
Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Programming Language—Common Lisp

17. Sequences

Sequences i

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

ii Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

17.1 Sequence Concepts
A sequence is an ordered collection of elements, implemented as either a vector or a list .

Sequences can be created by the function make-sequence, as well as other functions that create
objects of types that are subtypes of sequence (e.g., list, make-list, mapcar, and vector).

A sequence function is a function defined by this specification or added as an extension by
the implementation that operates on one or more sequences. Whenever a sequence function
must construct and return a new vector , it always returns a simple vector . Similarly, any strings
constructed will be simple strings.

concatenate length remove
copy-seq map remove-duplicates
count map-into remove-if
count-if merge remove-if-not
count-if-not mismatch replace
delete notany reverse
delete-duplicates notevery search
delete-if nreverse some
delete-if-not nsubstitute sort
elt nsubstitute-if stable-sort
every nsubstitute-if-not subseq
fill position substitute
find position-if substitute-if
find-if position-if-not substitute-if-not
find-if-not reduce

Figure 17–1. Standardized Sequence Functions

17.1.1 General Restrictions on Parameters that must be
Sequences
In general, lists (including association lists and property lists) that are treated as sequences must
be proper lists.

Sequences 17–1

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

17.2 Rules about Test Functions

17.2.1 Satisfying a Two-Argument Test
When an object O is being considered iteratively against each element Ei of a sequence S by an
operator F listed in Figure 17–2, it is sometimes useful to control the way in which the presence
of O is tested in S is tested by F . This control is offered on the basis of a function designated
with either a :test or :test-not argument .

adjoin nset-exclusive-or search
assoc nsublis set-difference
count nsubst set-exclusive-or
delete nsubstitute sublis
find nunion subsetp
intersection position subst
member pushnew substitute
mismatch rassoc tree-equal
nintersection remove union
nset-difference remove-duplicates

Figure 17–2. Operators that have Two-Argument Tests to be Satisfied

The object O might not be compared directly to Ei. If a :key argument is provided, it is a
designator for a function of one argument to be called with each Ei as an argument , and yielding
an object Zi to be used for comparison. (If there is no :key argument , Zi is Ei.)

The function designated by the :key argument is never called on O itself. However, if the function
operates on multiple sequences (e.g., as happens in set-difference), O will be the result of calling
the :key function on an element of the other sequence.

A :test argument , if supplied to F , is a designator for a function of two arguments, O and Zi.
An Ei is said (or, sometimes, an O and an Ei are said) to satisfy the test if this :test function
returns a generalized boolean representing true.

A :test-not argument , if supplied to F , is designator for a function of two arguments, O and
Zi. An Ei is said (or, sometimes, an O and an Ei are said) to satisfy the test if this :test-not

function returns a generalized boolean representing false.

If neither a :test nor a :test-not argument is supplied, it is as if a :test argument of #’eql was
supplied.

The consequences are unspecified if both a :test and a :test-not argument are supplied in the
same call to F .

17–2 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

17.2.1.1 Examples of Satisfying a Two-Argument Test

(remove "FOO" ’(foo bar "FOO" "BAR" "foo" "bar") :test #’equal)

→ (foo bar "BAR" "foo" "bar")

(remove "FOO" ’(foo bar "FOO" "BAR" "foo" "bar") :test #’equalp)

→ (foo bar "BAR" "bar")

(remove "FOO" ’(foo bar "FOO" "BAR" "foo" "bar") :test #’string-equal)

→ (bar "BAR" "bar")

(remove "FOO" ’(foo bar "FOO" "BAR" "foo" "bar") :test #’string=)

→ (BAR "BAR" "foo" "bar")

(remove 1 ’(1 1.0 #C(1.0 0.0) 2 2.0 #C(2.0 0.0)) :test-not #’eql)

→ (1)

(remove 1 ’(1 1.0 #C(1.0 0.0) 2 2.0 #C(2.0 0.0)) :test-not #’=)

→ (1 1.0 #C(1.0 0.0))

(remove 1 ’(1 1.0 #C(1.0 0.0) 2 2.0 #C(2.0 0.0)) :test (complement #’=))

→ (1 1.0 #C(1.0 0.0))

(count 1 ’((one 1) (uno 1) (two 2) (dos 2)) :key #’cadr) → 2

(count 2.0 ’(1 2 3) :test #’eql :key #’float) → 1

(count "FOO" (list (make-pathname :name "FOO" :type "X")

(make-pathname :name "FOO" :type "Y"))

:key #’pathname-name

:test #’equal)

→ 2

17.2.2 Satisfying a One-Argument Test
When using one of the functions in Figure 17–3, the elements E of a sequence S are filtered not
on the basis of the presence or absence of an object O under a two argument predicate, as with
the functions described in Section 17.2.1 (Satisfying a Two-Argument Test), but rather on the
basis of a one argument predicate.

assoc-if member-if rassoc-if
assoc-if-not member-if-not rassoc-if-not
count-if nsubst-if remove-if
count-if-not nsubst-if-not remove-if-not
delete-if nsubstitute-if subst-if
delete-if-not nsubstitute-if-not subst-if-not
find-if position-if substitute-if
find-if-not position-if-not substitute-if-not

Figure 17–3. Operators that have One-Argument Tests to be Satisfied

Sequences 17–3

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

The element Ei might not be considered directly. If a :key argument is provided, it is a desig-
nator for a function of one argument to be called with each Ei as an argument , and yielding an
object Zi to be used for comparison. (If there is no :key argument , Zi is Ei.)

Functions defined in this specification and having a name that ends in “-if” accept a first
argument that is a designator for a function of one argument , Zi. An Ei is said to satisfy the
test if this :test function returns a generalized boolean representing true.

Functions defined in this specification and having a name that ends in “-if-not” accept a first
argument that is a designator for a function of one argument , Zi. An Ei is said to satisfy the
test if this :test function returns a generalized boolean representing false.

17.2.2.1 Examples of Satisfying a One-Argument Test

(count-if #’zerop ’(1 #C(0.0 0.0) 0 0.0d0 0.0s0 3)) → 4

(remove-if-not #’symbolp ’(0 1 2 3 4 5 6 7 8 9 A B C D E F))

→ (A B C D E F)

(remove-if (complement #’symbolp) ’(0 1 2 3 4 5 6 7 8 9 A B C D E F))

→ (A B C D E F)

(count-if #’zerop ’("foo" "" "bar" "" "" "baz" "quux") :key #’length)

→ 3

17–4 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

sequence System Class

Class Precedence List:
sequence, t

Description:
Sequences are ordered collections of objects, called the elements of the sequence.

The types vector and the type list are disjoint subtypes of type sequence, but are not necessarily
an exhaustive partition of sequence.

When viewing a vector as a sequence, only the active elements of that vector are considered ele-
ments of the sequence; that is, sequence operations respect the fill pointer when given sequences
represented as vectors.

copy-seq Function

Syntax:
copy-seq sequence → copied-sequence

Arguments and Values:
sequence—a proper sequence.

copied-sequence—a proper sequence.

Description:
Creates a copy of sequence. The elements of the new sequence are the same as the corresponding
elements of the given sequence.

If sequence is a vector , the result is a fresh simple array of rank one that has the same actual
array element type as sequence. If sequence is a list , the result is a fresh list .

Examples:

(setq str "a string") → "a string"

(equalp str (copy-seq str)) → true
(eql str (copy-seq str)) → false

Exceptional Situations:
Should be prepared to signal an error of type type-error if sequence is not a proper sequence.

See Also:
copy-list

Sequences 17–5

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Notes:
From a functional standpoint, (copy-seq x) ≡ (subseq x 0)

However, the programmer intent is typically very different in these two cases.

elt Accessor

Syntax:
elt sequence index → object

(setf (elt sequence index) new-object)

Arguments and Values:
sequence—a proper sequence.

index—a valid sequence index for sequence.

object—an object .

new-object—an object .

Description:
Accesses the element of sequence specified by index .

Examples:

(setq str (copy-seq "0123456789")) → "0123456789"

(elt str 6) → #\6

(setf (elt str 0) #\#) → #\#

str → "#123456789"

Exceptional Situations:
Should be prepared to signal an error of type type-error if sequence is not a proper sequence.
Should signal an error of type type-error if index is not a valid sequence index for sequence.

See Also:
aref , nth, Section 3.2.1 (Compiler Terminology)

Notes:
aref may be used to access vector elements that are beyond the vector ’s fill pointer .

17–6 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

fill Function

Syntax:
fill sequence item &key start end → sequence

Arguments and Values:
sequence—a proper sequence.

item—a sequence.

start, end—bounding index designators of sequence. The defaults for start and end are 0 and nil,
respectively.

Description:
Replaces the elements of sequence bounded by start and end with item.

Examples:

(fill (list 0 1 2 3 4 5) ’(444)) → ((444) (444) (444) (444) (444) (444))

(fill (copy-seq "01234") #\e :start 3) → "012ee"

(setq x (vector ’a ’b ’c ’d ’e)) → #(A B C D E)

(fill x ’z :start 1 :end 3) → #(A Z Z D E)

x → #(A Z Z D E)

(fill x ’p) → #(P P P P P)

x → #(P P P P P)

Side Effects:
Sequence is destructively modified.

Exceptional Situations:
Should be prepared to signal an error of type type-error if sequence is not a proper sequence.
Should signal an error of type type-error if start is not a non-negative integer . Should signal an
error of type type-error if end is not a non-negative integer or nil.

See Also:
replace, nsubstitute

Notes:
(fill sequence item) ≡(nsubstitute-if item (constantly t) sequence)

Sequences 17–7

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

make-sequence

make-sequence Function

Syntax:
make-sequence result-type size &key initial-element → sequence

Arguments and Values:
result-type—a sequence type specifier .

size—a non-negative integer .

initial-element—an object . The default is implementation-dependent .

sequence—a proper sequence.

Description:
Returns a sequence of the type result-type and of length size, each of the elements of which has
been initialized to initial-element.

If the result-type is a subtype of list, the result will be a list .

If the result-type is a subtype of vector, then if the implementation can determine the element
type specified for the result-type, the element type of the resulting array is the result of upgrading
that element type; or, if the implementation can determine that the element type is unspecified
(or *), the element type of the resulting array is t; otherwise, an error is signaled.

Examples:

(make-sequence ’list 0) → ()

(make-sequence ’string 26 :initial-element #\.)

→ ".........................."

(make-sequence ’(vector double-float) 2

:initial-element 1d0)

→ #(1.0d0 1.0d0)

(make-sequence ’(vector * 2) 3) should signal an error

(make-sequence ’(vector * 4) 3) should signal an error

Affected By:
The implementation.

Exceptional Situations:
The consequences are unspecified if initial-element is not an object which can be stored in the
resulting sequence.

17–8 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

An error of type type-error must be signaled if the result-type is neither a recognizable subtype of
list, nor a recognizable subtype of vector.

An error of type type-error should be signaled if result-type specifies the number of elements and
size is different from that number.

See Also:
make-array, make-list

Notes:

(make-sequence ’string 5) ≡ (make-string 5)

subseq Accessor

Syntax:
subseq sequence start &optional end → subsequence

(setf (subseq sequence start &optional end) new-subsequence)

Arguments and Values:
sequence—a proper sequence.

start, end—bounding index designators of sequence. The default for end is nil.

subsequence—a proper sequence.

new-subsequence—a proper sequence.

Description:
subseq creates a sequence that is a copy of the subsequence of sequence bounded by start and
end .

Start specifies an offset into the original sequence and marks the beginning position of the subse-
quence. end marks the position following the last element of the subsequence.

subseq always allocates a new sequence for a result; it never shares storage with an old sequence.
The result subsequence is always of the same type as sequence.

If sequence is a vector , the result is a fresh simple array of rank one that has the same actual
array element type as sequence. If sequence is a list , the result is a fresh list .

Sequences 17–9

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

setf may be used with subseq to destructively replace elements of a subsequence with elements
taken from a sequence of new values. If the subsequence and the new sequence are not of equal
length, the shorter length determines the number of elements that are replaced. The remaining
elements at the end of the longer sequence are not modified in the operation.

Examples:

(setq str "012345") → "012345"

(subseq str 2) → "2345"

(subseq str 3 5) → "34"

(setf (subseq str 4) "abc") → "abc"

str → "0123ab"

(setf (subseq str 0 2) "A") → "A"

str → "A123ab"

Exceptional Situations:
Should be prepared to signal an error of type type-error if sequence is not a proper sequence.
Should be prepared to signal an error of type type-error if new-subsequence is not a proper
sequence.

See Also:
replace

map Function

Syntax:
map result-type function &rest sequences+ → result

Arguments and Values:
result-type – a sequence type specifier , or nil.

function—a function designator . function must take as many arguments as there are sequences.

sequence—a proper sequence.

result—if result-type is a type specifier other than nil, then a sequence of the type it denotes;
otherwise (if the result-type is nil), nil.

Description:
Applies function to successive sets of arguments in which one argument is obtained from each
sequence. The function is called first on all the elements with index 0, then on all those with index
1, and so on. The result-type specifies the type of the resulting sequence.

17–10 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

map returns nil if result-type is nil. Otherwise, map returns a sequence such that element j is the
result of applying function to element j of each of the sequences. The result sequence is as long as
the shortest of the sequences. The consequences are undefined if the result of applying function to
the successive elements of the sequences cannot be contained in a sequence of the type given by
result-type.

If the result-type is a subtype of list, the result will be a list .

If the result-type is a subtype of vector, then if the implementation can determine the element
type specified for the result-type, the element type of the resulting array is the result of upgrading
that element type; or, if the implementation can determine that the element type is unspecified
(or *), the element type of the resulting array is t; otherwise, an error is signaled.

Examples:

(map ’string #’(lambda (x y)

(char "01234567890ABCDEF" (mod (+ x y) 16)))

’(1 2 3 4)

’(10 9 8 7)) → "AAAA"

(setq seq ’("lower" "UPPER" "" "123")) → ("lower" "UPPER" "" "123")

(map nil #’nstring-upcase seq) → NIL

seq → ("LOWER" "UPPER" "" "123")

(map ’list #’- ’(1 2 3 4)) → (-1 -2 -3 -4)

(map ’string

#’(lambda (x) (if (oddp x) #\1 #\0))

’(1 2 3 4)) → "1010"

(map ’(vector * 4) #’cons "abc" "de") should signal an error

Exceptional Situations:
An error of type type-error must be signaled if the result-type is not a recognizable subtype of list,
not a recognizable subtype of vector, and not nil.

Should be prepared to signal an error of type type-error if any sequence is not a proper sequence.

An error of type type-error should be signaled if result-type specifies the number of elements and
the minimum length of the sequences is different from that number.

See Also:
Section 3.6 (Traversal Rules and Side Effects)

Sequences 17–11

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

map-into

map-into Function

Syntax:
map-into result-sequence function &rest sequences → result-sequence

Arguments and Values:
result-sequence—a proper sequence.

function—a designator for a function of as many arguments as there are sequences.

sequence—a proper sequence.

Description:
Destructively modifies result-sequence to contain the results of applying function to each element
in the argument sequences in turn.

result-sequence and each element of sequences can each be either a list or a vector . If result-
sequence and each element of sequences are not all the same length, the iteration terminates
when the shortest sequence (of any of the sequences or the result-sequence) is exhausted. If
result-sequence is a vector with a fill pointer , the fill pointer is ignored when deciding how many
iterations to perform, and afterwards the fill pointer is set to the number of times function was
applied. If result-sequence is longer than the shortest element of sequences, extra elements at the
end of result-sequence are left unchanged. If result-sequence is nil, map-into immediately returns
nil, since nil is a sequence of length zero.

If function has side effects, it can count on being called first on all of the elements with index 0,
then on all of those numbered 1, and so on.

Examples:

(setq a (list 1 2 3 4) b (list 10 10 10 10)) → (10 10 10 10)

(map-into a #’+ a b) → (11 12 13 14)

a → (11 12 13 14)

b → (10 10 10 10)

(setq k ’(one two three)) → (ONE TWO THREE)

(map-into a #’cons k a) → ((ONE . 11) (TWO . 12) (THREE . 13) 14)

(map-into a #’gensym) → (#:G9090 #:G9091 #:G9092 #:G9093)

a → (#:G9090 #:G9091 #:G9092 #:G9093)

Exceptional Situations:
Should be prepared to signal an error of type type-error if result-sequence is not a proper se-
quence. Should be prepared to signal an error of type type-error if sequence is not a proper
sequence.

Notes:
map-into differs from map in that it modifies an existing sequence rather than creating a new

17–12 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

one. In addition, map-into can be called with only two arguments, while map requires at least
three arguments.

map-into could be defined by:

(defun map-into (result-sequence function &rest sequences)

(loop for index below (apply #’min

(length result-sequence)

(mapcar #’length sequences))

do (setf (elt result-sequence index)

(apply function

(mapcar #’(lambda (seq) (elt seq index))

sequences))))

result-sequence)

reduce Function

Syntax:
reduce function sequence &key key from-end start end initial-value → result

Arguments and Values:
function—a designator for a function that might be called with either zero or two arguments.

sequence—a proper sequence.

key—a designator for a function of one argument, or nil.

from-end—a generalized boolean. The default is false.

start, end—bounding index designators of sequence. The defaults for start and end are 0 and nil,
respectively.

initial-value—an object .

result—an object .

Description:
reduce uses a binary operation, function, to combine the elements of sequence bounded by start
and end .

The function must accept as arguments two elements of sequence or the results from combining
those elements. The function must also be able to accept no arguments.

If key is supplied, it is used is used to extract the values to reduce. The key function is applied
exactly once to each element of sequence in the order implied by the reduction order but not to

Sequences 17–13

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

the value of initial-value, if supplied. The key function typically returns part of the element of
sequence. If key is not supplied or is nil, the sequence element itself is used.

The reduction is left-associative, unless from-end is true in which case it is right-associative.

If initial-value is supplied, it is logically placed before the subsequence (or after it if from-end is
true) and included in the reduction operation.

In the normal case, the result of reduce is the combined result of function’s being applied to
successive pairs of elements of sequence. If the subsequence contains exactly one element and no
initial-value is given, then that element is returned and function is not called. If the subsequence
is empty and an initial-value is given, then the initial-value is returned and function is not called.
If the subsequence is empty and no initial-value is given, then the function is called with zero
arguments, and reduce returns whatever function does. This is the only case where the function is
called with other than two arguments.

Examples:

(reduce #’* ’(1 2 3 4 5)) → 120

(reduce #’append ’((1) (2)) :initial-value ’(i n i t)) → (I N I T 1 2)

(reduce #’append ’((1) (2)) :from-end t

:initial-value ’(i n i t)) → (1 2 I N I T)

(reduce #’- ’(1 2 3 4)) ≡ (- (- (- 1 2) 3) 4) → -8

(reduce #’- ’(1 2 3 4) :from-end t) ;Alternating sum.

≡ (- 1 (- 2 (- 3 4))) → -2

(reduce #’+ ’()) → 0

(reduce #’+ ’(3)) → 3

(reduce #’+ ’(foo)) → FOO

(reduce #’list ’(1 2 3 4)) → (((1 2) 3) 4)

(reduce #’list ’(1 2 3 4) :from-end t) → (1 (2 (3 4)))

(reduce #’list ’(1 2 3 4) :initial-value ’foo) → ((((foo 1) 2) 3) 4)

(reduce #’list ’(1 2 3 4)

:from-end t :initial-value ’foo) → (1 (2 (3 (4 foo))))

Exceptional Situations:
Should be prepared to signal an error of type type-error if sequence is not a proper sequence.

See Also:
Section 3.6 (Traversal Rules and Side Effects)

17–14 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

count, count-if, count-if-not

count, count-if, count-if-not Function

Syntax:
count item sequence &key from-end start end key test test-not → n

count-if predicate sequence &key from-end start end key → n

count-if-not predicate sequence &key from-end start end key → n

Arguments and Values:
item—an object .

sequence—a proper sequence.

predicate—a designator for a function of one argument that returns a generalized boolean.

from-end—a generalized boolean. The default is false.

test—a designator for a function of two arguments that returns a generalized boolean.

test-not—a designator for a function of two arguments that returns a generalized boolean.

start, end—bounding index designators of sequence. The defaults for start and end are 0 and nil,
respectively.

key—a designator for a function of one argument, or nil.

n—a non-negative integer less than or equal to the length of sequence.

Description:
count, count-if , and count-if-not count and return the number of elements in the sequence
bounded by start and end that satisfy the test .

The from-end has no direct effect on the result. However, if from-end is true, the elements of
sequence will be supplied as arguments to the test, test-not, and key in reverse order, which may
change the side-effects, if any, of those functions.

Examples:

(count #\a "how many A’s are there in here?") → 2

(count-if-not #’oddp ’((1) (2) (3) (4)) :key #’car) → 2

(count-if #’upper-case-p "The Crying of Lot 49" :start 4) → 2

Exceptional Situations:
Should be prepared to signal an error of type type-error if sequence is not a proper sequence.

Sequences 17–15

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

See Also:
Section 17.2 (Rules about Test Functions), Section 3.6 (Traversal Rules and Side Effects)

Notes:
The :test-not argument is deprecated.

The function count-if-not is deprecated.

length Function

Syntax:
length sequence → n

Arguments and Values:
sequence—a proper sequence.

n—a non-negative integer .

Description:
Returns the number of elements in sequence.

If sequence is a vector with a fill pointer , the active length as specified by the fill pointer is
returned.

Examples:

(length "abc") → 3

(setq str (make-array ’(3) :element-type ’character

:initial-contents "abc"

:fill-pointer t)) → "abc"

(length str) → 3

(setf (fill-pointer str) 2) → 2

(length str) → 2

Exceptional Situations:
Should be prepared to signal an error of type type-error if sequence is not a proper sequence.

See Also:
list-length, sequence

17–16 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

reverse, nreverse

reverse, nreverse Function

Syntax:
reverse sequence → reversed-sequence

nreverse sequence → reversed-sequence

Arguments and Values:
sequence—a proper sequence.

reversed-sequence—a sequence.

Description:
reverse and nreverse return a new sequence of the same kind as sequence, containing the same
elements, but in reverse order.

reverse and nreverse differ in that reverse always creates and returns a new sequence, whereas
nreverse might modify and return the given sequence. reverse never modifies the given sequence.

For reverse, if sequence is a vector , the result is a fresh simple array of rank one that has the
same actual array element type as sequence. If sequence is a list , the result is a fresh list .

For nreverse, if sequence is a vector , the result is a vector that has the same actual array element
type as sequence. If sequence is a list , the result is a list .

For nreverse, sequence might be destroyed and re-used to produce the result. The result might
or might not be identical to sequence. Specifically, when sequence is a list , nreverse is permitted
to setf any part, car or cdr, of any cons that is part of the list structure of sequence. When
sequence is a vector , nreverse is permitted to re-order the elements of sequence in order to
produce the resulting vector .

Examples:

(setq str "abc") → "abc"

(reverse str) → "cba"

str → "abc"

(setq str (copy-seq str)) → "abc"

(nreverse str) → "cba"

str → implementation-dependent
(setq l (list 1 2 3)) → (1 2 3)

(nreverse l) → (3 2 1)

l → implementation-dependent

Side Effects:
nreverse might either create a new sequence, modify the argument sequence, or both. (reverse
does not modify sequence.)

Sequences 17–17

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Exceptional Situations:
Should be prepared to signal an error of type type-error if sequence is not a proper sequence.

sort, stable-sort Function

Syntax:
sort sequence predicate &key key → sorted-sequence

stable-sort sequence predicate &key key → sorted-sequence

Arguments and Values:
sequence—a proper sequence.

predicate—a designator for a function of two arguments that returns a generalized boolean.

key—a designator for a function of one argument, or nil.

sorted-sequence—a sequence.

Description:
sort and stable-sort destructively sort sequences according to the order determined by the
predicate function.

If sequence is a vector , the result is a vector that has the same actual array element type as
sequence. If sequence is a list , the result is a list .

sort determines the relationship between two elements by giving keys extracted from the elements
to the predicate. The first argument to the predicate function is the part of one element of se-
quence extracted by the key function (if supplied); the second argument is the part of another
element of sequence extracted by the key function (if supplied). Predicate should return true if
and only if the first argument is strictly less than the second (in some appropriate sense). If the
first argument is greater than or equal to the second (in the appropriate sense), then the predicate
should return false.

The argument to the key function is the sequence element. The return value of the key function
becomes an argument to predicate. If key is not supplied or nil, the sequence element itself is
used. There is no guarantee on the number of times the key will be called.

If the key and predicate always return, then the sorting operation will always terminate, produc-
ing a sequence containing the same elements as sequence (that is, the result is a permutation of
sequence). This is guaranteed even if the predicate does not really consistently represent a total
order (in which case the elements will be scrambled in some unpredictable way, but no element
will be lost). If the key consistently returns meaningful keys, and the predicate does reflect some
total ordering criterion on those keys, then the elements of the sorted-sequence will be properly
sorted according to that ordering.

17–18 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

sort, stable-sort

The sorting operation performed by sort is not guaranteed stable. Elements considered equal by
the predicate might or might not stay in their original order. The predicate is assumed to consider
two elements x and y to be equal if (funcall predicate x y) and (funcall predicate y x) are both
false. stable-sort guarantees stability.

The sorting operation can be destructive in all cases. In the case of a vector argument, this is
accomplished by permuting the elements in place. In the case of a list , the list is destructively
reordered in the same manner as for nreverse.

Examples:

(setq tester (copy-seq "lkjashd")) → "lkjashd"

(sort tester #’char-lessp) → "adhjkls"

(setq tester (list ’(1 2 3) ’(4 5 6) ’(7 8 9))) → ((1 2 3) (4 5 6) (7 8 9))

(sort tester #’> :key #’car) → ((7 8 9) (4 5 6) (1 2 3))

(setq tester (list 1 2 3 4 5 6 7 8 9 0)) → (1 2 3 4 5 6 7 8 9 0)

(stable-sort tester #’(lambda (x y) (and (oddp x) (evenp y))))

→ (1 3 5 7 9 2 4 6 8 0)

(sort (setq committee-data

(vector (list (list "JonL" "White") "Iteration")

(list (list "Dick" "Waters") "Iteration")

(list (list "Dick" "Gabriel") "Objects")

(list (list "Kent" "Pitman") "Conditions")

(list (list "Gregor" "Kiczales") "Objects")

(list (list "David" "Moon") "Objects")

(list (list "Kathy" "Chapman") "Editorial")

(list (list "Larry" "Masinter") "Cleanup")

(list (list "Sandra" "Loosemore") "Compiler")))

#’string-lessp :key #’cadar)

→ #((("Kathy" "Chapman") "Editorial")

(("Dick" "Gabriel") "Objects")

(("Gregor" "Kiczales") "Objects")

(("Sandra" "Loosemore") "Compiler")

(("Larry" "Masinter") "Cleanup")

(("David" "Moon") "Objects")

(("Kent" "Pitman") "Conditions")

(("Dick" "Waters") "Iteration")

(("JonL" "White") "Iteration"))

;; Note that individual alphabetical order within ‘committees’

;; is preserved.

(setq committee-data

(stable-sort committee-data #’string-lessp :key #’cadr))

→ #((("Larry" "Masinter") "Cleanup")

(("Sandra" "Loosemore") "Compiler")

(("Kent" "Pitman") "Conditions")

(("Kathy" "Chapman") "Editorial")

Sequences 17–19

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(("Dick" "Waters") "Iteration")

(("JonL" "White") "Iteration")

(("Dick" "Gabriel") "Objects")

(("Gregor" "Kiczales") "Objects")

(("David" "Moon") "Objects"))

Exceptional Situations:
Should be prepared to signal an error of type type-error if sequence is not a proper sequence.

See Also:
merge, Section 3.2.1 (Compiler Terminology), Section 3.6 (Traversal Rules and Side Effects),
Section 3.7 (Destructive Operations)

Notes:
If sequence is a vector , the result might or might not be simple, and might or might not be
identical to sequence.

find, find-if, find-if-not Function

Syntax:
find item sequence &key from-end test test-not start end key → element

find-if predicate sequence &key from-end start end key → element

find-if-not predicate sequence &key from-end start end key → element

Arguments and Values:
item—an object .

sequence—a proper sequence.

predicate—a designator for a function of one argument that returns a generalized boolean.

from-end—a generalized boolean. The default is false.

test—a designator for a function of two arguments that returns a generalized boolean.

test-not—a designator for a function of two arguments that returns a generalized boolean.

start, end—bounding index designators of sequence. The defaults for start and end are 0 and nil,
respectively.

key—a designator for a function of one argument, or nil.

element—an element of the sequence, or nil.

17–20 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Description:
find, find-if , and find-if-not each search for an element of the sequence bounded by start and end
that satisfies the predicate predicate or that satisfies the test test or test-not, as appropriate.

If from-end is true, then the result is the rightmost element that satisfies the test .

If the sequence contains an element that satisfies the test , then the leftmost or rightmost sequence
element, depending on from-end , is returned; otherwise nil is returned.

Examples:

(find #\d "here are some letters that can be looked at" :test #’char>)

→ #\Space

(find-if #’oddp ’(1 2 3 4 5) :end 3 :from-end t) → 3

(find-if-not #’complexp

’#(3.5 2 #C(1.0 0.0) #C(0.0 1.0))

:start 2) → NIL

Exceptional Situations:
Should be prepared to signal an error of type type-error if sequence is not a proper sequence.

See Also:
position, Section 17.2 (Rules about Test Functions), Section 3.6 (Traversal Rules and Side
Effects)

Notes:
The :test-not argument is deprecated.

The function find-if-not is deprecated.

position, position-if, position-if-not Function

Syntax:
position item sequence &key from-end test test-not start end key → position

position-if predicate sequence &key from-end start end key → position

position-if-not predicate sequence &key from-end start end key → position

Arguments and Values:
item—an object .

sequence—a proper sequence.

predicate—a designator for a function of one argument that returns a generalized boolean.

Sequences 17–21

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

from-end—a generalized boolean. The default is false.

test—a designator for a function of two arguments that returns a generalized boolean.

test-not—a designator for a function of two arguments that returns a generalized boolean.

start, end—bounding index designators of sequence. The defaults for start and end are 0 and nil,
respectively.

key—a designator for a function of one argument, or nil.

position—a bounding index of sequence, or nil.

Description:
position, position-if , and position-if-not each search sequence for an element that satisfies the
test .

The position returned is the index within sequence of the leftmost (if from-end is true) or of the
rightmost (if from-end is false) element that satisfies the test ; otherwise nil is returned. The
index returned is relative to the left-hand end of the entire sequence, regardless of the value of
start , end , or from-end .

Examples:

(position #\a "baobab" :from-end t) → 4

(position-if #’oddp ’((1) (2) (3) (4)) :start 1 :key #’car) → 2

(position 595 ’()) → NIL

(position-if-not #’integerp ’(1 2 3 4 5.0)) → 4

Exceptional Situations:
Should be prepared to signal an error of type type-error if sequence is not a proper sequence.

See Also:
find, Section 3.6 (Traversal Rules and Side Effects)

Notes:
The :test-not argument is deprecated.

The function position-if-not is deprecated.

17–22 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

search

search Function

Syntax:
search sequence-1 sequence-2 &key from-end test test-not

key start1 start2
end1 end2

→ position

Arguments and Values:
Sequence-1—a sequence.

Sequence-2—a sequence.

from-end—a generalized boolean. The default is false.

test—a designator for a function of two arguments that returns a generalized boolean.

test-not—a designator for a function of two arguments that returns a generalized boolean.

key—a designator for a function of one argument, or nil.

start1 , end1—bounding index designators of sequence-1 . The defaults for start1 and end1 are 0

and nil, respectively.

start2 , end2—bounding index designators of sequence-2 . The defaults for start2 and end2 are 0

and nil, respectively.

position—a bounding index of sequence-2 , or nil.

Description:
Searches sequence-2 for a subsequence that matches sequence-1 .

The implementation may choose to search sequence-2 in any order; there is no guarantee on
the number of times the test is made. For example, when start-end is true, the sequence might
actually be searched from left to right instead of from right to left (but in either case would
return the rightmost matching subsequence). If the search succeeds, search returns the offset into
sequence-2 of the first element of the leftmost or rightmost matching subsequence, depending on
from-end ; otherwise search returns nil.

If from-end is true, the index of the leftmost element of the rightmost matching subsequence is
returned.

Examples:

(search "dog" "it’s a dog’s life") → 7

(search ’(0 1) ’(2 4 6 1 3 5) :key #’oddp) → 2

Sequences 17–23

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

See Also:
Section 3.6 (Traversal Rules and Side Effects)

Notes:
The :test-not argument is deprecated.

mismatch Function

Syntax:
mismatch sequence-1 sequence-2 &key from-end test test-not key start1 start2 end1 end2
→ position

Arguments and Values:
Sequence-1—a sequence.

Sequence-2—a sequence.

from-end—a generalized boolean. The default is false.

test—a designator for a function of two arguments that returns a generalized boolean.

test-not—a designator for a function of two arguments that returns a generalized boolean.

start1 , end1—bounding index designators of sequence-1 . The defaults for start1 and end1 are 0

and nil, respectively.

start2 , end2—bounding index designators of sequence-2 . The defaults for start2 and end2 are 0

and nil, respectively.

key—a designator for a function of one argument, or nil.

position—a bounding index of sequence-1 , or nil.

Description:
The specified subsequences of sequence-1 and sequence-2 are compared element-wise.

The key argument is used for both the sequence-1 and the sequence-2 .

If sequence-1 and sequence-2 are of equal length and match in every element, the result is false.
Otherwise, the result is a non-negative integer , the index within sequence-1 of the leftmost or
rightmost position, depending on from-end , at which the two subsequences fail to match. If one
subsequence is shorter than and a matching prefix of the other, the result is the index relative to
sequence-1 beyond the last position tested.

17–24 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

If from-end is true, then one plus the index of the rightmost position in which the sequences
differ is returned. In effect, the subsequences are aligned at their right-hand ends; then, the last
elements are compared, the penultimate elements, and so on. The index returned is an index
relative to sequence-1 .

Examples:

(mismatch "abcd" "ABCDE" :test #’char-equal) → 4

(mismatch ’(3 2 1 1 2 3) ’(1 2 3) :from-end t) → 3

(mismatch ’(1 2 3) ’(2 3 4) :test-not #’eq :key #’oddp) → NIL

(mismatch ’(1 2 3 4 5 6) ’(3 4 5 6 7) :start1 2 :end2 4) → NIL

See Also:
Section 3.6 (Traversal Rules and Side Effects)

Notes:
The :test-not argument is deprecated.

replace Function

Syntax:
replace sequence-1 sequence-2 &key start1 end1 start2 end2 → sequence-1

Arguments and Values:
sequence-1—a sequence.

sequence-2—a sequence.

start1 , end1—bounding index designators of sequence-1 . The defaults for start1 and end1 are 0

and nil, respectively.

start2 , end2—bounding index designators of sequence-2 . The defaults for start2 and end2 are 0

and nil, respectively.

Description:
Destructively modifies sequence-1 by replacing the elements of subsequence-1 bounded by start1
and end1 with the elements of subsequence-2 bounded by start2 and end2 .

Sequence-1 is destructively modified by copying successive elements into it from sequence-2 .
Elements of the subsequence of sequence-2 bounded by start2 and end2 are copied into the
subsequence of sequence-1 bounded by start1 and end1 . If these subsequences are not of the same
length, then the shorter length determines how many elements are copied; the extra elements
near the end of the longer subsequence are not involved in the operation. The number of elements
copied can be expressed as:

Sequences 17–25

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(min (- end1 start1) (- end2 start2))

If sequence-1 and sequence-2 are the same object and the region being modified overlaps the
region being copied from, then it is as if the entire source region were copied to another place
and only then copied back into the target region. However, if sequence-1 and sequence-2 are not
the same, but the region being modified overlaps the region being copied from (perhaps because
of shared list structure or displaced arrays), then after the replace operation the subsequence
of sequence-1 being modified will have unpredictable contents. It is an error if the elements of
sequence-2 are not of a type that can be stored into sequence-1 .

Examples:

(replace "abcdefghij" "0123456789" :start1 4 :end1 7 :start2 4)

→ "abcd456hij"

(setq lst "012345678") → "012345678"

(replace lst lst :start1 2 :start2 0) → "010123456"

lst → "010123456"

Side Effects:
The sequence-1 is modified.

See Also:
fill

substitute, substitute-if, substitute-if-not, nsubsti-
tute, nsubstitute-if, nsubstitute-if-not Function

Syntax:
substitute newitem olditem sequence &key from-end test

test-not start
end count key

→ result-sequence

substitute-if newitem predicate sequence &key from-end start end count key
→ result-sequence

substitute-if-not newitem predicate sequence &key from-end start end count key
→ result-sequence

nsubstitute newitem olditem sequence &key from-end test test-not start end count key
→ sequence

17–26 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

substitute, substitute-if, substitute-if-not, . . .

nsubstitute-if newitem predicate sequence &key from-end start end count key
→ sequence

nsubstitute-if-not newitem predicate sequence &key from-end start end count key
→ sequence

Arguments and Values:
newitem—an object .

olditem—an object .

sequence—a proper sequence.

predicate—a designator for a function of one argument that returns a generalized boolean.

from-end—a generalized boolean. The default is false.

test—a designator for a function of two arguments that returns a generalized boolean.

test-not—a designator for a function of two arguments that returns a generalized boolean.

start, end—bounding index designators of sequence. The defaults for start and end are 0 and nil,
respectively.

count—an integer or nil. The default is nil.

key—a designator for a function of one argument, or nil.

result-sequence—a sequence.

Description:
substitute, substitute-if , and substitute-if-not return a copy of sequence in which each element
that satisfies the test has been replaced with newitem.

nsubstitute, nsubstitute-if , and nsubstitute-if-not are like substitute, substitute-if , and
substitute-if-not respectively, but they may modify sequence.

If sequence is a vector , the result is a vector that has the same actual array element type as
sequence. If sequence is a list , the result is a list .

Count, if supplied, limits the number of elements altered; if more than count elements satisfy the
test , then of these elements only the leftmost or rightmost, depending on from-end , are replaced,
as many as specified by count. If count is supplied and negative, the behavior is as if zero had
been supplied instead. If count is nil, all matching items are affected.

Supplying a from-end of true matters only when the count is provided (and non-nil); in that case,
only the rightmost count elements satisfying the test are removed (instead of the leftmost).

predicate, test, and test-not might be called more than once for each sequence element , and their
side effects can happen in any order.

Sequences 17–27

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

substitute, substitute-if, substitute-if-not, . . .

The result of all these functions is a sequence of the same type as sequence that has the same
elements except that those in the subsequence bounded by start and end and satisfying the test
have been replaced by newitem.

substitute, substitute-if , and substitute-if-not return a sequence which can share with sequence
or may be identical to the input sequence if no elements need to be changed.

nsubstitute and nsubstitute-if are required to setf any car (if sequence is a list) or aref (if
sequence is a vector) of sequence that is required to be replaced with newitem. If sequence is a
list , none of the cdrs of the top-level list can be modified.

Examples:

(substitute #\. #\SPACE "0 2 4 6") → "0.2.4.6"

(substitute 9 4 ’(1 2 4 1 3 4 5)) → (1 2 9 1 3 9 5)

(substitute 9 4 ’(1 2 4 1 3 4 5) :count 1) → (1 2 9 1 3 4 5)

(substitute 9 4 ’(1 2 4 1 3 4 5) :count 1 :from-end t)

→ (1 2 4 1 3 9 5)

(substitute 9 3 ’(1 2 4 1 3 4 5) :test #’>) → (9 9 4 9 3 4 5)

(substitute-if 0 #’evenp ’((1) (2) (3) (4)) :start 2 :key #’car)

→ ((1) (2) (3) 0)

(substitute-if 9 #’oddp ’(1 2 4 1 3 4 5)) → (9 2 4 9 9 4 9)

(substitute-if 9 #’evenp ’(1 2 4 1 3 4 5) :count 1 :from-end t)

→ (1 2 4 1 3 9 5)

(setq some-things (list ’a ’car ’b ’cdr ’c)) → (A CAR B CDR C)

(nsubstitute-if "function was here" #’fboundp some-things

:count 1 :from-end t) → (A CAR B "function was here" C)

some-things → (A CAR B "function was here" C)

(setq alpha-tester (copy-seq "ab ")) → "ab "

(nsubstitute-if-not #\z #’alpha-char-p alpha-tester) → "abz"

alpha-tester → "abz"

Side Effects:
nsubstitute, nsubstitute-if , and nsubstitute-if-not modify sequence.

Exceptional Situations:
Should be prepared to signal an error of type type-error if sequence is not a proper sequence.

See Also:
subst, nsubst, Section 3.2.1 (Compiler Terminology), Section 3.6 (Traversal Rules and Side
Effects)

Notes:
If sequence is a vector , the result might or might not be simple, and might or might not be

17–28 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

identical to sequence.

The :test-not argument is deprecated.

The functions substitute-if-not and nsubstitute-if-not are deprecated.

nsubstitute and nsubstitute-if can be used in for-effect-only positions in code.

Because the side-effecting variants (e.g., nsubstitute) potentially change the path that is being
traversed, their effects in the presence of shared or circular structure may vary in surprising
ways when compared to their non-side-effecting alternatives. To see this, consider the following
side-effect behavior, which might be exhibited by some implementations:

(defun test-it (fn)

(let ((x (cons ’b nil)))

(rplacd x x)

(funcall fn ’a ’b x :count 1)))

(test-it #’substitute) → (A . #1=(B . #1#))

(test-it #’nsubstitute) → (A . #1#)

concatenate Function

Syntax:
concatenate result-type &rest sequences → result-sequence

Arguments and Values:
result-type—a sequence type specifier .

sequences—a sequence.

result-sequence—a proper sequence of type result-type.

Description:
concatenate returns a sequence that contains all the individual elements of all the sequences in
the order that they are supplied. The sequence is of type result-type, which must be a subtype of
type sequence.

All of the sequences are copied from; the result does not share any structure with any of the
sequences. Therefore, if only one sequence is provided and it is of type result-type, concatenate is
required to copy sequence rather than simply returning it.

It is an error if any element of the sequences cannot be an element of the sequence result.

If the result-type is a subtype of list, the result will be a list .

Sequences 17–29

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

If the result-type is a subtype of vector, then if the implementation can determine the element
type specified for the result-type, the element type of the resulting array is the result of upgrading
that element type; or, if the implementation can determine that the element type is unspecified
(or *), the element type of the resulting array is t; otherwise, an error is signaled.

Examples:

(concatenate ’string "all" " " "together" " " "now") → "all together now"

(concatenate ’list "ABC" ’(d e f) #(1 2 3) #*1011)

→ (#\A #\B #\C D E F 1 2 3 1 0 1 1)

(concatenate ’list) → NIL

(concatenate ’(vector * 2) "a" "bc") should signal an error

Exceptional Situations:
An error is signaled if the result-type is neither a recognizable subtype of list, nor a recognizable
subtype of vector.

An error of type type-error should be signaled if result-type specifies the number of elements and
the sum of sequences is different from that number.

See Also:
append

merge Function

Syntax:
merge result-type sequence-1 sequence-2 predicate &key key → result-sequence

Arguments and Values:
result-type—a sequence type specifier .

sequence-1—a sequence.

sequence-2—a sequence.

predicate—a designator for a function of two arguments that returns a generalized boolean.

key—a designator for a function of one argument, or nil.

result-sequence—a proper sequence of type result-type.

17–30 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

merge

Description:
Destructively merges sequence-1 with sequence-2 according to an order determined by the predi-
cate. merge determines the relationship between two elements by giving keys extracted from the
sequence elements to the predicate.

The first argument to the predicate function is an element of sequence-1 as returned by the key (if
supplied); the second argument is an element of sequence-2 as returned by the key (if supplied).
Predicate should return true if and only if its first argument is strictly less than the second (in
some appropriate sense). If the first argument is greater than or equal to the second (in the
appropriate sense), then predicate should return false. merge considers two elements x and y to
be equal if (funcall predicate x y) and (funcall predicate y x) both yield false.

The argument to the key is the sequence element. Typically, the return value of the key becomes
the argument to predicate. If key is not supplied or nil, the sequence element itself is used. The
key may be executed more than once for each sequence element , and its side effects may occur in
any order.

If key and predicate return, then the merging operation will terminate. The result of merging two
sequences x and y is a new sequence of type result-type z, such that the length of z is the sum of
the lengths of x and y, and z contains all the elements of x and y. If x1 and x2 are two elements of
x, and x1 precedes x2 in x, then x1 precedes x2 in z, and similarly for elements of y. In short, z is
an interleaving of x and y.

If x and y were correctly sorted according to the predicate, then z will also be correctly sorted. If
x or y is not so sorted, then z will not be sorted, but will nevertheless be an interleaving of x and
y.

The merging operation is guaranteed stable; if two or more elements are considered equal by the
predicate, then the elements from sequence-1 will precede those from sequence-2 in the result.

sequence-1 and/or sequence-2 may be destroyed.

If the result-type is a subtype of list, the result will be a list .

If the result-type is a subtype of vector, then if the implementation can determine the element
type specified for the result-type, the element type of the resulting array is the result of upgrading
that element type; or, if the implementation can determine that the element type is unspecified
(or *), the element type of the resulting array is t; otherwise, an error is signaled.

Examples:

(setq test1 (list 1 3 4 6 7))

(setq test2 (list 2 5 8))

(merge ’list test1 test2 #’<) → (1 2 3 4 5 6 7 8)

(setq test1 (copy-seq "BOY"))

(setq test2 (copy-seq :nosy"))

(merge ’string test1 test2 #’char-lessp) → "BnOosYy"

Sequences 17–31

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(setq test1 (vector ((red . 1) (blue . 4))))

(setq test2 (vector ((yellow . 2) (green . 7))))

(merge ’vector test1 test2 #’< :key #’cdr)

→ #((RED . 1) (YELLOW . 2) (BLUE . 4) (GREEN . 7))

(merge ’(vector * 4) ’(1 5) ’(2 4 6) #’<) should signal an error

Exceptional Situations:
An error must be signaled if the result-type is neither a recognizable subtype of list, nor a recogniz-
able subtype of vector.

An error of type type-error should be signaled if result-type specifies the number of elements and
the sum of the lengths of sequence-1 and sequence-2 is different from that number.

See Also:
sort, stable-sort, Section 3.2.1 (Compiler Terminology), Section 3.6 (Traversal Rules and Side
Effects)

remove, remove-if, remove-if-not, delete, delete-if,
delete-if-not Function

Syntax:
remove item sequence &key from-end test test-not start end count key → result-sequence

remove-if test sequence &key from-end start end count key → result-sequence

remove-if-not test sequence &key from-end start end count key → result-sequence

delete item sequence &key from-end test test-not start end count key → result-sequence

delete-if test sequence &key from-end start end count key → result-sequence

delete-if-not test sequence &key from-end start end count key → result-sequence

Arguments and Values:
item—an object .

sequence—a proper sequence.

test—a designator for a function of one argument that returns a generalized boolean.

from-end—a generalized boolean. The default is false.

17–32 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

remove, remove-if, remove-if-not, delete, delete-if, . . .

test—a designator for a function of two arguments that returns a generalized boolean.

test-not—a designator for a function of two arguments that returns a generalized boolean.

start, end—bounding index designators of sequence. The defaults for start and end are 0 and nil,
respectively.

count—an integer or nil. The default is nil.

key—a designator for a function of one argument, or nil.

result-sequence—a sequence.

Description:
remove, remove-if , and remove-if-not return a sequence from which the elements that satisfy the
test have been removed.

delete, delete-if , and delete-if-not are like remove, remove-if , and remove-if-not respectively,
but they may modify sequence.

If sequence is a vector , the result is a vector that has the same actual array element type as
sequence. If sequence is a list , the result is a list .

Supplying a from-end of true matters only when the count is provided; in that case only the
rightmost count elements satisfying the test are deleted.

Count, if supplied, limits the number of elements removed or deleted; if more than count elements
satisfy the test , then of these elements only the leftmost or rightmost, depending on from-end , are
deleted or removed, as many as specified by count. If count is supplied and negative, the behavior
is as if zero had been supplied instead. If count is nil, all matching items are affected.

For all these functions, elements not removed or deleted occur in the same order in the result as
they did in sequence.

remove, remove-if , remove-if-not return a sequence of the same type as sequence that has the
same elements except that those in the subsequence bounded by start and end and satisfying the
test have been removed. This is a non-destructive operation. If any elements need to be removed,
the result will be a copy. The result of remove may share with sequence; the result may be
identical to the input sequence if no elements need to be removed.

delete, delete-if , and delete-if-not return a sequence of the same type as sequence that has the
same elements except that those in the subsequence bounded by start and end and satisfying the
test have been deleted. Sequence may be destroyed and used to construct the result; however, the
result might or might not be identical to sequence.

delete, when sequence is a list , is permitted to setf any part, car or cdr, of the top-level list
structure in that sequence. When sequence is a vector , delete is permitted to change the di-
mensions of the vector and to slide its elements into new positions without permuting them to
produce the resulting vector .

Sequences 17–33

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

remove, remove-if, remove-if-not, delete, delete-if, . . .

delete-if is constrained to behave exactly as follows:

(delete nil sequence
:test #’(lambda (ignore item) (funcall test item))

...)

Examples:

(remove 4 ’(1 3 4 5 9)) → (1 3 5 9)

(remove 4 ’(1 2 4 1 3 4 5)) → (1 2 1 3 5)

(remove 4 ’(1 2 4 1 3 4 5) :count 1) → (1 2 1 3 4 5)

(remove 4 ’(1 2 4 1 3 4 5) :count 1 :from-end t) → (1 2 4 1 3 5)

(remove 3 ’(1 2 4 1 3 4 5) :test #’>) → (4 3 4 5)

(setq lst ’(list of four elements)) → (LIST OF FOUR ELEMENTS)

(setq lst2 (copy-seq lst)) → (LIST OF FOUR ELEMENTS)

(setq lst3 (delete ’four lst)) → (LIST OF ELEMENTS)

(equal lst lst2) → false
(remove-if #’oddp ’(1 2 4 1 3 4 5)) → (2 4 4)

(remove-if #’evenp ’(1 2 4 1 3 4 5) :count 1 :from-end t)

→ (1 2 4 1 3 5)

(remove-if-not #’evenp ’(1 2 3 4 5 6 7 8 9) :count 2 :from-end t)

→ (1 2 3 4 5 6 8)

(setq tester (list 1 2 4 1 3 4 5)) → (1 2 4 1 3 4 5)

(delete 4 tester) → (1 2 1 3 5)

(setq tester (list 1 2 4 1 3 4 5)) → (1 2 4 1 3 4 5)

(delete 4 tester :count 1) → (1 2 1 3 4 5)

(setq tester (list 1 2 4 1 3 4 5)) → (1 2 4 1 3 4 5)

(delete 4 tester :count 1 :from-end t) → (1 2 4 1 3 5)

(setq tester (list 1 2 4 1 3 4 5)) → (1 2 4 1 3 4 5)

(delete 3 tester :test #’>) → (4 3 4 5)

(setq tester (list 1 2 4 1 3 4 5)) → (1 2 4 1 3 4 5)

(delete-if #’oddp tester) → (2 4 4)

(setq tester (list 1 2 4 1 3 4 5)) → (1 2 4 1 3 4 5)

(delete-if #’evenp tester :count 1 :from-end t) → (1 2 4 1 3 5)

(setq tester (list 1 2 3 4 5 6)) → (1 2 3 4 5 6)

(delete-if #’evenp tester) → (1 3 5)

tester → implementation-dependent

(setq foo (list ’a ’b ’c)) → (A B C)

(setq bar (cdr foo)) → (B C)

(setq foo (delete ’b foo)) → (A C)

bar → ((C)) or ...

(eq (cdr foo) (car bar)) → T or ...

17–34 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Side Effects:
For delete, delete-if , and delete-if-not, sequence may be destroyed and used to construct the
result.

Exceptional Situations:
Should be prepared to signal an error of type type-error if sequence is not a proper sequence.

See Also:
Section 3.2.1 (Compiler Terminology), Section 3.6 (Traversal Rules and Side Effects)

Notes:
If sequence is a vector , the result might or might not be simple, and might or might not be
identical to sequence.

The :test-not argument is deprecated.

The functions delete-if-not and remove-if-not are deprecated.

remove-duplicates, delete-duplicates Function

Syntax:
remove-duplicates sequence &key from-end test test-not

start end key

→ result-sequence

delete-duplicates sequence &key from-end test test-not
start end key

→ result-sequence

Arguments and Values:
sequence—a proper sequence.

from-end—a generalized boolean. The default is false.

test—a designator for a function of two arguments that returns a generalized boolean.

test-not—a designator for a function of two arguments that returns a generalized boolean.

start, end—bounding index designators of sequence. The defaults for start and end are 0 and nil,
respectively.

key—a designator for a function of one argument, or nil.

Sequences 17–35

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

remove-duplicates, delete-duplicates

result-sequence—a sequence.

Description:
remove-duplicates returns a modified copy of sequence from which any element that matches
another element occurring in sequence has been removed.

If sequence is a vector , the result is a vector that has the same actual array element type as
sequence. If sequence is a list , the result is a list .

delete-duplicates is like remove-duplicates, but delete-duplicates may modify sequence.

The elements of sequence are compared pairwise, and if any two match, then the one occurring
earlier in sequence is discarded, unless from-end is true, in which case the one later in sequence is
discarded.

remove-duplicates and delete-duplicates return a sequence of the same type as sequence with
enough elements removed so that no two of the remaining elements match. The order of the
elements remaining in the result is the same as the order in which they appear in sequence.

remove-duplicates returns a sequence that may share with sequence or may be identical to
sequence if no elements need to be removed.

delete-duplicates, when sequence is a list , is permitted to setf any part, car or cdr, of the top-
level list structure in that sequence. When sequence is a vector , delete-duplicates is permitted
to change the dimensions of the vector and to slide its elements into new positions without
permuting them to produce the resulting vector .

Examples:

(remove-duplicates "aBcDAbCd" :test #’char-equal :from-end t) → "aBcD"

(remove-duplicates ’(a b c b d d e)) → (A C B D E)

(remove-duplicates ’(a b c b d d e) :from-end t) → (A B C D E)

(remove-duplicates ’((foo #\a) (bar #\%) (baz #\A))

:test #’char-equal :key #’cadr) → ((BAR #\%) (BAZ #\A))

(remove-duplicates ’((foo #\a) (bar #\%) (baz #\A))

:test #’char-equal :key #’cadr :from-end t) → ((FOO #\a) (BAR #\%))

(setq tester (list 0 1 2 3 4 5 6))

(delete-duplicates tester :key #’oddp :start 1 :end 6) → (0 4 5 6)

Side Effects:
delete-duplicates might destructively modify sequence.

Exceptional Situations:
Should signal an error of type type-error if sequence is not a proper sequence.

See Also:
Section 3.2.1 (Compiler Terminology), Section 3.6 (Traversal Rules and Side Effects)

17–36 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

remove-duplicates, delete-duplicates

Notes:
If sequence is a vector , the result might or might not be simple, and might or might not be
identical to sequence.

The :test-not argument is deprecated.

These functions are useful for converting sequence into a canonical form suitable for representing
a set.

Sequences 17–37

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

17–38 Programming Language—Common Lisp

