpretation is possible, the
term metaclass is used to refer to a class that has instances that are themselves classes. The
metaclass determines the form of inheritance used by the classes that are its instances and the
representation of the instances of those classes. The object system provides a default metaclass,
standard-class, that is appropriate for most programs.

Except where otherwise specified, all classes mentioned in this standard are instances of the class
standard-class, all generic functions are instances of the class standard-generic-function, and
all methods are instances of the class standard-method.

4.3.1.1 Standard Metaclasses

The object system provides a number of predefined metaclasses. These include the classes
standard-class, built-in-class, and structure-class:

• The class standard-class is the default class of classes defined by defclass.

• The class built-in-class is the class whose instances are classes that have special imple-
mentations with restricted capabilities. Any class that corresponds to a standard type
might be an instance of built-in-class. The predefined type specifiers that are required
to have corresponding classes are listed in Figure 4–8. It is implementation-dependent
whether each of these classes is implemented as a built-in class.

• All classes defined by means of defstruct are instances of the class structure-class.

Types and Classes 4–9

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

4.3.2 Defining Classes
The macro defclass is used to define a new named class.

The definition of a class includes:

• The name of the new class. For newly-defined classes this name is a proper name.

• The list of the direct superclasses of the new class.

• A set of slot specifiers. Each slot specifier includes the name of the slot and zero
or more slot options. A slot option pertains only to a single slot . If a class definition
contains two slot specifiers with the same name, an error is signaled.

• A set of class options. Each class option pertains to the class as a whole.

The slot options and class options of the defclass form provide mechanisms for the following:

• Supplying a default initial value form for a given slot .

• Requesting that methods for generic functions be automatically generated for reading or
writing slots.

• Controlling whether a given slot is shared by all instances of the class or whether each
instance of the class has its own slot .

• Supplying a set of initialization arguments and initialization argument defaults to be used
in instance creation.

• Indicating that the metaclass is to be other than the default. The :metaclass option is
reserved for future use; an implementation can be extended to make use of the :metaclass

option.

• Indicating the expected type for the value stored in the slot .

• Indicating the documentation string for the slot .

4–10 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

4.3.3 Creating Instances of Classes
The generic function make-instance creates and returns a new instance of a class. The object
system provides several mechanisms for specifying how a new instance is to be initialized. For
example, it is possible to specify the initial values for slots in newly created instances either by
giving arguments to make-instance or by providing default initial values. Further initialization
activities can be performed by methods written for generic functions that are part of the initial-
ization protocol. The complete initialization protocol is described in Section 7.1 (Object Creation
and Initialization).

4.3.4 Inheritance
A class can inherit methods, slots, and some defclass options from its superclasses. Other sec-
tions describe the inheritance of methods, the inheritance of slots and slot options, and the
inheritance of class options.

4.3.4.1 Examples of Inheritance

(defclass C1 ()

((S1 :initform 5.4 :type number)

(S2 :allocation :class)))

(defclass C2 (C1)

((S1 :initform 5 :type integer)

(S2 :allocation :instance)

(S3 :accessor C2-S3)))

Instances of the class C1 have a local slot named S1, whose default initial value is 5.4 and whose
value should always be a number . The class C1 also has a shared slot named S2.

There is a local slot named S1 in instances of C2. The default initial value of S1 is 5. The value of
S1 should always be of type (and integer number). There are also local slots named S2 and S3 in
instances of C2. The class C2 has a method for C2-S3 for reading the value of slot S3; there is also
a method for (setf C2-S3) that writes the value of S3.

4.3.4.2 Inheritance of Class Options

The :default-initargs class option is inherited. The set of defaulted initialization arguments
for a class is the union of the sets of initialization arguments supplied in the :default-initargs

class options of the class and its superclasses. When more than one default initial value form is
supplied for a given initialization argument, the default initial value form that is used is the one
supplied by the class that is most specific according to the class precedence list .

If a given :default-initargs class option specifies an initialization argument of the same name
more than once, an error of type program-error is signaled.

Types and Classes 4–11

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

4.3.5 Determining the Class Precedence List
The defclass form for a class provides a total ordering on that class and its direct superclasses.
This ordering is called the local precedence order. It is an ordered list of the class and its
direct superclasses. The class precedence list for a class C is a total ordering on C and its
superclasses that is consistent with the local precedence orders for each of C and its superclasses.

A class precedes its direct superclasses, and a direct superclass precedes all other direct super-
classes specified to its right in the superclasses list of the defclass form. For every class C, define

RC = {(C, C1), (C1, C2), . . . , (Cn−1, Cn)}

where C1, . . . , Cn are the direct superclasses of C in the order in which they are mentioned in
the defclass form. These ordered pairs generate the total ordering on the class C and its direct
superclasses.

Let SC be the set of C and its superclasses. Let R be

R =
⋃

c∈SC

Rc

.

The set R might or might not generate a partial ordering, depending on whether the Rc, c ∈ SC ,
are consistent; it is assumed that they are consistent and that R generates a partial ordering.
When the Rc are not consistent, it is said that R is inconsistent.

To compute the class precedence list for C, topologically sort the elements of SC with respect
to the partial ordering generated by R. When the topological sort must select a class from a set
of two or more classes, none of which are preceded by other classes with respect to R, the class
selected is chosen deterministically, as described below.

If R is inconsistent, an error is signaled.

4.3.5.1 Topological Sorting

Topological sorting proceeds by finding a class C in SC such that no other class precedes that
element according to the elements in R. The class C is placed first in the result. Remove C from
SC , and remove all pairs of the form (C,D), D ∈ SC , from R. Repeat the process, adding classes
with no predecessors to the end of the result. Stop when no element can be found that has no
predecessor.

If SC is not empty and the process has stopped, the set R is inconsistent. If every class in the
finite set of classes is preceded by another, then R contains a loop. That is, there is a chain of
classes C1, . . . , Cn such that Ci precedes Ci+1, 1 ≤ i < n, and Cn precedes C1.

Sometimes there are several classes from SC with no predecessors. In this case select the one that
has a direct subclass rightmost in the class precedence list computed so far. (If there is no such
candidate class, R does not generate a partial ordering—the Rc, c ∈ SC , are inconsistent.)

4–12 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

In more precise terms, let {N1, . . . , Nm}, m ≥ 2, be the classes from SC with no predecessors. Let
(C1 . . . Cn), n ≥ 1, be the class precedence list constructed so far. C1 is the most specific class,
and Cn is the least specific. Let 1 ≤ j ≤ n be the largest number such that there exists an i where
1 ≤ i ≤ m and Ni is a direct superclass of Cj ; Ni is placed next.

The effect of this rule for selecting from a set of classes with no predecessors is that the classes
in a simple superclass chain are adjacent in the class precedence list and that classes in each
relatively separated subgraph are adjacent in the class precedence list . For example, let T1 and
T2 be subgraphs whose only element in common is the class J. Suppose that no superclass of J
appears in either T1 or T2, and that J is in the superclass chain of every class in both T1 and
T2. Let C1 be the bottom of T1; and let C2 be the bottom of T2. Suppose C is a class whose
direct superclasses are C1 and C2 in that order, then the class precedence list for C starts with C
and is followed by all classes in T1 except J . All the classes of T2 are next. The class J and its
superclasses appear last.

4.3.5.2 Examples of Class Precedence List Determination

This example determines a class precedence list for the class pie. The following classes are
defined:

(defclass pie (apple cinnamon) ())

(defclass apple (fruit) ())

(defclass cinnamon (spice) ())

(defclass fruit (food) ())

(defclass spice (food) ())

(defclass food () ())

The set Spie = {pie, apple, cinnamon, fruit, spice, food, standard-object, t}. The set R =
{(pie, apple), (apple, cinnamon), (apple, fruit), (cinnamon, spice),

(fruit, food), (spice, food), (food, standard-object), (standard-object, t)}.
The class pie is not preceded by anything, so it comes first; the result so far is (pie). Remove
pie from S and pairs mentioning pie from R to get S = {apple, cinnamon, fruit, spice, food,

standard-object, t} and R = {(apple, cinnamon), (apple, fruit), (cinnamon, spice),

(fruit, food), (spice, food), (food, standard-object), (standard-object, t)}.
The class apple is not preceded by anything, so it is next; the result is (pie apple). Removing
apple and the relevant pairs results in S = {cinnamon, fruit, spice, food, standard-object, t}
and R = {(cinnamon, spice), (fruit, food), (spice, food), (food, standard-object),

(standard-object, t)}.
The classes cinnamon and fruit are not preceded by anything, so the one with a direct subclass
rightmost in the class precedence list computed so far goes next. The class apple is a direct

Types and Classes 4–13

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

subclass of fruit, and the class pie is a direct subclass of cinnamon. Because apple appears to
the right of pie in the class precedence list , fruit goes next, and the result so far is (pie apple

fruit). S = {cinnamon, spice, food, standard-object, t}; R = {(cinnamon, spice), (spice,

food),

(food, standard-object), (standard-object, t)}.
The class cinnamon is next, giving the result so far as (pie apple fruit cinnamon). At this
point S = {spice, food, standard-object, t}; R = {(spice, food), (food, standard-object),

(standard-object, t)}.
The classes spice, food, standard-object, and t are added in that order, and the class precedence
list is (pie apple fruit cinnamon spice food standard-object t).

It is possible to write a set of class definitions that cannot be ordered. For example:

(defclass new-class (fruit apple) ())

(defclass apple (fruit) ())

The class fruit must precede apple because the local ordering of superclasses must be preserved.
The class apple must precede fruit because a class always precedes its own superclasses. When
this situation occurs, an error is signaled, as happens here when the system tries to compute the
class precedence list of new-class.

The following might appear to be a conflicting set of definitions:

(defclass pie (apple cinnamon) ())

(defclass pastry (cinnamon apple) ())

(defclass apple () ())

(defclass cinnamon () ())

The class precedence list for pie is (pie apple cinnamon standard-object t).

The class precedence list for pastry is (pastry cinnamon apple standard-object t).

It is not a problem for apple to precede cinnamon in the ordering of the superclasses of pie but not
in the ordering for pastry. However, it is not possible to build a new class that has both pie and
pastry as superclasses.

4.3.6 Redefining Classes
A class that is a direct instance of standard-class can be redefined if the new class is also a direct
instance of standard-class. Redefining a class modifies the existing class object to reflect the new
class definition; it does not create a new class object for the class. Any method object created by
a :reader, :writer, or :accessor option specified by the old defclass form is removed from the
corresponding generic function. Methods specified by the new defclass form are added.

4–14 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

When the class C is redefined, changes are propagated to its instances and to instances of any of
its subclasses. Updating such an instance occurs at an implementation-dependent time, but no
later than the next time a slot of that instance is read or written. Updating an instance does not
change its identity as defined by the function eq. The updating process may change the slots of
that particular instance, but it does not create a new instance. Whether updating an instance
consumes storage is implementation-dependent .

Note that redefining a class may cause slots to be added or deleted. If a class is redefined in a
way that changes the set of local slots accessible in instances, the instances are updated. It is
implementation-dependent whether instances are updated if a class is redefined in a way that
does not change the set of local slots accessible in instances.

The value of a slot that is specified as shared both in the old class and in the new class is re-
tained. If such a shared slot was unbound in the old class, it is unbound in the new class. Slots
that were local in the old class and that are shared in the new class are initialized. Newly added
shared slots are initialized.

Each newly added shared slot is set to the result of evaluating the captured initialization form for
the slot that was specified in the defclass form for the new class. If there was no initialization
form, the slot is unbound.

If a class is redefined in such a way that the set of local slots accessible in an instance of the class
is changed, a two-step process of updating the instances of the class takes place. The process
may be explicitly started by invoking the generic function make-instances-obsolete. This two-
step process can happen in other circumstances in some implementations. For example, in some
implementations this two-step process is triggered if the order of slots in storage is changed.

The first step modifies the structure of the instance by adding new local slots and discarding
local slots that are not defined in the new version of the class. The second step initializes the
newly-added local slots and performs any other user-defined actions. These two steps are further
specified in the next two sections.

4.3.6.1 Modifying the Structure of Instances

The first step modifies the structure of instances of the redefined class to conform to its new
class definition. Local slots specified by the new class definition that are not specified as either
local or shared by the old class are added, and slots not specified as either local or shared by the
new class definition that are specified as local by the old class are discarded. The names of these
added and discarded slots are passed as arguments to update-instance-for-redefined-class as
described in the next section.

The values of local slots specified by both the new and old classes are retained. If such a local slot
was unbound, it remains unbound.

The value of a slot that is specified as shared in the old class and as local in the new class is
retained. If such a shared slot was unbound, the local slot is unbound.

Types and Classes 4–15

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

4.3.6.2 Initializing Newly Added Local Slots

The second step initializes the newly added local slots and performs any other user-defined
actions. This step is implemented by the generic function update-instance-for-redefined-class,
which is called after completion of the first step of modifying the structure of the instance.

The generic function update-instance-for-redefined-class takes four required arguments: the
instance being updated after it has undergone the first step, a list of the names of local slots that
were added, a list of the names of local slots that were discarded, and a property list containing
the slot names and values of slots that were discarded and had values. Included among the
discarded slots are slots that were local in the old class and that are shared in the new class.

The generic function update-instance-for-redefined-class also takes any number of initialization
arguments. When it is called by the system to update an instance whose class has been redefined,
no initialization arguments are provided.

There is a system-supplied primary method for update-instance-for-redefined-class whose
parameter specializer for its instance argument is the class standard-object. First this method
checks the validity of initialization arguments and signals an error if an initialization argument
is supplied that is not declared as valid. (For more information, see Section 7.1.2 (Declaring
the Validity of Initialization Arguments).) Then it calls the generic function shared-initialize
with the following arguments: the instance, the list of names of the newly added slots, and the
initialization arguments it received.

4.3.6.3 Customizing Class Redefinition

Methods for update-instance-for-redefined-class may be defined to specify actions to be taken
when an instance is updated. If only after methods for update-instance-for-redefined-class
are defined, they will be run after the system-supplied primary method for initialization and
therefore will not interfere with the default behavior of update-instance-for-redefined-class.
Because no initialization arguments are passed to update-instance-for-redefined-class when
it is called by the system, the initialization forms for slots that are filled by before methods for
update-instance-for-redefined-class will not be evaluated by shared-initialize.

Methods for shared-initialize may be defined to customize class redefinition. For more informa-
tion, see Section 7.1.5 (Shared-Initialize).

4.3.7 Integrating Types and Classes
The object system maps the space of classes into the space of types. Every class that has a
proper name has a corresponding type with the same name.

The proper name of every class is a valid type specifier . In addition, every class object is a valid
type specifier . Thus the expression (typep object class) evaluates to true if the class of object
is class itself or a subclass of class. The evaluation of the expression (subtypep class1 class2)

returns the values true and true if class1 is a subclass of class2 or if they are the same class;
otherwise it returns the values false and true. If I is an instance of some class C named S and

4–16 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

C is an instance of standard-class, the evaluation of the expression (type-of I) returns S if S is
the proper name of C; otherwise, it returns C.

Because the names of classes and class objects are type specifiers, they may be used in the special
form the and in type declarations.

Many but not all of the predefined type specifiers have a corresponding class with the same
proper name as the type. These type specifiers are listed in Figure 4–8. For example, the type
array has a corresponding class named array. No type specifier that is a list, such as (vector

double-float 100), has a corresponding class. The operator deftype does not create any classes.

Each class that corresponds to a predefined type specifier can be implemented in one of three
ways, at the discretion of each implementation. It can be a standard class, a structure class, or a
system class.

A built-in class is one whose generalized instances have restricted capabilities or special repre-
sentations. Attempting to use defclass to define subclasses of a built-in-class signals an error.
Calling make-instance to create a generalized instance of a built-in class signals an error. Calling
slot-value on a generalized instance of a built-in class signals an error. Redefining a built-in class
or using change-class to change the class of an object to or from a built-in class signals an error.
However, built-in classes can be used as parameter specializers in methods.

It is possible to determine whether a class is a built-in class by checking the metaclass. A stan-
dard class is an instance of the class standard-class, a built-in class is an instance of the class
built-in-class, and a structure class is an instance of the class structure-class.

Each structure type created by defstruct without using the :type option has a corresponding
class. This class is a generalized instance of the class structure-class. The :include option of
defstruct creates a direct subclass of the class that corresponds to the included structure type.

It is implementation-dependent whether slots are involved in the operation of functions defined
in this specification on instances of classes defined in this specification, except when slots are
explicitly defined by this specification.

If in a particular implementation a class defined in this specification has slots that are not defined
by this specfication, the names of these slots must not be external symbols of packages defined in
this specification nor otherwise accessible in the CL-USER package.

The purpose of specifying that many of the standard type specifiers have a corresponding class is
to enable users to write methods that discriminate on these types. Method selection requires that
a class precedence list can be determined for each class.

The hierarchical relationships among the type specifiers are mirrored by relationships among the
classes corresponding to those types.

Figure 4–8 lists the set of classes that correspond to predefined type specifiers.

Types and Classes 4–17

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

arithmetic-error generic-function simple-error
array hash-table simple-type-error
bit-vector integer simple-warning
broadcast-stream list standard-class
built-in-class logical-pathname standard-generic-function
cell-error method standard-method
character method-combination standard-object
class null storage-condition
complex number stream
concatenated-stream package stream-error
condition package-error string
cons parse-error string-stream
control-error pathname structure-class
division-by-zero print-not-readable structure-object
echo-stream program-error style-warning
end-of-file random-state symbol
error ratio synonym-stream
file-error rational t
file-stream reader-error two-way-stream
float readtable type-error
floating-point-inexact real unbound-slot
floating-point-invalid-operation restart unbound-variable
floating-point-overflow sequence undefined-function
floating-point-underflow serious-condition vector
function simple-condition warning

Figure 4–8. Classes that correspond to pre-defined type specifiers

The class precedence list information specified in the entries for each of these classes are those
that are required by the object system.

Individual implementations may be extended to define other type specifiers to have a correspond-
ing class. Individual implementations may be extended to add other subclass relationships and to
add other elements to the class precedence lists as long as they do not violate the type relation-
ships and disjointness requirements specified by this standard. A standard class defined with no
direct superclasses is guaranteed to be disjoint from all of the classes in the table, except for the
class named t.

4–18 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

nil Type

Supertypes:
all types

Description:
The type nil contains no objects and so is also called the empty type. The type nil is a subtype of
every type. No object is of type nil.

Notes:
The type containing the object nil is the type null, not the type nil.

boolean Type

Supertypes:
boolean, symbol, t

Description:
The type boolean contains the symbols t and nil, which represent true and false, respectively.

See Also:
t (constant variable), nil (constant variable), if , not, complement

Notes:
Conditional operations, such as if , permit the use of generalized booleans, not just booleans;
any non-nil value, not just t, counts as true for a generalized boolean. However, as a matter of
convention, the symbol t is considered the canonical value to use even for a generalized boolean
when no better choice presents itself.

Types and Classes 4–19

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

function

function System Class

Class Precedence List:
function, t

Description:
A function is an object that represents code to be executed when an appropriate number of
arguments is supplied. A function is produced by the function special form, the function coerce,
or the function compile. A function can be directly invoked by using it as the first argument to
funcall, apply, or multiple-value-call.

Compound Type Specifier Kind:
Specializing.

Compound Type Specifier Syntax:
(function [arg-typespec [value-typespec]])

arg-typespec::=({typespec}*
[&optional {typespec}*]
[&rest typespec]

[&key {(keyword typespec)}*])
Compound Type Specifier Arguments:

typespec—a type specifier .

value-typespec—a type specifier .

Compound Type Specifier Description:
The list form of the function type-specifier can be used only for declaration and not for discrim-
ination. Every element of this type is a function that accepts arguments of the types specified
by the argj-types and returns values that are members of the types specified by value-type. The
&optional, &rest, &key, and &allow-other-keys markers can appear in the list of argument
types. The type specifier provided with &rest is the type of each actual argument, not the type of
the corresponding variable.

The &key parameters should be supplied as lists of the form (keyword type). The keyword
must be a valid keyword-name symbol as must be supplied in the actual arguments of a call.
This is usually a symbol in the KEYWORD package but can be any symbol . When &key is given
in a function type specifier lambda list , the keyword parameters given are exhaustive unless
&allow-other-keys is also present. &allow-other-keys is an indication that other keyword
arguments might actually be supplied and, if supplied, can be used. For example, the type of the
function make-list could be declared as follows:

4–20 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(function ((integer 0) &key (:initial-element t)) list)

The value-type can be a values type specifier in order to indicate the types of multiple values.

Consider a declaration of the following form:

(ftype (function (arg0-type arg1-type ...) val-type) f))

Any form (f arg0 arg1 ...) within the scope of that declaration is equivalent to the following:

(the val-type (f (the arg0-type arg0) (the arg1-type arg1) ...))

That is, the consequences are undefined if any of the arguments are not of the specified types or
the result is not of the specified type. In particular, if any argument is not of the correct type, the
result is not guaranteed to be of the specified type.

Thus, an ftype declaration for a function describes calls to the function, not the actual definition
of the function.

Consider a declaration of the following form:

(type (function (arg0-type arg1-type ...) val-type) fn-valued-variable)

This declaration has the interpretation that, within the scope of the declaration, the consequences
are unspecified if the value of fn-valued-variable is called with arguments not of the specified
types; the value resulting from a valid call will be of type val-type.

As with variable type declarations, nested declarations imply intersections of types, as follows:

• Consider the following two declarations of ftype:

(ftype (function (arg0-type1 arg1-type1 ...) val-type1) f))

and

(ftype (function (arg0-type2 arg1-type2 ...) val-type2) f))

If both these declarations are in effect, then within the shared scope of the declarations,
calls to f can be treated as if f were declared as follows:

(ftype (function ((and arg0-type1 arg0-type2) (and arg1-type1 arg1-type2 ...) ...)

(and val-type1 val-type2))

f))

It is permitted to ignore one or all of the ftype declarations in force.

• If two (or more) type declarations are in effect for a variable, and they are both function

declarations, the declarations combine similarly.

Types and Classes 4–21

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

compiled-function Type

Supertypes:
compiled-function, function, t

Description:
Any function may be considered by an implementation to be a a compiled function if it contains
no references to macros that must be expanded at run time, and it contains no unresolved
references to load time values. See Section 3.2.2 (Compilation Semantics).

Functions whose definitions appear lexically within a file that has been compiled with
compile-file and then loaded with load are of type compiled-function. Functions produced
by the compile function are of type compiled-function. Other functions might also be of type
compiled-function.

generic-function System Class

Class Precedence List:
generic-function, function, t

Description:
A generic function is a function whose behavior depends on the classes or identities of the
arguments supplied to it. A generic function object contains a set of methods, a lambda list , a
method combination type, and other information. The methods define the class-specific behavior
and operations of the generic function; a method is said to specialize a generic function. When
invoked, a generic function executes a subset of its methods based on the classes or identities of
its arguments.

A generic function can be used in the same ways that an ordinary function can be used; specif-
ically, a generic function can be used as an argument to funcall and apply, and can be given a
global or a local name.

4–22 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

standard-generic-function System Class

Class Precedence List:
standard-generic-function, generic-function, function, t

Description:
The class standard-generic-function is the default class of generic functions established by
defmethod, ensure-generic-function, defgeneric, and defclass forms.

class System Class

Class Precedence List:
class, standard-object, t

Description:
The type class represents objects that determine the structure and behavior of their instances.
Associated with an object of type class is information describing its place in the directed acyclic
graph of classes, its slots, and its options.

built-in-class System Class

Class Precedence List:
built-in-class, class, standard-object, t

Description:
A built-in class is a class whose instances have restricted capabilities or special representations.
Attempting to use defclass to define subclasses of a built-in class signals an error of type error.
Calling make-instance to create an instance of a built-in class signals an error of type error.
Calling slot-value on an instance of a built-in class signals an error of type error. Redefining a
built-in class or using change-class to change the class of an instance to or from a built-in class
signals an error of type error. However, built-in classes can be used as parameter specializers in
methods.

Types and Classes 4–23

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

structure-class System Class

Class Precedence List:
structure-class, class, standard-object, t

Description:
All classes defined by means of defstruct are instances of the class structure-class.

standard-class System Class

Class Precedence List:
standard-class, class, standard-object, t

Description:
The class standard-class is the default class of classes defined by defclass.

method System Class

Class Precedence List:
method, t

Description:
A method is an object that represents a modular part of the behavior of a generic function.

A method contains code to implement the method ’s behavior, a sequence of parameter specializers
that specify when the given method is applicable, and a sequence of qualifiers that is used by
the method combination facility to distinguish among methods. Each required parameter of
each method has an associated parameter specializer , and the method will be invoked only on
arguments that satisfy its parameter specializers.

The method combination facility controls the selection of methods, the order in which they are
run, and the values that are returned by the generic function. The object system offers a default
method combination type and provides a facility for declaring new types of method combination.

See Also:
Section 7.6 (Generic Functions and Methods)

4–24 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

standard-method System Class

Class Precedence List:
standard-method, method, standard-object, t

Description:
The class standard-method is the default class of methods defined by the defmethod and
defgeneric forms.

structure-object Class

Class Precedence List:
structure-object, t

Description:
The class structure-object is an instance of structure-class and is a superclass of every class
that is an instance of structure-class except itself, and is a superclass of every class that is
defined by defstruct.

See Also:
defstruct, Section 2.4.8.13 (Sharpsign S), Section 22.1.3.12 (Printing Structures)

standard-object Class

Class Precedence List:
standard-object, t

Description:
The class standard-object is an instance of standard-class and is a superclass of every class that
is an instance of standard-class except itself.

Types and Classes 4–25

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

method-combination System Class

Class Precedence List:
method-combination, t

Description:
Every method combination object is an indirect instance of the class method-combination. A
method combination object represents the information about the method combination being used
by a generic function. A method combination object contains information about both the type of
method combination and the arguments being used with that type.

t System Class

Class Precedence List:
t

Description:
The set of all objects. The type t is a supertype of every type, including itself. Every object is of
type t.

satisfies Type Specifier

Compound Type Specifier Kind:
Predicating.

Compound Type Specifier Syntax:
(satisfies predicate-name)

Compound Type Specifier Arguments:
predicate-name—a symbol .

Compound Type Specifier Description:
This denotes the set of all objects that satisfy the predicate predicate-name, which must be a
symbol whose global function definition is a one-argument predicate. A name is required for
predicate-name; lambda expressions are not allowed. For example, the type specifier (and integer

(satisfies evenp)) denotes the set of all even integers. The form (typep x ’(satisfies p)) is
equivalent to (if (p x) t nil).

4–26 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

The argument is required. The symbol * can be the argument, but it denotes itself (the symbol
*), and does not represent an unspecified value.

The symbol satisfies is not valid as a type specifier .

member Type Specifier

Compound Type Specifier Kind:
Combining.

Compound Type Specifier Syntax:
(member {object}*)

Compound Type Specifier Arguments:
object—an object .

Compound Type Specifier Description:
This denotes the set containing the named objects. An object is of this type if and only if it is eql
to one of the specified objects.

The type specifiers (member) and nil are equivalent. * can be among the objects, but if so it
denotes itself (the symbol *) and does not represent an unspecified value. The symbol member
is not valid as a type specifier ; and, specifically, it is not an abbreviation for either (member) or
(member *).

See Also:
the type eql

not Type Specifier

Compound Type Specifier Kind:
Combining.

Compound Type Specifier Syntax:
(not typespec)

Compound Type Specifier Arguments:
typespec—a type specifier .

Types and Classes 4–27

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Compound Type Specifier Description:
This denotes the set of all objects that are not of the type typespec .

The argument is required, and cannot be *.

The symbol not is not valid as a type specifier .

and Type Specifier

Compound Type Specifier Kind:
Combining.

Compound Type Specifier Syntax:
(and {typespec}*)

Compound Type Specifier Arguments:
typespec—a type specifier .

Compound Type Specifier Description:
This denotes the set of all objects of the type determined by the intersection of the typespecs.

* is not permitted as an argument.

The type specifiers (and) and t are equivalent. The symbol and is not valid as a type specifier ,
and, specifically, it is not an abbreviation for (and).

or Type Specifier

Compound Type Specifier Kind:
Combining.

Compound Type Specifier Syntax:
(or {typespec}*)

Compound Type Specifier Arguments:
typespec—a type specifier .

4–28 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Compound Type Specifier Description:
This denotes the set of all objects of the type determined by the union of the typespecs. For
example, the type list by definition is the same as (or null cons). Also, the value returned by
position is an object of type (or null (integer 0 *)); i.e., either nil or a non-negative integer .

* is not permitted as an argument.

The type specifiers (or) and nil are equivalent. The symbol or is not valid as a type specifier ; and,
specifically, it is not an abbreviation for (or).

values Type Specifier

Compound Type Specifier Kind:
Specializing.

Compound Type Specifier Syntax:
(values ↓value-typespec)

value-typespec::={typespec}* [&optional {typespec}*] [&rest typespec] [&allow-other-keys]

Compound Type Specifier Arguments:
typespec—a type specifier .

Compound Type Specifier Description:
This type specifier can be used only as the value-type in a function type specifier or a the special
form. It is used to specify individual types when multiple values are involved. The &optional
and &rest markers can appear in the value-type list; they indicate the parameter list of a function
that, when given to multiple-value-call along with the values, would correctly receive those
values.

The symbol * may not be among the value-types.

The symbol values is not valid as a type specifier ; and, specifically, it is not an abbreviation for
(values).

Types and Classes 4–29

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

eql Type Specifier

Compound Type Specifier Kind:
Combining.

Compound Type Specifier Syntax:
(eql object)

Compound Type Specifier Arguments:
object—an object .

Compound Type Specifier Description:
Represents the type of all x for which (eql object x) is true.

The argument object is required. The object can be *, but if so it denotes itself (the symbol
*) and does not represent an unspecified value. The symbol eql is not valid as an atomic type
specifier .

coerce Function

Syntax:
coerce object result-type → result

Arguments and Values:
object—an object .

result-type—a type specifier .

result—an object , of type result-type except in situations described in Section 12.1.5.3 (Rule of
Canonical Representation for Complex Rationals).

Description:
Coerces the object to type result-type.

If object is already of type result-type, the object itself is returned, regardless of whether it would
have been possible in general to coerce an object of some other type to result-type.

Otherwise, the object is coerced to type result-type according to the following rules:

4–30 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

coerce

sequence

If the result-type is a recognizable subtype of list, and the object is a sequence, then the
result is a list that has the same elements as object.

If the result-type is a recognizable subtype of vector, and the object is a sequence, then
the result is a vector that has the same elements as object. If result-type is a specialized
type, the result has an actual array element type that is the result of upgrading the
element type part of that specialized type. If no element type is specified, the element
type defaults to t. If the implementation cannot determine the element type, an error is
signaled.

character

If the result-type is character and the object is a character designator , the result is the
character it denotes.

complex

If the result-type is complex and the object is a real , then the result is obtained by
constructing a complex whose real part is the object and whose imaginary part is the
result of coercing an integer zero to the type of the object (using coerce). (If the real part
is a rational , however, then the result must be represented as a rational rather than a
complex ; see Section 12.1.5.3 (Rule of Canonical Representation for Complex Rationals).
So, for example, (coerce 3 ’complex) is permissible, but will return 3, which is not a
complex .)

float

If the result-type is any of float, short-float, single-float, double-float, long-float, and
the object is a real , then the result is a float of type result-type which is equal in sign and
magnitude to the object to whatever degree of representational precision is permitted by
that float representation. (If the result-type is float and object is not already a float , then
the result is a single float .)

function

If the result-type is function, and object is any function name that is fbound but that is
globally defined neither as a macro name nor as a special operator , then the result is the
functional value of object.

If the result-type is function, and object is a lambda expression, then the result is a
closure of object in the null lexical environment .

t

Any object can be coerced to an object of type t. In this case, the object is simply re-
turned.

Types and Classes 4–31

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:

(coerce ’(a b c) ’vector) → #(A B C)

(coerce ’a ’character) → #\A

(coerce 4.56 ’complex) → #C(4.56 0.0)

(coerce 4.5s0 ’complex) → #C(4.5s0 0.0s0)

(coerce 7/2 ’complex) → 7/2

(coerce 0 ’short-float) → 0.0s0

(coerce 3.5L0 ’float) → 3.5L0

(coerce 7/2 ’float) → 3.5

(coerce (cons 1 2) t) → (1 . 2)

All the following forms should signal an error:

(coerce ’(a b c) ’(vector * 4))

(coerce #(a b c) ’(vector * 4))

(coerce ’(a b c) ’(vector * 2))

(coerce #(a b c) ’(vector * 2))

(coerce "foo" ’(string 2))

(coerce #(#\a #\b #\c) ’(string 2))

(coerce ’(0 1) ’(simple-bit-vector 3))

Exceptional Situations:
If a coercion is not possible, an error of type type-error is signaled.

(coerce x ’nil) always signals an error of type type-error.

An error of type error is signaled if the result-type is function but object is a symbol that is not
fbound or if the symbol names a macro or a special operator .

An error of type type-error should be signaled if result-type specifies the number of elements and
object is of a different length.

See Also:
rational, floor, char-code, char-int

Notes:
Coercions from floats to rationals and from ratios to integers are not provided because of round-
ing problems.

(coerce x ’t) ≡ (identity x) ≡ x

4–32 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

deftype

deftype Macro

Syntax:
deftype name lambda-list [[{declaration}* | documentation]] {form}* → name

Arguments and Values:
name—a symbol .

lambda-list—a deftype lambda list .

declaration—a declare expression; not evaluated.

documentation—a string ; not evaluated.

form—a form.

Description:
deftype defines a derived type specifier named name.

The meaning of the new type specifier is given in terms of a function which expands the type
specifier into another type specifier , which itself will be expanded if it contains references to
another derived type specifier .

The newly defined type specifier may be referenced as a list of the form (name arg1 arg2 ...).
The number of arguments must be appropriate to the lambda-list. If the new type specifier takes
no arguments, or if all of its arguments are optional, the type specifier may be used as an atomic
type specifier .

The argument expressions to the type specifier , arg1 . . . argn, are not evaluated . Instead, these
literal objects become the objects to which corresponding parameters become bound .

The body of the deftype form (but not the lambda-list) is implicitly enclosed in a block named
name, and is evaluated as an implicit progn, returning a new type specifier .

The lexical environment of the body is the one which was current at the time the deftype form
was evaluated, augmented by the variables in the lambda-list.

Recursive expansion of the type specifier returned as the expansion must terminate, including the
expansion of type specifiers which are nested within the expansion.

The consequences are undefined if the result of fully expanding a type specifier contains any
circular structure, except within the objects referred to by member and eql type specifiers.

Documentation is attached to name as a documentation string of kind type.

If a deftype form appears as a top level form, the compiler must ensure that the name is recog-
nized in subsequent type declarations. The programmer must ensure that the body of a deftype
form can be evaluated at compile time if the name is referenced in subsequent type declarations.

Types and Classes 4–33

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

If the expansion of a type specifier is not defined fully at compile time (perhaps because it ex-
pands into an unknown type specifier or a satisfies of a named function that isn’t defined in
the compile-time environment), an implementation may ignore any references to this type in
declarations and/or signal a warning.

Examples:

(defun equidimensional (a)

(or (< (array-rank a) 2)

(apply #’= (array-dimensions a)))) → EQUIDIMENSIONAL

(deftype square-matrix (&optional type size)

‘(and (array ,type (,size ,size))

(satisfies equidimensional))) → SQUARE-MATRIX

See Also:
declare, defmacro, documentation, Section 4.2.3 (Type Specifiers), Section 3.4.11 (Syntactic
Interaction of Documentation Strings and Declarations)

subtypep Function

Syntax:
subtypep type-1 type-2 &optional environment → subtype-p, valid-p

Arguments and Values:
type-1—a type specifier .

type-2—a type specifier .

environment—an environment object . The default is nil, denoting the null lexical environment
and the current global environment .

subtype-p—a generalized boolean.

valid-p—a generalized boolean.

Description:
If type-1 is a recognizable subtype of type-2 , the first value is true. Otherwise, the first value is
false, indicating that either type-1 is not a subtype of type-2 , or else type-1 is a subtype of type-2
but is not a recognizable subtype.

A second value is also returned indicating the ‘certainty’ of the first value. If this value is true,
then the first value is an accurate indication of the subtype relationship. (The second value is
always true when the first value is true.)

4–34 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

subtypep

Figure 4–9 summarizes the possible combinations of values that might result.

Value 1 Value 2 Meaning
true true type-1 is definitely a subtype of type-2 .
false true type-1 is definitely not a subtype of type-2 .
false false subtypep could not determine the relationship,

so type-1 might or might not be a subtype of type-2 .

Figure 4–9. Result possibilities for subtypep

subtypep is permitted to return the values false and false only when at least one argument in-
volves one of these type specifiers: and, eql, the list form of function, member, not, or, satisfies,
or values. (A type specifier ‘involves’ such a symbol if, after being type expanded , it contains
that symbol in a position that would call for its meaning as a type specifier to be used.) One
consequence of this is that if neither type-1 nor type-2 involves any of these type specifiers, then
subtypep is obliged to determine the relationship accurately. In particular, subtypep returns the
values true and true if the arguments are equal and do not involve any of these type specifiers.

subtypep never returns a second value of nil when both type-1 and type-2 involve only the names
in Figure 4–2, or names of types defined by defstruct, define-condition, or defclass, or derived
types that expand into only those names. While type specifiers listed in Figure 4–2 and names
of defclass and defstruct can in some cases be implemented as derived types, subtypep regards
them as primitive.

The relationships between types reflected by subtypep are those specific to the particular im-
plementation. For example, if an implementation supports only a single type of floating-point
numbers, in that implementation (subtypep ’float ’long-float) returns the values true and true
(since the two types are identical).

For all T1 and T2 other than *, (array T1) and (array T2) are two different type spec-
ifiers that always refer to the same sets of things if and only if they refer to arrays of ex-
actly the same specialized representation, i.e., if (upgraded-array-element-type ’T1) and
(upgraded-array-element-type ’T2) return two different type specifiers that always refer
to the same sets of objects. This is another way of saying that ‘(array type-specifier) and
‘(array ,(upgraded-array-element-type ’type-specifier)) refer to the same set of specialized array
representations. For all T1 and T2 other than *, the intersection of (array T1) and (array T2)
is the empty set if and only if they refer to arrays of different, distinct specialized representations.

Therefore,

(subtypep ’(array T1) ’(array T2)) → true

if and only if

(upgraded-array-element-type ’T1) and

(upgraded-array-element-type ’T2)

Types and Classes 4–35

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

subtypep

return two different type specifiers that always refer to the same sets of objects.

For all type-specifiers T1 and T2 other than *,

(subtypep ’(complex T1) ’(complex T2)) → true, true

if:

1. T1 is a subtype of T2, or
2. (upgraded-complex-part-type ’T1) and (upgraded-complex-part-type ’T2) return

two different type specifiers that always refer to the same sets of objects; in this case,
(complex T1) and (complex T2) both refer to the same specialized representation.

The values are false and true otherwise.

The form

(subtypep ’(complex single-float) ’(complex float))

must return true in all implementations, but

(subtypep ’(array single-float) ’(array float))

returns true only in implementations that do not have a specialized array representation for
single floats distinct from that for other floats.

Examples:

(subtypep ’compiled-function ’function) → true, true
(subtypep ’null ’list) → true, true
(subtypep ’null ’symbol) → true, true
(subtypep ’integer ’string) → false, true
(subtypep ’(satisfies dummy) nil) → false, implementation-dependent
(subtypep ’(integer 1 3) ’(integer 1 4)) → true, true
(subtypep ’(integer (0) (0)) ’nil) → true, true
(subtypep ’nil ’(integer (0) (0))) → true, true
(subtypep ’(integer (0) (0)) ’(member)) → true, true ;or false, false
(subtypep ’(member) ’nil) → true, true ;or false, false
(subtypep ’nil ’(member)) → true, true ;or false, false

Let <aet-x> and <aet-y> be two distinct type specifiers that do not always refer to the same sets
of objects in a given implementation, but for which make-array, will return an object of the same
array type.

Thus, in each case,

(subtypep (array-element-type (make-array 0 :element-type ’<aet-x>))

(array-element-type (make-array 0 :element-type ’<aet-y>)))

→ true, true

4–36 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(subtypep (array-element-type (make-array 0 :element-type ’<aet-y>))

(array-element-type (make-array 0 :element-type ’<aet-x>)))

→ true, true

If (array <aet-x>) and (array <aet-y>) are different names for exactly the same set of objects,
these names should always refer to the same sets of objects. That implies that the following set of
tests are also true:

(subtypep ’(array <aet-x>) ’(array <aet-y>)) → true, true
(subtypep ’(array <aet-y>) ’(array <aet-x>)) → true, true

See Also:
Section 4.2 (Types)

Notes:
The small differences between the subtypep specification for the array and complex types are
necessary because there is no creation function for complexes which allows the specification of the
resultant part type independently of the actual types of the parts. Thus in the case of the type
complex, the actual type of the parts is referred to, although a number can be a member of more
than one type. For example, 17 is of type (mod 18) as well as type (mod 256) and type integer; and
2.3f5 is of type single-float as well as type float.

type-of Function

Syntax:
type-of object → typespec

Arguments and Values:
object—an object .

typespec—a type specifier .

Description:
Returns a type specifier , typespec , for a type that has the object as an element . The typespec
satisfies the following:

1. For any object that is an element of some built-in type:

a. the type returned is a recognizable subtype of that built-in type.

b. the type returned does not involve and, eql, member, not, or, satisfies, or values.

Types and Classes 4–37

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

type-of

2. For all objects, (typep object (type-of object)) returns true. Implicit in this is that type
specifiers which are not valid for use with typep, such as the list form of the function
type specifier , are never returned by type-of .

3. The type returned by type-of is always a recognizable subtype of the class returned by
class-of . That is,

(subtypep (type-of object) (class-of object)) → true, true

4. For objects of metaclass structure-class or standard-class, and for conditions, type-of
returns the proper name of the class returned by class-of if it has a proper name, and
otherwise returns the class itself. In particular, for objects created by the constructor
function of a structure defined with defstruct without a :type option, type-of returns the
structure name; and for objects created by make-condition, the typespec is the name of
the condition type.

5. For each of the types short-float, single-float, double-float, or long-float of which the
object is an element , the typespec is a recognizable subtype of that type.

Examples:

(type-of ’a) → SYMBOL

(type-of ’(1 . 2))

→ CONS
or→ (CONS FIXNUM FIXNUM)

(type-of #c(0 1))

→ COMPLEX
or→ (COMPLEX INTEGER)

(defstruct temp-struct x y z) → TEMP-STRUCT

(type-of (make-temp-struct)) → TEMP-STRUCT

(type-of "abc")

→ STRING
or→ (STRING 3)

(subtypep (type-of "abc") ’string) → true, true
(type-of (expt 2 40))

→ BIGNUM
or→ INTEGER
or→ (INTEGER 1099511627776 1099511627776)
or→ SYSTEM::TWO-WORD-BIGNUM
or→ FIXNUM

(subtypep (type-of 112312) ’integer) → true, true
(defvar *foo* (make-array 5 :element-type t)) → *FOO*

(class-name (class-of *foo*)) → VECTOR

4–38 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(type-of *foo*)

→ VECTOR
or→ (VECTOR T 5)

See Also:
array-element-type, class-of , defstruct, typecase, typep, Section 4.2 (Types)

Notes:
Implementors are encouraged to arrange for type-of to return a portable value.

typep Function

Syntax:
typep object type-specifier &optional environment → generalized-boolean

Arguments and Values:
object—an object .

type-specifier—any type specifier except values, or a type specifier list whose first element is either
function or values.

environment—an environment object . The default is nil, denoting the null lexical environment
and the and current global environment .

generalized-boolean—a generalized boolean.

Description:
Returns true if object is of the type specified by type-specifier ; otherwise, returns false.

A type-specifier of the form (satisfies fn) is handled by applying the function fn to object.

(typep object ’(array type-specifier)), where type-specifier is not *, returns true if and only
if object is an array that could be the result of supplying type-specifier as the :element-type

argument to make-array. (array *) refers to all arrays regardless of element type,
while (array type-specifier) refers only to those arrays that can result from giving type-
specifier as the :element-type argument to make-array. A similar interpretation applies to
(simple-array type-specifier) and (vector type-specifier). See Section 15.1.2.1 (Array Upgrading).

(typep object ’(complex type-specifier)) returns true for all complex numbers that can result
from giving numbers of type type-specifier to the function complex, plus all other complex
numbers of the same specialized representation. Both the real and the imaginary parts of any
such complex number must satisfy:

(typep realpart ’type-specifier)

Types and Classes 4–39

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

typep

(typep imagpart ’type-specifier)

See the function upgraded-complex-part-type.

Examples:

(typep 12 ’integer) → true
(typep (1+ most-positive-fixnum) ’fixnum) → false
(typep nil t) → true
(typep nil nil) → false
(typep 1 ’(mod 2)) → true
(typep #c(1 1) ’(complex (eql 1))) → true
;; To understand this next example, you might need to refer to

;; Section 12.1.5.3 (Rule of Canonical Representation for Complex Rationals).

(typep #c(0 0) ’(complex (eql 0))) → false

Let Ax and Ay be two type specifiers that denote different types, but for which

(upgraded-array-element-type ’Ax)

and

(upgraded-array-element-type ’Ay)

denote the same type. Notice that

(typep (make-array 0 :element-type ’Ax) ’(array Ax)) → true
(typep (make-array 0 :element-type ’Ay) ’(array Ay)) → true
(typep (make-array 0 :element-type ’Ax) ’(array Ay)) → true
(typep (make-array 0 :element-type ’Ay) ’(array Ax)) → true

Exceptional Situations:
An error of type error is signaled if type-specifier is values, or a type specifier list whose first
element is either function or values.

The consequences are undefined if the type-specifier is not a type specifier .

See Also:
type-of , upgraded-array-element-type, upgraded-complex-part-type, Section 4.2.3 (Type
Specifiers)

Notes:
Implementations are encouraged to recognize and optimize the case of (typep x (the class y)),
since it does not involve any need for expansion of deftype information at runtime.

4–40 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

type-error Condition Type

Class Precedence List:
type-error, error, serious-condition, condition, t

Description:
The type type-error represents a situation in which an object is not of the expected type.
The “offending datum” and “expected type” are initialized by the initialization arguments
named :datum and :expected-type to make-condition, and are accessed by the functions
type-error-datum and type-error-expected-type.

See Also:
type-error-datum, type-error-expected-type

type-error-datum, type-error-expected-type Function

Syntax:
type-error-datum condition → datum

type-error-expected-type condition → expected-type

Arguments and Values:
condition—a condition of type type-error.

datum—an object .

expected-type—a type specifier .

Description:
type-error-datum returns the offending datum in the situation represented by the condition.

type-error-expected-type returns the expected type of the offending datum in the situation
represented by the condition.

Examples:

(defun fix-digits (condition)

(check-type condition type-error)

(let* ((digits ’(zero one two three four

five six seven eight nine))

Types and Classes 4–41

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(val (position (type-error-datum condition) digits)))

(if (and val (subtypep ’fixnum (type-error-expected-type condition)))

(store-value 7))))

(defun foo (x)

(handler-bind ((type-error #’fix-digits))

(check-type x number)

(+ x 3)))

(foo ’seven)

→ 10

See Also:
type-error, Chapter 9 (Conditions)

simple-type-error Condition Type

Class Precedence List:
simple-type-error, simple-condition, type-error, error, serious-condition, condition, t

Description:
Conditions of type simple-type-error are like conditions of type type-error, except that they
provide an alternate mechanism for specifying how the condition is to be reported ; see the type
simple-condition.

See Also:
simple-condition, simple-condition-format-control, simple-condition-format-arguments,
type-error-datum, type-error-expected-type

4–42 Programming Language—Common Lisp

