Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Programming Language—Common Lisp

13. Characters

Characters i

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

ii Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

13.1 Character Concepts

13.1.1 Introduction to Characters

A character is an object that represents a unitary token (e.g., a letter, a special symbol, or a
“control character”) in an aggregate quantity of text (e.g., a string or a text stream).

Common Lisp allows an implementation to provide support for international language characters
as well as characters used in specialized arenas (e.g., mathematics).

The following figures contain lists of defined names applicable to characters.

Figure 13-1 lists some defined names relating to character attributes and character predicates.

alpha-char-p char-not-equal char>
alphanumericp char-not-greaterp char>=
both-case-p char-not-lessp digit-char-p
char-code-limit char/= graphic-char-p
char-equal char< lower-case-p
char-greaterp char<= standard-char-p
char-lessp char= upper-case-p

Figure 13—-1. Character defined names — 1

Figure 13-2 lists some character construction and conversion defined names.

char-code char-name code-char
char-downcase char-upcase digit-char
char-int character name-char

Figure 13—2. Character defined names — 2

13.1.2 Introduction to Scripts and Repertoires

Characters 13—1

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

13.1.2.1 Character Scripts

A script is one of possibly several sets that form an exhaustive partition of the type character.

The number of such sets and boundaries between them is implementation-defined. Common Lisp
does not require these sets to be types, but an implementation is permitted to define such types
as an extension. Since no character from one script can ever be a member of another script, it is
generally more useful to speak about character repertoires.

Although the term “script” is chosen for definitional compatibility with ISO terminology, no
conforming implementation is required to use any particular scripts standardized by ISO or by
any other standards organization.

Whether and how the script or scripts used by any given implementation are named is
implementation-dependent.

13.1.2.2 Character Repertoires

13.1.3

A repertoire is a type specifier for a subtype of type character. This term is generally used when
describing a collection of characters independent of their coding. Characters in repertoires are
only identified by name, by glyph, or by character description.

A repertoire can contain characters from several scripts, and a character can appear in more than
one repertoire.

For some examples of repertoires, see the coded character standards ISO 8859/1, ISO 8859/2,
and ISO 6937/2. Note, however, that although the term “repertoire” is chosen for definitional
compatibility with ISO terminology, no conforming implementation is required to use repertoires
standardized by ISO or any other standards organization.

Character Attributes

Characters have only one standardized attribute: a code. A character’s code is a non-negative in-
teger. This code is composed from a character script and a character label in an implementation-
dependent way. See the functions char-code and code-char.

Additional, implementation-defined attributes of characters are also permitted so that, for exam-
ple, two characters with the same code may differ in some other, implementation-defined way.

For any implementation-defined attribute there is a distinguished value called the null value for
that attribute. A character for which each implementation-defined attribute has the null value for
that attribute is called a simple character. If the implementation has no implementation-defined
attributes, then all characters are simple characters.

13—2 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

13.1.4 Character Categories

There are several (overlapping) categories of characters that have no formally associated type but
that are nevertheless useful to name. They include graphic characters, alphabeticy characters,
characters with case (uppercase and lowercase characters), numeric characters, alphanumeric
characters, and digits (in a given radiz).

For each implementation-defined attribute of a character, the documentation for that implemen-
tation must specify whether characters that differ only in that attribute are permitted to differ in
whether are not they are members of one of the aforementioned categories.

Note that these terms are defined independently of any special syntax which might have been
enabled in the current readtable.

13.1.4.1 Graphic Characters

Characters that are classified as graphic, or displayable, are each associated with a glyph, a
visual representation of the character.

A graphic character is one that has a standard textual representation as a single glyph, such as A
or * or =. Space, which effectively has a blank glyph, is defined to be a graphic.

Of the standard characters, newline is non-graphic and all others are graphic; see Section 2.1.3
(Standard Characters).

Characters that are not graphic are called non-graphic. Non-graphic characters are sometimes
informally called “formatting characters” or “control characters.”

#\Backspace, #\Tab, #\Rubout, #\Linefeed, #\Return, and #\Page, if they are supported by the
implementation, are non-graphic.

13.1.4.2 Alphabetic Characters

The alphabeticy characters are a subset of the graphic characters. Of the standard characters,
only these are the alphabeticy characters:

ABCDEFGHIJKLMNOPQRSTUVWIXYZ
abcdefghijklmnopgrstuvwxyz

Any implementation-defined character that has case must be alphabetic,. For each
implementation-defined graphic character that has no case, it is implementation-defined whether
that character is alphabetic,.

13.1.4.3 Characters With Case

The characters with case are a subset of the alphabeticy characters. A character with case has
the property of being either uppercase or lowercase. Every character with case is in one-to-one
correspondence with some other character with the opposite case.

Characters 13—3

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

13.1.4.3.1 Uppercase Characters

An uppercase character is one that has a corresponding lowercase character that is different (and
can be obtained using char-downcase).

Of the standard characters, only these are uppercase characters:
ABCDEFGHIJKLMNOPQRSTUVWIXYZ
13.1.4.3.2 Lowercase Characters

A lowercase character is one that has a corresponding uppercase character that is different (and
can be obtained using char-upcase).

Of the standard characters, only these are lowercase characters:

abcdefghijklmnopgqrstuvwzxyaz

13.1.4.3.3 Corresponding Characters in the Other Case

The uppercase standard characters A through Z mentioned above respectively correspond to the
lowercase standard characters a through z mentioned above. For example, the uppercase character
E corresponds to the lowercase character e, and vice versa.

13.1.4.3.4 Case of Implementation-Defined Characters

An implementation may define that other implementation-defined graphic characters have case.
Such definitions must always be done in pairs—one uppercase character in one-to-one correspon-
dence with one lowercase character.

13.1.4.4 Numeric Characters

The numeric characters are a subset of the graphic characters. Of the standard characters, only
these are numeric characters:

0123456789

For each implementation-defined graphic character that has no case, the implementation must
define whether or not it is a numeric character.

13.1.4.5 Alphanumeric Characters

The set of alphanumeric characters is the union of the set of alphabeticy characters and the set of
numeric characters.

13-4 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

13.1.4.6 Digits in a Radix

13.1.5

13.1.6

What qualifies as a digit depends on the radiz (an integer between 2 and 36, inclusive). The
potential digits are:

0123456789 ABCDEFGHIJKLMNOPQRSTUVWXYZ

Their respective weights are 0, 1, 2, ... 35. In any given radix n, only the first n potential digits
are considered to be digits. For example, the digits in radix 2 are 0 and 1, the digits in radix 10
are 0 through 9, and the digits in radix 16 are 0 through F.

Case is not significant in digits; for example, in radix 16, both F and £ are digits with weight 15.

Identity of Characters

Two characters that are eql, char=, or char-equal are not necessarily eq.

Ordering of Characters

The total ordering on characters is guaranteed to have the following properties:

e If two characters have the same implementation-defined attributes, then their ordering
by char< is consistent with the numerical ordering by the predicate < on their code
attributes.

e If two characters differ in any attribute, then they are not char=.

e The total ordering is not necessarily the same as the total ordering on the integers
produced by applying char-int to the characters.

e While alphabetic; standard characters of a given case must obey a partial ordering, they
need not be contiguous; it is permissible for uppercase and lowercase characters to be
interleaved. Thus (char<= #\a x #\z) is not a valid way of determining whether or not x
is a lowercase character.

Of the standard characters, those which are alphanumeric obey the following partial ordering:

A<B<C<D<E<F<G<H<I<J<K<L<M<N<O<P<Q<R<S<T<UKV<LW<X<LY<Z
a<b<c<d<e<f<g<h<i<j<k<1<m<n<o<p<g<r<s<t<ukv<w<x<y<z
0<1<2<3<4<5<6<7<8<9

either 9<A or Z<0

either 9<a or z<0

This implies that, for standard characters, alphabetic; ordering holds within each case (uppercase
and lowercase), and that the numeric characters as a group are not interleaved with alphabetic
characters. However, the ordering or possible interleaving of uppercase characters and lowercase
characters is implementation-defined.

Characters 13—5

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

13.1.7 Character Names

The following character names must be present in all conforming implementations:

Newline

The character that represents the division between lines. An implementation must
translate between #\Newline, a single-character representation, and whatever external
representation(s) may be used.

Space
The space or blank character.

The following names are semi-standard; if an implementation supports them, they should be used
for the described characters and no others.

Rubout

The rubout or delete character.
Page

The form-feed or page-separator character.
Tab

The tabulate character.

Backspace

The backspace character.

Return

The carriage return character.

Linefeed
The line-feed character.

In some implementations, one or more of these character names might denote a standard char-
acter; for example, #\Linefeed and #\Newline might be the same character in some implementa-
tions.

13-6 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

13.1.8

13.1.9

Treatment of Newline during Input and Output

When the character #\Newline is written to an output file, the implementation must take the ap-
propriate action to produce a line division. This might involve writing out a record or translating
#\Newline to a CR/LF sequence. When reading, a corresponding reverse transformation must
take place.

Character Encodings

A character is sometimes represented merely by its code, and sometimes by another inte-

ger value which is composed from the code and all implementation-defined attributes (in an
implementation-defined way that might vary between Lisp images even in the same implementa-
tion). This integer, returned by the function char-int, is called the character’s “encoding.” There
is no corresponding function from a character’s encoding back to the character, since its primary
intended uses include things like hashing where an inverse operation is not really called for.

13.1.10 Documentation of Implementation-Defined Scripts

An implementation must document the character scripts it supports. For each character script
supported, the documentation must describe at least the following;:

e Character labels, glyphs, and descriptions. Character labels must be uniquely named
using only Latin capital letters A—Z, hyphen (-), and digits 0-9.

e Reader canonicalization. Any mechanisms by which read treats different characters as
equivalent must be documented.

e The impact on char-upcase, char-downcase, and the case-sensitive format directives. In
particular, for each character with case, whether it is uppercase or lowercase, and which
character is its equivalent in the opposite case.

e The behavior of the case-insensitive functions char-equal, char-not-equal, char-lessp,
char-greaterp, char-not-greaterp, and char-not-lessp.

e The behavior of any character predicates; in particular, the effects of alpha-char-p,
lower-case-p, upper-case-p, both-case-p, graphic-char-p, and alphanumericp.

e The interaction with file I/O, in particular, the supported coded character sets (for
example, ISO8859/1-1987) and external encoding schemes supported are documented.

Characters 13-7

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

character System Class

Class Precedence List:
character, t

Description:

A character is an object that represents a unitary token in an aggregate quantity of text; see
Section 13.1 (Character Concepts).

The types base-char and extended-char form an ezhaustive partition of the type character.

See Also:

Section 13.1 (Character Concepts), Section 2.4.8.1 (Sharpsign Backslash), Section 22.1.3.2 (Print-
ing Characters)

base-char Type

Supertypes:

base-char, character, t

Description:

The type base-char is defined as the upgraded array element type of standard-char. An im-
plementation can support additional subtypes of type character (besides the ones listed in this
standard) that might or might not be supertypes of type base-char. In addition, an implementa-
tion can define base-char to be the same type as character.

Base characters are distinguished in the following respects:

The type standard-char is a subrepertoire of the type base-char.

2. The selection of base characters that are not standard characters is implementation
defined.

3. Only objects of the type base-char can be elements of a base string.

No upper bound is specified for the number of characters in the base-char repertoire; the
size of that repertoire is implementation-defined. The lower bound is 96, the number of
standard characters.

Whether a character is a base character depends on the way that an implementation represents
strings, and not any other properties of the implementation or the host operating system. For
example, one implementation might encode all strings as characters having 16-bit encodings,
and another might have two kinds of strings: those with characters having 8-bit encodings and
those with characters having 16-bit encodings. In the first implementation, the type base-char is

13-8 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

equivalent to the type character: there is only one kind of string. In the second implementation,
the base characters might be those characters that could be stored in a string of characters
having 8-bit encodings. In such an implementation, the type base-char is a proper subtype of the
type character.

The type standard-char is a subtype of type base-char.

standard-char Type

Supertypes:

standard-char, base-char, character, t

Description:

A fixed set of 96 characters required to be present in all conforming implementations. Standard
characters are defined in Section 2.1.3 (Standard Characters).

Any character that is not simple is not a standard character.

See Also:
Section 2.1.3 (Standard Characters)

extended-char Type

Supertypes:

extended-char, character, t

Description:
The type extended-char is equivalent to the type (and character (not base-char)).

Notes:

The type extended-char might have no elementsy in implementations in which all characters are
of type base-char.

Characters 13—9

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

char=, char/=, char<, char>, char<=, char>=, .

char=, char /=, char<, char>, char<=, char>=,
char-equal, char-not-equal, char-lessp, char-
greaterp, char-not-greaterp, char-not-lessp Function

Syntax:
char= &rest characters” — generalized-boolean
char/ = &rest characters’ — generalized-boolean
char< &rest characters’ — generalized-boolean
char> &rest characters® — generalized-boolean
char<= &rest characters” — generalized-boolean
char>= &rest characters” — generalized-boolean
char-equal &rest characters’” — generalized-boolean
char-not-equal &rest characters” — generalized-boolean
char-lessp &rest characters” — generalized-boolean
char-greaterp &rest characters™ — generalized-boolean
char-not-greaterp &rest characters’ — generalized-boolean
char-not-lessp &rest characters’” — generalized-boolean

Arguments and Values:
character—a character.

generalized-boolean—a generalized boolean.

Description:
These predicates compare characters.

char= returns true if all characters are the same; otherwise, it returns false. If two characters
differ in any implementation-defined attributes, then they are not char=.

char/= returns true if all characters are different; otherwise, it returns false.

char< returns true if the characters are monotonically increasing; otherwise, it returns false. If
two characters have identical implementation-defined attributes, then their ordering by char< is
consistent with the numerical ordering by the predicate < on their codes.

char> returns true if the characters are monotonically decreasing; otherwise, it returns false. If
two characters have identical implementation-defined attributes, then their ordering by char> is
consistent with the numerical ordering by the predicate > on their codes.

char<= returns true if the characters are monotonically nondecreasing; otherwise, it returns false.
If two characters have identical implementation-defined attributes, then their ordering by char<=
is consistent with the numerical ordering by the predicate <= on their codes.

char>= returns true if the characters are monotonically nonincreasing; otherwise, it returns false.

13-10 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

char=, char/=, char<, char>, char<=, char>=, ..

If two characters have identical implementation-defined attributes, then their ordering by char>=

is consistent with the numerical ordering by the predicate >= on their codes.

char-equal, char-not-equal, char-lessp, char-greaterp, char-not-greaterp, and char-not-lessp
are similar to char=, char/=, char<, char>, char<=, char>=, respectively, except that they
ignore differences in case and might have an implementation-defined behavior for non-simple
characters. For example, an implementation might define that char-equal, etc. ignore certain
implementation-defined attributes. The effect, if any, of each implementation-defined attribute
upon these functions must be specified as part of the definition of that attribute.

Examples:

(char= #\d #\d) — true

(char= #\A #\a) — false

(char= #\d #\x) — false

(char= #\d #\D) — false

(char/= #\d #\d) — false

(char/= #\d #\x) — true

(char/= #\d #\D) — true

(char= #\d #\d #\d #\d) — true
(char/= #\d #\d #\d #\d) — false
(char= #\d #\d #\x #\d) — false
(char/= #\d #\d #\x #\d) — false
(char= #\d #\y #\x #\c) — false
(char/= #\d #\y #\x #\c) — {rue
(char= #\d #\c #\d) — false

(char/= #\d #\c #\d) — false

(char< #\d #\x) — true

(char<= #\d #\x) — true

(char< #\d #\d) — false

(char<= #\d #\d) — true

(char< #\a #\e #\y #\z) — {rue
(char<= #\a #\e #\y #\z) — frue
(char< #\a #\e #\e #\y) — false
(char<= #\a #\e #\e #\y) — true
(char> #\e #\d) — {rue

(char>= #\e #\d) — true

(char> #\d #\c #\b #\a) — {true
(char>= #\d #\c #\b #\a) — lrue
(char> #\d #\d #\c #\a) — false
(char>= #\d #\d #\c #\a) — true
(char> #\e #\d #\b #\c #\a) — false
(char>= #\e #\d #\b #\c #\a) — false
(char> #\z #\A) — implementation-dependent
(char> #\Z #\a) — implementation-dependent
(char-equal #\A #\a) — {rue

Characters

13-11

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(stable-sort (list #\b #\A #\B #\a #\c #\C) #’char-lessp)
— (#\A #\a #\b #\B #\c #\C)
(stable-sort (list #\b #\A #\B #\a #\c #\C) #’char<)
(#\A #\B #\C #\a #\b #\c) ;Implementation A
(#\a #\b #\c #\A #\B #\C) ;Implementation B
(#\a #\A #\b #\B #\c #\C) ;Implementation C
(#\A #\a #\B #\b #\C #\c) ;Implementation D
(#\A #\B #\a #\b #\C #\c) ;Implementation E

LI L

Exceptional Situations:
Should signal an error of type program-error if at least one character is not supplied.

See Also:
Section 2.1 (Character Syntax), Section 13.1.10 (Documentation of Implementation-Defined
Scripts)

Notes:

If characters differ in their code attribute or any implementation-defined attribute, they are
considered to be different by char=.

There is no requirement that (eq ci1 c2) be true merely because (char= c1 c2) is true. While eq
can distinguish two characters that char= does not, it is distinguishing them not as characters,
but in some sense on the basis of a lower level implementation characteristic. If (eq c1 ¢2) is
true, then (char= c1 c2) is also true. eql and equal compare characters in the same way that
char= does.

The manner in which case is used by char-equal, char-not-equal, char-lessp, char-greaterp,
char-not-greaterp, and char-not-lessp implies an ordering for standard characters such that A=a,
B=b, and so on, up to Z=z, and furthermore either 9<A or z<0.

character Function

Syntax:

character character — denoted-character

Arguments and Values:
character—a character designator.

denoted-character—a. character.

Description:
Returns the character denoted by the character designator.

13-12 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:

(character #\a) — #\a
(character "a") — #\a
(character ’a) — #\A
(character ’\a) — #\a
(character 65.) is an error.
(character ’apple) is an error.

Exceptional Situations:
Should signal an error of type type-error if object is not a character designator.

See Also:

coerce

Notes:

(character object) = (coerce object ’character)

characterp Function

Syntax:

characterp object — generalized-boolean

Arguments and Values:
object—an object.

generalized-boolean—a generalized boolean.

Description:
Returns true if object is of type character; otherwise, returns false.

Examples:

(characterp #\a) — true

(characterp ’a) — false

(characterp "a") — false

(characterp 65.) — false

(characterp #\Newline) — true

;5 This next example presupposes an implementation

;3 in which #\Rubout is an implementation-defined character.
(characterp #\Rubout) — true

Characters 13-13

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

See Also:
character (type and function), typep

Notes:

(characterp object) = (typep object ’character)

alpha— char—p Function

Syntax:

alpha-char-p character — generalized-boolean

Arguments and Values:
character—a character.

generalized-boolean—a, generalized boolean.

Description:
Returns true if character is an alphabeticy character; otherwise, returns false.

Examples:

(alpha-char-p #\a) — {rue

(alpha-char-p #\5) — false

(alpha-char-p #\Newline) — false

;; This next example presupposes an implementation
;; in which #\« is a defined character.
(alpha-char-p #\a) — implementation-dependent

Affected By:

None. (In particular, the results of this predicate are independent of any special syntax which
might have been enabled in the current readtable.)

Exceptional Situations:
Should signal an error of type type-error if character is not a character.

See Also:

alphanumericp, Section 13.1.10 (Documentation of Implementation-Defined Scripts)

13-14 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

alphanumericp Function

Syntax:

alphanumericp character — generalized-boolean

Arguments and Values:
character—a character.

generalized-boolean—a generalized boolean.

Description:

Returns true if character is an alphabeticy character or a numeric character; otherwise, returns
false.

Examples:

(alphanumericp #\Z) — true
(alphanumericp #\9) — true
(alphanumericp #\Newline) — false
(alphanumericp #\#) — false

Affected By:

None. (In particular, the results of this predicate are independent of any special syntax which
might have been enabled in the current readtable.)

Exceptional Situations:
Should signal an error of type type-error if character is not a character.

See Also:
alpha-char-p, graphic-char-p, digit-char-p

Notes:

Alphanumeric characters are graphic as defined by graphic-char-p. The alphanumeric characters
are a subset of the graphic characters. The standard characters A through Z, a through z, and 0
through 9 are alphanumeric characters.

(alphanumericp x)
= (or (alpha-char-p x) (not (null (digit-char-p x))))

Characters 13-15

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

digit-char Function

Syntax:

digit-char weight &optional radix — char

Arguments and Values:
weight—a non-negative integer.

radix—a radiz. The default is 10.
char—a character or false.

Description:

If weight is less than radix, digit-char returns a character which has that weight when considered
as a digit in the specified radix. If the resulting character is to be an alphabeticy character, it will
be an uppercase character.

If weight is greater than or equal to radix, digit-char returns false.
Examples:

(digit-char 0) — #\O

(digit-char 10 11) — #\A
(digit-char 10 10) — false
(digit-char 7) — #\7

(digit-char 12) — false
(digit-char 12 16) — #\C ;not #\c
(digit-char 6 2) — false
(digit-char 1 2) — #\1

See Also:
digit-char-p, graphic-char-p, Section 2.1 (Character Syntax)

Notes:

digit-char-p Function

Syntax:

digit-char-p char &optional radix — weight

Arguments and Values:
char—a character.

13-16 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

radix—a radiz. The default is 10.

weight—either a non-negative integer less than radix, or false.

Description:

Tests whether char is a digit in the specified radix (i.e., with a weight less than radix). If it is a
digit in that radix, its weight is returned as an integer; otherwise nil is returned.

Examples:

(digit-char-p #\5) — b
(digit-char-p #\5 2) — false
(digit-char-p #\A) — false
(digit-char-p #\a) — false
(digit-char-p #\A 11) — 10
(digit-char-p #\a 11) — 10
(mapcar #’(lambda (radix)
(map ’list #’(lambda (x) (digit-char-p x radix))
"059AaFGZ"))
’(2 8 10 16 36))
— ((0 NIL NIL NIL NIL NIL NIL NIL)
(0 5 NIL NIL NIL NIL NIL NIL)
(0 5 9 NIL NIL NIL NIL NIL)
(0 59 10 10 15 NIL NIL)
(0 59 10 10 15 16 35))

Affected By:

None. (In particular, the results of this predicate are independent of any special syntax which
might have been enabled in the current readtable.)

See Also:

alphanumericp

Notes:

Digits are graphic characters.

graphic-char-p Function

Syntax:

graphic-char-p char — generalized-boolean

Arguments and Values:
char—a character.

Characters 13—-17

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

generalized-boolean—a generalized boolean.

Description:
Returns true if character is a graphic character; otherwise, returns false.

Examples:

(graphic-char-p #\G) — {rue
(graphic-char-p #\#) — {rue
(graphic-char-p #\Space) — {rue
(graphic-char-p #\Newline) — false

Exceptional Situations:
Should signal an error of type type-error if character is not a character.

See Also:
read, Section 2.1 (Character Syntax), Section 13.1.10 (Documentation of Implementation-Defined
Scripts)
standard-char-p Function
Syntax:

standard-char-p character — generalized-boolean

Arguments and Values:
character—a character.

generalized-boolean—a generalized boolean.

Description:
Returns true if character is of type standard-char; otherwise, returns false.

Examples:

(standard-char-p #\Space) — true

(standard-char-p #\~) — {rue

;; This next example presupposes an implementation
;; in which #\Bell is a defined character.
(standard-char-p #\Bell) — false

Exceptional Situations:
Should signal an error of type type-error if character is not a character.

13-18 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

char-upcase, char-downcase

char-upcase, char-downcase Function

Syntax:

char-upcase character — corresponding-character
char-downcase character — corresponding-character

Arguments and Values:
character, corresponding-character—a character.

Description:

If character is a lowercase character, char-upcase returns the corresponding uppercase character.
Otherwise, char-upcase just returns the given character.

If character is an uppercase character, char-downcase returns the corresponding lowercase
character. Otherwise, char-downcase just returns the given character.

The result only ever differs from character in its code attribute; all implementation-defined at-
tributes are preserved.

Examples:

(char-upcase #\a) — #\A
(char-upcase #\A) — #\A
(char-downcase #\a) — #\a
(char-downcase #\A) — #\a
(char-upcase #\9) — #\9
(char-downcase #\9) — #\9
(char-upcase #\Q@) — #\@
(char-downcase #\Q@) — #\@
;; Note that this next example might run for a very long time in
;; some implementations if CHAR-CODE-LIMIT happens to be very large
;; for that implementation.
(dotimes (code char-code-limit)
(let ((char (code-char code)))
(when char
(unless (cond ((upper-case-p char) (char= (char-upcase (char-downcase char)) char))
((lower-case-p char) (char= (char-downcase (char-upcase char)) char))
(t (and (char= (char-upcase (char-downcase char)) char)
(char= (char-downcase (char-upcase char)) char))))
(return char)))))
— NIL

Exceptional Situations:
Should signal an error of type type-error if character is not a character.

Characters 13-19

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

See Also:

upper-case-p, alpha-char-p, Section 13.1.4.3 (Characters With Case), Section 13.1.10 (Documen-
tation of Implementation-Defined Scripts)

Notes:
If the corresponding-char is different than character, then both the character and the
corresponding-char have case.
Since char-equal ignores the case of the characters it compares, the corresponding-character is
always the same as character under char-equal.
upper-case-p, lower-case-p, both-case-p Function
Syntax:

upper-case-p character — generalized-boolean
lower-case-p character — generalized-boolean
both-case-p character = — generalized-boolean

Arguments and Values:
character—a character.

generalized-boolean—a generalized boolean.

Description:
These functions test the case of a given character.

upper-case-p returns true if character is an uppercase character; otherwise, returns false.

lower-case-p returns true if character is a lowercase character; otherwise, returns false.

both-case-p returns true if character is a character with case; otherwise, returns false.
Examples:

(upper-case-p #\A) — {rue

(upper-case-p #\a) — false

(both-case-p #\a) — true

(both-case-p #\5) — false

(lower-case-p #\5) — false

(upper-case-p #\5) — false

;; This next example presupposes an implementation

;3 in which #\Bell is an implementation-defined character.
(lower-case-p #\Bell) — false

13-20 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Exceptional Situations:

Should signal an error of type type-error if character is not a character.

See Also:

char-upcase, char-downcase, Section 13.1.4.3 (Characters With Case), Section 13.1.10 (Docu-

mentation of Implementation-Defined Scripts)

char-code

Function

Syntax:

char-code character — code

Arguments and Values:
character—a character.

code—a character code.

Description:
char-code returns the code attribute of character.

Examples:

;; An implementation using ASCII character encoding
;; might return these values:

(char-code #\$) — 36

(char-code #\a) — 97

Exceptional Situations:

Should signal an error of type type-error if character is not a character.

See Also:

char-code-limit

Characters

13-21

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

char-int Function

Syntax:

char-int character — integer

Arguments and Values:
character—a character.

integer—a non-negative integer.

Description:

Returns a non-negative integer encoding the character object. The manner in which the integer is
computed is implementation-dependent. In contrast to sxhash, the result is not guaranteed to be
independent of the particular Lisp image.

If character has no implementation-defined attributes, the results of char-int and char-code are
the same.

(char= ¢l ¢2) = (= (char-int cI) (char-int c¢2))

for characters ¢l and c2.

Examples:
(char-int #\A) — 65 ; implementation A
(char-int #\A) — 577 ; implementation B
(char-int #\A) — 262145 ; implementation C
See Also:

char-code

code-char Function

Syntax:

code-char code — char-p

Arguments and Values:
code—a character code.

char-p—a character or nil.

13—22 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Description:

Returns a character with the code attribute given by code. If no such character exists and one
cannot be created, nil is returned.

Examples:

(code-char 65.) — #\A ;in an implementation using ASCII codes
(code-char (char-code #\Space)) — #\Space ;in any implementation

Affected By:

The implementation’s character encoding.

See Also:

char-code

Notes:

char-code-limit Constant Variable

Constant Value:

A non-negative integer, the exact magnitude of which is implementation-dependent, but which is
not less than 96 (the number of standard characters).

Description:
The upper exclusive bound on the value returned by the function char-code.

See Also:

char-code

Notes:

The value of char-code-limit might be larger than the actual number of characters supported by
the implementation.

Characters 13—23

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

char-name

char-name

Function

Syntax:

char-name character — name

Arguments and Values:
character—a character.

name—a string or nil.

Description:

Returns a string that is the name of the character, or nil if the character has no name.

All non-graphic characters are required to have names unless they have some implementation-

defined attribute which is not null. Whether or not other characters have names is

implementation-dependent.

The standard characters (Newline) and (Space) have the respective names "Newline" and "Space".
The semi-standard characters (Tab), {Page), (Rubout), (Linefeed), (Return), and (Backspace) (if
they are supported by the implementation) have the respective names "Tab", "Page", "Rubout",
"Linefeed", "Return", and "Backspace" (in the indicated case, even though name lookup by “#\”
and by the function name-char is not case sensitive).

Examples:
(char-name #\) — "Space"
(char-name #\Space) — "Space"

(char-name #\Page) — "Page"

(char-name #\a)

— NIL

o WLOWERCASE-a"
2% nSmall-A"

or

2% wLaAO1"

(char-name #\A)
— NIL

o WUPPERCASE-A"
2z "Capital-A"
or

2 vLa02"

;3 Even though its CHAR-NAME can vary, #\A

prints as #\A

(prinl-to-string (read-from-string (format nil "#\\"A" (or (char-name #\A) "A"))))

— "#\\A"

13—24 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Exceptional Situations:
Should signal an error of type type-error if character is not a character.

See Also:
name-char, Section 22.1.3.2 (Printing Characters)

Notes:
Non-graphic characters having names are written by the Lisp printer as “#\” followed by the
their name; see Section 22.1.3.2 (Printing Characters).
name-char Function
Syntax:

name-char name — char-p

Arguments and Values:
name—a string designator.

char-p—a character or nil.

Description:

Returns the character object whose name is name (as determined by string-equal—i.e., lookup is
not case sensitive). If such a character does not exist, nil is returned.

Examples:

(name-char ’space) — #\Space
(name-char "space") — #\Space
(name-char "Space") — #\Space
(let ((x (char-name #\a)))
(or (not x) (eql (name-char x) #\a))) — true

Exceptional Situations:
Should signal an error of type type-error if name is not a string designator.

See Also:

char-name

Characters 13-25

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

13-26 Programming Language—Common Lisp

