
Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Programming Language—Common Lisp

22. Printer

Printer i

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

ii Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

22.1 The Lisp Printer

22.1.1 Overview of The Lisp Printer
Common Lisp provides a representation of most objects in the form of printed text called the
printed representation. Functions such as print take an object and send the characters of its
printed representation to a stream. The collection of routines that does this is known as the
(Common Lisp) printer.

Reading a printed representation typically produces an object that is equal to the originally
printed object .

22.1.1.1 Multiple Possible Textual Representations

Most objects have more than one possible textual representation. For example, the positive
integer with a magnitude of twenty-seven can be textually expressed in any of these ways:

27 27. #o33 #x1B #b11011 #.(* 3 3 3) 81/3

A list containing the two symbols A and B can also be textually expressed in a variety of ways:

(A B) (a b) (a b) (\A |B|)

(|\A|

B

)

In general, from the point of view of the Lisp reader , wherever whitespace is permissible in a
textual representation, any number of spaces and newlines can appear in standard syntax .

When a function such as print produces a printed representation, it must choose from among
many possible textual representations. In most cases, it chooses a program readable representa-
tion, but in certain cases it might use a more compact notation that is not program-readable.

A number of option variables, called printer control variables, are provided to permit control
of individual aspects of the printed representation of objects. Figure 22–1 shows the standardized
printer control variables; there might also be implementation-defined printer control variables.

print-array *print-gensym* *print-pprint-dispatch*
print-base *print-length* *print-pretty*
print-case *print-level* *print-radix*
print-circle *print-lines* *print-readably*
print-escape *print-miser-width* *print-right-margin*

Figure 22–1. Standardized Printer Control Variables

Printer 22–1

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

In addition to the printer control variables, the following additional defined names relate to or
affect the behavior of the Lisp printer :

package *read-eval* readtable-case
read-default-float-format *readtable*

Figure 22–2. Additional Influences on the Lisp printer.

22.1.1.1.1 Printer Escaping

The variable *print-escape* controls whether the Lisp printer tries to produce notations such as
escape characters and package prefixes.

The variable *print-readably* can be used to override many of the individual aspects controlled
by the other printer control variables when program-readable output is especially important.

One of the many effects of making the value of *print-readably* be true is that the Lisp printer
behaves as if *print-escape* were also true. For notational convenience, we say that if the value
of either *print-readably* or *print-escape* is true, then printer escaping is “enabled”; and
we say that if the values of both *print-readably* and *print-escape* are false, then printer
escaping is “disabled”.

22.1.2 Printer Dispatching
The Lisp printer makes its determination of how to print an object as follows:

If the value of *print-pretty* is true, printing is controlled by the current pprint dispatch table;
see Section 22.2.1.4 (Pretty Print Dispatch Tables).

Otherwise (if the value of *print-pretty* is false), the object’s print-object method is used; see
Section 22.1.3 (Default Print-Object Methods).

22.1.3 Default Print-Object Methods
This section describes the default behavior of print-object methods for the standardized types.

22.1.3.1 Printing Numbers

22–2 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

22.1.3.1.1 Printing Integers

Integers are printed in the radix specified by the current output base in positional notation, most
significant digit first. If appropriate, a radix specifier can be printed; see *print-radix*. If an
integer is negative, a minus sign is printed and then the absolute value of the integer is printed.
The integer zero is represented by the single digit 0 and never has a sign. A decimal point might
be printed, depending on the value of *print-radix*.

For related information about the syntax of an integer , see Section 2.3.2.1.1 (Syntax of an Inte-
ger).

22.1.3.1.2 Printing Ratios

Ratios are printed as follows: the absolute value of the numerator is printed, as for an integer ;
then a /; then the denominator. The numerator and denominator are both printed in the radix
specified by the current output base; they are obtained as if by numerator and denominator,
and so ratios are printed in reduced form (lowest terms). If appropriate, a radix specifier can be
printed; see *print-radix*. If the ratio is negative, a minus sign is printed before the numerator.

For related information about the syntax of a ratio, see Section 2.3.2.1.2 (Syntax of a Ratio).

22.1.3.1.3 Printing Floats

If the magnitude of the float is either zero or between 10−3 (inclusive) and 107 (exclusive), it is
printed as the integer part of the number, then a decimal point, followed by the fractional part of
the number; there is always at least one digit on each side of the decimal point. If the sign of the
number (as determined by float-sign) is negative, then a minus sign is printed before the number.
If the format of the number does not match that specified by *read-default-float-format*, then
the exponent marker for that format and the digit 0 are also printed. For example, the base of the
natural logarithms as a short float might be printed as 2.71828S0.

For non-zero magnitudes outside of the range 10−3 to 107, a float is printed in computerized
scientific notation. The representation of the number is scaled to be between 1 (inclusive) and
10 (exclusive) and then printed, with one digit before the decimal point and at least one digit
after the decimal point. Next the exponent marker for the format is printed, except that if the
format of the number matches that specified by *read-default-float-format*, then the exponent
marker E is used. Finally, the power of ten by which the fraction must be multiplied to equal the
original number is printed as a decimal integer. For example, Avogadro’s number as a short float
is printed as 6.02S23.

For related information about the syntax of a float , see Section 2.3.2.2 (Syntax of a Float).

Printer 22–3

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

22.1.3.1.4 Printing Complexes

A complex is printed as #C, an open parenthesis, the printed representation of its real part, a
space, the printed representation of its imaginary part, and finally a close parenthesis.

For related information about the syntax of a complex , see Section 2.3.2.3 (Syntax of a Complex)
and Section 2.4.8.11 (Sharpsign C).

22.1.3.1.5 Note about Printing Numbers

The printed representation of a number must not contain escape characters; see Section 2.3.1.1.1
(Escape Characters and Potential Numbers).

22.1.3.2 Printing Characters

When printer escaping is disabled, a character prints as itself; it is sent directly to the output
stream. When printer escaping is enabled, then #\ syntax is used.

When the printer types out the name of a character , it uses the same table as the #\ reader
macro would use; therefore any character name that is typed out is acceptable as input (in that
implementation). If a non-graphic character has a standardized name5, that name is preferred
over non-standard names for printing in #\ notation. For the graphic standard characters, the
character itself is always used for printing in #\ notation—even if the character also has a name5.

For details about the #\ reader macro, see Section 2.4.8.1 (Sharpsign Backslash).

22.1.3.3 Printing Symbols

When printer escaping is disabled, only the characters of the symbol ’s name are output (but the
case in which to print characters in the name is controlled by *print-case*; see Section 22.1.3.3.2
(Effect of Readtable Case on the Lisp Printer)).

The remainder of this section applies only when printer escaping is enabled.

When printing a symbol , the printer inserts enough single escape and/or multiple escape charac-
ters (backslashes and/or vertical-bars) so that if read were called with the same *readtable* and
with *read-base* bound to the current output base, it would return the same symbol (if it is not
apparently uninterned) or an uninterned symbol with the same print name (otherwise).

For example, if the value of *print-base* were 16 when printing the symbol face, it would have
to be printed as \FACE or \Face or |FACE|, because the token face would be read as a hexadecimal
number (decimal value 64206) if the value of *read-base* were 16.

For additional restrictions concerning characters with nonstandard syntax types in the current
readtable, see the variable *print-readably*

For information about how the Lisp reader parses symbols, see Section 2.3.4 (Symbols as Tokens)
and Section 2.4.8.5 (Sharpsign Colon).

22–4 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

nil might be printed as () when *print-pretty* is true and printer escaping is enabled.

22.1.3.3.1 Package Prefixes for Symbols

Package prefixes are printed if necessary. The rules for package prefixes are as follows. When
the symbol is printed, if it is in the KEYWORD package, then it is printed with a preceding colon;
otherwise, if it is accessible in the current package, it is printed without any package prefix ;
otherwise, it is printed with a package prefix .

A symbol that is apparently uninterned is printed preceded by “#:” if *print-gensym* is true and
printer escaping is enabled; if *print-gensym* is false or printer escaping is disabled, then the
symbol is printed without a prefix, as if it were in the current package.

Because the #: syntax does not intern the following symbol, it is necessary to use circular-list
syntax if *print-circle* is true and the same uninterned symbol appears several times in an
expression to be printed. For example, the result of

(let ((x (make-symbol "FOO"))) (list x x))

would be printed as (#:foo #:foo) if *print-circle* were false, but as (#1=#:foo #1#) if
print-circle were true.

A summary of the preceding package prefix rules follows:

foo:bar

foo:bar is printed when symbol bar is external in its home package foo and is not accessi-
ble in the current package.

foo::bar

foo::bar is printed when bar is internal in its home package foo and is not accessible in
the current package.

:bar

:bar is printed when the home package of bar is the KEYWORD package.

#:bar

#:bar is printed when bar is apparently uninterned , even in the pathological case that bar

has no home package but is nevertheless somehow accessible in the current package.

Printer 22–5

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

22.1.3.3.2 Effect of Readtable Case on the Lisp Printer

When printer escaping is disabled, or the characters under consideration are not already quoted
specifically by single escape or multiple escape syntax, the readtable case of the current readtable
affects the way the Lisp printer writes symbols in the following ways:

:upcase

When the readtable case is :upcase, uppercase characters are printed in the case specified
by *print-case*, and lowercase characters are printed in their own case.

:downcase

When the readtable case is :downcase, uppercase characters are printed in their own case,
and lowercase characters are printed in the case specified by *print-case*.

:preserve

When the readtable case is :preserve, all alphabetic characters are printed in their own
case.

:invert

When the readtable case is :invert, the case of all alphabetic characters in single case
symbol names is inverted. Mixed-case symbol names are printed as is.

The rules for escaping alphabetic characters in symbol names are affected by the readtable-case if
printer escaping is enabled. Alphabetic characters are escaped as follows:

:upcase

When the readtable case is :upcase, all lowercase characters must be escaped.

:downcase

When the readtable case is :downcase, all uppercase characters must be escaped.

:preserve

When the readtable case is :preserve, no alphabetic characters need be escaped.

:invert

When the readtable case is :invert, no alphabetic characters need be escaped.

22–6 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

22.1.3.3.2.1 Examples of Effect of Readtable Case on the Lisp Printer

(defun test-readtable-case-printing ()

(let ((*readtable* (copy-readtable nil))

(*print-case* *print-case*))

(format t "READTABLE-CASE *PRINT-CASE* Symbol-name Output~

~%--~

~%")

(dolist (readtable-case ’(:upcase :downcase :preserve :invert))

(setf (readtable-case *readtable*) readtable-case)

(dolist (print-case ’(:upcase :downcase :capitalize))

(dolist (symbol ’(|ZEBRA| |Zebra| |zebra|))

(setq *print-case* print-case)

(format t "~&:~A~15T:~A~29T~A~42T~A"

(string-upcase readtable-case)

(string-upcase print-case)

(symbol-name symbol)

(prin1-to-string symbol)))))))

The output from (test-readtable-case-printing) should be as follows:

READTABLE-CASE *PRINT-CASE* Symbol-name Output

--

:UPCASE :UPCASE ZEBRA ZEBRA

:UPCASE :UPCASE Zebra |Zebra|

:UPCASE :UPCASE zebra |zebra|

:UPCASE :DOWNCASE ZEBRA zebra

:UPCASE :DOWNCASE Zebra |Zebra|

:UPCASE :DOWNCASE zebra |zebra|

:UPCASE :CAPITALIZE ZEBRA Zebra

:UPCASE :CAPITALIZE Zebra |Zebra|

:UPCASE :CAPITALIZE zebra |zebra|

:DOWNCASE :UPCASE ZEBRA |ZEBRA|

:DOWNCASE :UPCASE Zebra |Zebra|

:DOWNCASE :UPCASE zebra ZEBRA

:DOWNCASE :DOWNCASE ZEBRA |ZEBRA|

:DOWNCASE :DOWNCASE Zebra |Zebra|

:DOWNCASE :DOWNCASE zebra zebra

:DOWNCASE :CAPITALIZE ZEBRA |ZEBRA|

:DOWNCASE :CAPITALIZE Zebra |Zebra|

:DOWNCASE :CAPITALIZE zebra Zebra

:PRESERVE :UPCASE ZEBRA ZEBRA

:PRESERVE :UPCASE Zebra Zebra

:PRESERVE :UPCASE zebra zebra

:PRESERVE :DOWNCASE ZEBRA ZEBRA

Printer 22–7

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

:PRESERVE :DOWNCASE Zebra Zebra

:PRESERVE :DOWNCASE zebra zebra

:PRESERVE :CAPITALIZE ZEBRA ZEBRA

:PRESERVE :CAPITALIZE Zebra Zebra

:PRESERVE :CAPITALIZE zebra zebra

:INVERT :UPCASE ZEBRA zebra

:INVERT :UPCASE Zebra Zebra

:INVERT :UPCASE zebra ZEBRA

:INVERT :DOWNCASE ZEBRA zebra

:INVERT :DOWNCASE Zebra Zebra

:INVERT :DOWNCASE zebra ZEBRA

:INVERT :CAPITALIZE ZEBRA zebra

:INVERT :CAPITALIZE Zebra Zebra

:INVERT :CAPITALIZE zebra ZEBRA

22.1.3.4 Printing Strings

The characters of the string are output in order. If printer escaping is enabled, a double-quote is
output before and after, and all double-quotes and single escapes are preceded by backslash. The
printing of strings is not affected by *print-array*. Only the active elements of the string are
printed.

For information on how the Lisp reader parses strings, see Section 2.4.5 (Double-Quote).

22.1.3.5 Printing Lists and Conses

Wherever possible, list notation is preferred over dot notation. Therefore the following algorithm
is used to print a cons x:

1. A left-parenthesis is printed.

2. The car of x is printed.

3. If the cdr of x is itself a cons, it is made to be the current cons (i.e., x becomes that cons), a
space is printed, and step 2 is re-entered.

4. If the cdr of x is not null , a space, a dot , a space, and the cdr of x are printed.

5. A right-parenthesis is printed.

Actually, the above algorithm is only used when *print-pretty* is false. When *print-pretty* is
true (or when pprint is used), additional whitespace1 may replace the use of a single space, and a

22–8 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

more elaborate algorithm with similar goals but more presentational flexibility is used; see Section
22.1.2 (Printer Dispatching).

Although the two expressions below are equivalent, and the reader accepts either one and pro-
duces the same cons, the printer always prints such a cons in the second form.

(a . (b . ((c . (d . nil)) . (e . nil))))

(a b (c d) e)

The printing of conses is affected by *print-level*, *print-length*, and *print-circle*.

Following are examples of printed representations of lists:

(a . b) ;A dotted pair of a and b

(a.b) ;A list of one element, the symbol named a.b

(a. b) ;A list of two elements a. and b

(a .b) ;A list of two elements a and .b

(a b . c) ;A dotted list of a and b with c at the end; two conses

.iot ;The symbol whose name is .iot

(. b) ;Invalid -- an error is signaled if an attempt is made to read

;this syntax.

(a .) ;Invalid -- an error is signaled.

(a .. b) ;Invalid -- an error is signaled.

(a . . b) ;Invalid -- an error is signaled.

(a b c ...) ;Invalid -- an error is signaled.

(a \. b) ;A list of three elements a, ., and b

(a |.| b) ;A list of three elements a, ., and b

(a \... b) ;A list of three elements a, ..., and b

(a |...| b) ;A list of three elements a, ..., and b

For information on how the Lisp reader parses lists and conses, see Section 2.4.1 (Left-
Parenthesis).

22.1.3.6 Printing Bit Vectors

A bit vector is printed as #* followed by the bits of the bit vector in order. If *print-array* is
false, then the bit vector is printed in a format (using #<) that is concise but not readable. Only
the active elements of the bit vector are printed.

For information on Lisp reader parsing of bit vectors, see Section 2.4.8.4 (Sharpsign Asterisk).

22.1.3.7 Printing Other Vectors

If *print-array* is true and *print-readably* is false, any vector other than a string or bit
vector is printed using general-vector syntax; this means that information about specialized vec-
tor representations does not appear. The printed representation of a zero-length vector is #().
The printed representation of a non-zero-length vector begins with #(. Following that, the first

Printer 22–9

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

element of the vector is printed. If there are any other elements, they are printed in turn, with
each such additional element preceded by a space if *print-pretty* is false, or whitespace1 if
print-pretty is true. A right-parenthesis after the last element terminates the printed represen-
tation of the vector . The printing of vectors is affected by *print-level* and *print-length*. If
the vector has a fill pointer , then only those elements below the fill pointer are printed.

If both *print-array* and *print-readably* are false, the vector is not printed as described
above, but in a format (using #<) that is concise but not readable.

If *print-readably* is true, the vector prints in an implementation-defined manner; see the
variable *print-readably*.

For information on how the Lisp reader parses these “other vectors,” see Section 2.4.8.3 (Sharp-
sign Left-Parenthesis).

22.1.3.8 Printing Other Arrays

If *print-array* is true and *print-readably* is false, any array other than a vector is printed
using #nA format. Let n be the rank of the array . Then # is printed, then n as a decimal integer,
then A, then n open parentheses. Next the elements are scanned in row-major order, using
write on each element , and separating elements from each other with whitespace1. The array’s
dimensions are numbered 0 to n-1 from left to right, and are enumerated with the rightmost index
changing fastest. Every time the index for dimension j is incremented, the following actions are
taken:

• If j < n-1, then a close parenthesis is printed.

• If incrementing the index for dimension j caused it to equal dimension j, that index is
reset to zero and the index for dimension j-1 is incremented (thereby performing these
three steps recursively), unless j=0, in which case the entire algorithm is terminated.
If incrementing the index for dimension j did not cause it to equal dimension j, then a
space is printed.

• If j < n-1, then an open parenthesis is printed.

This causes the contents to be printed in a format suitable for :initial-contents to make-array.
The lists effectively printed by this procedure are subject to truncation by *print-level* and
print-length.

If the array is of a specialized type, containing bits or characters, then the innermost lists gen-
erated by the algorithm given above can instead be printed using bit-vector or string syntax,
provided that these innermost lists would not be subject to truncation by *print-length*.

If both *print-array* and *print-readably* are false, then the array is printed in a format
(using #<) that is concise but not readable.

If *print-readably* is true, the array prints in an implementation-defined manner; see the vari-
able *print-readably*. In particular, this may be important for arrays having some dimension

22–10 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

0.

For information on how the Lisp reader parses these “other arrays,” see Section 2.4.8.12 (Sharp-
sign A).

22.1.3.9 Examples of Printing Arrays

(let ((a (make-array ’(3 3)))

(*print-pretty* t)

(*print-array* t))

(dotimes (i 3) (dotimes (j 3) (setf (aref a i j) (format nil "<~D,~D>" i j))))

(print a)

(print (make-array 9 :displaced-to a)))

. #2A(("<0,0>" "<0,1>" "<0,2>")

. ("<1,0>" "<1,1>" "<1,2>")

. ("<2,0>" "<2,1>" "<2,2>"))

. #("<0,0>" "<0,1>" "<0,2>" "<1,0>" "<1,1>" "<1,2>" "<2,0>" "<2,1>" "<2,2>")

→ #<ARRAY 9 indirect 36363476>

22.1.3.10 Printing Random States

A specific syntax for printing objects of type random-state is not specified. However, every
implementation must arrange to print a random state object in such a way that, within the same
implementation, read can construct from the printed representation a copy of the random state
object as if the copy had been made by make-random-state.

If the type random state is effectively implemented by using the machinery for defstruct, the
usual structure syntax can then be used for printing random state objects; one might look some-
thing like

#S(RANDOM-STATE :DATA #(14 49 98436589 786345 8734658324 ...))

where the components are implementation-dependent .

22.1.3.11 Printing Pathnames

When printer escaping is enabled, the syntax #P"..." is how a pathname is printed by write and
the other functions herein described. The "..." is the namestring representation of the pathname.

When printer escaping is disabled, write writes a pathname P by writing (namestring P) instead.

For information on how the Lisp reader parses pathnames, see Section 2.4.8.14 (Sharpsign P).

Printer 22–11

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

22.1.3.12 Printing Structures

By default, a structure of type S is printed using #S syntax. This behavior can be customized by
specifying a :print-function or :print-object option to the defstruct form that defines S, or by
writing a print-object method that is specialized for objects of type S.

Different structures might print out in different ways; the default notation for structures is:

#S(structure-name {slot-key slot-value}*)
where #S indicates structure syntax, structure-name is a structure name, each slot-key is an
initialization argument name for a slot in the structure, and each corresponding slot-value is a
representation of the object in that slot .

For information on how the Lisp reader parses structures, see Section 2.4.8.13 (Sharpsign S).

22.1.3.13 Printing Other Objects

Other objects are printed in an implementation-dependent manner. It is not required that an
implementation print those objects readably .

For example, hash tables, readtables, packages, streams, and functions might not print readably .

A common notation to use in this circumstance is #<...>. Since #< is not readable by the Lisp
reader , the precise format of the text which follows is not important, but a common format to use
is that provided by the print-unreadable-object macro.

For information on how the Lisp reader treats this notation, see Section 2.4.8.20 (Sharpsign
Less-Than-Sign). For information on how to notate objects that cannot be printed readably , see
Section 2.4.8.6 (Sharpsign Dot).

22.1.4 Examples of Printer Behavior

(let ((*print-escape* t)) (fresh-line) (write #\a))

. #\a

→ #\a

(let ((*print-escape* nil) (*print-readably* nil))

(fresh-line)

(write #\a))

. a

→ #\a

(progn (fresh-line) (prin1 #\a))

. #\a

→ #\a

(progn (fresh-line) (print #\a))

.

22–12 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

. #\a

→ #\a

(progn (fresh-line) (princ #\a))

. a

→ #\a

(dolist (val ’(t nil))

(let ((*print-escape* val) (*print-readably* val))

(print ’#\a)

(prin1 #\a) (write-char #\Space)

(princ #\a) (write-char #\Space)

(write #\a)))

. #\a #\a a #\a

. #\a #\a a a

→ NIL

(progn (fresh-line) (write ’(let ((a 1) (b 2)) (+ a b))))

. (LET ((A 1) (B 2)) (+ A B))

→ (LET ((A 1) (B 2)) (+ A B))

(progn (fresh-line) (pprint ’(let ((a 1) (b 2)) (+ a b))))

. (LET ((A 1)

. (B 2))

. (+ A B))

→ (LET ((A 1) (B 2)) (+ A B))

(progn (fresh-line)

(write ’(let ((a 1) (b 2)) (+ a b)) :pretty t))

. (LET ((A 1)

. (B 2))

. (+ A B))

→ (LET ((A 1) (B 2)) (+ A B))

(with-output-to-string (s)

(write ’write :stream s)

(prin1 ’prin1 s))

→ "WRITEPRIN1"

Printer 22–13

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

22.2 The Lisp Pretty Printer

22.2.1 Pretty Printer Concepts
The facilities provided by the pretty printer permit programs to redefine the way in which code
is displayed, and allow the full power of pretty printing to be applied to complex combinations of
data structures.

Whether any given style of output is in fact “pretty” is inherently a somewhat subjective issue.
However, since the effect of the pretty printer can be customized by conforming programs, the
necessary flexibility is provided for individual programs to achieve an arbitrary degree of aesthetic
control.

By providing direct access to the mechanisms within the pretty printer that make dynamic
decisions about layout, the macros and functions pprint-logical-block, pprint-newline, and
pprint-indent make it possible to specify pretty printing layout rules as a part of any function
that produces output. They also make it very easy for the detection of circularity and sharing,
and abbreviation based on length and nesting depth to be supported by the function.

The pretty printer is driven entirely by dispatch based on the value of *print-pprint-dispatch*.
The function set-pprint-dispatch makes it possible for conforming programs to associate new
pretty printing functions with a type.

22.2.1.1 Dynamic Control of the Arrangement of Output

The actions of the pretty printer when a piece of output is too large to fit in the space available
can be precisely controlled. Three concepts underlie the way these operations work—logical
blocks, conditional newlines, and sections. Before proceeding further, it is important to
define these terms.

The first line of Figure 22–3 shows a schematic piece of output. Each of the characters in the
output is represented by “-”. The positions of conditional newlines are indicated by digits. The
beginnings and ends of logical blocks are indicated by “<” and “>” respectively.

The output as a whole is a logical block and the outermost section. This section is indicated
by the 0’s on the second line of Figure 1. Logical blocks nested within the output are speci-
fied by the macro pprint-logical-block. Conditional newline positions are specified by calls to
pprint-newline. Each conditional newline defines two sections (one before it and one after it) and
is associated with a third (the section immediately containing it).

The section after a conditional newline consists of: all the output up to, but not including, (a)
the next conditional newline immediately contained in the same logical block; or if (a) is not
applicable, (b) the next newline that is at a lesser level of nesting in logical blocks; or if (b) is not
applicable, (c) the end of the output.

The section before a conditional newline consists of: all the output back to, but not including,
(a) the previous conditional newline that is immediately contained in the same logical block; or if

22–14 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(a) is not applicable, (b) the beginning of the immediately containing logical block. The last four
lines in Figure 1 indicate the sections before and after the four conditional newlines.

The section immediately containing a conditional newline is the shortest section that contains the
conditional newline in question. In Figure 22–3, the first conditional newline is immediately con-
tained in the section marked with 0’s, the second and third conditional newlines are immediately
contained in the section before the fourth conditional newline, and the fourth conditional newline
is immediately contained in the section after the first conditional newline.

<-1---<--<--2---3->--4-->->

000000000000000000000000000

11 111111111111111111111111

22 222

333 3333

44444444444444 44444

Figure 22–3. Example of Logical Blocks, Conditional Newlines, and Sections

Whenever possible, the pretty printer displays the entire contents of a section on a single line.
However, if the section is too long to fit in the space available, line breaks are inserted at condi-
tional newline positions within the section.

22.2.1.2 Format Directive Interface

The primary interface to operations for dynamically determining the arrangement of output is
provided through the functions and macros of the pretty printer. Figure 22–4 shows the defined
names related to pretty printing .

print-lines pprint-dispatch pprint-pop
print-miser-width pprint-exit-if-list-exhausted pprint-tab
print-pprint-dispatch pprint-fill pprint-tabular
print-right-margin pprint-indent set-pprint-dispatch
copy-pprint-dispatch pprint-linear write
format pprint-logical-block
formatter pprint-newline

Figure 22–4. Defined names related to pretty printing.

Figure 22–5 identifies a set of format directives which serve as an alternate interface to the same
pretty printing operations in a more textually compact form.

~I ~W ~<...~:>

~:T ~/.../ ~

Figure 22–5. Format directives related to Pretty Printing

Printer 22–15

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

22.2.1.3 Compiling Format Strings

A format string is essentially a program in a special-purpose language that performs printing,
and that is interpreted by the function format. The formatter macro provides the efficiency of
using a compiled function to do that same printing but without losing the textual compactness of
format strings.

A format control is either a format string or a function that was returned by the the formatter
macro.

22.2.1.4 Pretty Print Dispatch Tables

A pprint dispatch table is a mapping from keys to pairs of values. Each key is a type specifier .
The values associated with a key are a “function” (specifically, a function designator or nil) and a
“numerical priority” (specifically, a real). Basic insertion and retrieval is done based on the keys
with the equality of keys being tested by equal.

When *print-pretty* is true, the current pprint dispatch table (in *print-pprint-dispatch*)
controls how objects are printed. The information in this table takes precedence over all other
mechanisms for specifying how to print objects. In particular, it has priority over user-defined
print-object methods because the current pprint dispatch table is consulted first.

The function is chosen from the current pprint dispatch table by finding the highest priority
function that is associated with a type specifier that matches the object ; if there is more than one
such function, it is implementation-dependent which is used.

However, if there is no information in the table about how to pretty print a particular kind
of object , a function is invoked which uses print-object to print the object . The value of
print-pretty is still true when this function is called , and individual methods for print-object
might still elect to produce output in a special format conditional on the value of *print-pretty*.

22.2.1.5 Pretty Printer Margins

A primary goal of pretty printing is to keep the output between a pair of margins. The column
where the output begins is taken as the left margin. If the current column cannot be determined
at the time output begins, the left margin is assumed to be zero. The right margin is controlled
by *print-right-margin*.

22–16 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

22.2.2 Examples of using the Pretty Printer
As an example of the interaction of logical blocks, conditional newlines, and indentation, consider
the function simple-pprint-defun below. This function prints out lists whose cars are defun in
the standard way assuming that the list has exactly length 4.

(defun simple-pprint-defun (*standard-output* list)

(pprint-logical-block (*standard-output* list :prefix "(" :suffix ")")

(write (first list))

(write-char #\Space)

(pprint-newline :miser)

(pprint-indent :current 0)

(write (second list))

(write-char #\Space)

(pprint-newline :fill)

(write (third list))

(pprint-indent :block 1)

(write-char #\Space)

(pprint-newline :linear)

(write (fourth list))))

Suppose that one evaluates the following:

(simple-pprint-defun *standard-output* ’(defun prod (x y) (* x y)))

If the line width available is greater than or equal to 26, then all of the output appears on
one line. If the line width available is reduced to 25, a line break is inserted at the linear-
style conditional newline before the expression (* x y), producing the output shown. The
(pprint-indent :block 1) causes (* x y) to be printed at a relative indentation of 1 in the
logical block.

(DEFUN PROD (X Y)

(* X Y))

If the line width available is 15, a line break is also inserted at the fill style conditional newline
before the argument list. The call on (pprint-indent :current 0) causes the argument list to line
up under the function name.

(DEFUN PROD

(X Y)

(* X Y))

If *print-miser-width* were greater than or equal to 14, the example output above would have
been as follows, because all indentation changes are ignored in miser mode and line breaks are
inserted at miser-style conditional newlines.

(DEFUN

PROD

Printer 22–17

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(X Y)

(* X Y))

As an example of a per-line prefix, consider that evaluating the following produces the output
shown with a line width of 20 and *print-miser-width* of nil.

(pprint-logical-block (*standard-output* nil :per-line-prefix ";;; ")

(simple-pprint-defun *standard-output* ’(defun prod (x y) (* x y))))

;;; (DEFUN PROD

;;; (X Y)

;;; (* X Y))

As a more complex (and realistic) example, consider the function pprint-let below. This speci-
fies how to print a let form in the traditional style. It is more complex than the example above,
because it has to deal with nested structure. Also, unlike the example above it contains com-
plete code to readably print any possible list that begins with the symbol let. The outermost
pprint-logical-block form handles the printing of the input list as a whole and specifies that
parentheses should be printed in the output. The second pprint-logical-block form handles the
list of binding pairs. Each pair in the list is itself printed by the innermost pprint-logical-block.
(A loop form is used instead of merely decomposing the pair into two objects so that readable
output will be produced no matter whether the list corresponding to the pair has one element,
two elements, or (being malformed) has more than two elements.) A space and a fill-style con-
ditional newline are placed after each pair except the last. The loop at the end of the topmost
pprint-logical-block form prints out the forms in the body of the let form separated by spaces
and linear-style conditional newlines.

(defun pprint-let (*standard-output* list)

(pprint-logical-block (nil list :prefix "(" :suffix ")")

(write (pprint-pop))

(pprint-exit-if-list-exhausted)

(write-char #\Space)

(pprint-logical-block (nil (pprint-pop) :prefix "(" :suffix ")")

(pprint-exit-if-list-exhausted)

(loop (pprint-logical-block (nil (pprint-pop) :prefix "(" :suffix ")")

(pprint-exit-if-list-exhausted)

(loop (write (pprint-pop))

(pprint-exit-if-list-exhausted)

(write-char #\Space)

(pprint-newline :linear)))

(pprint-exit-if-list-exhausted)

(write-char #\Space)

(pprint-newline :fill)))

(pprint-indent :block 1)

(loop (pprint-exit-if-list-exhausted)

(write-char #\Space)

22–18 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(pprint-newline :linear)

(write (pprint-pop)))))

Suppose that one evaluates the following with *print-level* being 4, and *print-circle* being
true.

(pprint-let *standard-output*

’#1=(let (x (*print-length* (f (g 3)))

(z . 2) (k (car y)))

(setq x (sqrt z)) #1#))

If the line length is greater than or equal to 77, the output produced appears on one line. How-
ever, if the line length is 76, line breaks are inserted at the linear-style conditional newlines
separating the forms in the body and the output below is produced. Note that, the degenerate
binding pair x is printed readably even though it fails to be a list; a depth abbreviation marker
is printed in place of (g 3); the binding pair (z . 2) is printed readably even though it is not a
proper list; and appropriate circularity markers are printed.

#1=(LET (X (*PRINT-LENGTH* (F #)) (Z . 2) (K (CAR Y)))

(SETQ X (SQRT Z))

#1#)

If the line length is reduced to 35, a line break is inserted at one of the fill-style conditional
newlines separating the binding pairs.

#1=(LET (X (*PRINT-PRETTY* (F #))

(Z . 2) (K (CAR Y)))

(SETQ X (SQRT Z))

#1#)

Suppose that the line length is further reduced to 22 and *print-length* is set to 3. In this
situation, line breaks are inserted after both the first and second binding pairs. In addition, the
second binding pair is itself broken across two lines. Clause (b) of the description of fill-style
conditional newlines (see the function pprint-newline) prevents the binding pair (z . 2) from
being printed at the end of the third line. Note that the length abbreviation hides the circularity
from view and therefore the printing of circularity markers disappears.

(LET (X

(*PRINT-LENGTH*

(F #))

(Z . 2) ...)

(SETQ X (SQRT Z))

...)

The next function prints a vector using “#(...)” notation.

(defun pprint-vector (*standard-output* v)

(pprint-logical-block (nil nil :prefix "#(" :suffix ")")

Printer 22–19

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(let ((end (length v)) (i 0))

(when (plusp end)

(loop (pprint-pop)

(write (aref v i))

(if (= (incf i) end) (return nil))

(write-char #\Space)

(pprint-newline :fill))))))

Evaluating the following with a line length of 15 produces the output shown.

(pprint-vector *standard-output* ’#(12 34 567 8 9012 34 567 89 0 1 23))

#(12 34 567 8

9012 34 567

89 0 1 23)

As examples of the convenience of specifying pretty printing with format strings, consider that
the functions simple-pprint-defun and pprint-let used as examples above can be compactly
defined as follows. (The function pprint-vector cannot be defined using format because the data
structure it traverses is not a list.)

(defun simple-pprint-defun (*standard-output* list)

(format T "~:<~W ~@ ~:I~W ~: ~W~1I ~ ~W~:>" list))

(defun pprint-let (*standard-output* list)

(format T "~:<~W~∧~:<~@{~:<~@{~W~∧~ ~}~:>~∧~: ~}~:>~1I~@{~∧~ ~W~}~:>" list))

In the following example, the first form restores *print-pprint-dispatch* to the equivalent of its
initial value. The next two forms then set up a special way to pretty print ratios. Note that the
more specific type specifier has to be associated with a higher priority.

(setq *print-pprint-dispatch* (copy-pprint-dispatch nil))

(set-pprint-dispatch ’ratio

#’(lambda (s obj)

(format s "#.(/ ~W ~W)"

(numerator obj) (denominator obj))))

(set-pprint-dispatch ’(and ratio (satisfies minusp))

#’(lambda (s obj)

(format s "#.(- (/ ~W ~W))"

(- (numerator obj)) (denominator obj)))

5)

(pprint ’(1/3 -2/3))

(#.(/ 1 3) #.(- (/ 2 3)))

22–20 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

The following two forms illustrate the definition of pretty printing functions for types of code.
The first form illustrates how to specify the traditional method for printing quoted objects using
single-quote. Note the care taken to ensure that data lists that happen to begin with quote will
be printed readably. The second form specifies that lists beginning with the symbol my-let should
print the same way that lists beginning with let print when the initial pprint dispatch table is in
effect.

(set-pprint-dispatch ’(cons (member quote)) ()

#’(lambda (s list)

(if (and (consp (cdr list)) (null (cddr list)))

(funcall (formatter "’~W") s (cadr list))

(pprint-fill s list))))

(set-pprint-dispatch ’(cons (member my-let))

(pprint-dispatch ’(let) nil))

The next example specifies a default method for printing lists that do not correspond to function
calls. Note that the functions pprint-linear, pprint-fill, and pprint-tabular are all defined with
optional colon-p and at-sign-p arguments so that they can be used as pprint dispatch functions
as well as ~/.../ functions.

(set-pprint-dispatch ’(cons (not (and symbol (satisfies fboundp))))

#’pprint-fill -5)

;; Assume a line length of 9

(pprint ’(0 b c d e f g h i j k))

(0 b c d

e f g h

i j k)

This final example shows how to define a pretty printing function for a user defined data struc-
ture.

(defstruct family mom kids)

(set-pprint-dispatch ’family

#’(lambda (s f)

(funcall (formatter "~@<#<~;~W and ~2I~ ~/pprint-fill/~;>~:>")

s (family-mom f) (family-kids f))))

The pretty printing function for the structure family specifies how to adjust the layout of the out-
put so that it can fit aesthetically into a variety of line widths. In addition, it obeys the printer
control variables *print-level*, *print-length*, *print-lines*, *print-circle* and *print-escape*,
and can tolerate several different kinds of malformity in the data structure. The output below
shows what is printed out with a right margin of 25, *print-pretty* being true, *print-escape*
being false, and a malformed kids list.

Printer 22–21

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(write (list ’principal-family

(make-family :mom "Lucy"

:kids ’("Mark" "Bob" . "Dan")))

:right-margin 25 :pretty T :escape nil :miser-width nil)

(PRINCIPAL-FAMILY

#<Lucy and

Mark Bob . Dan>)

Note that a pretty printing function for a structure is different from the structure’s print-object
method . While print-object methods are permanently associated with a structure, pretty printing
functions are stored in pprint dispatch tables and can be rapidly changed to reflect different
printing needs. If there is no pretty printing function for a structure in the current pprint dispatch
table, its print-object method is used instead.

22.2.3 Notes about the Pretty Printer’s Background
For a background reference to the abstract concepts detailed in this section, see XP: A Common
Lisp Pretty Printing System. The details of that paper are not binding on this document, but
may be helpful in establishing a conceptual basis for understanding this material.

22–22 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

22.3 Formatted Output
format is useful for producing nicely formatted text, producing good-looking messages, and so on.
format can generate and return a string or output to destination.

The control-string argument to format is actually a format control . That is, it can be either a
format string or a function, for example a function returned by the formatter macro.

If it is a function, the function is called with the appropriate output stream as its first argument
and the data arguments to format as its remaining arguments. The function should perform
whatever output is necessary and return the unused tail of the arguments (if any).

The compilation process performed by formatter produces a function that would do with its
arguments as the format interpreter would do with those arguments.

The remainder of this section describes what happens if the control-string is a format string .

Control-string is composed of simple text (characters) and embedded directives.

format writes the simple text as is; each embedded directive specifies further text output that
is to appear at the corresponding point within the simple text. Most directives use one or more
elements of args to create their output.

A directive consists of a tilde, optional prefix parameters separated by commas, optional colon
and at-sign modifiers, and a single character indicating what kind of directive this is. There is
no required ordering between the at-sign and colon modifier. The case of the directive character
is ignored. Prefix parameters are notated as signed (sign is optional) decimal numbers, or as
a single-quote followed by a character. For example, ~5,’0d can be used to print an integer in
decimal radix in five columns with leading zeros, or ~5,’*d to get leading asterisks.

In place of a prefix parameter to a directive, V (or v) can be used. In this case, format takes
an argument from args as a parameter to the directive. The argument should be an integer or
character . If the arg used by a V parameter is nil, the effect is as if the parameter had been
omitted. # can be used in place of a prefix parameter; it represents the number of args remaining
to be processed. When used within a recursive format, in the context of ~? or ~{, the # prefix
parameter represents the number of format arguments remaining within the recursive call.

Examples of format strings:

"~S" ;This is an S directive with no parameters or modifiers.
"~3,-4:@s" ;This is an S directive with two parameters, 3 and -4,

; and both the colon and at-sign flags.
"~,+4S" ;Here the first prefix parameter is omitted and takes

; on its default value, while the second parameter is 4.

Figure 22–6. Examples of format control strings

format sends the output to destination. If destination is nil, format creates and returns a string

Printer 22–23

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

containing the output from control-string . If destination is non-nil , it must be a string with a
fill pointer , a stream, or the symbol t. If destination is a string with a fill pointer , the output is
added to the end of the string . If destination is a stream, the output is sent to that stream. If
destination is t, the output is sent to standard output .

In the description of the directives that follows, the term arg in general refers to the next item
of the set of args to be processed. The word or phrase at the beginning of each description is a
mnemonic for the directive. format directives do not bind any of the printer control variables
(*print-...*) except as specified in the following descriptions. Implementations may specify
the binding of new, implementation-specific printer control variables for each format directive,
but they may neither bind any standard printer control variables not specified in description
of a format directive nor fail to bind any standard printer control variables as specified in the
description.

22.3.1 FORMAT Basic Output

22.3.1.1 Tilde C: Character

The next arg should be a character ; it is printed according to the modifier flags.

~C prints the character as if by using write-char if it is a simple character . Characters
that are not simple are not necessarily printed as if by write-char, but are displayed in an
implementation-defined , abbreviated format. For example,

(format nil "~C" #\A) → "A"

(format nil "~C" #\Space) → " "

~:C is the same as ~C for printing characters, but other characters are “spelled out.” The intent is
that this is a “pretty” format for printing characters. For simple characters that are not printing ,
what is spelled out is the name of the character (see char-name). For characters that are not
simple and not printing , what is spelled out is implementation-defined . For example,

(format nil "~:C" #\A) → "A"

(format nil "~:C" #\Space) → "Space"

;; This next example assumes an implementation-defined "Control" attribute.

(format nil "~:C" #\Control-Space)

→ "Control-Space"
or→ "c-Space"

~:@C prints what ~:C would, and then if the character requires unusual shift keys on the keyboard
to type it, this fact is mentioned. For example,

(format nil "~:@C" #\Control-Partial) → "Control-∂ (Top-F)"

This is the format used for telling the user about a key he is expected to type, in prompts, for

22–24 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

instance. The precise output may depend not only on the implementation, but on the particular
I/O devices in use.

~@C prints the character in a way that the Lisp reader can understand, using #\ syntax.

~@C binds *print-escape* to t.

22.3.1.2 Tilde Percent: Newline

This outputs a #\Newline character, thereby terminating the current output line and beginning a
new one. ~n% outputs n newlines. No arg is used.

22.3.1.3 Tilde Ampersand: Fresh-Line

Unless it can be determined that the output stream is already at the beginning of a line, this
outputs a newline. ~n& calls fresh-line and then outputs n−1 newlines. ~0& does nothing.

22.3.1.4 Tilde Vertical-Bar: Page

This outputs a page separator character, if possible. ~n| does this n times.

22.3.1.5 Tilde Tilde: Tilde

This outputs a tilde. ~n~ outputs n tildes.

22.3.2 FORMAT Radix Control

22.3.2.1 Tilde R: Radix

~nR prints arg in radix n. The modifier flags and any remaining parameters are used as for the ~D

directive. ~D is the same as ~10R. The full form is ~radix,mincol,padchar,commachar,comma-intervalR.

If no prefix parameters are given to ~R, then a different interpretation is given. The argument
should be an integer . For example, if arg is 4:

• ~R prints arg as a cardinal English number: four.

• ~:R prints arg as an ordinal English number: fourth.

• ~@R prints arg as a Roman numeral: IV.

Printer 22–25

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

• ~:@R prints arg as an old Roman numeral: IIII.

For example:

(format nil "~,,’ ,4:B" 13) → "1101"

(format nil "~,,’ ,4:B" 17) → "1 0001"

(format nil "~19,0,’ ,4:B" 3333) → "0000 1101 0000 0101"

(format nil "~3,,,’ ,2:R" 17) → "1 22"

(format nil "~,,’|,2:D" #xFFFF) → "6|55|35"

If and only if the first parameter, n, is supplied, ~R binds *print-escape* to false, *print-radix*
to false, *print-base* to n, and *print-readably* to false.

If and only if no parameters are supplied, ~R binds *print-base* to 10.

22.3.2.2 Tilde D: Decimal

An arg , which should be an integer , is printed in decimal radix. ~D will never put a decimal point
after the number.

~mincolD uses a column width of mincol ; spaces are inserted on the left if the number requires
fewer than mincol columns for its digits and sign. If the number doesn’t fit in mincol columns,
additional columns are used as needed.

~mincol,padcharD uses padchar as the pad character instead of space.

If arg is not an integer , it is printed in ~A format and decimal base.

The @ modifier causes the number’s sign to be printed always; the default is to print it only if
the number is negative. The : modifier causes commas to be printed between groups of digits;
commachar may be used to change the character used as the comma. comma-interval must be an
integer and defaults to 3. When the : modifier is given to any of these directives, the commachar
is printed between groups of comma-interval digits.

Thus the most general form of ~D is ~mincol,padchar,commachar,comma-intervalD.

~D binds *print-escape* to false, *print-radix* to false, *print-base* to 10, and
print-readably to false.

22.3.2.3 Tilde B: Binary

This is just like ~D but prints in binary radix (radix 2) instead of decimal. The full form is
therefore ~mincol,padchar,commachar,comma-intervalB.

~B binds *print-escape* to false, *print-radix* to false, *print-base* to 2, and
print-readably to false.

22–26 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

22.3.2.4 Tilde O: Octal

This is just like ~D but prints in octal radix (radix 8) instead of decimal. The full form is therefore
~mincol,padchar,commachar,comma-intervalO.

~O binds *print-escape* to false, *print-radix* to false, *print-base* to 8, and
print-readably to false.

22.3.2.5 Tilde X: Hexadecimal

This is just like ~D but prints in hexadecimal radix (radix 16) instead of decimal. The full form is
therefore ~mincol,padchar,commachar,comma-intervalX.

~X binds *print-escape* to false, *print-radix* to false, *print-base* to 16, and
print-readably to false.

22.3.3 FORMAT Floating-Point Printers

22.3.3.1 Tilde F: Fixed-Format Floating-Point

The next arg is printed as a float .

The full form is ~w,d,k,overflowchar,padcharF. The parameter w is the width of the field to be
printed; d is the number of digits to print after the decimal point; k is a scale factor that defaults
to zero.

Exactly w characters will be output. First, leading copies of the character padchar (which de-
faults to a space) are printed, if necessary, to pad the field on the left. If the arg is negative, then
a minus sign is printed; if the arg is not negative, then a plus sign is printed if and only if the @

modifier was supplied. Then a sequence of digits, containing a single embedded decimal point,
is printed; this represents the magnitude of the value of arg times 10k , rounded to d fractional
digits. When rounding up and rounding down would produce printed values equidistant from the
scaled value of arg , then the implementation is free to use either one. For example, printing the
argument 6.375 using the format ~4,2F may correctly produce either 6.37 or 6.38. Leading zeros
are not permitted, except that a single zero digit is output before the decimal point if the printed
value is less than one, and this single zero digit is not output at all if w=d+1.

If it is impossible to print the value in the required format in a field of width w , then one of two
actions is taken. If the parameter overflowchar is supplied, then w copies of that parameter are
printed instead of the scaled value of arg . If the overflowchar parameter is omitted, then the
scaled value is printed using more than w characters, as many more as may be needed.

If the w parameter is omitted, then the field is of variable width. In effect, a value is chosen for
w in such a way that no leading pad characters need to be printed and exactly d characters will
follow the decimal point. For example, the directive ~,2F will print exactly two digits after the
decimal point and as many as necessary before the decimal point.

Printer 22–27

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

If the parameter d is omitted, then there is no constraint on the number of digits to appear
after the decimal point. A value is chosen for d in such a way that as many digits as possible
may be printed subject to the width constraint imposed by the parameter w and the constraint
that no trailing zero digits may appear in the fraction, except that if the fraction to be printed
is zero, then a single zero digit should appear after the decimal point if permitted by the width
constraint.

If both w and d are omitted, then the effect is to print the value using ordinary free-format
output; prin1 uses this format for any number whose magnitude is either zero or between 10−3

(inclusive) and 107 (exclusive).

If w is omitted, then if the magnitude of arg is so large (or, if d is also omitted, so small) that
more than 100 digits would have to be printed, then an implementation is free, at its discre-
tion, to print the number using exponential notation instead, as if by the directive ~E (with all
parameters to ~E defaulted, not taking their values from the ~F directive).

If arg is a rational number, then it is coerced to be a single float and then printed. Alternatively,
an implementation is permitted to process a rational number by any other method that has
essentially the same behavior but avoids loss of precision or overflow because of the coercion. If
w and d are not supplied and the number has no exact decimal representation, for example 1/3,
some precision cutoff must be chosen by the implementation since only a finite number of digits
may be printed.

If arg is a complex number or some non-numeric object , then it is printed using the format
directive ~wD, thereby printing it in decimal radix and a minimum field width of w .

~F binds *print-escape* to false and *print-readably* to false.

22.3.3.2 Tilde E: Exponential Floating-Point

The next arg is printed as a float in exponential notation.

The full form is ~w,d,e,k,overflowchar,padchar,exponentcharE. The parameter w is the width
of the field to be printed; d is the number of digits to print after the decimal point; e is the
number of digits to use when printing the exponent; k is a scale factor that defaults to one (not
zero).

Exactly w characters will be output. First, leading copies of the character padchar (which de-
faults to a space) are printed, if necessary, to pad the field on the left. If the arg is negative, then
a minus sign is printed; if the arg is not negative, then a plus sign is printed if and only if the
@ modifier was supplied. Then a sequence of digits containing a single embedded decimal point
is printed. The form of this sequence of digits depends on the scale factor k . If k is zero, then
d digits are printed after the decimal point, and a single zero digit appears before the decimal
point if the total field width will permit it. If k is positive, then it must be strictly less than d+2;
k significant digits are printed before the decimal point, and d−k+1 digits are printed after the
decimal point. If k is negative, then it must be strictly greater than −d ; a single zero digit ap-
pears before the decimal point if the total field width will permit it, and after the decimal point

22–28 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

are printed first −k zeros and then d+k significant digits. The printed fraction must be properly
rounded. When rounding up and rounding down would produce printed values equidistant from
the scaled value of arg , then the implementation is free to use either one. For example, printing
the argument 637.5 using the format ~8,2E may correctly produce either 6.37E+2 or 6.38E+2.

Following the digit sequence, the exponent is printed. First the character parameter exponentchar
is printed; if this parameter is omitted, then the exponent marker that prin1 would use is printed,
as determined from the type of the float and the current value of *read-default-float-format*.
Next, either a plus sign or a minus sign is printed, followed by e digits representing the power of
ten by which the printed fraction must be multiplied to properly represent the rounded value of
arg .

If it is impossible to print the value in the required format in a field of width w , possibly because
k is too large or too small or because the exponent cannot be printed in e character positions,
then one of two actions is taken. If the parameter overflowchar is supplied, then w copies of
that parameter are printed instead of the scaled value of arg . If the overflowchar parameter is
omitted, then the scaled value is printed using more than w characters, as many more as may
be needed; if the problem is that d is too small for the supplied k or that e is too small, then a
larger value is used for d or e as may be needed.

If the w parameter is omitted, then the field is of variable width. In effect a value is chosen for w
in such a way that no leading pad characters need to be printed.

If the parameter d is omitted, then there is no constraint on the number of digits to appear. A
value is chosen for d in such a way that as many digits as possible may be printed subject to
the width constraint imposed by the parameter w , the constraint of the scale factor k , and the
constraint that no trailing zero digits may appear in the fraction, except that if the fraction to be
printed is zero then a single zero digit should appear after the decimal point.

If the parameter e is omitted, then the exponent is printed using the smallest number of digits
necessary to represent its value.

If all of w , d , and e are omitted, then the effect is to print the value using ordinary free-format
exponential-notation output; prin1 uses a similar format for any non-zero number whose magni-
tude is less than 10−3 or greater than or equal to 107. The only difference is that the ~E directive
always prints a plus or minus sign in front of the exponent, while prin1 omits the plus sign if the
exponent is non-negative.

If arg is a rational number, then it is coerced to be a single float and then printed. Alternatively,
an implementation is permitted to process a rational number by any other method that has
essentially the same behavior but avoids loss of precision or overflow because of the coercion. If w
and d are unsupplied and the number has no exact decimal representation, for example 1/3, some
precision cutoff must be chosen by the implementation since only a finite number of digits may be
printed.

If arg is a complex number or some non-numeric object , then it is printed using the format
directive ~wD, thereby printing it in decimal radix and a minimum field width of w .

Printer 22–29

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

~E binds *print-escape* to false and *print-readably* to false.

22.3.3.3 Tilde G: General Floating-Point

The next arg is printed as a float in either fixed-format or exponential notation as appropriate.

The full form is ~w,d,e,k,overflowchar,padchar,exponentcharG. The format in which to print
arg depends on the magnitude (absolute value) of the arg . Let n be an integer such that 10n−1

≤ |arg | < 10n . Let ee equal e+2, or 4 if e is omitted. Let ww equal w−ee, or nil if w is omitted.
If d is omitted, first let q be the number of digits needed to print arg with no loss of information
and without leading or trailing zeros; then let d equal (max q (min n 7)). Let dd equal d−n.

If 0 ≤ dd ≤ d , then arg is printed as if by the format directives

~ww,dd,,overflowchar,padcharF~ee@T

Note that the scale factor k is not passed to the ~F directive. For all other values of dd , arg is
printed as if by the format directive

~w,d,e,k,overflowchar,padchar,exponentcharE

In either case, an @ modifier is supplied to the ~F or ~E directive if and only if one was supplied to
the ~G directive.

~G binds *print-escape* to false and *print-readably* to false.

22.3.3.4 Tilde Dollarsign: Monetary Floating-Point

The next arg is printed as a float in fixed-format notation.

The full form is ~d,n,w,padchar$. The parameter d is the number of digits to print after the
decimal point (default value 2); n is the minimum number of digits to print before the decimal
point (default value 1); w is the minimum total width of the field to be printed (default value 0).

First padding and the sign are output. If the arg is negative, then a minus sign is printed; if the
arg is not negative, then a plus sign is printed if and only if the @ modifier was supplied. If the
: modifier is used, the sign appears before any padding, and otherwise after the padding. If w is
supplied and the number of other characters to be output is less than w , then copies of padchar
(which defaults to a space) are output to make the total field width equal w . Then n digits are
printed for the integer part of arg , with leading zeros if necessary; then a decimal point; then d
digits of fraction, properly rounded.

If the magnitude of arg is so large that more than m digits would have to be printed, where m
is the larger of w and 100, then an implementation is free, at its discretion, to print the number
using exponential notation instead, as if by the directive ~w,q,,,,padcharE, where w and padchar
are present or omitted according to whether they were present or omitted in the ~$ directive, and
where q=d+n−1, where d and n are the (possibly default) values given to the ~$ directive.

22–30 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

If arg is a rational number, then it is coerced to be a single float and then printed. Alternatively,
an implementation is permitted to process a rational number by any other method that has
essentially the same behavior but avoids loss of precision or overflow because of the coercion.

If arg is a complex number or some non-numeric object , then it is printed using the format
directive ~wD, thereby printing it in decimal radix and a minimum field width of w .

~$ binds *print-escape* to false and *print-readably* to false.

22.3.4 FORMAT Printer Operations

22.3.4.1 Tilde A: Aesthetic

An arg , any object , is printed without escape characters (as by princ). If arg is a string , its
characters will be output verbatim. If arg is nil it will be printed as nil; the colon modifier (~:A)
will cause an arg of nil to be printed as (), but if arg is a composite structure, such as a list or
vector , any contained occurrences of nil will still be printed as nil.

~mincolA inserts spaces on the right, if necessary, to make the width at least mincol columns. The
@ modifier causes the spaces to be inserted on the left rather than the right.

~mincol,colinc,minpad,padcharA is the full form of ~A, which allows control of the padding. The
string is padded on the right (or on the left if the @ modifier is used) with at least minpad copies
of padchar ; padding characters are then inserted colinc characters at a time until the total width
is at least mincol . The defaults are 0 for mincol and minpad , 1 for colinc, and the space character
for padchar .

~A binds *print-escape* to false, and *print-readably* to false.

22.3.4.2 Tilde S: Standard

This is just like ~A, but arg is printed with escape characters (as by prin1 rather than princ).
The output is therefore suitable for input to read. ~S accepts all the arguments and modifiers
that ~A does.

~S binds *print-escape* to t.

Printer 22–31

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

22.3.4.3 Tilde W: Write

An argument, any object , is printed obeying every printer control variable (as by write). In
addition, ~W interacts correctly with depth abbreviation, by not resetting the depth counter to
zero. ~W does not accept parameters. If given the colon modifier, ~W binds *print-pretty* to true.
If given the at-sign modifier, ~W binds *print-level* and *print-length* to nil.

~W provides automatic support for the detection of circularity and sharing. If the value of
print-circle is not nil and ~W is applied to an argument that is a circular (or shared) refer-
ence, an appropriate #n# marker is inserted in the output instead of printing the argument.

22.3.5 FORMAT Pretty Printer Operations
The following constructs provide access to the pretty printer :

22.3.5.1 Tilde Underscore: Conditional Newline

Without any modifiers, ~ is the same as (pprint-newline :linear). ~@ is the same as
(pprint-newline :miser). ~: is the same as (pprint-newline :fill). ~:@ is the same as
(pprint-newline :mandatory).

22.3.5.2 Tilde Less-Than-Sign: Logical Block
~<...~:>

If ~:> is used to terminate a ~<...~>, the directive is equivalent to a call to pprint-logical-block.
The argument corresponding to the ~<...~:> directive is treated in the same way as the list
argument to pprint-logical-block, thereby providing automatic support for non-list arguments
and the detection of circularity, sharing, and depth abbreviation. The portion of the control-string
nested within the ~<...~:> specifies the :prefix (or :per-line-prefix), :suffix, and body of the
pprint-logical-block.

The control-string portion enclosed by ~<...~:> can be divided into segments
~<prefix~;body~;suffix~:> by ~; directives. If the first section is terminated by ~@;, it specifies
a per-line prefix rather than a simple prefix. The prefix and suffix cannot contain format di-
rectives. An error is signaled if either the prefix or suffix fails to be a constant string or if the
enclosed portion is divided into more than three segments.

If the enclosed portion is divided into only two segments, the suffix defaults to the null string. If
the enclosed portion consists of only a single segment, both the prefix and the suffix default to the
null string. If the colon modifier is used (i.e., ~:<...~:>), the prefix and suffix default to "(" and
")" (respectively) instead of the null string.

The body segment can be any arbitrary format string . This format string is applied to the
elements of the list corresponding to the ~<...~:> directive as a whole. Elements are extracted
from this list using pprint-pop, thereby providing automatic support for malformed lists, and the

22–32 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

detection of circularity, sharing, and length abbreviation. Within the body segment, ~∧ acts like
pprint-exit-if-list-exhausted.

~<...~:> supports a feature not supported by pprint-logical-block. If ~:@> is used to terminate
the directive (i.e., ~<...~:@>), then a fill-style conditional newline is automatically inserted after
each group of blanks immediately contained in the body (except for blanks after a 〈Newline〉
directive). This makes it easy to achieve the equivalent of paragraph filling.

If the at-sign modifier is used with ~<...~:>, the entire remaining argument list is passed to the
directive as its argument. All of the remaining arguments are always consumed by ~@<...~:>,
even if they are not all used by the format string nested in the directive. Other than the differ-
ence in its argument, ~@<...~:> is exactly the same as ~<...~:> except that circularity detection
is not applied if ~@<...~:> is encountered at top level in a format string . This ensures that circu-
larity detection is applied only to data lists, not to format argument lists.

" . #n#" is printed if circularity or sharing has to be indicated for its argument as a whole.

To a considerable extent, the basic form of the directive ~<...~> is incompatible with the dynamic
control of the arrangement of output by ~W, ~ , ~<...~:>, ~I, and ~:T. As a result, an error is
signaled if any of these directives is nested within ~<...~>. Beyond this, an error is also signaled if
the ~<...~:;...~> form of ~<...~> is used in the same format string with ~W, ~ , ~<...~:>, ~I, or
~:T.

See also Section 22.3.6.2 (Tilde Less-Than-Sign: Justification).

22.3.5.3 Tilde I: Indent

~nI is the same as (pprint-indent :block n).

~n:I is the same as (pprint-indent :current n). In both cases, n defaults to zero, if it is omitted.

22.3.5.4 Tilde Slash: Call Function

~/name/

User defined functions can be called from within a format string by using the directive ~/name/.
The colon modifier, the at-sign modifier, and arbitrarily many parameters can be specified with
the ~/name/ directive. name can be any arbitrary string that does not contain a ”/”. All of the
characters in name are treated as if they were upper case. If name contains a single colon (:) or
double colon (::), then everything up to but not including the first ":" or "::" is taken to be a
string that names a package. Everything after the first ":" or "::" (if any) is taken to be a string
that names a symbol. The function corresponding to a ~/name/ directive is obtained by looking up
the symbol that has the indicated name in the indicated package. If name does not contain a ":"

or "::", then the whole name string is looked up in the COMMON-LISP-USER package.

When a ~/name/ directive is encountered, the indicated function is called with four or more argu-
ments. The first four arguments are: the output stream, the format argument corresponding to
the directive, a generalized boolean that is true if the colon modifier was used, and a generalized

Printer 22–33

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

boolean that is true if the at-sign modifier was used. The remaining arguments consist of any
parameters specified with the directive. The function should print the argument appropriately.
Any values returned by the function are ignored.

The three functions pprint-linear, pprint-fill, and pprint-tabular are specifically de-
signed so that they can be called by ~/.../ (i.e., ~/pprint-linear/, ~/pprint-fill/, and
~/pprint-tabular/). In particular they take colon and at-sign arguments.

22.3.6 FORMAT Layout Control

22.3.6.1 Tilde T: Tabulate

This spaces over to a given column. ~colnum,colincT will output sufficient spaces to move the
cursor to column colnum. If the cursor is already at or beyond column colnum, it will output
spaces to move it to column colnum+k*colinc for the smallest positive integer k possible, unless
colinc is zero, in which case no spaces are output if the cursor is already at or beyond column
colnum. colnum and colinc default to 1.

If for some reason the current absolute column position cannot be determined by direct inquiry,
format may be able to deduce the current column position by noting that certain directives
(such as ~%, or ~&, or ~A with the argument being a string containing a newline) cause the column
position to be reset to zero, and counting the number of characters emitted since that point. If
that fails, format may attempt a similar deduction on the riskier assumption that the destination
was at column zero when format was invoked. If even this heuristic fails or is implementationally
inconvenient, at worst the ~T operation will simply output two spaces.

~@T performs relative tabulation. ~colrel,colinc@T outputs colrel spaces and then outputs the
smallest non-negative number of additional spaces necessary to move the cursor to a column that
is a multiple of colinc. For example, the directive ~3,8@T outputs three spaces and then moves
the cursor to a “standard multiple-of-eight tab stop” if not at one already. If the current output
column cannot be determined, however, then colinc is ignored, and exactly colrel spaces are
output.

If the colon modifier is used with the ~T directive, the tabbing computation is done relative to
the horizontal position where the section immediately containing the directive begins, rather than
with respect to a horizontal position of zero. The numerical parameters are both interpreted as
being in units of ems and both default to 1. ~n,m:T is the same as (pprint-tab :section n m).
~n,m:@T is the same as (pprint-tab :section-relative n m).

22–34 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

22.3.6.2 Tilde Less-Than-Sign: Justification

~mincol,colinc,minpad,padchar<str~>

This justifies the text produced by processing str within a field at least mincol columns wide. str
may be divided up into segments with ~;, in which case the spacing is evenly divided between the
text segments.

With no modifiers, the leftmost text segment is left justified in the field, and the rightmost text
segment is right justified. If there is only one text element, as a special case, it is right justified.
The : modifier causes spacing to be introduced before the first text segment; the @ modifier
causes spacing to be added after the last. The minpad parameter (default 0) is the minimum
number of padding characters to be output between each segment. The padding character is
supplied by padchar , which defaults to the space character. If the total width needed to satisfy
these constraints is greater than mincol , then the width used is mincol+k*colinc for the smallest
possible non-negative integer value k . colinc defaults to 1, and mincol defaults to 0.

Note that str may include format directives. All the clauses in str are processed in order; it is the
resulting pieces of text that are justified.

The ~∧ directive may be used to terminate processing of the clauses prematurely, in which case
only the completely processed clauses are justified.

If the first clause of a ~< is terminated with ~:; instead of ~;, then it is used in a special way. All
of the clauses are processed (subject to ~∧, of course), but the first one is not used in performing
the spacing and padding. When the padded result has been determined, then if it will fit on the
current line of output, it is output, and the text for the first clause is discarded. If, however, the
padded text will not fit on the current line, then the text segment for the first clause is output
before the padded text. The first clause ought to contain a newline (such as a ~% directive). The
first clause is always processed, and so any arguments it refers to will be used; the decision is
whether to use the resulting segment of text, not whether to process the first clause. If the ~:;

has a prefix parameter n, then the padded text must fit on the current line with n character
positions to spare to avoid outputting the first clause’s text. For example, the control string

"~%;; ~{~<~%;; ~1:; ~S~>~∧,~}.~%"

can be used to print a list of items separated by commas without breaking items over line bound-
aries, beginning each line with ;; . The prefix parameter 1 in ~1:; accounts for the width of the
comma that will follow the justified item if it is not the last element in the list, or the period if it
is. If ~:; has a second prefix parameter, then it is used as the width of the line, thus overriding
the natural line width of the output stream. To make the preceding example use a line width of
50, one would write

"~%;; ~{~<~%;; ~1,50:; ~S~>~∧,~} .~%"

If the second argument is not supplied, then format uses the line width of the destination output
stream. If this cannot be determined (for example, when producing a string result), then format
uses 72 as the line length.

Printer 22–35

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

See also Section 22.3.5.2 (Tilde Less-Than-Sign: Logical Block).

22.3.6.3 Tilde Greater-Than-Sign: End of Justification

~> terminates a ~<. The consequences of using it elsewhere are undefined.

22.3.7 FORMAT Control-Flow Operations

22.3.7.1 Tilde Asterisk: Go-To

The next arg is ignored. ~n* ignores the next n arguments.

~:* backs up in the list of arguments so that the argument last processed will be processed again.
~n:* backs up n arguments.

When within a ~{ construct (see below), the ignoring (in either direction) is relative to the list of
arguments being processed by the iteration.

~n@* goes to the nth arg , where 0 means the first one; n defaults to 0, so ~@* goes back to the
first arg . Directives after a ~n@* will take arguments in sequence beginning with the one gone to.
When within a ~{ construct, the “goto” is relative to the list of arguments being processed by the
iteration.

22.3.7.2 Tilde Left-Bracket: Conditional Expression

~[str0~;str1~;...~;strn~]

This is a set of control strings, called clauses, one of which is chosen and used. The clauses are
separated by ~; and the construct is terminated by ~]. For example,

"~[Siamese~;Manx~;Persian~] Cat"

The argth clause is selected, where the first clause is number 0. If a prefix parameter is given (as
~n[), then the parameter is used instead of an argument. If arg is out of range then no clause is
selected and no error is signaled. After the selected alternative has been processed, the control
string continues after the ~].

~[str0~;str1~;...~;strn~:;default~] has a default case. If the last ~; used to separate clauses is
~:; instead, then the last clause is an else clause that is performed if no other clause is selected.
For example:

"~[Siamese~;Manx~;Persian~:;Alley~] Cat"

~:[alternative~;consequent~] selects the alternative control string if arg is false, and selects the
consequent control string otherwise.

22–36 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

~@[consequent~] tests the argument. If it is true, then the argument is not used up by the ~[

command but remains as the next one to be processed, and the one clause consequent is pro-
cessed. If the arg is false, then the argument is used up, and the clause is not processed. The
clause therefore should normally use exactly one argument, and may expect it to be non-nil . For
example:

(setq *print-level* nil *print-length* 5)

(format nil

"~@[print level = ~D~]~@[print length = ~D~]"

print-level *print-length*)

→ " print length = 5"

Note also that

(format stream "...~@[str~]..." ...)

≡ (format stream "...~:[~;~:*str~]..." ...)

The combination of ~[and # is useful, for example, for dealing with English conventions for
printing lists:

(setq foo "Items:~#[none~; ~S~; ~S and ~S~

~:;~@{~#[~; and~] ~S~∧,~}~].")

(format nil foo) → "Items: none."

(format nil foo ’foo) → "Items: FOO."

(format nil foo ’foo ’bar) → "Items: FOO and BAR."

(format nil foo ’foo ’bar ’baz) → "Items: FOO, BAR, and BAZ."

(format nil foo ’foo ’bar ’baz ’quux) → "Items: FOO, BAR, BAZ, and QUUX."

22.3.7.3 Tilde Right-Bracket: End of Conditional Expression

~] terminates a ~[. The consequences of using it elsewhere are undefined.

22.3.7.4 Tilde Left-Brace: Iteration

~{str~}

This is an iteration construct. The argument should be a list , which is used as a set of arguments
as if for a recursive call to format. The string str is used repeatedly as the control string. Each
iteration can absorb as many elements of the list as it likes as arguments; if str uses up two
arguments by itself, then two elements of the list will get used up each time around the loop.
If before any iteration step the list is empty, then the iteration is terminated. Also, if a prefix
parameter n is given, then there will be at most n repetitions of processing of str . Finally, the ~∧

directive can be used to terminate the iteration prematurely.

For example:

(format nil "The winners are:~{ ~S~}."

Printer 22–37

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

’(fred harry jill))

→ "The winners are: FRED HARRY JILL."

(format nil "Pairs:~{ <~S,~S>~}."

’(a 1 b 2 c 3))

→ "Pairs: <A,1> <B,2> <C,3>."

~:{str~} is similar, but the argument should be a list of sublists. At each repetition step, one
sublist is used as the set of arguments for processing str ; on the next repetition, a new sublist is
used, whether or not all of the last sublist had been processed. For example:

(format nil "Pairs:~:{ <~S,~S>~}."

’((a 1) (b 2) (c 3)))

→ "Pairs: <A,1> <B,2> <C,3>."

~@{str~} is similar to ~{str~}, but instead of using one argument that is a list, all the remaining
arguments are used as the list of arguments for the iteration. Example:

(format nil "Pairs:~@{ <~S,~S>~}." ’a 1 ’b 2 ’c 3)

→ "Pairs: <A,1> <B,2> <C,3>."

If the iteration is terminated before all the remaining arguments are consumed, then any ar-
guments not processed by the iteration remain to be processed by any directives following the
iteration construct.

~:@{str~} combines the features of ~:{str~} and ~@{str~}. All the remaining arguments are used,
and each one must be a list . On each iteration, the next argument is used as a list of arguments
to str . Example:

(format nil "Pairs:~:@{ <~S,~S>~}."

’(a 1) ’(b 2) ’(c 3))

→ "Pairs: <A,1> <B,2> <C,3>."

Terminating the repetition construct with ~:} instead of ~} forces str to be processed at least
once, even if the initial list of arguments is null. However, this will not override an explicit prefix
parameter of zero.

If str is empty, then an argument is used as str . It must be a format control and precede any
arguments processed by the iteration. As an example, the following are equivalent:

(apply #’format stream string arguments)

≡ (format stream "~1{~:}" string arguments)

This will use string as a formatting string. The ~1{ says it will be processed at most once,
and the ~:} says it will be processed at least once. Therefore it is processed exactly once, using
arguments as the arguments. This case may be handled more clearly by the ~? directive, but this
general feature of ~{ is more powerful than ~?.

22–38 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

22.3.7.5 Tilde Right-Brace: End of Iteration

~} terminates a ~{. The consequences of using it elsewhere are undefined.

22.3.7.6 Tilde Question-Mark: Recursive Processing

The next arg must be a format control , and the one after it a list ; both are consumed by the
~? directive. The two are processed as a control-string , with the elements of the list as the ar-
guments. Once the recursive processing has been finished, the processing of the control string
containing the ~? directive is resumed. Example:

(format nil "~? ~D" "<~A ~D>" ’("Foo" 5) 7) → "<Foo 5> 7"

(format nil "~? ~D" "<~A ~D>" ’("Foo" 5 14) 7) → "<Foo 5> 7"

Note that in the second example three arguments are supplied to the format string "<~A ~D>", but
only two are processed and the third is therefore ignored.

With the @ modifier, only one arg is directly consumed. The arg must be a string ; it is processed
as part of the control string as if it had appeared in place of the ~@? construct, and any direc-
tives in the recursively processed control string may consume arguments of the control string
containing the ~@? directive. Example:

(format nil "~@? ~D" "<~A ~D>" "Foo" 5 7) → "<Foo 5> 7"

(format nil "~@? ~D" "<~A ~D>" "Foo" 5 14 7) → "<Foo 5> 14"

22.3.8 FORMAT Miscellaneous Operations

22.3.8.1 Tilde Left-Paren: Case Conversion

~(str~)

The contained control string str is processed, and what it produces is subject to case conversion.

With no flags, every uppercase character is converted to the corresponding lowercase character .

~:(capitalizes all words, as if by string-capitalize.

~@(capitalizes just the first word and forces the rest to lower case.

~:@(converts every lowercase character to the corresponding uppercase character.

In this example ~@(is used to cause the first word produced by ~@R to be capitalized:

(format nil "~@R ~(~@R~)" 14 14)

→ "XIV xiv"

(defun f (n) (format nil "~@(~R~) error~:P detected." n)) → F

(f 0) → "Zero errors detected."

Printer 22–39

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(f 1) → "One error detected."

(f 23) → "Twenty-three errors detected."

When case conversions appear nested, the outer conversion dominates, as illustrated in the
following example:

(format nil "~@(how is ~:(BOB SMITH~)?~)")

→ "How is bob smith?"
not→ "How is Bob Smith?"

22.3.8.2 Tilde Right-Paren: End of Case Conversion

~) terminates a ~(. The consequences of using it elsewhere are undefined.

22.3.8.3 Tilde P: Plural

If arg is not eql to the integer 1, a lowercase s is printed; if arg is eql to 1, nothing is printed. If
arg is a floating-point 1.0, the s is printed.

~:P does the same thing, after doing a ~:* to back up one argument; that is, it prints a lowercase
s if the previous argument was not 1.

~@P prints y if the argument is 1, or ies if it is not. ~:@P does the same thing, but backs up first.

(format nil "~D tr~:@P/~D win~:P" 7 1) → "7 tries/1 win"

(format nil "~D tr~:@P/~D win~:P" 1 0) → "1 try/0 wins"

(format nil "~D tr~:@P/~D win~:P" 1 3) → "1 try/3 wins"

22.3.9 FORMAT Miscellaneous Pseudo-Operations

22.3.9.1 Tilde Semicolon: Clause Separator

This separates clauses in ~[and ~< constructs. The consequences of using it elsewhere are unde-
fined.

22–40 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

22.3.9.2 Tilde Circumflex: Escape Upward
~∧

This is an escape construct. If there are no more arguments remaining to be processed, then the
immediately enclosing ~{ or ~< construct is terminated. If there is no such enclosing construct,
then the entire formatting operation is terminated. In the ~< case, the formatting is performed,
but no more segments are processed before doing the justification. ~∧ may appear anywhere in a
~{ construct.

(setq donestr "Done.~∧ ~D warning~:P.~∧ ~D error~:P.")

→ "Done.~∧ ~D warning~:P.~∧ ~D error~:P."

(format nil donestr) → "Done."

(format nil donestr 3) → "Done. 3 warnings."

(format nil donestr 1 5) → "Done. 1 warning. 5 errors."

If a prefix parameter is given, then termination occurs if the parameter is zero. (Hence ~∧ is
equivalent to ~#∧.) If two parameters are given, termination occurs if they are equal. If three
parameters are given, termination occurs if the first is less than or equal to the second and the
second is less than or equal to the third. Of course, this is useless if all the prefix parameters are
constants; at least one of them should be a # or a V parameter.

If ~∧ is used within a ~:{ construct, then it terminates the current iteration step because in the
standard case it tests for remaining arguments of the current step only; the next iteration step
commences immediately. ~:∧ is used to terminate the iteration process. ~:∧ may be used only
if the command it would terminate is ~:{ or ~:@{. The entire iteration process is terminated if
and only if the sublist that is supplying the arguments for the current iteration step is the last
sublist in the case of ~:{, or the last format argument in the case of ~:@{. ~:∧ is not equivalent to
~#:∧; the latter terminates the entire iteration if and only if no arguments remain for the current
iteration step. For example:

(format nil "~:{~@?~:∧...~}" ’(("a") ("b"))) → "a...b"

If ~∧ appears within a control string being processed under the control of a ~? directive, but
not within any ~{ or ~< construct within that string, then the string being processed will be
terminated, thereby ending processing of the ~? directive. Processing then continues within the
string containing the ~? directive at the point following that directive.

If ~∧ appears within a ~[or ~(construct, then all the commands up to the ~∧ are properly se-
lected or case-converted, the ~[or ~(processing is terminated, and the outward search continues
for a ~{ or ~< construct to be terminated. For example:

(setq tellstr "~@(~@[~R~]~∧ ~A!~)")

→ "~@(~@[~R~]~∧ ~A!~)"

(format nil tellstr 23) → "Twenty-three!"

(format nil tellstr nil "losers") → " Losers!"

(format nil tellstr 23 "losers") → "Twenty-three losers!"

Printer 22–41

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Following are examples of the use of ~∧ within a ~< construct.

(format nil "~15<~S~;~∧~S~;~∧~S~>" ’foo)

→ " FOO"

(format nil "~15<~S~;~∧~S~;~∧~S~>" ’foo ’bar)

→ "FOO BAR"

(format nil "~15<~S~;~∧~S~;~∧~S~>" ’foo ’bar ’baz)

→ "FOO BAR BAZ"

22.3.9.3 Tilde Newline: Ignored Newline

Tilde immediately followed by a newline ignores the newline and any following non-newline
whitespace1 characters. With a :, the newline is ignored, but any following whitespace1 is left
in place. With an @, the newline is left in place, but any following whitespace1 is ignored. For
example:

(defun type-clash-error (fn nargs argnum right-type wrong-type)

(format *error-output*

"~&~S requires its ~:[~:R~;~*~]~

argument to be of type ~S,~%but it was called ~

with an argument of type ~S.~%"

fn (eql nargs 1) argnum right-type wrong-type))

(type-clash-error ’aref nil 2 ’integer ’vector) prints:

AREF requires its second argument to be of type INTEGER,

but it was called with an argument of type VECTOR.

NIL

(type-clash-error ’car 1 1 ’list ’short-float) prints:

CAR requires its argument to be of type LIST,

but it was called with an argument of type SHORT-FLOAT.

NIL

Note that in this example newlines appear in the output only as specified by the ~& and ~%

directives; the actual newline characters in the control string are suppressed because each is
preceded by a tilde.

22.3.10 Additional Information about FORMAT Operations

22–42 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

22.3.10.1 Nesting of FORMAT Operations

The case-conversion, conditional, iteration, and justification constructs can contain other format-
ting constructs by bracketing them. These constructs must nest properly with respect to each
other. For example, it is not legitimate to put the start of a case-conversion construct in each arm
of a conditional and the end of the case-conversion construct outside the conditional:

(format nil "~:[abc~:@(def~;ghi~

:@(jkl~]mno~)" x) ;Invalid!

This notation is invalid because the ~[...~;...~] and ~(...~) constructs are not properly nested.

The processing indirection caused by the ~? directive is also a kind of nesting for the purposes of
this rule of proper nesting. It is not permitted to start a bracketing construct within a string pro-
cessed under control of a ~? directive and end the construct at some point after the ~? construct
in the string containing that construct, or vice versa. For example, this situation is invalid:

(format nil "~@?ghi~)" "abc~@(def") ;Invalid!

This notation is invalid because the ~? and ~(...~) constructs are not properly nested.

22.3.10.2 Missing and Additional FORMAT Arguments

The consequences are undefined if no arg remains for a directive requiring an argument. However,
it is permissible for one or more args to remain unprocessed by a directive; such args are ignored.

22.3.10.3 Additional FORMAT Parameters

The consequences are undefined if a format directive is given more parameters than it is described
here as accepting.

22.3.10.4 Undefined FORMAT Modifier Combinations

The consequences are undefined if colon or at-sign modifiers are given to a directive in a combina-
tion not specifically described here as being meaningful.

22.3.11 Examples of FORMAT

(format nil "foo") → "foo"

(setq x 5) → 5

(format nil "The answer is ~D." x) → "The answer is 5."

(format nil "The answer is ~3D." x) → "The answer is 5."

(format nil "The answer is ~3,’0D." x) → "The answer is 005."

(format nil "The answer is ~:D." (expt 47 x))

→ "The answer is 229,345,007."

(setq y "elephant") → "elephant"

Printer 22–43

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(format nil "Look at the ~A!" y) → "Look at the elephant!"

(setq n 3) → 3

(format nil "~D item~:P found." n) → "3 items found."

(format nil "~R dog~:[s are~; is~] here." n (= n 1))

→ "three dogs are here."

(format nil "~R dog~:*~[s are~; is~:;s are~] here." n)

→ "three dogs are here."

(format nil "Here ~[are~;is~:;are~] ~:*~R pupp~:@P." n)

→ "Here are three puppies."

(defun foo (x)

(format nil "~6,2F|~6,2,1,’*F|~6,2,,’?F|~6F|~,2F|~F"

x x x x x x)) → FOO

(foo 3.14159) → " 3.14| 31.42| 3.14|3.1416|3.14|3.14159"

(foo -3.14159) → " -3.14|-31.42| -3.14|-3.142|-3.14|-3.14159"

(foo 100.0) → "100.00|******|100.00| 100.0|100.00|100.0"

(foo 1234.0) → "1234.00|******|??????|1234.0|1234.00|1234.0"

(foo 0.006) → " 0.01| 0.06| 0.01| 0.006|0.01|0.006"

(defun foo (x)

(format nil

"~9,2,1,,’*E|~10,3,2,2,’?,,’$E|~

~9,3,2,-2,’%@E|~9,2E"

x x x x))

(foo 3.14159) → " 3.14E+0| 31.42$-01|+.003E+03| 3.14E+0"

(foo -3.14159) → " -3.14E+0|-31.42$-01|-.003E+03| -3.14E+0"

(foo 1100.0) → " 1.10E+3| 11.00$+02|+.001E+06| 1.10E+3"

(foo 1100.0L0) → " 1.10L+3| 11.00$+02|+.001L+06| 1.10L+3"

(foo 1.1E13) → "*********| 11.00$+12|+.001E+16| 1.10E+13"

(foo 1.1L120) → "*********|??????????|%%%%%%%%%|1.10L+120"

(foo 1.1L1200) → "*********|??????????|%%%%%%%%%|1.10L+1200"

As an example of the effects of varying the scale factor, the code

(dotimes (k 13)

(format t "~%Scale factor ~2D: |~13,6,2,VE|"

(- k 5) (- k 5) 3.14159))

produces the following output:

Scale factor -5: | 0.000003E+06|

Scale factor -4: | 0.000031E+05|

Scale factor -3: | 0.000314E+04|

Scale factor -2: | 0.003142E+03|

Scale factor -1: | 0.031416E+02|

Scale factor 0: | 0.314159E+01|

Scale factor 1: | 3.141590E+00|

22–44 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Scale factor 2: | 31.41590E-01|

Scale factor 3: | 314.1590E-02|

Scale factor 4: | 3141.590E-03|

Scale factor 5: | 31415.90E-04|

Scale factor 6: | 314159.0E-05|

Scale factor 7: | 3141590.E-06|

(defun foo (x)

(format nil "~9,2,1,,’*G|~9,3,2,3,’?,,’$G|~9,3,2,0,’%G|~9,2G"

x x x x))

(foo 0.0314159) → " 3.14E-2|314.2$-04|0.314E-01| 3.14E-2"

(foo 0.314159) → " 0.31 |0.314 |0.314 | 0.31 "

(foo 3.14159) → " 3.1 | 3.14 | 3.14 | 3.1 "

(foo 31.4159) → " 31. | 31.4 | 31.4 | 31. "

(foo 314.159) → " 3.14E+2| 314. | 314. | 3.14E+2"

(foo 3141.59) → " 3.14E+3|314.2$+01|0.314E+04| 3.14E+3"

(foo 3141.59L0) → " 3.14L+3|314.2$+01|0.314L+04| 3.14L+3"

(foo 3.14E12) → "*********|314.0$+10|0.314E+13| 3.14E+12"

(foo 3.14L120) → "*********|?????????|%%%%%%%%%|3.14L+120"

(foo 3.14L1200) → "*********|?????????|%%%%%%%%%|3.14L+1200"

(format nil "~10<foo~;bar~>") → "foo bar"

(format nil "~10:<foo~;bar~>") → " foo bar"

(format nil "~10<foobar~>") → " foobar"

(format nil "~10:<foobar~>") → " foobar"

(format nil "~10:@<foo~;bar~>") → " foo bar "

(format nil "~10@<foobar~>") → "foobar "

(format nil "~10:@<foobar~>") → " foobar "

(FORMAT NIL "Written to ~A." #P"foo.bin")

→ "Written to foo.bin."

22.3.12 Notes about FORMAT
Formatted output is performed not only by format, but by certain other functions that accept a
format control the way format does. For example, error-signaling functions such as cerror accept
format controls.

Note that the meaning of nil and t as destinations to format are different than those of nil and t
as stream designators.

The ~∧ should appear only at the beginning of a ~< clause, because it aborts the entire clause in
which it appears (as well as all following clauses).

Printer 22–45

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

copy-pprint-dispatch Function

Syntax:
copy-pprint-dispatch &optional table → new-table

Arguments and Values:
table—a pprint dispatch table, or nil.

new-table—a fresh pprint dispatch table.

Description:
Creates and returns a copy of the specified table, or of the value of *print-pprint-dispatch* if no
table is specified, or of the initial value of *print-pprint-dispatch* if nil is specified.

Exceptional Situations:
Should signal an error of type type-error if table is not a pprint dispatch table.

formatter Macro

Syntax:
formatter control-string → function

Arguments and Values:
control-string—a format string ; not evaluated.

function—a function.

Description:
Returns a function which has behavior equivalent to:

#’(lambda (*standard-output* &rest arguments)

(apply #’format t control-string arguments)

arguments-tail)

where arguments-tail is either the tail of arguments which has as its car the argument that would
be processed next if there were more format directives in the control-string , or else nil if no more
arguments follow the most recently processed argument.

Examples:

(funcall (formatter "~&~A~A") *standard-output* ’a ’b ’c)

. AB

→ (C)

22–46 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(format t (formatter "~&~A~A") ’a ’b ’c)

. AB

→ NIL

Exceptional Situations:
Might signal an error (at macro expansion time or at run time) if the argument is not a valid
format string .

See Also:
format

pprint-dispatch Function

Syntax:
pprint-dispatch object &optional table → function, found-p

Arguments and Values:
object—an object .

table—a pprint dispatch table, or nil. The default is the value of *print-pprint-dispatch*.

function—a function designator .

found-p—a generalized boolean.

Description:
Retrieves the highest priority function in table that is associated with a type specifier that
matches object. The function is chosen by finding all of the type specifiers in table that match
the object and selecting the highest priority function associated with any of these type speci-
fiers. If there is more than one highest priority function, an arbitrary choice is made. If no type
specifiers match the object, a function is returned that prints object using print-object.

The secondary value, found-p, is true if a matching type specifier was found in table, or false
otherwise.

If table is nil, retrieval is done in the initial pprint dispatch table.

Affected By:
The state of the table.

Exceptional Situations:
Should signal an error of type type-error if table is neither a pprint-dispatch-table nor nil.

Printer 22–47

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Notes:

(let ((*print-pretty* t))

(write object :stream s))

≡ (funcall (pprint-dispatch object) s object)

pprint-exit-if-list-exhausted Local Macro

Syntax:
pprint-exit-if-list-exhausted 〈no arguments〉 → nil

Description:
Tests whether or not the list passed to the lexically current logical block has been exhausted; see
Section 22.2.1.1 (Dynamic Control of the Arrangement of Output). If this list has been reduced
to nil, pprint-exit-if-list-exhausted terminates the execution of the lexically current logical block
except for the printing of the suffix. Otherwise pprint-exit-if-list-exhausted returns nil.

Whether or not pprint-exit-if-list-exhausted is fbound in the global environment is
implementation-dependent ; however, the restrictions on redefinition and shadowing of
pprint-exit-if-list-exhausted are the same as for symbols in the COMMON-LISP package
which are fbound in the global environment . The consequences of attempting to use
pprint-exit-if-list-exhausted outside of pprint-logical-block are undefined.

Exceptional Situations:
An error is signaled (at macro expansion time or at run time) if pprint-exit-if-list-exhausted is
used anywhere other than lexically within a call on pprint-logical-block. Also, the consequences
of executing pprint-if-list-exhausted outside of the dynamic extent of the pprint-logical-block
which lexically contains it are undefined.

See Also:
pprint-logical-block, pprint-pop.

22–48 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

pprint-fill, pprint-linear, pprint-tabular

pprint-fill, pprint-linear, pprint-tabular Function

Syntax:
pprint-fill stream object &optional colon-p at-sign-p → nil

pprint-linear stream object &optional colon-p at-sign-p → nil

pprint-tabular stream object &optional colon-p at-sign-p tabsize → nil

Arguments and Values:
stream—an output stream designator .

object—an object .

colon-p—a generalized boolean. The default is true.

at-sign-p—a generalized boolean. The default is implementation-dependent .

tabsize—a non-negative integer . The default is 16.

Description:
The functions pprint-fill, pprint-linear, and pprint-tabular specify particular ways of pretty
printing a list to stream. Each function prints parentheses around the output if and only
if colon-p is true. Each function ignores its at-sign-p argument. (Both arguments are in-
cluded even though only one is needed so that these functions can be used via ~/.../ and as
set-pprint-dispatch functions, as well as directly.) Each function handles abbreviation and the
detection of circularity and sharing correctly, and uses write to print object when it is a non-list .

If object is a list and if the value of *print-pretty* is false, each of these functions prints object
using a minimum of whitespace, as described in Section 22.1.3.5 (Printing Lists and Conses).
Otherwise (if object is a list and if the value of *print-pretty* is true):

• The function pprint-linear prints a list either all on one line, or with each element on a
separate line.

• The function pprint-fill prints a list with as many elements as possible on each line.

• The function pprint-tabular is the same as pprint-fill except that it prints the elements
so that they line up in columns. The tabsize specifies the column spacing in ems, which is
the total spacing from the leading edge of one column to the leading edge of the next.

Examples:
Evaluating the following with a line length of 25 produces the output shown.

(progn (princ "Roads ")

Printer 22–49

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(pprint-tabular *standard-output* ’(elm main maple center) nil nil 8))

Roads ELM MAIN

MAPLE CENTER

Side Effects:
Performs output to the indicated stream.

Affected By:
The cursor position on the indicated stream, if it can be determined.

Notes:
The function pprint-tabular could be defined as follows:

(defun pprint-tabular (s list &optional (colon-p t) at-sign-p (tabsize nil))

(declare (ignore at-sign-p))

(when (null tabsize) (setq tabsize 16))

(pprint-logical-block (s list :prefix (if colon-p "(" "")

:suffix (if colon-p ")" ""))

(pprint-exit-if-list-exhausted)

(loop (write (pprint-pop) :stream s)

(pprint-exit-if-list-exhausted)

(write-char #\Space s)

(pprint-tab :section-relative 0 tabsize s)

(pprint-newline :fill s))))

Note that it would have been inconvenient to specify this function using format, because of the
need to pass its tabsize argument through to a ~:T format directive nested within an iteration
over a list.

pprint-indent Function

Syntax:
pprint-indent relative-to n &optional stream → nil

Arguments and Values:
relative-to—either :block or :current.

n—a real .

stream—an output stream designator . The default is standard output .

22–50 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Description:
pprint-indent specifies the indentation to use in a logical block on stream. If stream is a pretty
printing stream and the value of *print-pretty* is true, pprint-indent sets the indentation in the
innermost dynamically enclosing logical block; otherwise, pprint-indent has no effect.

N specifies the indentation in ems. If relative-to is :block, the indentation is set to the horizontal
position of the first character in the dynamically current logical block plus n ems. If relative-to is
:current, the indentation is set to the current output position plus n ems. (For robustness in the
face of variable-width fonts, it is advisable to use :current with an n of zero whenever possible.)

N can be negative; however, the total indentation cannot be moved left of the beginning of the
line or left of the end of the rightmost per-line prefix—an attempt to move beyond one of these
limits is treated the same as an attempt to move to that limit. Changes in indentation caused by
pprint-indent do not take effect until after the next line break. In addition, in miser mode all calls
to pprint-indent are ignored, forcing the lines corresponding to the logical block to line up under
the first character in the block.

Exceptional Situations:
An error is signaled if relative-to is any object other than :block or :current.

See Also:
Section 22.3.5.3 (Tilde I: Indent)

pprint-logical-block Macro

Syntax:
pprint-logical-block (stream-symbol object &key prefix per-line-prefix suffix)

{declaration}* {form}*
→ nil

Arguments and Values:
stream-symbol—a stream variable designator .

object—an object ; evaluated.

:prefix—a string ; evaluated. Complicated defaulting behavior; see below.

:per-line-prefix—a string ; evaluated. Complicated defaulting behavior; see below.

:suffix—a string ; evaluated. The default is the null string .

declaration—a declare expression; not evaluated.

forms—an implicit progn.

Printer 22–51

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

pprint-logical-block

Description:
Causes printing to be grouped into a logical block.

The logical block is printed to the stream that is the value of the variable denoted by stream-
symbol . During the execution of the forms, that variable is bound to a pretty printing stream
that supports decisions about the arrangement of output and then forwards the output to the
destination stream. All the standard printing functions (e.g., write, princ, and terpri) can be
used to print output to the pretty printing stream. All and only the output sent to this pretty
printing stream is treated as being in the logical block.

The prefix specifies a prefix to be printed before the beginning of the logical block. The per-line-
prefix specifies a prefix that is printed before the block and at the beginning of each new line
in the block. The :prefix and :pre-line-prefix arguments are mutually exclusive. If neither
:prefix nor :per-line-prefix is specified, a prefix of the null string is assumed.

The suffix specifies a suffix that is printed just after the logical block.

The object is normally a list that the body forms are responsible for printing. If object is not a
list , it is printed using write. (This makes it easier to write printing functions that are robust
in the face of malformed arguments.) If *print-circle* is non-nil and object is a circular (or
shared) reference to a cons, then an appropriate “#n#” marker is printed. (This makes it easy
to write printing functions that provide full support for circularity and sharing abbreviation.)
If *print-level* is not nil and the logical block is at a dynamic nesting depth of greater than
print-level in logical blocks, “#” is printed. (This makes easy to write printing functions that
provide full support for depth abbreviation.)

If either of the three conditions above occurs, the indicated output is printed on stream-symbol
and the body forms are skipped along with the printing of the :prefix and :suffix. (If the body
forms are not to be responsible for printing a list, then the first two tests above can be turned off
by supplying nil for the object argument.)

In addition to the object argument of pprint-logical-block, the arguments of the standard
printing functions (such as write, print, prin1, and pprint, as well as the arguments of the
standard format directives such as ~A, ~S, (and ~W) are all checked (when necessary) for circularity
and sharing. However, such checking is not applied to the arguments of the functions write-line,
write-string, and write-char or to the literal text output by format. A consequence of this is
that you must use one of the latter functions if you want to print some literal text in the output
that is not supposed to be checked for circularity or sharing.

The body forms of a pprint-logical-block form must not perform any side-effects on the sur-
rounding environment; for example, no variables must be assigned which have not been bound
within its scope.

The pprint-logical-block macro may be used regardless of the value of *print-pretty*.

Affected By:
print-circle, *print-level*.

22–52 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Exceptional Situations:
An error of type type-error is signaled if any of the :suffix, :prefix, or :per-line-prefix is
supplied but does not evaluate to a string .

An error is signaled if :prefix and :pre-line-prefix are both used.

pprint-logical-block and the pretty printing stream it creates have dynamic extent . The conse-
quences are undefined if, outside of this extent, output is attempted to the pretty printing stream
it creates.

It is also unspecified what happens if, within this extent, any output is sent directly to the
underlying destination stream.

See Also:
pprint-pop, pprint-exit-if-list-exhausted, Section 22.3.5.2 (Tilde Less-Than-Sign: Logical Block)

Notes:
One reason for using the pprint-logical-block macro when the value of *print-pretty* is
nil would be to allow it to perform checking for dotted lists, as well as (in conjunction with
pprint-pop) checking for *print-level* or *print-length* being exceeded.

Detection of circularity and sharing is supported by the pretty printer by in essence performing
requested output twice. On the first pass, circularities and sharing are detected and the actual
outputting of characters is suppressed. On the second pass, the appropriate “#n=” and “#n#”
markers are inserted and characters are output. This is why the restriction on side-effects is
necessary. Obeying this restriction is facilitated by using pprint-pop, instead of an ordinary pop
when traversing a list being printed by the body forms of the pprint-logical-block form.)

pprint-newline Function

Syntax:
pprint-newline kind &optional stream → nil

Arguments and Values:
kind—one of :linear, :fill, :miser, or :mandatory.

stream—a stream designator . The default is standard output .

Description:
If stream is a pretty printing stream and the value of *print-pretty* is true, a line break is in-
serted in the output when the appropriate condition below is satisfied; otherwise, pprint-newline
has no effect.

Kind specifies the style of conditional newline. This parameter is treated as follows:

Printer 22–53

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

pprint-newline

:linear

This specifies a “linear-style” conditional newline. A line break is inserted if and only if the
immediately containing section cannot be printed on one line. The effect of this is that line
breaks are either inserted at every linear-style conditional newline in a logical block or at
none of them.

:miser

This specifies a “miser-style” conditional newline. A line break is inserted if and only if the
immediately containing section cannot be printed on one line and miser style is in effect in
the immediately containing logical block. The effect of this is that miser-style conditional
newlines act like linear-style conditional newlines, but only when miser style is in effect. Miser
style is in effect for a logical block if and only if the starting position of the logical block is
less than or equal to *print-miser-width* ems from the right margin.

:fill

This specifies a “fill-style” conditional newline. A line break is inserted if and only if either
(a) the following section cannot be printed on the end of the current line, (b) the preceding
section was not printed on a single line, or (c) the immediately containing section cannot be
printed on one line and miser style is in effect in the immediately containing logical block. If
a logical block is broken up into a number of subsections by fill-style conditional newlines,
the basic effect is that the logical block is printed with as many subsections as possible on
each line. However, if miser style is in effect, fill-style conditional newlines act like linear-style
conditional newlines.

:mandatory

This specifies a “mandatory-style” conditional newline. A line break is always inserted. This
implies that none of the containing sections can be printed on a single line and will therefore
trigger the insertion of line breaks at linear-style conditional newlines in these sections.

When a line break is inserted by any type of conditional newline, any blanks that immediately
precede the conditional newline are omitted from the output and indentation is introduced at the
beginning of the next line. By default, the indentation causes the following line to begin in the
same horizontal position as the first character in the immediately containing logical block. (The
indentation can be changed via pprint-indent.)

There are a variety of ways unconditional newlines can be introduced into the output (i.e., via
terpri or by printing a string containing a newline character). As with mandatory conditional
newlines, this prevents any of the containing sections from being printed on one line. In general,
when an unconditional newline is encountered, it is printed out without suppression of the
preceding blanks and without any indentation following it. However, if a per-line prefix has been
specified (see pprint-logical-block), this prefix will always be printed no matter how a newline
originates.

22–54 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:
See Section 22.2.2 (Examples of using the Pretty Printer).

Side Effects:
Output to stream.

Affected By:
print-pretty, *print-miser*. The presence of containing logical blocks. The placement of
newlines and conditional newlines.

Exceptional Situations:
An error of type type-error is signaled if kind is not one of :linear, :fill, :miser, or :mandatory.

See Also:
Section 22.3.5.1 (Tilde Underscore: Conditional Newline), Section 22.2.2 (Examples of using the
Pretty Printer)

pprint-pop Local Macro

Syntax:
pprint-pop 〈no arguments〉 → object

Arguments and Values:
object—an element of the list being printed in the lexically current logical block , or nil.

Description:
Pops one element from the list being printed in the lexically current logical block , obeying
print-length and *print-circle* as described below.

Each time pprint-pop is called, it pops the next value off the list passed to the lexically current
logical block and returns it. However, before doing this, it performs three tests:

• If the remaining ‘list’ is not a list , “. ” is printed followed by the remaining ‘list.’ (This
makes it easier to write printing functions that are robust in the face of malformed argu-
ments.)

• If *print-length* is non-nil , and pprint-pop has already been called *print-length* times
within the immediately containing logical block, “...” is printed. (This makes it easy to write
printing functions that properly handle *print-length*.)

Printer 22–55

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

• If *print-circle* is non-nil , and the remaining list is a circular (or shared) reference, then
“. ” is printed followed by an appropriate “#n#” marker. (This catches instances of cdr
circularity and sharing in lists.)

If either of the three conditions above occurs, the indicated output is printed on the pretty
printing stream created by the immediately containing pprint-logical-block and the execution
of the immediately containing pprint-logical-block is terminated except for the printing of the
suffix.

If pprint-logical-block is given a ‘list’ argument of nil—because it is not processing a list—
pprint-pop can still be used to obtain support for *print-length*. In this situation, the first and
third tests above are disabled and pprint-pop always returns nil. See Section 22.2.2 (Examples of
using the Pretty Printer)—specifically, the pprint-vector example.

Whether or not pprint-pop is fbound in the global environment is implementation-dependent ;
however, the restrictions on redefinition and shadowing of pprint-pop are the same as for symbols
in the COMMON-LISP package which are fbound in the global environment . The consequences of
attempting to use pprint-pop outside of pprint-logical-block are undefined.

Side Effects:
Might cause output to the pretty printing stream associated with the lexically current logical
block.

Affected By:
print-length, *print-circle*.

Exceptional Situations:
An error is signaled (either at macro expansion time or at run time) if a usage of pprint-pop
occurs where there is no lexically containing pprint-logical-block form.

The consequences are undefined if pprint-pop is executed outside of the dynamic extent of this
pprint-logical-block.

See Also:
pprint-exit-if-list-exhausted, pprint-logical-block.

Notes:
It is frequently a good idea to call pprint-exit-if-list-exhausted before calling pprint-pop.

22–56 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

pprint-tab Function

Syntax:
pprint-tab kind colnum colinc &optional stream → nil

Arguments and Values:
kind—one of :line, :section, :line-relative, or :section-relative.

colnum—a non-negative integer .

colinc—a non-negative integer .

stream—an output stream designator .

Description:
Specifies tabbing to stream as performed by the standard ~T format directive. If stream is a
pretty printing stream and the value of *print-pretty* is true, tabbing is performed; otherwise,
pprint-tab has no effect.

The arguments colnum and colinc correspond to the two parameters to ~T and are in terms
of ems. The kind argument specifies the style of tabbing. It must be one of :line (tab as by
~T), :section (tab as by ~:T, but measuring horizontal positions relative to the start of the
dynamically enclosing section), :line-relative (tab as by ~@T), or :section-relative (tab as
by ~:@T, but measuring horizontal positions relative to the start of the dynamically enclosing
section).

Exceptional Situations:
An error is signaled if kind is not one of :line, :section, :line-relative, or :section-relative.

See Also:
pprint-logical-block

print-object Standard Generic Function

Syntax:
print-object object stream → object

Method Signatures:
print-object (object standard-object) stream

print-object (object structure-object) stream

Printer 22–57

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

print-object

Arguments and Values:
object—an object .

stream—a stream.

Description:
The generic function print-object writes the printed representation of object to stream. The
function print-object is called by the Lisp printer ; it should not be called by the user.

Each implementation is required to provide a method on the class standard-object and on the
class structure-object. In addition, each implementation must provide methods on enough other
classes so as to ensure that there is always an applicable method . Implementations are free to add
methods for other classes. Users may write methods for print-object for their own classes if they
do not wish to inherit an implementation-dependent method .

The method on the class structure-object prints the object in the default #S notation; see
Section 22.1.3.12 (Printing Structures).

Methods on print-object are responsible for implementing their part of the semantics of the
printer control variables, as follows:

print-readably

All methods for print-object must obey *print-readably*. This includes both user-defined
methods and implementation-defined methods. Readable printing of structures and standard
objects is controlled by their print-object method, not by their make-load-form method .
Similarity for these objects is application dependent and hence is defined to be whatever these
methods do; see Section 3.2.4.2 (Similarity of Literal Objects).

print-escape

Each method must implement *print-escape*.

print-pretty

The method may wish to perform specialized line breaking or other output conditional on the
value of *print-pretty*. For further information, see (for example) the macro pprint-fill. See
also Section 22.2.1.4 (Pretty Print Dispatch Tables) and Section 22.2.2 (Examples of using
the Pretty Printer).

print-length

Methods that produce output of indefinite length must obey *print-length*. For further
information, see (for example) the macros pprint-logical-block and pprint-pop. See also
Section 22.2.1.4 (Pretty Print Dispatch Tables) and Section 22.2.2 (Examples of using the
Pretty Printer).

22–58 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

print-level

The printer takes care of *print-level* automatically, provided that each method handles
exactly one level of structure and calls write (or an equivalent function) recursively if there
are more structural levels. The printer’s decision of whether an object has components (and
therefore should not be printed when the printing depth is not less than *print-level*) is
implementation-dependent . In some implementations its print-object method is not called; in
others the method is called, and the determination that the object has components is based
on what it tries to write to the stream.

print-circle

When the value of *print-circle* is true, a user-defined print-object method can print objects
to the supplied stream using write, prin1, princ, or format and expect circularities to be
detected and printed using the #n# syntax. If a user-defined print-object method prints to a
stream other than the one that was supplied, then circularity detection starts over for that
stream. See *print-circle*.

print-base, *print-radix*, *print-case*, *print-gensym*, and *print-array*

These printer control variables apply to specific types of objects and are handled by the
methods for those objects.

If these rules are not obeyed, the results are undefined.

In general, the printer and the print-object methods should not rebind the print control variables
as they operate recursively through the structure, but this is implementation-dependent .

In some implementations the stream argument passed to a print-object method is not the original
stream, but is an intermediate stream that implements part of the printer. methods should
therefore not depend on the identity of this stream.

See Also:
pprint-fill, pprint-logical-block, pprint-pop, write, *print-readably*, *print-escape*,
print-pretty, *print-length*, Section 22.1.3 (Default Print-Object Methods), Section 22.1.3.12
(Printing Structures), Section 22.2.1.4 (Pretty Print Dispatch Tables), Section 22.2.2 (Examples
of using the Pretty Printer)

print-unreadable-object Macro

Syntax:
print-unreadable-object (object stream &key type identity) {form}* → nil

Printer 22–59

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Arguments and Values:
object—an object ; evaluated.

stream—a stream designator ; evaluated.

type—a generalized boolean; evaluated.

identity—a generalized boolean; evaluated.

forms—an implicit progn.

Description:
Outputs a printed representation of object on stream, beginning with “#<” and ending with
“>”. Everything output to stream by the body forms is enclosed in the the angle brackets. If
type is true, the output from forms is preceded by a brief description of the object’s type and a
space character. If identity is true, the output from forms is followed by a space character and a
representation of the object’s identity, typically a storage address.

If either type or identity is not supplied, its value is false. It is valid to omit the body forms. If
type and identity are both true and there are no body forms, only one space character separates
the type and the identity.

Examples:
;; Note that in this example, the precise form of the output ;; is implementation-dependent .

(defmethod print-object ((obj airplane) stream)

(print-unreadable-object (obj stream :type t :identity t)

(princ (tail-number obj) stream)))

(prin1-to-string my-airplane)

→ "#<Airplane NW0773 36000123135>"
or→ "#<FAA:AIRPLANE NW0773 17>"

Exceptional Situations:
If *print-readably* is true, print-unreadable-object signals an error of type print-not-readable
without printing anything.

set-pprint-dispatch Function

Syntax:
set-pprint-dispatch type-specifier function &optional priority table → nil

Arguments and Values:
type-specifier—a type specifier .

22–60 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

function—a function, a function name, or nil.

priority—a real . The default is 0.

table—a pprint dispatch table. The default is the value of *print-pprint-dispatch*.

Description:
Installs an entry into the pprint dispatch table which is table.

Type-specifier is the key of the entry. The first action of set-pprint-dispatch is to remove any
pre-existing entry associated with type-specifier . This guarantees that there will never be two
entries associated with the same type specifier in a given pprint dispatch table. Equality of type
specifiers is tested by equal.

Two values are associated with each type specifier in a pprint dispatch table: a function and a pri-
ority . The function must accept two arguments: the stream to which output is sent and the object
to be printed. The function should pretty print the object to the stream. The function can assume
that object satisfies the type given by type-specifier . The function must obey *print-readably*.
Any values returned by the function are ignored.

Priority is a priority to resolve conflicts when an object matches more than one entry.

It is permissible for function to be nil. In this situation, there will be no type-specifier entry in
table after set-pprint-dispatch returns.

Exceptional Situations:
An error is signaled if priority is not a real .

Notes:
Since pprint dispatch tables are often used to control the pretty printing of Lisp code, it is com-
mon for the type-specifier to be an expression of the form

(cons car-type cdr-type)

This signifies that the corresponding object must be a cons cell whose car matches the type
specifier car-type and whose cdr matches the type specifier cdr-type. The cdr-type can be omitted
in which case it defaults to t.

write, prin1, print, pprint, princ Function

Syntax:
write object &key array base case circle escape gensym

length level lines miser-width pprint-dispatch
pretty radix readably right-margin stream

Printer 22–61

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

write, prin1, print, pprint, princ

→ object

prin1 object &optional output-stream → object

princ object &optional output-stream → object

print object &optional output-stream → object

pprint object &optional output-stream → 〈no values〉
Arguments and Values:

object—an object .

output-stream—an output stream designator . The default is standard output .

array—a generalized boolean.

base—a radix .

case—a symbol of type (member :upcase :downcase :capitalize).

circle—a generalized boolean.

escape—a generalized boolean.

gensym—a generalized boolean.

length—a non-negative integer , or nil.

level—a non-negative integer , or nil.

lines—a non-negative integer , or nil.

miser-width—a non-negative integer , or nil.

pprint-dispatch—a pprint dispatch table.

pretty—a generalized boolean.

radix—a generalized boolean.

readably—a generalized boolean.

right-margin—a non-negative integer , or nil.

stream—an output stream designator . The default is standard output .

Description:
write, prin1, princ, print, and pprint write the printed representation of object to output-stream.

write is the general entry point to the Lisp printer . For each explicitly supplied keyword param-

22–62 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

write, prin1, print, pprint, princ

eter named in Figure 22–7, the corresponding printer control variable is dynamically bound to
its value while printing goes on; for each keyword parameter in Figure 22–7 that is not explicitly
supplied, the value of the corresponding printer control variable is the same as it was at the time
write was invoked. Once the appropriate bindings are established , the object is output by the Lisp
printer .

Parameter Corresponding Dynamic Variable
array *print-array*
base *print-base*
case *print-case*
circle *print-circle*
escape *print-escape*
gensym *print-gensym*
length *print-length*
level *print-level*
lines *print-lines*
miser-width *print-miser-width*
pprint-dispatch *print-pprint-dispatch*
pretty *print-pretty*
radix *print-radix*
readably *print-readably*
right-margin *print-right-margin*

Figure 22–7. Argument correspondences for the WRITE function.

prin1, princ, print, and pprint implicitly bind certain print parameters to particular values.
The remaining parameter values are taken from *print-array*, *print-base*, *print-case*,
print-circle, *print-escape*, *print-gensym*, *print-length*, *print-level*, *print-lines*,
print-miser-width, *print-pprint-dispatch*, *print-pretty*, *print-radix*, and
print-right-margin.

prin1 produces output suitable for input to read. It binds *print-escape* to true.

princ is just like prin1 except that the output has no escape characters. It binds *print-escape*
to false and *print-readably* to false. The general rule is that output from princ is intended to
look good to people, while output from prin1 is intended to be acceptable to read.

print is just like prin1 except that the printed representation of object is preceded by a newline
and followed by a space.

pprint is just like print except that the trailing space is omitted and object is printed with the
print-pretty flag non-nil to produce pretty output.

Output-stream specifies the stream to which output is to be sent.

Printer 22–63

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Affected By:
standard-output, *terminal-io*, *print-escape*, *print-radix*, *print-base*, *print-circle*,
print-pretty, *print-level*, *print-length*, *print-case*, *print-gensym*, *print-array*,
read-default-float-format.

See Also:
readtable-case, Section 22.3.4 (FORMAT Printer Operations)

Notes:
The functions prin1 and print do not bind *print-readably*.

(prin1 object output-stream)

≡ (write object :stream output-stream :escape t)

(princ object output-stream)

≡ (write object stream output-stream :escape nil :readably nil)

(print object output-stream)

≡ (progn (terpri output-stream)

(write object :stream output-stream

:escape t)

(write-char #\space output-stream))

(pprint object output-stream)

≡ (write object :stream output-stream :escape t :pretty t)

write-to-string, prin1-to-string, princ-to-string
Function

Syntax:
write-to-string object &key array base case circle escape gensym

length level lines miser-width pprint-dispatch
pretty radix readably right-margin

→ string

prin1-to-string object → string

princ-to-string object → string

22–64 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

write-to-string, prin1-to-string, princ-to-string

Arguments and Values:
object—an object .

array—a generalized boolean.

base—a radix .

case—a symbol of type (member :upcase :downcase :capitalize).

circle—a generalized boolean.

escape—a generalized boolean.

gensym—a generalized boolean.

length—a non-negative integer , or nil.

level—a non-negative integer , or nil.

lines—a non-negative integer , or nil.

miser-width—a non-negative integer , or nil.

pprint-dispatch—a pprint dispatch table.

pretty—a generalized boolean.

radix—a generalized boolean.

readably—a generalized boolean.

right-margin—a non-negative integer , or nil.

string—a string .

Description:
write-to-string, prin1-to-string, and princ-to-string are used to create a string consisting of
the printed representation of object. Object is effectively printed as if by write, prin1, or princ,
respectively, and the characters that would be output are made into a string .

write-to-string is the general output function. It has the ability to specify all the parameters
applicable to the printing of object.

prin1-to-string acts like write-to-string with :escape t, that is, escape characters are written
where appropriate.

princ-to-string acts like write-to-string with :escape nil :readably nil. Thus no escape charac-
ters are written.

All other keywords that would be specified to write-to-string are default values when
prin1-to-string or princ-to-string is invoked.

Printer 22–65

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

The meanings and defaults for the keyword arguments to write-to-string are the same as those
for write.

Examples:

(prin1-to-string "abc") → "\"abc\""

(princ-to-string "abc") → "abc"

Affected By:
print-escape, *print-radix*, *print-base*, *print-circle*, *print-pretty*, *print-level*,
print-length, *print-case*, *print-gensym*, *print-array*, *read-default-float-format*.

See Also:
write

Notes:

(write-to-string object {key argument}*)
≡ (with-output-to-string (#1=#:string-stream)

(write object :stream #1# {key argument}*))

(princ-to-string object)
≡ (with-output-to-string (string-stream)

(princ object string-stream))

(prin1-to-string object)
≡ (with-output-to-string (string-stream)

(prin1 object string-stream))

∗print-array∗ Variable

Value Type:
a generalized boolean.

Initial Value:
implementation-dependent .

Description:
Controls the format in which arrays are printed. If it is false, the contents of arrays other than
strings are never printed. Instead, arrays are printed in a concise form using #< that gives enough
information for the user to be able to identify the array , but does not include the entire array
contents. If it is true, non-string arrays are printed using #(...), #*, or #nA syntax.

22–66 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Affected By:
The implementation.

See Also:
Section 2.4.8.3 (Sharpsign Left-Parenthesis), Section 2.4.8.20 (Sharpsign Less-Than-Sign)

∗print-base∗, ∗print-radix∗ Variable

Value Type:
print-base—a radix . *print-radix*—a generalized boolean.

Initial Value:
The initial value of *print-base* is 10. The initial value of *print-radix* is false.

Description:
print-base and *print-radix* control the printing of rationals. The value of *print-base* is
called the current output base.

The value of *print-base* is the radix in which the printer will print rationals. For radices above
10, letters of the alphabet are used to represent digits above 9.

If the value of *print-radix* is true, the printer will print a radix specifier to indicate the radix
in which it is printing a rational number. The radix specifier is always printed using lowercase
letters. If *print-base* is 2, 8, or 16, then the radix specifier used is #b, #o, or #x, respectively.
For integers, base ten is indicated by a trailing decimal point instead of a leading radix specifier;
for ratios, #10r is used.

Examples:

(let ((*print-base* 24.) (*print-radix* t))

(print 23.))

. #24rN

→ 23

(setq *print-base* 10) → 10

(setq *print-radix* nil) → NIL

(dotimes (i 35)

(let ((*print-base* (+ i 2))) ;print the decimal number 40

(write 40) ;in each base from 2 to 36

(if (zerop (mod i 10)) (terpri) (format t " "))))

. 101000

. 1111 220 130 104 55 50 44 40 37 34

. 31 2C 2A 28 26 24 22 20 1J 1I

. 1H 1G 1F 1E 1D 1C 1B 1A 19 18

Printer 22–67

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

. 17 16 15 14

→ NIL

(dolist (pb ’(2 3 8 10 16))

(let ((*print-radix* t) ;print the integer 10 and

(*print-base* pb)) ;the ratio 1/10 in bases 2,

(format t "~&~S ~S~%" 10 1/10))) ;3, 8, 10, 16

. #b1010 #b1/1010

. #3r101 #3r1/101

. #o12 #o1/12

. 10. #10r1/10

. #xA #x1/A

→ NIL

Affected By:
Might be bound by format, and write, write-to-string.

See Also:
format, write, write-to-string

∗print-case∗ Variable

Value Type:
One of the symbols :upcase, :downcase, or :capitalize.

Initial Value:
The symbol :upcase.

Description:
The value of *print-case* controls the case (upper, lower, or mixed) in which to print any
uppercase characters in the names of symbols when vertical-bar syntax is not used.

print-case has an effect at all times when the value of *print-escape* is false. *print-case*
also has an effect when the value of *print-escape* is true unless inside an escape context (i.e.,
unless between vertical-bars or after a slash).

Examples:

(defun test-print-case ()

(dolist (*print-case* ’(:upcase :downcase :capitalize))

(format t "~&~S ~S~%" ’this-and-that ’|And-something-elSE|)))

→ TEST-PC

;; Although the choice of which characters to escape is specified by

;; *PRINT-CASE*, the choice of how to escape those characters

22–68 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

;; (i.e., whether single escapes or multiple escapes are used)

;; is implementation-dependent. The examples here show two of the

;; many valid ways in which escaping might appear.

(test-print-case) ;Implementation A

. THIS-AND-THAT |And-something-elSE|

. this-and-that a\n\d-\s\o\m\e\t\h\i\n\g-\e\lse

. This-And-That A\n\d-\s\o\m\e\t\h\i\n\g-\e\lse

→ NIL

(test-print-case) ;Implementation B

. THIS-AND-THAT |And-something-elSE|

. this-and-that a|nd-something-el|se

. This-And-That A|nd-something-el|se

→ NIL

See Also:
write

Notes:
read normally converts lowercase characters appearing in symbols to corresponding uppercase
characters, so that internally print names normally contain only uppercase characters.

If *print-escape* is true, lowercase characters in the name of a symbol are always printed in low-
ercase, and are preceded by a single escape character or enclosed by multiple escape characters;
uppercase characters in the name of a symbol are printed in upper case, in lower case, or in mixed
case so as to capitalize words, according to the value of *print-case*. The convention for what
constitutes a “word” is the same as for string-capitalize.

∗print-circle∗ Variable

Value Type:
a generalized boolean.

Initial Value:
false.

Description:
Controls the attempt to detect circularity and sharing in an object being printed.

If false, the printing process merely proceeds by recursive descent without attempting to detect
circularity and sharing.

If true, the printer will endeavor to detect cycles and sharing in the structure to be printed, and
to use #n= and #n# syntax to indicate the circularities or shared components.

Printer 22–69

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

If true, a user-defined print-object method can print objects to the supplied stream using write,
prin1, princ, or format and expect circularities and sharing to be detected and printed using the
#n# syntax. If a user-defined print-object method prints to a stream other than the one that was
supplied, then circularity detection starts over for that stream.

Note that implementations should not use #n# notation when the Lisp reader would automatically
assure sharing without it (e.g., as happens with interned symbols).

Examples:

(let ((a (list 1 2 3)))

(setf (cdddr a) a)

(let ((*print-circle* t))

(write a)

:done))

. #1=(1 2 3 . #1#)

→ :DONE

See Also:
write

Notes:
An attempt to print a circular structure with *print-circle* set to nil may lead to looping
behavior and failure to terminate.

∗print-escape∗ Variable

Value Type:
a generalized boolean.

Initial Value:
true.

Description:
If false, escape characters and package prefixes are not output when an expression is printed.

If true, an attempt is made to print an expression in such a way that it can be read again to
produce an equal expression. (This is only a guideline; not a requirement. See *print-readably*.)

For more specific details of how the value of *print-escape* affects the printing of certain types,
see Section 22.1.3 (Default Print-Object Methods).

22–70 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:

(let ((*print-escape* t)) (write #\a))

. #\a

→ #\a

(let ((*print-escape* nil)) (write #\a))

. a

→ #\a

Affected By:
princ, prin1, format

See Also:
write, readtable-case

Notes:
princ effectively binds *print-escape* to false. prin1 effectively binds *print-escape* to true.

∗print-gensym∗ Variable

Value Type:
a generalized boolean.

Initial Value:
true.

Description:
Controls whether the prefix “#:” is printed before apparently uninterned symbols. The prefix is
printed before such symbols if and only if the value of *print-gensym* is true.

Examples:

(let ((*print-gensym* nil))

(print (gensym)))

. G6040

→ #:G6040

See Also:
write, *print-escape*

Printer 22–71

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

∗print-level∗, ∗print-length∗
∗print-level∗, ∗print-length∗ Variable

Value Type:
a non-negative integer , or nil.

Initial Value:
nil.

Description:
print-level controls how many levels deep a nested object will print. If it is false, then no
control is exercised. Otherwise, it is an integer indicating the maximum level to be printed. An
object to be printed is at level 0; its components (as of a list or vector) are at level 1; and so on.
If an object to be recursively printed has components and is at a level equal to or greater than the
value of *print-level*, then the object is printed as “#”.

print-length controls how many elements at a given level are printed. If it is false, there is no
limit to the number of components printed. Otherwise, it is an integer indicating the maximum
number of elements of an object to be printed. If exceeded, the printer will print “...” in place
of the other elements. In the case of a dotted list , if the list contains exactly as many elements as
the value of *print-length*, the terminating atom is printed rather than printing “...”

print-level and *print-length* affect the printing of an any object printed with a list-like
syntax. They do not affect the printing of symbols, strings, and bit vectors.

Examples:

(setq a ’(1 (2 (3 (4 (5 (6))))))) → (1 (2 (3 (4 (5 (6))))))

(dotimes (i 8)

(let ((*print-level* i))

(format t "~&~D -- ~S~%" i a)))

. 0 -- #

. 1 -- (1 #)

. 2 -- (1 (2 #))

. 3 -- (1 (2 (3 #)))

. 4 -- (1 (2 (3 (4 #))))

. 5 -- (1 (2 (3 (4 (5 #)))))

. 6 -- (1 (2 (3 (4 (5 (6))))))

. 7 -- (1 (2 (3 (4 (5 (6))))))

→ NIL

(setq a ’(1 2 3 4 5 6)) → (1 2 3 4 5 6)

(dotimes (i 7)

(let ((*print-length* i))

22–72 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(format t "~&~D -- ~S~%" i a)))

. 0 -- (...)

. 1 -- (1 ...)

. 2 -- (1 2 ...)

. 3 -- (1 2 3 ...)

. 4 -- (1 2 3 4 ...)

. 5 -- (1 2 3 4 5 6)

. 6 -- (1 2 3 4 5 6)

→ NIL

(dolist (level-length ’((0 1) (1 1) (1 2) (1 3) (1 4)

(2 1) (2 2) (2 3) (3 2) (3 3) (3 4)))

(let ((*print-level* (first level-length))

(*print-length* (second level-length)))

(format t "~&~D ~D -- ~S~%"

print-level *print-length*

’(if (member x y) (+ (car x) 3) ’(foo . #(a b c d "Baz"))))))

. 0 1 -- #

. 1 1 -- (IF ...)

. 1 2 -- (IF # ...)

. 1 3 -- (IF # # ...)

. 1 4 -- (IF # # #)

. 2 1 -- (IF ...)

. 2 2 -- (IF (MEMBER X ...) ...)

. 2 3 -- (IF (MEMBER X Y) (+ # 3) ...)

. 3 2 -- (IF (MEMBER X ...) ...)

. 3 3 -- (IF (MEMBER X Y) (+ (CAR X) 3) ...)

. 3 4 -- (IF (MEMBER X Y) (+ (CAR X) 3) ’(FOO . #(A B C D ...)))

→ NIL

See Also:
write

∗print-lines∗ Variable

Value Type:
a non-negative integer , or nil.

Initial Value:
nil.

Printer 22–73

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Description:
When the value of *print-lines* is other than nil, it is a limit on the number of output lines
produced when something is pretty printed. If an attempt is made to go beyond that many lines,
“..” is printed at the end of the last line followed by all of the suffixes (closing delimiters) that
are pending to be printed.

Examples:

(let ((*print-right-margin* 25) (*print-lines* 3))

(pprint ’(progn (setq a 1 b 2 c 3 d 4))))

. (PROGN (SETQ A 1

. B 2

. C 3 ..))

→ 〈no values〉
Notes:

The “..” notation is intentionally different than the “...” notation used for level abbreviation, so
that the two different situations can be visually distinguished.

This notation is used to increase the likelihood that the Lisp reader will signal an error if an
attempt is later made to read the abbreviated output. Note however that if the truncation occurs
in a string , as in "This string has been trunc..", the problem situation cannot be detected later
and no such error will be signaled.

∗print-miser-width∗ Variable

Value Type:
a non-negative integer , or nil.

Initial Value:
implementation-dependent

Description:
If it is not nil, the pretty printer switches to a compact style of output (called miser style)
whenever the width available for printing a substructure is less than or equal to this many ems.

22–74 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

∗print-pprint-dispatch∗ Variable

Value Type:
a pprint dispatch table.

Initial Value:
implementation-dependent , but the initial entries all use a special class of priorities that have the
property that they are less than every priority that can be specified using set-pprint-dispatch, so
that the initial contents of any entry can be overridden.

Description:
The pprint dispatch table which currently controls the pretty printer .

See Also:
print-pretty, Section 22.2.1.4 (Pretty Print Dispatch Tables)

Notes:
The intent is that the initial value of this variable should cause ‘traditional’ pretty printing of
code. In general, however, you can put a value in *print-pprint-dispatch* that makes pretty-
printed output look exactly like non-pretty-printed output. Setting *print-pretty* to true just
causes the functions contained in the current pprint dispatch table to have priority over normal
print-object methods; it has no magic way of enforcing that those functions actually produce
pretty output. For details, see Section 22.2.1.4 (Pretty Print Dispatch Tables).

∗print-pretty∗ Variable

Value Type:
a generalized boolean.

Initial Value:
implementation-dependent .

Description:
Controls whether the Lisp printer calls the pretty printer .

If it is false, the pretty printer is not used and a minimum of whitespace1 is output when printing
an expression.

If it is true, the pretty printer is used, and the Lisp printer will endeavor to insert extra whites-
pace1 where appropriate to make expressions more readable.

print-pretty has an effect even when the value of *print-escape* is false.

Printer 22–75

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:

(setq *print-pretty* ’nil) → NIL

(progn (write ’(let ((a 1) (b 2) (c 3)) (+ a b c))) nil)

. (LET ((A 1) (B 2) (C 3)) (+ A B C))

→ NIL

(let ((*print-pretty* t))

(progn (write ’(let ((a 1) (b 2) (c 3)) (+ a b c))) nil))

. (LET ((A 1)

. (B 2)

. (C 3))

. (+ A B C))

→ NIL

;; Note that the first two expressions printed by this next form

;; differ from the second two only in whether escape characters are printed.

;; In all four cases, extra whitespace is inserted by the pretty printer.

(flet ((test (x)

(let ((*print-pretty* t))

(print x)

(format t "~%~S " x)

(terpri) (princ x) (princ " ")

(format t "~%~A " x))))

(test ’#’(lambda () (list "a" # ’c #’d))))

. #’(LAMBDA ()

. (LIST "a" # ’C #’D))

. #’(LAMBDA ()

. (LIST "a" # ’C #’D))

. #’(LAMBDA ()

. (LIST a b ’C #’D))

. #’(LAMBDA ()

. (LIST a b ’C #’D))

→ NIL

See Also:
write

∗print-readably∗ Variable

Value Type:
a generalized boolean.

22–76 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

∗print-readably∗
Initial Value:

false.

Description:
If *print-readably* is true, some special rules for printing objects go into effect. Specifically,
printing any object O1 produces a printed representation that, when seen by the Lisp reader while
the standard readtable is in effect, will produce an object O2 that is similar to O1. The printed
representation produced might or might not be the same as the printed representation produced
when *print-readably* is false. If printing an object readably is not possible, an error of type
print-not-readable is signaled rather than using a syntax (e.g., the “#<” syntax) that would not
be readable by the same implementation. If the value of some other printer control variable is
such that these requirements would be violated, the value of that other variable is ignored.

Specifically, if *print-readably* is true, printing proceeds as if *print-escape*, *print-array*,
and *print-gensym* were also true, and as if *print-length*, *print-level*, and *print-lines*
were false.

If *print-readably* is false, the normal rules for printing and the normal interpretations of other
printer control variables are in effect.

Individual methods for print-object, including user-defined methods, are responsible for imple-
menting these requirements.

If *read-eval* is false and *print-readably* is true, any such method that would output a
reference to the “#.” reader macro will either output something else or will signal an error (as
described above).

Examples:

(let ((x (list "a" ’\a (gensym) ’((a (b (c))) d e f g)))

(*print-escape* nil)

(*print-gensym* nil)

(*print-level* 3)

(*print-length* 3))

(write x)

(let ((*print-readably* t))

(terpri)

(write x)

:done))

. (a a G4581 ((A #) D E ...))

. ("a" |a| #:G4581 ((A (B (C))) D E F G))

→ :DONE

;; This is setup code is shared between the examples

;; of three hypothetical implementations which follow.

(setq table (make-hash-table)) → #<HASH-TABLE EQL 0/120 32005763>

Printer 22–77

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(setf (gethash table 1) ’one) → ONE

(setf (gethash table 2) ’two) → TWO

;; Implementation A

(let ((*print-readably* t)) (print table))

Error: Can’t print #<HASH-TABLE EQL 0/120 32005763> readably.

;; Implementation B

;; No standardized #S notation for hash tables is defined,

;; but there might be an implementation-defined notation.

(let ((*print-readably* t)) (print table))

. #S(HASH-TABLE :TEST EQL :SIZE 120 :CONTENTS (1 ONE 2 TWO))

→ #<HASH-TABLE EQL 0/120 32005763>

;; Implementation C

;; Note that #. notation can only be used if *READ-EVAL* is true.

;; If *READ-EVAL* were false, this same implementation might have to

;; signal an error unless it had yet another printing strategy to fall

;; back on.

(let ((*print-readably* t)) (print table))

. #.(LET ((HASH-TABLE (MAKE-HASH-TABLE)))

. (SETF (GETHASH 1 HASH-TABLE) ONE)

. (SETF (GETHASH 2 HASH-TABLE) TWO)

. HASH-TABLE)

→ #<HASH-TABLE EQL 0/120 32005763>

See Also:
write, print-unreadable-object

Notes:
The rules for “similarity” imply that #A or #(syntax cannot be used for arrays of element type
other than t. An implementation will have to use another syntax or signal an error of type
print-not-readable.

∗print-right-margin∗ Variable

Value Type:
a non-negative integer , or nil.

Initial Value:
nil.

22–78 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Description:
If it is non-nil , it specifies the right margin (as integer number of ems) to use when the pretty
printer is making layout decisions.

If it is nil, the right margin is taken to be the maximum line length such that output can be
displayed without wraparound or truncation. If this cannot be determined, an implementation-
dependent value is used.

Notes:
This measure is in units of ems in order to be compatible with implementation-defined variable-
width fonts while still not requiring the language to provide support for fonts.

print-not-readable Condition Type

Class Precedence List:
print-not-readable, error, serious-condition, condition, t

Description:
The type print-not-readable consists of error conditions that occur during output while
print-readably is true, as a result of attempting to write a printed representation with the
Lisp printer that would not be correctly read back with the Lisp reader . The object which could
not be printed is initialized by the :object initialization argument to make-condition, and is
accessed by the function print-not-readable-object.

See Also:
print-not-readable-object

print-not-readable-object Function

Syntax:
print-not-readable-object condition → object

Arguments and Values:
condition—a condition of type print-not-readable.

object—an object .

Description:
Returns the object that could not be printed readably in the situation represented by condition.

Printer 22–79

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

See Also:
print-not-readable, Chapter 9 (Conditions)

format Function

Syntax:
format destination control-string &rest args → result

Arguments and Values:
destination—nil, t, a stream, or a string with a fill pointer .

control-string—a format control .

args—format arguments for control-string .

result—if destination is non-nil , then nil; otherwise, a string .

Description:
format produces formatted output by outputting the characters of control-string and observing
that a tilde introduces a directive. The character after the tilde, possibly preceded by prefix
parameters and modifiers, specifies what kind of formatting is desired. Most directives use one or
more elements of args to create their output.

If destination is a string , a stream, or t, then the result is nil. Otherwise, the result is a string
containing the ‘output.’

format is useful for producing nicely formatted text, producing good-looking messages, and so on.
format can generate and return a string or output to destination.

For details on how the control-string is interpreted, see Section 22.3 (Formatted Output).

Affected By:
standard-output, *print-escape*, *print-radix*, *print-base*, *print-circle*,
print-pretty, *print-level*, *print-length*, *print-case*, *print-gensym*, *print-array*.

Exceptional Situations:
If destination is a string with a fill pointer , the consequences are undefined if destructive modifica-
tions are performed directly on the string during the dynamic extent of the call.

See Also:
write, Section 13.1.10 (Documentation of Implementation-Defined Scripts)

22–80 Programming Language—Common Lisp

