
Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Programming Language—Common Lisp

18. Hash Tables

Hash Tables i



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

ii Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

18.1 Hash Table Concepts

18.1.1 Hash-Table Operations
Figure 18–1 lists some defined names that are applicable to hash tables. The following rules apply
to hash tables.

– A hash table can only associate one value with a given key. If an attempt is made to add
a second value for a given key, the second value will replace the first. Thus, adding a
value to a hash table is a destructive operation; the hash table is modified.

– There are four kinds of hash tables: those whose keys are compared with eq, those whose
keys are compared with eql, those whose keys are compared with equal, and those whose
keys are compared with equalp.

– Hash tables are created by make-hash-table. gethash is used to look up a key and find
the associated value. New entries are added to hash tables using setf with gethash.
remhash is used to remove an entry. For example:

(setq a (make-hash-table)) → #<HASH-TABLE EQL 0/120 32536573>

(setf (gethash ’color a) ’brown) → BROWN

(setf (gethash ’name a) ’fred) → FRED

(gethash ’color a) → BROWN, true
(gethash ’name a) → FRED, true
(gethash ’pointy a) → NIL, false

In this example, the symbols color and name are being used as keys, and the symbols
brown and fred are being used as the associated values. The hash table has two items in
it, one of which associates from color to brown, and the other of which associates from
name to fred.

– A key or a value may be any object .

– The existence of an entry in the hash table can be determined from the secondary value
returned by gethash.

clrhash hash-table-p remhash
gethash make-hash-table sxhash
hash-table-count maphash

Figure 18–1. Hash-table defined names

Hash Tables 18–1



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

18.1.2 Modifying Hash Table Keys
The function supplied as the :test argument to make-hash-table specifies the ‘equivalence test’
for the hash table it creates.

An object is ‘visibly modified’ with regard to an equivalence test if there exists some set of objects
(or potential objects) which are equivalent to the object before the modification but are no longer
equivalent afterwards.

If an object O1 is used as a key in a hash table H and is then visibly modified with regard to the
equivalence test of H, then the consequences are unspecified if O1, or any object O2 equivalent to
O1 under the equivalence test (either before or after the modification), is used as a key in further
operations on H. The consequences of using O1 as a key are unspecified even if O1 is visibly
modified and then later modified again in such a way as to undo the visible modification.

Following are specifications of the modifications which are visible to the equivalence tests which
must be supported by hash tables. The modifications are described in terms of modification of
components, and are defined recursively. Visible modifications of components of the object are
visible modifications of the object .

18.1.2.1 Visible Modification of Objects with respect to EQ and EQL

No standardized function is provided that is capable of visibly modifying an object with regard to
eq or eql.

18.1.2.2 Visible Modification of Objects with respect to EQUAL

As a consequence of the behavior for equal, the rules for visible modification of objects not explic-
itly mentioned in this section are inherited from those in Section 18.1.2.1 (Visible Modification of
Objects with respect to EQ and EQL).

18.1.2.2.1 Visible Modification of Conses with respect to EQUAL

Any visible change to the car or the cdr of a cons is considered a visible modification with regard
to equal.

18.1.2.2.2 Visible Modification of Bit Vectors and Strings with respect to EQUAL

For a vector of type bit-vector or of type string, any visible change to an active element of the
vector , or to the length of the vector (if it is actually adjustable or has a fill pointer) is considered
a visible modification with regard to equal.

18.1.2.3 Visible Modification of Objects with respect to EQUALP

As a consequence of the behavior for equalp, the rules for visible modification of objects not ex-
plicitly mentioned in this section are inherited from those in Section 18.1.2.2 (Visible Modification
of Objects with respect to EQUAL).

18–2 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

18.1.2.3.1 Visible Modification of Structures with respect to EQUALP

Any visible change to a slot of a structure is considered a visible modification with regard to
equalp.

18.1.2.3.2 Visible Modification of Arrays with respect to EQUALP

In an array , any visible change to an active element , to the fill pointer (if the array can and
does have one), or to the dimensions (if the array is actually adjustable) is considered a visible
modification with regard to equalp.

18.1.2.3.3 Visible Modification of Hash Tables with respect to EQUALP

In a hash table, any visible change to the count of entries in the hash table, to the keys, or to the
values associated with the keys is considered a visible modification with regard to equalp.

Note that the visibility of modifications to the keys depends on the equivalence test of the hash
table, not on the specification of equalp.

18.1.2.4 Visible Modifications by Language Extensions

Implementations that extend the language by providing additional mutator functions (or addi-
tional behavior for existing mutator functions) must document how the use of these extensions
interacts with equivalence tests and hash table searches.

Implementations that extend the language by defining additional acceptable equivalence tests
for hash tables (allowing additional values for the :test argument to make-hash-table) must
document the visible components of these tests.

Hash Tables 18–3



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

hash-table System Class

Class Precedence List:
hash-table, t

Description:
Hash tables provide a way of mapping any object (a key) to an associated object (a value).

See Also:
Section 18.1 (Hash Table Concepts), Section 22.1.3.13 (Printing Other Objects)

Notes:
The intent is that this mapping be implemented by a hashing mechanism, such as that described
in Section 6.4 “Hashing” of The Art of Computer Programming, Volume 3 (pp506-549). In
spite of this intent, no conforming implementation is required to use any particular technique to
implement the mapping.

make-hash-table Function

Syntax:
make-hash-table &key test size rehash-size rehash-threshold → hash-table

Arguments and Values:
test—a designator for one of the functions eq, eql, equal, or equalp. The default is eql.

size—a non-negative integer . The default is implementation-dependent .

rehash-size—a real of type (or (integer 1 *) (float (1.0) *)). The default is implementation-
dependent .

rehash-threshold—a real of type (real 0 1). The default is implementation-dependent .

hash-table—a hash table.

Description:
Creates and returns a new hash table.

test determines how keys are compared. An object is said to be present in the hash-table if that
object is the same under the test as the key for some entry in the hash-table.

size is a hint to the implementation about how much initial space to allocate in the hash-table.
This information, taken together with the rehash-threshold , controls the approximate number of
entries which it should be possible to insert before the table has to grow. The actual size might

18–4 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

be rounded up from size to the next ‘good’ size; for example, some implementations might round
to the next prime number.

rehash-size specifies a minimum amount to increase the size of the hash-table when it becomes full
enough to require rehashing; see rehash-theshold below. If rehash-size is an integer , the expected
growth rate for the table is additive and the integer is the number of entries to add; if it is a
float , the expected growth rate for the table is multiplicative and the float is the ratio of the new
size to the old size. As with size, the actual size of the increase might be rounded up.

rehash-threshold specifies how full the hash-table can get before it must grow. It specifies the
maximum desired hash-table occupancy level.

The values of rehash-size and rehash-threshold do not constrain the implementation to use any
particular method for computing when and by how much the size of hash-table should be en-
larged. Such decisions are implementation-dependent , and these values only hints from the
programmer to the implementation, and the implementation is permitted to ignore them.

Examples:

(setq table (make-hash-table)) → #<HASH-TABLE EQL 0/120 46142754>

(setf (gethash "one" table) 1) → 1

(gethash "one" table) → NIL, false
(setq table (make-hash-table :test ’equal)) → #<HASH-TABLE EQUAL 0/139 46145547>

(setf (gethash "one" table) 1) → 1

(gethash "one" table) → 1, T

(make-hash-table :rehash-size 1.5 :rehash-threshold 0.7)

→ #<HASH-TABLE EQL 0/120 46156620>

See Also:
gethash, hash-table

hash-table-p Function

Syntax:
hash-table-p object → generalized-boolean

Arguments and Values:
object—an object .

generalized-boolean—a generalized boolean.

Description:
Returns true if object is of type hash-table; otherwise, returns false.

Hash Tables 18–5



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:

(setq table (make-hash-table)) → #<HASH-TABLE EQL 0/120 32511220>

(hash-table-p table) → true
(hash-table-p 37) → false
(hash-table-p ’((a . 1) (b . 2))) → false

Notes:

(hash-table-p object) ≡ (typep object ’hash-table)

hash-table-count Function

Syntax:
hash-table-count hash-table → count

Arguments and Values:
hash-table—a hash table.

count—a non-negative integer .

Description:
Returns the number of entries in the hash-table. If hash-table has just been created or newly
cleared (see clrhash) the entry count is 0.

Examples:

(setq table (make-hash-table)) → #<HASH-TABLE EQL 0/120 32115135>

(hash-table-count table) → 0

(setf (gethash 57 table) "fifty-seven") → "fifty-seven"

(hash-table-count table) → 1

(dotimes (i 100) (setf (gethash i table) i)) → NIL

(hash-table-count table) → 100

Affected By:
clrhash, remhash, setf of gethash

See Also:
hash-table-size

18–6 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Notes:
The following relationships are functionally correct, although in practice using hash-table-count
is probably much faster:

(hash-table-count table) ≡
(loop for value being the hash-values of table count t) ≡
(let ((total 0))

(maphash #’(lambda (key value)

(declare (ignore key value))

(incf total))

table)
total)

hash-table-rehash-size Function

Syntax:
hash-table-rehash-size hash-table → rehash-size

Arguments and Values:
hash-table—a hash table.

rehash-size—a real of type (or (integer 1 *) (float (1.0) *)).

Description:
Returns the current rehash size of hash-table, suitable for use in a call to make-hash-table in
order to produce a hash table with state corresponding to the current state of the hash-table.

Examples:

(setq table (make-hash-table :size 100 :rehash-size 1.4))

→ #<HASH-TABLE EQL 0/100 2556371>

(hash-table-rehash-size table) → 1.4

Exceptional Situations:
Should signal an error of type type-error if hash-table is not a hash table.

See Also:
make-hash-table, hash-table-rehash-threshold

Notes:
If the hash table was created with an integer rehash size, the result is an integer , indicating that
the rate of growth of the hash-table when rehashed is intended to be additive; otherwise, the

Hash Tables 18–7



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

result is a float , indicating that the rate of growth of the hash-table when rehashed is intended to
be multiplicative. However, this value is only advice to the implementation; the actual amount by
which the hash-table will grow upon rehash is implementation-dependent .

hash-table-rehash-threshold Function

Syntax:
hash-table-rehash-threshold hash-table → rehash-threshold

Arguments and Values:
hash-table—a hash table.

rehash-threshold—a real of type (real 0 1).

Description:
Returns the current rehash threshold of hash-table, which is suitable for use in a call to
make-hash-table in order to produce a hash table with state corresponding to the current state of
the hash-table.

Examples:

(setq table (make-hash-table :size 100 :rehash-threshold 0.5))

→ #<HASH-TABLE EQL 0/100 2562446>

(hash-table-rehash-threshold table) → 0.5

Exceptional Situations:
Should signal an error of type type-error if hash-table is not a hash table.

See Also:
make-hash-table, hash-table-rehash-size

18–8 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

hash-table-size Function

Syntax:
hash-table-size hash-table → size

Arguments and Values:
hash-table—a hash table.

size—a non-negative integer .

Description:
Returns the current size of hash-table, which is suitable for use in a call to make-hash-table in
order to produce a hash table with state corresponding to the current state of the hash-table.

Exceptional Situations:
Should signal an error of type type-error if hash-table is not a hash table.

See Also:
hash-table-count, make-hash-table

hash-table-test Function

Syntax:
hash-table-test hash-table → test

Arguments and Values:
hash-table—a hash table.

test—a function designator . For the four standardized hash table test functions (see
make-hash-table), the test value returned is always a symbol . If an implementation permits
additional tests, it is implementation-dependent whether such tests are returned as function
objects or function names.

Description:
Returns the test used for comparing keys in hash-table.

Exceptional Situations:
Should signal an error of type type-error if hash-table is not a hash table.

See Also:
make-hash-table

Hash Tables 18–9



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

gethash Accessor

Syntax:
gethash key hash-table &optional default → value, present-p

(setf (gethash key hash-table &optional default) new-value)

Arguments and Values:
key—an object .

hash-table—a hash table.

default—an object . The default is nil.

value—an object .

present-p—a generalized boolean.

Description:
Value is the object in hash-table whose key is the same as key under the hash-table’s equivalence
test. If there is no such entry, value is the default.

Present-p is true if an entry is found; otherwise, it is false.

setf may be used with gethash to modify the value associated with a given key , or to add a new
entry. When a gethash form is used as a setf place, any default which is supplied is evaluated
according to normal left-to-right evaluation rules, but its value is ignored.

Examples:

(setq table (make-hash-table)) → #<HASH-TABLE EQL 0/120 32206334>

(gethash 1 table) → NIL, false
(gethash 1 table 2) → 2, false
(setf (gethash 1 table) "one") → "one"

(setf (gethash 2 table "two") "two") → "two"

(gethash 1 table) → "one", true
(gethash 2 table) → "two", true
(gethash nil table) → NIL, false
(setf (gethash nil table) nil) → NIL

(gethash nil table) → NIL, true
(defvar *counters* (make-hash-table)) → *COUNTERS*

(gethash ’foo *counters*) → NIL, false
(gethash ’foo *counters* 0) → 0, false

18–10 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(defmacro how-many (obj) ‘(values (gethash ,obj *counters* 0))) → HOW-MANY

(defun count-it (obj) (incf (how-many obj))) → COUNT-IT

(dolist (x ’(bar foo foo bar bar baz)) (count-it x))

(how-many ’foo) → 2

(how-many ’bar) → 3

(how-many ’quux) → 0

See Also:
remhash

Notes:
The secondary value, present-p, can be used to distinguish the absence of an entry from the
presence of an entry that has a value of default.

remhash Function

Syntax:
remhash key hash-table → generalized-boolean

Arguments and Values:
key—an object .

hash-table—a hash table.

generalized-boolean—a generalized boolean.

Description:
Removes the entry for key in hash-table, if any. Returns true if there was such an entry, or false
otherwise.

Examples:

(setq table (make-hash-table)) → #<HASH-TABLE EQL 0/120 32115666>

(setf (gethash 100 table) "C") → "C"

(gethash 100 table) → "C", true
(remhash 100 table) → true
(gethash 100 table) → NIL, false
(remhash 100 table) → false

Side Effects:
The hash-table is modified.

Hash Tables 18–11



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

maphash

maphash Function

Syntax:
maphash function hash-table → nil

Arguments and Values:
function—a designator for a function of two arguments, the key and the value.

hash-table—a hash table.

Description:
Iterates over all entries in the hash-table. For each entry, the function is called with two argu-
ments–the key and the value of that entry.

The consequences are unspecified if any attempt is made to add or remove an entry from the
hash-table while a maphash is in progress, with two exceptions: the function can use can use setf
of gethash to change the value part of the entry currently being processed, or it can use remhash
to remove that entry.

Examples:

(setq table (make-hash-table)) → #<HASH-TABLE EQL 0/120 32304110>

(dotimes (i 10) (setf (gethash i table) i)) → NIL

(let ((sum-of-squares 0))

(maphash #’(lambda (key val)

(let ((square (* val val)))

(incf sum-of-squares square)

(setf (gethash key table) square)))

table)

sum-of-squares) → 285

(hash-table-count table) → 10

(maphash #’(lambda (key val)

(when (oddp val) (remhash key table)))

table) → NIL

(hash-table-count table) → 5

(maphash #’(lambda (k v) (print (list k v))) table)

(0 0)

(8 64)

(2 4)

(6 36)

(4 16)

→ NIL

Side Effects:
None, other than any which might be done by the function.

18–12 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

See Also:
loop, with-hash-table-iterator, Section 3.6 (Traversal Rules and Side Effects)

with-hash-table-iterator Macro

Syntax:
with-hash-table-iterator (name hash-table) {declaration}* {form}* → {result}*

Arguments and Values:
name—a name suitable for the first argument to macrolet.

hash-table—a form, evaluated once, that should produce a hash table.

declaration—a declare expression; not evaluated.

forms—an implicit progn.

results—the values returned by forms.

Description:
Within the lexical scope of the body, name is defined via macrolet such that successive invoca-
tions of (name) return the items, one by one, from the hash table that is obtained by evaluating
hash-table only once.

An invocation (name) returns three values as follows:

1. A generalized boolean that is true if an entry is returned.
2. The key from the hash-table entry.
3. The value from the hash-table entry.

After all entries have been returned by successive invocations of (name), then only one value is
returned, namely nil.

It is unspecified what happens if any of the implicit interior state of an iteration is returned
outside the dynamic extent of the with-hash-table-iterator form such as by returning some
closure over the invocation form.

Any number of invocations of with-hash-table-iterator can be nested, and the body of the
innermost one can invoke all of the locally established macros, provided all of those macros have
distinct names.

Examples:
The following function should return t on any hash table, and signal an error if the usage of
with-hash-table-iterator does not agree with the corresponding usage of maphash.

Hash Tables 18–13



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(defun test-hash-table-iterator (hash-table)

(let ((all-entries ’())

(generated-entries ’())

(unique (list nil)))

(maphash #’(lambda (key value) (push (list key value) all-entries))

hash-table)

(with-hash-table-iterator (generator-fn hash-table)

(loop

(multiple-value-bind (more? key value) (generator-fn)

(unless more? (return))

(unless (eql value (gethash key hash-table unique))

(error "Key ~S not found for value ~S" key value))

(push (list key value) generated-entries))))

(unless (= (length all-entries)

(length generated-entries)

(length (union all-entries generated-entries

:key #’car :test (hash-table-test hash-table))))

(error "Generated entries and Maphash entries don’t correspond"))

t))

The following could be an acceptable definition of maphash, implemented by
with-hash-table-iterator.

(defun maphash (function hash-table)

(with-hash-table-iterator (next-entry hash-table)

(loop (multiple-value-bind (more key value) (next-entry)

(unless more (return nil))

(funcall function key value)))))

Exceptional Situations:
The consequences are undefined if the local function named name established by
with-hash-table-iterator is called after it has returned false as its primary value.

See Also:
Section 3.6 (Traversal Rules and Side Effects)

clrhash Function

Syntax:
clrhash hash-table → hash-table

Arguments and Values:
hash-table—a hash table.

18–14 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Description:
Removes all entries from hash-table, and then returns that empty hash table.

Examples:

(setq table (make-hash-table)) → #<HASH-TABLE EQL 0/120 32004073>

(dotimes (i 100) (setf (gethash i table) (format nil "~R" i))) → NIL

(hash-table-count table) → 100

(gethash 57 table) → "fifty-seven", true
(clrhash table) → #<HASH-TABLE EQL 0/120 32004073>

(hash-table-count table) → 0

(gethash 57 table) → NIL, false

Side Effects:
The hash-table is modified.

sxhash Function

Syntax:
sxhash object → hash-code

Arguments and Values:
object—an object .

hash-code—a non-negative fixnum.

Description:
sxhash returns a hash code for object.

The manner in which the hash code is computed is implementation-dependent , but subject to
certain constraints:

1. (equal x y) implies (= (sxhash x) (sxhash y)).

2. For any two objects, x and y , both of which are bit vectors, characters, conses, numbers,
pathnames, strings, or symbols, and which are similar , (sxhash x) and (sxhash y) yield
the same mathematical value even if x and y exist in different Lisp images of the same
implementation. See Section 3.2.4 (Literal Objects in Compiled Files).

3. The hash-code for an object is always the same within a single session provided that the
object is not visibly modified with regard to the equivalence test equal. See Section 18.1.2
(Modifying Hash Table Keys).

Hash Tables 18–15



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

sxhash

4. The hash-code is intended for hashing. This places no verifiable constraint on a conform-
ing implementation, but the intent is that an implementation should make a good-faith
effort to produce hash-codes that are well distributed within the range of non-negative
fixnums.

5. Computation of the hash-code must terminate, even if the object contains circularities.

Examples:

(= (sxhash (list ’list "ab")) (sxhash (list ’list "ab"))) → true
(= (sxhash "a") (sxhash (make-string 1 :initial-element #\a))) → true
(let ((r (make-random-state)))

(= (sxhash r) (sxhash (make-random-state r))))

→ implementation-dependent

Affected By:
The implementation.

Notes:
Many common hashing needs are satisfied by make-hash-table and the related functions on
hash tables. sxhash is intended for use where the pre-defined abstractions are insufficient. Its
main intent is to allow the user a convenient means of implementing more complicated hashing
paradigms than are provided through hash tables.

The hash codes returned by sxhash are not necessarily related to any hashing strategy used by
any other function in Common Lisp.

For objects of types that equal compares with eq, item 3 requires that the hash-code be based
on some immutable quality of the identity of the object. Another legitimate implementation
technique would be to have sxhash assign (and cache) a random hash code for these objects, since
there is no requirement that similar but non-eq objects have the same hash code.

Although similarity is defined for symbols in terms of both the symbol ’s name and the packages
in which the symbol is accessible, item 3 disallows using package information to compute the hash
code, since changes to the package status of a symbol are not visible to equal .

18–16 Programming Language—Common Lisp


