
Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Programming Language—Common Lisp

25. Environment

Environment i

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

ii Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

25.1 The External Environment

25.1.1 Top level loop
The top level loop is the Common Lisp mechanism by which the user normally interacts with the
Common Lisp system. This loop is sometimes referred to as the Lisp read-eval-print loop because
it typically consists of an endless loop that reads an expression, evaluates it and prints the results.

The top level loop is not completely specified; thus the user interface is implementation-defined .
The top level loop prints all values resulting from the evaluation of a form. Figure 25–1 lists
variables that are maintained by the Lisp read-eval-print loop.

* + / -
** ++ //
*** +++ ///

Figure 25–1. Variables maintained by the Read-Eval-Print Loop

25.1.2 Debugging Utilities
Figure 25–2 shows defined names relating to debugging.

debugger-hook documentation step
apropos dribble time
apropos-list ed trace
break inspect untrace
describe invoke-debugger

Figure 25–2. Defined names relating to debugging

25.1.3 Environment Inquiry
Environment inquiry defined names provide information about the hardware and software config-
uration on which a Common Lisp program is being executed.

Figure 25–3 shows defined names relating to environment inquiry.

Environment 25–1

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

features machine-instance short-site-name
lisp-implementation-type machine-type software-type
lisp-implementation-version machine-version software-version
long-site-name room

Figure 25–3. Defined names relating to environment inquiry.

25.1.4 Time
Time is represented in four different ways in Common Lisp: decoded time, universal time, internal
time, and seconds. Decoded time and universal time are used primarily to represent calendar
time, and are precise only to one second. Internal time is used primarily to represent measure-
ments of computer time (such as run time) and is precise to some implementation-dependent
fraction of a second called an internal time unit , as specified by internal-time-units-per-second.
An internal time can be used for either absolute and relative time measurements. Both a univer-
sal time and a decoded time can be used only for absolute time measurements. In the case of one
function, sleep, time intervals are represented as a non-negative real number of seconds.

Figure 25–4 shows defined names relating to time.

decode-universal-time get-internal-run-time
encode-universal-time get-universal-time
get-decoded-time internal-time-units-per-second
get-internal-real-time sleep

Figure 25–4. Defined names involving Time.

25.1.4.1 Decoded Time

A decoded time is an ordered series of nine values that, taken together, represent a point in
calendar time (ignoring leap seconds):

Second

An integer between 0 and 59, inclusive.

Minute

An integer between 0 and 59, inclusive.

Hour

An integer between 0 and 23, inclusive.

25–2 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Date

An integer between 1 and 31, inclusive (the upper limit actually depends on the month
and year, of course).

Month

An integer between 1 and 12, inclusive; 1 means January, 2 means February, and so on;
12 means December.

Year

An integer indicating the year A.D. However, if this integer is between 0 and 99, the
“obvious” year is used; more precisely, that year is assumed that is equal to the integer
modulo 100 and within fifty years of the current year (inclusive backwards and exclusive
forwards). Thus, in the year 1978, year 28 is 1928 but year 27 is 2027. (Functions that
return time in this format always return a full year number.)

Day of week

An integer between 0 and 6, inclusive; 0 means Monday, 1 means Tuesday, and so on;
6 means Sunday.

Daylight saving time flag

A generalized boolean that, if true, indicates that daylight saving time is in effect.

Time zone

A time zone.

Figure 25–5 shows defined names relating to decoded time.

decode-universal-time get-decoded-time

Figure 25–5. Defined names involving time in Decoded Time.

25.1.4.2 Universal Time

Universal time is an absolute time represented as a single non-negative integer—the number
of seconds since midnight, January 1, 1900 GMT (ignoring leap seconds). Thus the time 1 is
00:00:01 (that is, 12:00:01 a.m.) on January 1, 1900 GMT. Similarly, the time 2398291201 corre-
sponds to time 00:00:01 on January 1, 1976 GMT. Recall that the year 1900 was not a leap year;
for the purposes of Common Lisp, a year is a leap year if and only if its number is divisible by 4,
except that years divisible by 100 are not leap years, except that years divisible by 400 are leap

Environment 25–3

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

years. Therefore the year 2000 will be a leap year. Because universal time must be a non-negative
integer , times before the base time of midnight, January 1, 1900 GMT cannot be processed by
Common Lisp.

decode-universal-time get-universal-time
encode-universal-time

Figure 25–6. Defined names involving time in Universal Time.

25.1.4.3 Internal Time

Internal time represents time as a single integer , in terms of an implementation-dependent unit
called an internal time unit . Relative time is measured as a number of these units. Absolute time
is relative to an arbitrary time base.

Figure 25–7 shows defined names related to internal time.

get-internal-real-time internal-time-units-per-second
get-internal-run-time

Figure 25–7. Defined names involving time in Internal Time.

25.1.4.4 Seconds

One function, sleep, takes its argument as a non-negative real number of seconds. Informally, it
may be useful to think of this as a relative universal time, but it differs in one important way:
universal times are always non-negative integers, whereas the argument to sleep can be any kind
of non-negative real , in order to allow for the possibility of fractional seconds.

sleep

Figure 25–8. Defined names involving time in Seconds.

25–4 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

decode-universal-time Function

Syntax:
decode-universal-time universal-time &optional time-zone
→ second, minute, hour, date, month, year, day, daylight-p, zone

Arguments and Values:
universal-time—a universal time.

time-zone—a time zone.

second , minute, hour , date, month, year , day , daylight-p, zone—a decoded time.

Description:
Returns the decoded time represented by the given universal time.

If time-zone is not supplied, it defaults to the current time zone adjusted for daylight saving time.
If time-zone is supplied, daylight saving time information is ignored. The daylight saving time flag
is nil if time-zone is supplied.

Examples:

(decode-universal-time 0 0) → 0, 0, 0, 1, 1, 1900, 0, false, 0

;; The next two examples assume Eastern Daylight Time.

(decode-universal-time 2414296800 5) → 0, 0, 1, 4, 7, 1976, 6, false, 5

(decode-universal-time 2414293200) → 0, 0, 1, 4, 7, 1976, 6, true, 5

;; This example assumes that the time zone is Eastern Daylight Time

;; (and that the time zone is constant throughout the example).

(let* ((here (nth 8 (multiple-value-list (get-decoded-time)))) ;Time zone

(recently (get-universal-time))

(a (nthcdr 7 (multiple-value-list (decode-universal-time recently))))

(b (nthcdr 7 (multiple-value-list (decode-universal-time recently here)))))

(list a b (equal a b))) → ((T 5) (NIL 5) NIL)

Affected By:
Implementation-dependent mechanisms for calculating when or if daylight savings time is in effect
for any given session.

See Also:
encode-universal-time, get-universal-time, Section 25.1.4 (Time)

Environment 25–5

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

encode-universal-time function

Syntax:
encode-universal-time second minute hour date month year

&optional time-zone

→ universal-time

Arguments and Values:
second , minute, hour , date, month, year , time-zone—the corresponding parts of a decoded time.
(Note that some of the nine values in a full decoded time are redundant, and so are not used as
inputs to this function.)

universal-time—a universal time.

Description:
encode-universal-time converts a time from Decoded Time format to a universal time.

If time-zone is supplied, no adjustment for daylight savings time is performed.

Examples:

(encode-universal-time 0 0 0 1 1 1900 0) → 0

(encode-universal-time 0 0 1 4 7 1976 5) → 2414296800

;; The next example assumes Eastern Daylight Time.

(encode-universal-time 0 0 1 4 7 1976) → 2414293200

See Also:
decode-universal-time, get-decoded-time

get-universal-time, get-decoded-time Function

Syntax:
get-universal-time 〈no arguments〉 → universal-time

get-decoded-time 〈no arguments〉
→ second, minute, hour, date, month, year, day, daylight-p, zone

Arguments and Values:
universal-time—a universal time.

second , minute, hour , date, month, year , day , daylight-p, zone—a decoded time.

25–6 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Description:
get-universal-time returns the current time, represented as a universal time.

get-decoded-time returns the current time, represented as a decoded time.

Examples:

;; At noon on July 4, 1976 in Eastern Daylight Time.

(get-decoded-time) → 0, 0, 12, 4, 7, 1976, 6, true, 5

;; At exactly the same instant.

(get-universal-time) → 2414332800

;; Exactly five minutes later.

(get-universal-time) → 2414333100

;; The difference is 300 seconds (five minutes)

(- * **) → 300

Affected By:
The time of day (i.e., the passage of time), the system clock’s ability to keep accurate time, and
the accuracy of the system clock’s initial setting.

Exceptional Situations:
An error of type error might be signaled if the current time cannot be determined.

See Also:
decode-universal-time, encode-universal-time, Section 25.1.4 (Time)

Notes:

(get-decoded-time) ≡ (decode-universal-time (get-universal-time))

No implementation is required to have a way to verify that the time returned is correct. However,
if an implementation provides a validity check (e.g., the failure to have properly initialized the
system clock can be reliably detected) and that validity check fails, the implementation is strongly
encouraged (but not required) to signal an error of type error (rather than, for example, returning
a known-to-be-wrong value) that is correctable by allowing the user to interactively set the correct
time.

sleep Function

Syntax:
sleep seconds → nil

Arguments and Values:
seconds—a non-negative real .

Environment 25–7

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Description:
Causes execution to cease and become dormant for approximately the seconds of real time
indicated by seconds, whereupon execution is resumed.

Examples:

(sleep 1) → NIL

;; Actually, since SLEEP is permitted to use approximate timing,

;; this might not always yield true, but it will often enough that

;; we felt it to be a productive example of the intent.

(let ((then (get-universal-time))

(now (progn (sleep 10) (get-universal-time))))

(>= (- now then) 10))

→ true

Side Effects:
Causes processing to pause.

Affected By:
The granularity of the scheduler.

Exceptional Situations:
Should signal an error of type type-error if seconds is not a non-negative real .

apropos, apropos-list Function

Syntax:
apropos string &optional package → 〈no values〉
apropos-list string &optional package → symbols

Arguments and Values:
string—a string designator .

package—a package designator or nil. The default is nil.

symbols—a list of symbols.

Description:
These functions search for interned symbols whose names contain the substring string .

25–8 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

For apropos, as each such symbol is found, its name is printed on standard output . In addition,
if such a symbol is defined as a function or dynamic variable, information about those definitions
might also be printed.

For apropos-list, no output occurs as the search proceeds; instead a list of the matching symbols
is returned when the search is complete.

If package is non-nil , only the symbols accessible in that package are searched; otherwise all
symbols accessible in any package are searched.

Because a symbol might be available by way of more than one inheritance path, apropos might
print information about the same symbol more than once, or apropos-list might return a list
containing duplicate symbols.

Whether or not the search is case-sensitive is implementation-defined .

Affected By:
The set of symbols which are currently interned in any packages being searched.

apropos is also affected by *standard-output*.

describe Function

Syntax:
describe object &optional stream → 〈no values〉

Arguments and Values:
object—an object .

stream—an output stream designator . The default is standard output .

Description:
describe displays information about object to stream.

For example, describe of a symbol might show the symbol ’s value, its definition, and each of its
properties. describe of a float might show the number’s internal representation in a way that
is useful for tracking down round-off errors. In all cases, however, the nature and format of the
output of describe is implementation-dependent .

describe can describe something that it finds inside the object; in such cases, a notational device
such as increased indentation or positioning in a table is typically used in order to visually
distinguish such recursive descriptions from descriptions of the argument object.

Environment 25–9

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

The actual act of describing the object is implemented by describe-object. describe exists as an
interface primarily to manage argument defaulting (including conversion of arguments t and nil
into stream objects) and to inhibit any return values from describe-object.

describe is not intended to be an interactive function. In a conforming implementation, describe
must not, by default, prompt for user input. User-defined methods for describe-object are
likewise restricted.

Side Effects:
Output to standard output or terminal I/O .

Affected By:
standard-output and *terminal-io*, methods on describe-object and print-object for objects
having user-defined classes.

See Also:
inspect, describe-object

describe-object Standard Generic Function

Syntax:
describe-object object stream → implementation-dependent

Method Signatures:
describe-object (object standard-object) stream

Arguments and Values:
object—an object .

stream—a stream.

Description:
The generic function describe-object prints a description of object to a stream. describe-object
is called by describe; it must not be called by the user.

Each implementation is required to provide a method on the class standard-object and methods
on enough other classes so as to ensure that there is always an applicable method . Implementa-
tions are free to add methods for other classes. Users can write methods for describe-object for
their own classes if they do not wish to inherit an implementation-supplied method .

Methods on describe-object can recursively call describe. Indentation, depth limits, and circu-
larity detection are all taken care of automatically, provided that each method handles exactly
one level of structure and calls describe recursively if there are more structural levels. The
consequences are undefined if this rule is not obeyed.

25–10 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

In some implementations the stream argument passed to a describe-object method is not the
original stream, but is an intermediate stream that implements parts of describe. Methods should
therefore not depend on the identity of this stream.

Examples:

(defclass spaceship ()

((captain :initarg :captain :accessor spaceship-captain)

(serial# :initarg :serial-number :accessor spaceship-serial-number)))

(defclass federation-starship (spaceship) ())

(defmethod describe-object ((s spaceship) stream)

(with-slots (captain serial#) s

(format stream "~&~S is a spaceship of type ~S,~

~%with ~A at the helm ~

and with serial number ~D.~%"

s (type-of s) captain serial#)))

(make-instance ’federation-starship

:captain "Rachel Garrett"

:serial-number "NCC-1701-C")

→ #<FEDERATION-STARSHIP 26312465>

(describe *)

. #<FEDERATION-STARSHIP 26312465> is a spaceship of type FEDERATION-STARSHIP,

. with Rachel Garrett at the helm and with serial number NCC-1701-C.

→ 〈no values〉
See Also:

describe

Notes:
The same implementation techniques that are applicable to print-object are applicable to
describe-object.

The reason for making the return values for describe-object unspecified is to avoid forcing users
to include explicit (values) in all of their methods. describe takes care of that.

Environment 25–11

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

trace, untrace

trace, untrace Macro

Syntax:
trace {function-name}* → trace-result

untrace {function-name}* → untrace-result

Arguments and Values:
function-name—a function name.

trace-result—implementation-dependent , unless no function-names are supplied, in which case
trace-result is a list of function names.

untrace-result—implementation-dependent .

Description:
trace and untrace control the invocation of the trace facility.

Invoking trace with one or more function-names causes the denoted functions to be “traced.”
Whenever a traced function is invoked, information about the call, about the arguments passed,
and about any eventually returned values is printed to trace output . If trace is used with no
function-names, no tracing action is performed; instead, a list of the functions currently being
traced is returned.

Invoking untrace with one or more function names causes those functions to be “untraced” (i.e.,
no longer traced). If untrace is used with no function-names, all functions currently being traced
are untraced.

If a function to be traced has been open-coded (e.g., because it was declared inline), a call to
that function might not produce trace output.

Examples:

(defun fact (n) (if (zerop n) 1 (* n (fact (- n 1)))))

→ FACT

(trace fact)

→ (FACT)

;; Of course, the format of traced output is implementation-dependent.

(fact 3)

. 1 Enter FACT 3

. | 2 Enter FACT 2

. | 3 Enter FACT 1

. | | 4 Enter FACT 0

. | | 4 Exit FACT 1

. | 3 Exit FACT 1

. | 2 Exit FACT 2

25–12 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

. 1 Exit FACT 6

→ 6

Side Effects:
Might change the definitions of the functions named by function-names.

Affected By:
Whether the functions named are defined or already being traced.

Exceptional Situations:
Tracing an already traced function, or untracing a function not currently being traced, should
produce no harmful effects, but might signal a warning.

See Also:
trace-output, step

Notes:
trace and untrace may also accept additional implementation-dependent argument formats. The
format of the trace output is implementation-dependent .

Although trace can be extended to permit non-standard options, implementations are neverthe-
less encouraged (but not required) to warn about the use of syntax or options that are neither
specified by this standard nor added as an extension by the implementation, since they could be
symptomatic of typographical errors or of reliance on features supported in implementations other
than the current implementation.

step Macro

Syntax:
step form → {result}*

Arguments and Values:
form—a form; evaluated as described below.

results—the values returned by the form.

Description:
step implements a debugging paradigm wherein the programmer is allowed to step through the
evaluation of a form. The specific nature of the interaction, including which I/O streams are used
and whether the stepping has lexical or dynamic scope, is implementation-defined .

Environment 25–13

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

step evaluates form in the current environment . A call to step can be compiled, but it is accept-
able for an implementation to interactively step through only those parts of the computation that
are interpreted.

It is technically permissible for a conforming implementation to take no action at all other than
normal execution of the form. In such a situation, (step form) is equivalent to, for example,
(let () form). In implementations where this is the case, the associated documentation should
mention that fact.

See Also:
trace

Notes:
Implementations are encouraged to respond to the typing of ? or the pressing of a “help key” by
providing help including a list of commands.

time Macro

Syntax:
time form → {result}*

Arguments and Values:
form—a form; evaluated as described below.

results—the values returned by the form.

Description:
time evaluates form in the current environment (lexical and dynamic). A call to time can be
compiled.

time prints various timing data and other information to trace output . The nature and format of
the printed information is implementation-defined . Implementations are encouraged to provide
such information as elapsed real time, machine run time, and storage management statistics.

Affected By:
The accuracy of the results depends, among other things, on the accuracy of the corresponding
functions provided by the underlying operating system.

The magnitude of the results may depend on the hardware, the operating system, the lisp imple-
mentation, and the state of the global environment. Some specific issues which frequently affect
the outcome are hardware speed, nature of the scheduler (if any), number of competing processes
(if any), system paging, whether the call is interpreted or compiled, whether functions called
are compiled, the kind of garbage collector involved and whether it runs, whether internal data
structures (e.g., hash tables) are implicitly reorganized, etc.

25–14 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

See Also:
get-internal-real-time, get-internal-run-time

Notes:
In general, these timings are not guaranteed to be reliable enough for marketing comparisons.
Their value is primarily heuristic, for tuning purposes.

For useful background information on the complicated issues involved in interpreting timing
results, see Performance and Evaluation of Lisp Programs.

internal-time-units-per-second Constant Variable

Constant Value:
A positive integer , the magnitude of which is implementation-dependent .

Description:
The number of internal time units in one second.

See Also:
get-internal-run-time, get-internal-real-time

Notes:
These units form the basis of the Internal Time format representation.

get-internal-real-time Function

Syntax:
get-internal-real-time 〈no arguments〉 → internal-time

Arguments and Values:
internal-time—a non-negative integer .

Description:
get-internal-real-time returns as an integer the current time in internal time units, relative to an
arbitrary time base. The difference between the values of two calls to this function is the amount
of elapsed real time (i.e., clock time) between the two calls.

Affected By:
Time of day (i.e., the passage of time). The time base affects the result magnitude.

Environment 25–15

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

See Also:
internal-time-units-per-second

get-internal-run-time Function

Syntax:
get-internal-run-time 〈no arguments〉 → internal-time

Arguments and Values:
internal-time—a non-negative integer .

Description:
Returns as an integer the current run time in internal time units. The precise meaning of this
quantity is implementation-defined ; it may measure real time, run time, CPU cycles, or some
other quantity. The intent is that the difference between the values of two calls to this function
be the amount of time between the two calls during which computational effort was expended on
behalf of the executing program.

Affected By:
The implementation, the time of day (i.e., the passage of time).

See Also:
internal-time-units-per-second

Notes:
Depending on the implementation, paging time and garbage collection time might be included in
this measurement. Also, in a multitasking environment, it might not be possible to show the time
for just the running process, so in some implementations, time taken by other processes during
the same time interval might be included in this measurement as well.

25–16 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

disassemble Function

Syntax:
disassemble fn → nil

Arguments and Values:
fn—an extended function designator or a lambda expression.

Description:
The function disassemble is a debugging aid that composes symbolic instructions or expressions
in some implementation-dependent language which represent the code used to produce the
function which is or is named by the argument fn. The result is displayed to standard output
in an implementation-dependent format.

If fn is a lambda expression or interpreted function, it is compiled first and the result is disassem-
bled.

If the fn designator is a function name, the function that it names is disassembled. (If that
function is an interpreted function, it is first compiled but the result of this implicit compilation is
not installed.)

Examples:

(defun f (a) (1+ a)) → F

(eq (symbol-function ’f)

(progn (disassemble ’f)

(symbol-function ’f))) → true

Affected By:
standard-output.

Exceptional Situations:
Should signal an error of type type-error if fn is not an extended function designator or a lambda
expression.

documentation, (setf documentation) Standard Generic
Function

Syntax:
documentation x doc-type → documentation

Environment 25–17

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

documentation, (setf documentation)

(setf documentation) new-value x doc-type → new-value

Argument Precedence Order:
doc-type, object

Method Signatures:
Functions, Macros, and Special Forms:

documentation (x function) (doc-type (eql ’t))

documentation (x function) (doc-type (eql ’function))

documentation (x list) (doc-type (eql ’function))

documentation (x list) (doc-type (eql ’compiler-macro))

documentation (x symbol) (doc-type (eql ’function))

documentation (x symbol) (doc-type (eql ’compiler-macro))

documentation (x symbol) (doc-type (eql ’setf))

(setf documentation) new-value (x function) (doc-type (eql ’t))

(setf documentation) new-value (x function) (doc-type (eql ’function))

(setf documentation) new-value (x list) (doc-type (eql ’function))

(setf documentation) new-value (x list) (doc-type (eql ’compiler-macro))

(setf documentation) new-value (x symbol) (doc-type (eql ’function))

(setf documentation) new-value (x symbol) (doc-type (eql ’compiler-macro))

(setf documentation) new-value (x symbol) (doc-type (eql ’setf))

Method Combinations:

documentation (x method-combination) (doc-type (eql ’t))

documentation (x method-combination) (doc-type (eql ’method-combination))

documentation (x symbol) (doc-type (eql ’method-combination))

(setf documentation) new-value (x method-combination) (doc-type (eql ’t))

(setf documentation) new-value (x method-combination) (doc-type (eql ’method-combination))

(setf documentation) new-value (x symbol) (doc-type (eql ’method-combination))

25–18 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

documentation, (setf documentation)

Methods:

documentation (x standard-method) (doc-type (eql ’t))

(setf documentation) new-value (x standard-method) (doc-type (eql ’t))

Packages:

documentation (x package) (doc-type (eql ’t))

(setf documentation) new-value (x package) (doc-type (eql ’t))

Types, Classes, and Structure Names:

documentation (x standard-class) (doc-type (eql ’t))

documentation (x standard-class) (doc-type (eql ’type))

documentation (x structure-class) (doc-type (eql ’t))

documentation (x structure-class) (doc-type (eql ’type))

documentation (x symbol) (doc-type (eql ’type))

documentation (x symbol) (doc-type (eql ’structure))

(setf documentation) new-value (x standard-class) (doc-type (eql ’t))

(setf documentation) new-value (x standard-class) (doc-type (eql ’type))

(setf documentation) new-value (x structure-class) (doc-type (eql ’t))

(setf documentation) new-value (x structure-class) (doc-type (eql ’type))

(setf documentation) new-value (x symbol) (doc-type (eql ’type))

(setf documentation) new-value (x symbol) (doc-type (eql ’structure))

Variables:

documentation (x symbol) (doc-type (eql ’variable))

(setf documentation) new-value (x symbol) (doc-type (eql ’variable))

Arguments and Values:
x—an object .

doc-type—a symbol .

documentation—a string , or nil.

Environment 25–19

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

documentation, (setf documentation)

new-value—a string .

Description:
The generic function documentation returns the documentation string associated with the given
object if it is available; otherwise it returns nil.

The generic function (setf documentation) updates the documentation string associated with x
to new-value. If x is a list , it must be of the form (setf symbol).

Documentation strings are made available for debugging purposes. Conforming programs are
permitted to use documentation strings when they are present, but should not depend for their
correct behavior on the presence of those documentation strings. An implementation is permitted
to discard documentation strings at any time for implementation-defined reasons.

The nature of the documentation string returned depends on the doc-type, as follows:

compiler-macro

Returns the documentation string of the compiler macro whose name is the function
name x .

function

If x is a function name, returns the documentation string of the function, macro, or
special operator whose name is x .

If x is a function, returns the documentation string associated with x .

method-combination

If x is a symbol , returns the documentation string of the method combination whose name
is x .

If x is a method combination, returns the documentation string associated with x .

setf

Returns the documentation string of the setf expander whose name is the symbol x .

structure

Returns the documentation string associated with the structure name x .

t

Returns a documentation string specialized on the class of the argument x itself. For
example, if x is a function, the documentation string associated with the function x is
returned.

25–20 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

type

If x is a symbol , returns the documentation string of the class whose name is the symbol
x , if there is such a class. Otherwise, it returns the documentation string of the type
which is the type specifier symbol x .

If x is a structure class or standard class, returns the documentation string associated
with the class x .

variable

Returns the documentation string of the dynamic variable or constant variable whose
name is the symbol x .

A conforming implementation or a conforming program may extend the set of symbols that are
acceptable as the doc-type.

Notes:
This standard prescribes no means to retrieve the documentation strings for individual slots
specified in a defclass form, but implementations might still provide debugging tools and/or
programming language extensions which manipulate this information. Implementors wishing to
provide such support are encouraged to consult the Metaobject Protocol for suggestions about how
this might be done.

room Function

Syntax:
room &optional x → implementation-dependent

Arguments and Values:
x—one of t, nil, or :default.

Description:
room prints, to standard output , information about the state of internal storage and its man-
agement. This might include descriptions of the amount of memory in use and the degree of
memory compaction, possibly broken down by internal data type if that is appropriate. The na-
ture and format of the printed information is implementation-dependent . The intent is to provide
information that a programmer might use to tune a program for a particular implementation.

(room nil) prints out a minimal amount of information. (room t) prints out a maximal amount of
information. (room) or (room :default) prints out an intermediate amount of information that is
likely to be useful.

Environment 25–21

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Side Effects:
Output to standard output .

Affected By:
standard-output.

ed Function

Syntax:
ed &optional x → implementation-dependent

Arguments and Values:
x—nil, a pathname, a string , or a function name. The default is nil.

Description:
ed invokes the editor if the implementation provides a resident editor.

If x is nil, the editor is entered. If the editor had been previously entered, its prior state is
resumed, if possible.

If x is a pathname or string , it is taken as the pathname designator for a file to be edited.

If x is a function name, the text of its definition is edited. The means by which the function text
is obtained is implementation-defined .

Exceptional Situations:
The consequences are undefined if the implementation does not provide a resident editor.

Might signal type-error if its argument is supplied but is not a symbol , a pathname, or nil.

If a failure occurs when performing some operation on the file system while attempting to edit a
file, an error of type file-error is signaled.

An error of type file-error might be signaled if x is a designator for a wild pathname.

Implementation-dependent additional conditions might be signaled as well.

See Also:
pathname, logical-pathname, compile-file, load, Section 19.1.2 (Pathnames as Filenames)

25–22 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

inspect Function

Syntax:
inspect object → implementation-dependent

Arguments and Values:
object—an object .

Description:
inspect is an interactive version of describe. The nature of the interaction is implementation-
dependent , but the purpose of inspect is to make it easy to wander through a data structure,
examining and modifying parts of it.

Side Effects:
implementation-dependent .

Affected By:
implementation-dependent .

Exceptional Situations:
implementation-dependent .

See Also:
describe

Notes:
Implementations are encouraged to respond to the typing of ? or a “help key” by providing help,
including a list of commands.

dribble Function

Syntax:
dribble &optional pathname → implementation-dependent

Arguments and Values:
pathname—a pathname designator .

Environment 25–23

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Description:
Either binds *standard-input* and *standard-output* or takes other appropriate action, so as
to send a record of the input/output interaction to a file named by pathname. dribble is intended
to create a readable record of an interactive session.

If pathname is a logical pathname, it is translated into a physical pathname as if by calling
translate-logical-pathname.

(dribble) terminates the recording of input and output and closes the dribble file.

If dribble is called while a stream to a “dribble file” is still open from a previous call to dribble,
the effect is implementation-defined . For example, the already-open stream might be closed , or
dribbling might occur both to the old stream and to a new one, or the old stream might stay open
but not receive any further output, or the new request might be ignored, or some other action
might be taken.

Affected By:
The implementation.

Exceptional Situations:
If a failure occurs when performing some operation on the file system while creating the dribble
file, an error of type file-error is signaled.

An error of type file-error might be signaled if pathname is a designator for a wild pathname.

See Also:
Section 19.1.2 (Pathnames as Filenames)

Notes:
dribble can return before subsequent forms are executed. It also can enter a recursive interaction
loop, returning only when (dribble) is done.

dribble is intended primarily for interactive debugging; its effect cannot be relied upon when used
in a program.

− Variable

Value Type:
a form.

Initial Value:
implementation-dependent .

25–24 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Description:
The value of - is the form that is currently being evaluated by the Lisp read-eval-print loop.

Examples:

(format t "~&Evaluating ~S~%" -)

. Evaluating (FORMAT T "~&Evaluating ~S~%" -)

→ NIL

Affected By:
Lisp read-eval-print loop.

See Also:
+ (variable), * (variable), / (variable), Section 25.1.1 (Top level loop)

+, ++, +++ Variable

Value Type:
an object .

Initial Value:
implementation-dependent .

Description:
The variables +, ++, and +++ are maintained by the Lisp read-eval-print loop to save forms
that were recently evaluated .

The value of + is the last form that was evaluated , the value of ++ is the previous value of +,
and the value of +++ is the previous value of ++.

Examples:

(+ 0 1) → 1

(- 4 2) → 2

(/ 9 3) → 3

(list + ++ +++) → ((/ 9 3) (- 4 2) (+ 0 1))

(setq a 1 b 2 c 3 d (list a b c)) → (1 2 3)

(setq a 4 b 5 c 6 d (list a b c)) → (4 5 6)

(list a b c) → (4 5 6)

(eval +++) → (1 2 3)

#.‘(,@++ d) → (1 2 3 (1 2 3))

Environment 25–25

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Affected By:
Lisp read-eval-print loop.

See Also:
- (variable), * (variable), / (variable), Section 25.1.1 (Top level loop)

∗, ∗∗, ∗∗∗ Variable

Value Type:
an object .

Initial Value:
implementation-dependent .

Description:
The variables *, **, and *** are maintained by the Lisp read-eval-print loop to save the values of
results that are printed each time through the loop.

The value of * is the most recent primary value that was printed, the value of ** is the previous
value of *, and the value of *** is the previous value of **.

If several values are produced, * contains the first value only; * contains nil if zero values are
produced.

The values of *, **, and *** are updated immediately prior to printing the return value of a
top-level form by the Lisp read-eval-print loop. If the evaluation of such a form is aborted prior
to its normal return, the values of *, **, and *** are not updated.

Examples:

(values ’a1 ’a2) → A1, A2

’b → B

(values ’c1 ’c2 ’c3) → C1, C2, C3

(list * ** ***) → (C1 B A1)

(defun cube-root (x) (expt x 1/3)) → CUBE-ROOT

(compile *) → CUBE-ROOT

(setq a (cube-root 27.0)) → 3.0

(* * 9.0) → 27.0

Affected By:
Lisp read-eval-print loop.

25–26 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

See Also:
- (variable), + (variable), / (variable), Section 25.1.1 (Top level loop)

Notes:

* ≡ (car /)

** ≡ (car //)

*** ≡ (car ///)

/, //, /// Variable

Value Type:
a proper list .

Initial Value:
implementation-dependent .

Description:
The variables /, //, and /// are maintained by the Lisp read-eval-print loop to save the values of
results that were printed at the end of the loop.

The value of / is a list of the most recent values that were printed, the value of // is the previous
value of /, and the value of /// is the previous value of //.

The values of /, //, and /// are updated immediately prior to printing the return value of a
top-level form by the Lisp read-eval-print loop. If the evaluation of such a form is aborted prior
to its normal return, the values of /, //, and /// are not updated.

Examples:

(floor 22 7) → 3, 1

(+ (* (car /) 7) (cadr /)) → 22

Affected By:
Lisp read-eval-print loop.

See Also:
- (variable), + (variable), * (variable), Section 25.1.1 (Top level loop)

Environment 25–27

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

lisp-implementation-type, lisp-implementation-
version Function

Syntax:
lisp-implementation-type 〈no arguments〉 → description

lisp-implementation-version 〈no arguments〉 → description

Arguments and Values:
description—a string or nil.

Description:
lisp-implementation-type and lisp-implementation-version identify the current implementation
of Common Lisp.

lisp-implementation-type returns a string that identifies the generic name of the particular
Common Lisp implementation.

lisp-implementation-version returns a string that identifies the version of the particular Com-
mon Lisp implementation.

If no appropriate and relevant result can be produced, nil is returned instead of a string .

Examples:

(lisp-implementation-type)

→ "ACME Lisp"
or→ "Joe’s Common Lisp"

(lisp-implementation-version)

→ "1.3a"

→ "V2"
or→ "Release 17.3, ECO #6"

short-site-name, long-site-name Function

Syntax:
short-site-name 〈no arguments〉 → description

long-site-name 〈no arguments〉 → description

25–28 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Arguments and Values:
description—a string or nil.

Description:
short-site-name and long-site-name return a string that identifies the physical location of the
computer hardware, or nil if no appropriate description can be produced.

Examples:

(short-site-name)

→ "MIT AI Lab"
or→ "CMU-CSD"

(long-site-name)

→ "MIT Artificial Intelligence Laboratory"
or→ "CMU Computer Science Department"

Affected By:
The implementation, the location of the computer hardware, and the installation/configuration
process.

machine-instance Function

Syntax:
machine-instance 〈no arguments〉 → description

Arguments and Values:
description—a string or nil.

Description:
Returns a string that identifies the particular instance of the computer hardware on which
Common Lisp is running, or nil if no such string can be computed.

Examples:

(machine-instance)

→ "ACME.COM"
or→ "S/N 123231"
or→ "18.26.0.179"
or→ "AA-00-04-00-A7-A4"

Affected By:
The machine instance, and the implementation.

Environment 25–29

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

See Also:
machine-type, machine-version

machine-type Function

Syntax:
machine-type 〈no arguments〉 → description

Arguments and Values:
description—a string or nil.

Description:
Returns a string that identifies the generic name of the computer hardware on which Common
Lisp is running.

Examples:

(machine-type)

→ "DEC PDP-10"
or→ "Symbolics LM-2"

Affected By:
The machine type. The implementation.

See Also:
machine-version

machine-version Function

Syntax:
machine-version 〈no arguments〉 → description

Arguments and Values:
description—a string or nil.

Description:
Returns a string that identifies the version of the computer hardware on which Common Lisp is
running, or nil if no such value can be computed.

25–30 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:

(machine-version) → "KL-10, microcode 9"

Affected By:
The machine version, and the implementation.

See Also:
machine-type, machine-instance

software-type, software-version Function

Syntax:
software-type 〈no arguments〉 → description

software-version 〈no arguments〉 → description

Arguments and Values:
description—a string or nil.

Description:
software-type returns a string that identifies the generic name of any relevant supporting soft-
ware, or nil if no appropriate or relevant result can be produced.

software-version returns a string that identifies the version of any relevant supporting software,
or nil if no appropriate or relevant result can be produced.

Examples:

(software-type) → "Multics"

(software-version) → "1.3x"

Affected By:
Operating system environment.

Notes:
This information should be of use to maintainers of the implementation.

Environment 25–31

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

user-homedir-pathname

user-homedir-pathname Function

Syntax:
user-homedir-pathname &optional host → pathname

Arguments and Values:
host—a string , a list of strings, or :unspecific.

pathname—a pathname, or nil.

Description:
user-homedir-pathname determines the pathname that corresponds to the user’s home directory
on host. If host is not supplied, its value is implementation-dependent . For a description of
:unspecific, see Section 19.2.1 (Pathname Components).

The definition of home directory is implementation-dependent , but defined in Common Lisp to
mean the directory where the user keeps personal files such as initialization files and mail.

user-homedir-pathname returns a pathname without any name, type, or version component
(those components are all nil) for the user’s home directory on host.

If it is impossible to determine the user’s home directory on host, then nil is returned.
user-homedir-pathname never returns nil if host is not supplied.

Examples:

(pathnamep (user-homedir-pathname)) → true

Affected By:
The host computer’s file system, and the implementation.

25–32 Programming Language—Common Lisp

