Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Programming Language—Common Lisp

2. Syntax

Syntax i

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

ii Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.1 Character Syntax

The Lisp reader takes characters from a stream, interprets them as a printed representation of an
object, constructs that object, and returns it.

The syntax described by this chapter is called the standard syntax. Operations are provided by
Common Lisp so that various aspects of the syntax information represented by a readtable can be
modified under program control; see Chapter 23 (Reader). Except as explicitly stated otherwise,
the syntax used throughout this document is standard syntax.

2.1.1 Readtables

2.1.1.1

2.1.1.2

Syntax information for use by the Lisp reader is embodied in an object called a readtable.
Among other things, the readtable contains the association between characters and syntax types.

Figure 2-1 lists some defined names that are applicable to readtables.

readtable readtable-case
copy-readtable readtablep
get-dispatch-macro-character set-dispatch-macro-character
get-macro-character set-macro-character
make-dispatch-macro-character set-syntax-from-char

Figure 2—1. Readtable defined names

The Current Readtable

Several readtables describing different syntaxes can exist, but at any given time only one, called
the current readtable, affects the way in which expressionss are parsed into objects by the Lisp
reader. The current readtable in a given dynamic environment is the value of *readtable* in that
environment. To make a different readtable become the current readtable, *readtable* can be
assigned or bound.

The Standard Readtable

The standard readtable conforms to standard syntax. The consequences are undefined if
an attempt is made to modify the standard readtable. To achieve the effect of altering or ex-
tending standard syntazx, a copy of the standard readtable can be created; see the function
copy-readtable.

The readtable case of the standard readtable is :upcase.

Syntax 2-1

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.1.1.3 The Initial Readtable

The initial readtable is the readtable that is the current readtable at the time when the Lisp
image starts. At that time, it conforms to standard syntax. The initial readtable is distinct from
the standard readtable. It is permissible for a conforming program to modify the initial readtable.

2.1.2 Variables that affect the Lisp Reader

The Lisp reader is influenced not only by the current readtable, but also by various dynamic
variables. Figure 2-2 lists the variables that influence the behavior of the Lisp reader.

package *read-default-float-format* *readtable*
read-base *read-suppress*

Figure 2—2. Variables that influence the Lisp reader.

2.1.3 Standard Characters

All implementations must support a character repertoire called standard-char; characters that
are members of that repertoire are called standard characters.

The standard-char repertoire consists of the non-graphic character newline, the graphic charac-
ter space, and the following additional ninety-four graphic characters or their equivalents:

2—2 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Graphic ID Glyph Description Graphic ID Glyph Description
LAO1 a small a LNO1 n small n
LAO02 A capital A LNO02 N capital N
LB01 b small b LOO01 o small o
LB02 B capital B LO02 0 capital O
LCo1 c small ¢ LPO1 P small p
LCO02 C capital C LPO2 P capital P
LDO01 d small d LQO1 q small q
LDO02 D capital D LQO02 Q capital Q
LEO1 e small e LRO1 T small r
LE02 E capital E LRO0O2 R capital R
LFO01 f small f LS01 s small s
LF02 F capital F LS02 S capital S
LGO1 g small g LTO1 t small t
LGO02 G capital G LTO02 T capital T
LHO1 h small h LUO1 u small u
LHO02 H capital H LU02 U capital U
LI01 i small i LVo1 v small v
LI02 I capital T LV02 v capital V
LJo1 j small j Lwo1 W small w
LJO2 J capital J LWO02 W capital W
LKO1 k small k LX01 x small x
LKO02 K capital K LX02 X capital X
LLO1 1 small 1 LYO1 y small y
LL02 L capital L LYO02 Y capital Y
LMO1 m small m LZo1 z small z
LMO02 M capital M LZ02 z capital Z

Figure 2—3. Standard Character Subrepertoire (Part 1 of 3: Latin Characters)

Graphic ID Glyph Description Graphic ID Glyph Description
NDO1 1 digit 1 NDO06 6 digit 6
NDO02 2 digit 2 NDO7 7 digit 7
NDO03 3 digit 3 NDO08 8 digit 8
NDO04 4 digit 4 NDO09 9 digit 9
NDO05 5 digit 5 ND10 0 digit 0

Figure 2—4. Standard Character Subrepertoire (Part 2 of 3: Numeric Characters)

Syntax 2-3

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Graphic ID Glyph Description

SP02 ! exclamation mark

SC03 $ dollar sign

SP04 " quotation mark, or double quote
SP05) apostrophe, or [single] quote
SP06 (left parenthesis, or open parenthesis
SPO7) right parenthesis, or close parenthesis
SPO08 , comma

SP09 _ low line, or underscore

SP10 - hyphen, or minus [sign]

SP11 . full stop, period, or dot

SP12 / solidus, or slash

SP13 : colon

SP14 ; semicolon

SP15 ? question mark

SA01 + plus [sign]

SA03 < less-than [sign]

SA04 = equals [sign]

SA05 > greater-than [sign]

SMO01 # number sign, or sharp[sign]
SM02 h percent [sign]

SMO03 & ampersand

SMO04 * asterisk, or star

SMO05 e commercial at, or at-sign

SMO06 [left [square] bracket

SMO07 \ reverse solidus, or backslash
SMO08] right [square] bracket

SM11 { left curly bracket, or left brace
SM13 | vertical bar

SM14 } right curly bracket, or right brace
SD13 ¢ grave accent, or backquote
SD15 A circumflex accent

SD19 ~ tilde

Figure 2—5. Standard Character Subrepertoire (Part 3 of 3: Special Characters)

The graphic IDs are not used within Common Lisp, but are provided for cross reference purposes
with ISO 6937/2. Note that the first letter of the graphic ID categorizes the character as follows:
L—Latin, N—Numeric, S—Special.

2.1.4 Character Syntax Types

The Lisp reader constructs an object from the input text by interpreting each character according
to its syntax type. The Lisp reader cannot accept as input everything that the Lisp printer

2—4 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

produces, and the Lisp reader has features that are not used by the Lisp printer. The Lisp reader
can be used as a lexical analyzer for a more general user-written parser.

When the Lisp reader is invoked, it reads a single character from the input stream and dispatches
according to the syntax type of that character. Every character that can appear in the input
stream is of one of the syntaz types shown in Figure 2—6.

constituent macro character single escape
invalid multiple escape whitespaces

Figure 2—6. Possible Character Syntax Types

The syntaz type of a character in a readtable determines how that character is interpreted by the
Lisp reader while that readtable is the current readtable. At any given time, every character has
exactly one syntaz type.

Figure 27 lists the syntax type of each character in standard syntazx.

character syntax type character syntax type
Backspace constituent 0-9 constituent
Tab whitespaces : constituent
Newline whitespaces ; terminating macro char
Linefeed whitespaces < constituent
Page whitespaces = constituent
Return whitespaces > constituent
Space whitespaces ? constituent™

! constituent™® (¢ constituent

" terminating macro char A-7Z constituent

non-terminating macro char [constituent™

$ constituent \ single escape
% constituent] constituent™

& constituent A constituent

’ terminating macro char _ constituent

(terminating macro char ‘ terminating macro char
) terminating macro char a—z constituent

* constituent { constituent™

+ constituent | multiple escape
, terminating macro char } constituent™

- constituent - constituent

. constituent Rubout constituent

/ constituent

Figure 2—7. Character Syntax Types in Standard Syntax

Syntax 2-5

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.1.4.1

2.1.4.2

The characters marked with an asterisk (*) are initially constituents, but they are not used in any
standard Common Lisp notations. These characters are explicitly reserved to the programmer. ~
is not used in Common Lisp, and reserved to implementors. $ and % are alphabeticy characters,
but are not used in the names of any standard Common Lisp defined names.

Whitespaces characters serve as separators but are otherwise ignored. Constituent and escape
characters are accumulated to make a token, which is then interpreted as a number or symbol.
Macro characters trigger the invocation of functions (possibly user-supplied) that can perform
arbitrary parsing actions. Macro characters are divided into two kinds, terminating and non-
terminating, depending on whether or not they terminate a token. The following are descriptions
of each kind of syntax type.

Constituent Characters

Constituent characters are used in tokens. A token is a representation of a number or a symbol.
Examples of constituent characters are letters and digits.

Letters in symbol names are sometimes converted to letters in the opposite case when the name
is read; see Section 23.1.2 (Effect of Readtable Case on the Lisp Reader). Case conversion can be
suppressed by the use of single escape or multiple escape characters.

Constituent Traits

Every character has one or more constituent traits that define how the character is to be inter-
preted by the Lisp reader when the character is a constituent character. These constituent traits
are alphabeticy, digit, package marker, plus sign, minus sign, dot, decimal point, ratio marker,
exponent marker, and invalid. Figure 2-8 shows the constituent traits of the standard characters
and of certain semi-standard characters; no mechanism is provided for changing the constituent
trait of a character. Any character with the alphadigit constituent trait in that figure is a digit
if the current input base is greater than that character’s digit value, otherwise the character is
alphabetico. Any character quoted by a single escape is treated as an alphabeticy constituent,
regardless of its normal syntax.

2—6 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

constituent traits constituent traits
character character
Backspace invalid { alphabeticy
Tab invalid* } alphabetico
Newline invalid* + alphabetico, plus sign
Linefeed mvalid* - alphabetico, minus sign
Page invalid* . alphabetico, dot, decimal point
Return invalid* / alphabeticy, ratio marker
Space mvalid* A a alphadigit
! alphabeticy B, b alphadigit
" alphabetico® C,c alphadigit
alphabetico* D, d alphadigit, double-float exponent marker
$ alphabeticy E e alphadigit, float exponent marker
% alphabeticy F, f alphadigit, single-float exponent marker
& alphabetico G, g alphadigit
’ alphabetico* H, h alphadigit
(alphabetico® Ii alphadigit
) alphabetico* J,j alphadigit
* alphabeticy K, k alphadigit
, alphabetico® L,1 alphadigit, long-float exponent marker
0-9 alphadigit M, m alphadigit
: package marker N, n alphadigit
; alphabeticy® 0,0 alphadigit
< alphabeticy P, p alphadigit
= alphabeticy Q, q alphadigit
> alphabetico R, r alphadigit
? alphabetico S,s alphadigit, short-float exponent marker
¢ alphabeticy T, t alphadigit
[alphabetico U, u alphadigit
\ alphabeticy™ V,v alphadigit
] alphabeticy W, w alphadigit
A alphabetico X, x alphadigit
_ alphabeticy Y,y alphadigit
‘ alphabetico* 7,z alphadigit
alphabeticy® Rubout invalid
- alphabetico

Figure 2—8. Constituent Traits of Standard Characters and Semi-Standard Characters

The interpretations in this table apply only to characters whose syntaz type is constituent.
Entries marked with an asterisk (*) are normally shadoweds because the indicated characters are
of syntax type whitespaces, macro character, single escape, or multiple escape; these constituent
traits apply to them only if their syntax types are changed to constituent.

Syntax 2-7

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.1.4.3

2.1.4.4

Invalid Characters

Characters with the constituent trait invalid cannot ever appear in a token except under the
control of a single escape character. If an invalid character is encountered while an object is
being read, an error of type reader-error is signaled. If an invalid character is preceded by a
single escape character, it is treated as an alphabetico constituent instead.

Macro Characters

When the Lisp reader encounters a macro character on an input stream, special parsing of
subsequent characters on the input stream is performed.

A macro character has an associated function called a reader macro function that imple-

ments its specialized parsing behavior. An association of this kind can be established or mod-
ified under control of a conforming program by using the functions set-macro-character and
set-dispatch-macro-character.

Upon encountering a macro character, the Lisp reader calls its reader macro function, which
parses one specially formatted object from the input stream. The function either returns the
parsed object, or else it returns no values to indicate that the characters scanned by the function
are being ignored (e.g., in the case of a comment). Examples of macro characters are backquote,
single-quote, left-parenthesis, and right-parenthesis.

A macro character is either terminating or non-terminating. The difference between terminating
and non-terminating macro characters lies in what happens when such characters occur in the
middle of a token. If a non-terminating macro character occurs in the middle of a token,

the function associated with the non-terminating macro character is not called, and the non-
terminating macro character does not terminate the token’s name; it becomes part of the name
as if the macro character were really a constituent character. A terminating macro character
terminates any token, and its associated reader macro function is called no matter where the
character appears. The only non-terminating macro character in standard syntax is sharpsign.

If a character is a dispatching macro character Cq, its reader macro function is a function sup-
plied by the implementation. This function reads decimal digit characters until a non-digit C5 is
read. If any digits were read, they are converted into a corresponding integer infix parameter P;
otherwise, the infix parameter P is nil. The terminating non-digit Cs is a character (sometimes
called a “sub-character” to emphasize its subordinate role in the dispatching) that is looked up

in the dispatch table associated with the dispatching macro character C1. The reader macro
function associated with the sub-character C5 is invoked with three arguments: the stream, the
sub-character C5, and the infix parameter P. For more information about dispatch characters, see
the function set-dispatch-macro-character.

For information about the macro characters that are available in standard syntax, see Section 2.4
(Standard Macro Characters).

2—8 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.1.4.5 Multiple Escape Characters

A pair of multiple escape characters is used to indicate that an enclosed sequence of characters,
including possible macro characters and whitespaces characters, are to be treated as alphabeticsy
characters with case preserved. Any single escape and multiple escape characters that are to
appear in the sequence must be preceded by a single escape character.

Vertical-bar is a multiple escape character in standard syntaz.

2.1.4.5.1 Examples of Multiple Escape Characters

;; The following examples assume the readtable case of *readtablex
;; and *print-case* are both :upcase.

(eq ’abc ’ABC) — true

(eq ’abc ’|ABC|) — true

(eq ’abc ’alBlc) — true

(eq ’abc ’labcl) — false

2.1.4.6 Single Escape Character

A single escape is used to indicate that the next character is to be treated as an alphabetics
character with its case preserved, no matter what the character is or which constituent traits it
has.

Backslash is a single escape character in standard syntaz.

2.1.4.6.1 Examples of Single Escape Characters

;5 The following examples assume the readtable case of *readtablex
;; and *print-case* are both :upcase.

(eq ’abc ’\A\B\C) — f{rue

(eq ’abc ’a\Bc) — true

(eq ’abc ’\ABC) — f{rue

(eq ’abc ’\abc) — false

2.1.4.7 Whitespace Characters
Whitespaces characters are used to separate tokens.

Space and newline are whitespaces characters in standard syntaz.

Syntax 2-9

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.1.4.7.1 Examples of Whitespace Characters

(length ’(this-that)) — 1
(length ’(this - that)) — 3

(length ’(a
b)) — 2
(+ 34) — 34

(+34) —7

2-10 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.2 Reader Algorithm

This section describes the algorithm used by the Lisp reader to parse objects from an input
character stream, including how the Lisp reader processes macro characters.

When dealing with tokens, the reader’s basic function is to distinguish representations of symbols
from those of numbers. When a token is accumulated, it is assumed to represent a number if

it satisfies the syntax for numbers listed in Figure 2-9. If it does not represent a number, it is
then assumed to be a potential number if it satisfies the rules governing the syntax for a potential
number. If a valid token is neither a representation of a number nor a potential number, it
represents a symbol.

The algorithm performed by the Lisp reader is as follows:

1.

If at end of file, end-of-file processing is performed as specified in read. Otherwise, one
character, x, is read from the input stream, and dispatched according to the syntaz type of x
to one of steps 2 to 7.

If x is an inwvalid character, an error of type reader-error is signaled.
If x is a whitespaces character, then it is discarded and step 1 is re-entered.

If x is a terminating or non-terminating macro character then its associated reader macro
function is called with two arguments, the input stream and x.

The reader macro function may read characters from the input stream; if it does, it will see
those characters following the macro character. The Lisp reader may be invoked recursively
from the reader macro function.

The reader macro function must not have any side effects other than on the input stream;
because of backtracking and restarting of the read operation, front ends to the Lisp reader
(e.g., “editors” and “rubout handlers”) may cause the reader macro function to be called
repeatedly during the reading of a single expression in which x only appears once.

The reader macro function may return zero values or one value. If one value is returned, then
that value is returned as the result of the read operation; the algorithm is done. If zero values
are returned, then step 1 is re-entered.

If x is a single escape character then the next character, y, is read, or an error of type
end-of-file is signaled if at the end of file. y is treated as if it is a constituent whose only
constituent trait is alphabeticy. y is used to begin a token, and step 8 is entered.

If x is a multiple escape character then a token (initially containing no characters) is begun
and step 9 is entered.

If x is a constituent character, then it begins a token. After the token is read in, it will be
interpreted either as a Lisp object or as being of invalid syntax. If the token represents an

Syntax 2-11

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

object, that object is returned as the result of the read operation. If the token is of invalid
syntax, an error is signaled. If x is a character with case, it might be replaced with the
corresponding character of the opposite case, depending on the readtable case of the current
readtable, as outlined in Section 23.1.2 (Effect of Readtable Case on the Lisp Reader). X is
used to begin a token, and step 8 is entered.

8. At this point a token is being accumulated, and an even number of multiple escape characters
have been encountered. If at end of file, step 10 is entered. Otherwise, a character, y, is read,
and one of the following actions is performed according to its syntax type:

e If y is a constituent or non-terminating macro character:

— If y is a character with case, it might be replaced with the corresponding
character of the opposite case, depending on the readtable case of the current
readtable, as outlined in Section 23.1.2 (Effect of Readtable Case on the Lisp
Reader).

— Y is appended to the token being built.
— Step 8 is repeated.

e If yis a single escape character, then the next character, z, is read, or an error of
type end-of-file is signaled if at end of file. Z is treated as if it is a constituent whose
only constituent trait is alphabetico. Z is appended to the token being built, and step
8 is repeated.

o If y is a multiple escape character, then step 9 is entered.
o If y is an inwvalid character, an error of type reader-error is signaled.

o If y is a terminating macro character, then it terminates the token. First the charac-
ter y is unread (see unread-char), and then step 10 is entered.

o If y is a whitespaces character, then it terminates the token. First the character y is
unread if appropriate (see read-preserving-whitespace), and then step 10 is entered.

9. At this point a token is being accumulated, and an odd number of multiple escape characters
have been encountered. If at end of file, an error of type end-of-file is signaled. Otherwise,
a character, y, is read, and one of the following actions is performed according to its syntaz

type:
e If y is a constituent, macro, or whitespaces character, y is treated as a constituent

whose only constituent trait is alphabetics. Y is appended to the token being built,
and step 9 is repeated.

2-12 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

o If y is a single escape character, then the next character, z, is read, or an error of
type end-of-file is signaled if at end of file. Z is treated as a constituent whose only
constituent trait is alphabetico. Z is appended to the token being built, and step 9 is
repeated.

o If y is a multiple escape character, then step 8 is entered.
e If y is an inwvalid character, an error of type reader-error is signaled.

10. An entire token has been accumulated. The object represented by the token is returned as the
result of the read operation, or an error of type reader-error is signaled if the token is not of
valid syntax.

Syntax 2-13

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.3 Interpretation of Tokens

2.3.1

2.3.1.1

Numbers as Tokens

When a token is read, it is interpreted as a number or symbol. The token is interpreted as a
number if it satisfies the syntax for numbers specified in Figure 2-9.

Linteger | |ratio | | float

numeric-token ::

integer = [sign] {decimal-digit}" decimal-point | [sign] {digit}"
ratio = [sign] {digit}" slash {digit}"
float ::= [sign] {decimal-digit}* decimal-point {decimal-digit}* [|exponent]
| [sign] {decimal-digit}™ [decimal-point {decimal-digit}*] |exponent
exponent ::= exponent-marker [sign] {digit}*

sign—a, sign.

slash—a slash

decimal-point—a dot.
exponent-marker—an exponent marker.
decimal-digit—a digit in radixz 10.
digit—a digit in the current input radix.

Figure 2-9. Syntax for Numeric Tokens

Potential Numbers as Tokens

To allow implementors and future Common Lisp standards to extend the syntax of numbers, a
syntax for potential numbers is defined that is more general than the syntax for numbers. A token
is a potential number if it satisfies all of the following requirements:

1.

The token consists entirely of digits, signs, ratio markers, decimal points (.), extension
characters (» or _), and number markers. A number marker is a letter. Whether a letter may
be treated as a number marker depends on context, but no letter that is adjacent to another
letter may ever be treated as a number marker. Fzponent markers are number markers.

The token contains at least one digit. Letters may be considered to be digits, depending on
the current input base, but only in tokens containing no decimal points.

The token begins with a digit, sign, decimal point, or extension character, but not a package

marker. The syntax involving a leading package marker followed by a potential number is not
well-defined. The consequences of the use of notation such as :1, :1/2, and :23 in a position
where an expression appropriate for read is expected are unspecified.

2-14 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

4. The token does not end with a sign.

If a potential number has number syntax, a number of the appropriate type is constructed and re-
turned, if the number is representable in an implementation. A number will not be representable
in an implementation if it is outside the boundaries set by the implementation-dependent con-
stants for numbers. For example, specifying too large or too small an exponent for a float may
make the number impossible to represent in the implementation. A ratio with denominator zero
(such as -35/000) is not represented in any implementation. When a token with the syntax of a
number cannot be converted to an internal number, an error of type reader-error is signaled. An
error must not be signaled for specifying too many significant digits for a float; a truncated or
rounded value should be produced.

If there is an ambiguity as to whether a letter should be treated as a digit or as a number marker,
the letter is treated as a digit.

2.3.1.1.1 Escape Characters and Potential Numbers

A potential number cannot contain any escape characters. An escape character robs the following
character of all syntactic qualities, forcing it to be strictly alphabetico and therefore unsuitable
for use in a potential number. For example, all of the following representations are interpreted as
symbols, not numbers:

\266 25\64 1.0\E6 [100] 3\.14159 13741 3\/4 5]|

In each case, removing the escape character (or characters) would cause the token to be a poten-
tial number.

2.3.1.1.2 Examples of Potential Numbers

As examples, the tokens in Figure 2—-10 are potential numbers, but they are not actually numbers,
and so are reserved tokens; a conforming implementation is permitted, but not required, to define
their meaning.

1b5000 TT7777q 1.7J -3/4+6.7J 12/25/83
27719 374/5 6//7 3.1.2.6 N=-43"
3.141.592_653.589.793.238_4 -3.7+2.61-6.17j+19.6k

Figure 2-10. Examples of reserved tokens

The tokens in Figure 2—11 are not potential numbers; they are always treated as symbols:

/ /5 + 1+ 1-
foo+ ab.cd _ A N -

Figure 2—11. Examples of symbols

Syntax 2-15

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

The tokens in Figure 2-12 are potential numbers if the current input base is 16, but they are
always treated as symbols if the current input base is 10.

bad-face 25-dec-83 a/b fad_cafe f~

Figure 2—-12. Examples of symbols or potential numbers

2.3.2 Constructing Numbers from Tokens
A real is constructed directly from a corresponding numeric token; see Figure 2-9.

A complex is notated as a #C (or #c) followed by a list of two reals; see Section 2.4.8.11 (Sharp-
sign C).

The reader macros #B, #0, #X, and #R may also be useful in controlling the input radiz in which
rationals are parsed; see Section 2.4.8.7 (Sharpsign B), Section 2.4.8.8 (Sharpsign O), Section
2.4.8.9 (Sharpsign X), and Section 2.4.8.10 (Sharpsign R).

This section summarizes the full syntax for numbers.

2.3.2.1 Syntax of a Rational

2.3.2.1.1 Syntax of an Integer

Integers can be written as a sequence of digits, optionally preceded by a sign and optionally
followed by a decimal point; see Figure 2-9. When a decimal point is used, the digits are taken
to be in radiz 10; when no decimal point is used, the digits are taken to be in radix given by the
current input base.

For information on how integers are printed, see Section 22.1.3.1.1 (Printing Integers).

2.3.2.1.2 Syntax of a Ratio

Ratios can be written as an optional sign followed by two non-empty sequences of digits sepa-
rated by a slash; see Figure 2—-9. The second sequence may not consist entirely of zeros. Examples
of ratios are in Figure 2-13.

2-16 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.3.2.2

2/3 ;This is in canonical form

4/6 ;A non-canonical form for 2/3

-17/23 ;A ratio preceded by a sign
-30517578125/32768 ;This is (—5/2)'

10/5 ;The canonical form for this is 2

#0-101/75 ;Octal notation for —65/61

#3r120/21 ;Ternary notation for 15/7

#Xbc/ad ;Hexadecimal notation for 188/173
#xFADED/FACADE ;Hexadecimal notation for 1027565/16435934

Figure 2—-13. Examples of Ratios

For information on how ratios are printed, see Section 22.1.3.1.2 (Printing Ratios).

Syntax of a Float

Floats can be written in either decimal fraction or computerized scientific notation: an optional
sign, then a non-empty sequence of digits with an embedded decimal point, then an optional
decimal exponent specification. If there is no exponent specifier, then the decimal point is re-
quired, and there must be digits after it. The exponent specifier consists of an exponent marker,
an optional sign, and a non-empty sequence of digits. If no exponent specifier is present, or if the
exponent marker e (or E) is used, then the format specified by *read-default-float-format* is
used. See Figure 2-9.

An implementation may provide one or more kinds of float that collectively make up the type
float. The letters s, £, d, and 1 (or their respective uppercase equivalents) explicitly specify the
use of the types short-float, single-float, double-float, and long-float, respectively.

The internal format used for an external representation depends only on the exponent marker,
and not on the number of decimal digits in the external representation.

Figure 2-14 contains examples of notations for floats:

Syntax 2-17

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.3.2.3

0.0 ;Floating-point zero in default format

OEO ;As input, this is also floating-point zero in default format.
;As output, this would appear as 0.0.

0e0 ;As input, this is also floating-point zero in default format.
;As output, this would appear as 0.0.

-.0 ;As input, this might be a zero or a minus zero,

; depending on whether the implementation supports
; a distinct minus zero.
;As output, 0.0 is zero and -0.0 is minus zero.

0. ;On input, the integer zero—not a floating-point number!
;Whether this appears as 0 or 0. on output depends
;on the value of *print-radix*.

0.0s0 ;A floating-point zero in short format

0s0 ;As input, this is a floating-point zero in short format.
;As output, such a zero would appear as 0.0s0
; (or as 0.0 if short-float was the default format).

6.02E+23 ;Avogadro’s number, in default format

602E+21 ;Also Avogadro’s number, in default format

Figure 2-14. Examples of Floating-point numbers

For information on how floats are printed, see Section 22.1.3.1.3 (Printing Floats).

Syntax of a Complex

A complex has a Cartesian structure, with a real part and an imaginary part each of which is a
real. The parts of a complex are not necessarily floats but both parts must be of the same type:
either both are rationals, or both are of the same float subtype. When constructing a complex, if
the specified parts are not the same type, the parts are converted to be the same type internally
(i.e., the rational part is converted to a float). An object of type (complex rational) is converted
internally and represented thereafter as a rational if its imaginary part is an integer whose value
is 0.

For further information, see Section 2.4.8.11 (Sharpsign C) and Section 22.1.3.1.4 (Printing
Complexes).

2.3.3 The Consing Dot

If a token consists solely of dots (with no escape characters), then an error of type reader-error
is signaled, except in one circumstance: if the token is a single dot and appears in a situation
where dotted pair notation permits a dot, then it is accepted as part of such syntax and no error
is signaled. See Section 2.4.1 (Left-Parenthesis).

2-18 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.3.4 Symbols as Tokens

Any token that is not a potential number, does not contain a package marker, and does not
consist entirely of dots will always be interpreted as a symbol. Any token that is a potential
number but does not fit the number syntax is a reserved token and has an implementation-
dependent interpretation. In all other cases, the token is construed to be the name of a symbol.

Examples of the printed representation of symbols are in Figure 2-15. For presentational simplic-
ity, these examples assume that the readtable case of the current readtable is :upcase.

FROBBOZ
frobboz
fRObBoz
unwind-protect
+$

1+

+1
pascal_style
file.rel.43
A\ (

\+1

+\1

\frobboz
3.14159265\s0
3.14159265\50
3.14159265s0

The symbol whose name is FROBBOZ.
Another way to notate the same symbol.
Yet another way to notate it.

A symbol with a hyphen in its name.

The symbol named +$.

The symbol named 1+.

This is the integer 1, not a symbol.

This symbol has an underscore in its name.
This symbol has periods in its name.

The symbol whose name is (.

The symbol whose name is +1.

Also the symbol whose name is +1.

The symbol whose name is £ROBBOZ.

The symbol whose name is 3.14159265s0.
A different symbol, whose name is 3.14159265S0.
A possible short float approximation to 7.

Figure 2—15. Examples of the printed representation of symbols (Part 1 of 2)

Syntax 2-19

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

APLA\\360 The symbol whose name is APL\360.
ap1\\360 Also the symbol whose name is APL\360.
\(bA2\)\ -\ 4xaxc The name is (Br2) - 4*AxC.

Parentheses and two spaces in it.
N(\br2\)\ -\4*\ax\c The name is (b"2) - 4*a*c.

Letters explicitly lowercase.
"] The same as writing \".

| (b"2) - 4xaxc The name is (b72) - 4xaxc.

| frobboz | The name is frobboz, not FROBBOZ.

| APL\360 | The name is APL360.

| APL\\360 | The name is APL\360.

lap1\\360] The name is apl\360.

ININT Same as \|\| —the name is | 1.

| (Br2) - 4xAxC| The name is (Br2) - 4xAxC.
Parentheses and two spaces in it.

| (072) - 4dxaxc]| The name is (b72) - 4xaxc.

Figure 2-16. Examples of the printed representation of symbols (Part 2 of 2)

In the process of parsing a symbol, it is implementation-dependent which implementation-defined
attributes are removed from the characters forming a token that represents a symbol.

When parsing the syntax for a symbol, the Lisp reader looks up the name of that symbol in the
current package. This lookup may involve looking in other packages whose external symbols are
inherited by the current package. If the name is found, the corresponding symbol is returned. If
the name is not found (that is, there is no symbol of that name accessible in the current package),
a new symbol is created and is placed in the current package as an internal symbol. The current
package becomes the owner (home package) of the symbol, and the symbol becomes interned in
the current package. If the name is later read again while this same package is current, the same
symbol will be found and returned.

2.3.5 Valid Patterns for Tokens

The valid patterns for tokens are summarized in Figure 2-17.

2—20 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

nnnnn a number

TXTXL a symbol in the current package

: XTTTT a symbol in the the KEYWORD package
PPPPD: TLTLL an external symbol in the ppppp package
PPPPP: : TTTLT a (possibly internal) symbol in the ppppp package
:nnnnn undefined

PPPPP: nuNNN undefined

PPPPP: : nnnnn undefined

1 aaaaaq undefined

aaaaa: undefined

aaaaa: aaaaa: aaaaa undefined

Figure 2—17. Valid patterns for tokens

Note that nnnnn has number syntax, neither xzxzzz nor ppppp has number syntax, and aaaaa has
any syntax.

A summary of rules concerning package markers follows. In each case, examples are offered to
illustrate the case; for presentational simplicity, the examples assume that the readtable case of
the current readtable is :upcase.

1.

If there is a single package marker, and it occurs at the beginning of the token, then the
token is interpreted as a symbol in the KEYWORD package. It also sets the symbol-value of the
newly-created symbol to that same symbol so that the symbol will self-evaluate.

For example, :bar, when read, interns BAR as an external symbol in the KEYWORD package.

If there is a single package marker not at the beginning or end of the token, then it divides
the token into two parts. The first part specifies a package; the second part is the name of an
external symbol available in that package.

For example, foo:bar, when read, looks up BAR among the external symbols of the package
named F0O0.

If there are two adjacent package markers not at the beginning or end of the token, then
they divide the token into two parts. The first part specifies a package; the second part is the
name of a symbol within that package (possibly an internal symbol).

For example, foo: :bar, when read, interns BAR in the package named F0O.

If the token contains no package markers, and does not have potential number syntax, then
the entire token is the name of the symbol. The symbol is looked up in the current package.

For example, bar, when read, interns BAR in the current package.

Syntax 2-21

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

5. The consequences are unspecified if any other pattern of package markers in a token is used.
All other uses of package markers within names of symbols are not defined by this standard
but are reserved for implementation-dependent use.

For example, assuming the readtable case of the current readtable is :upcase, editor:buffer refers
to the external symbol named BUFFER present in the package named editor, regardless of whether
there is a symbol named BUFFER in the current package. If there is no package named editor, or
if no symbol named BUFFER is present in editor, or if BUFFER is not exported by editor, the reader
signals a correctable error. If editor::buffer is seen, the effect is exactly the same as reading
buffer with the EDITOR package being the current package.

2.3.6 Package System Consistency Rules

The following rules apply to the package system as long as the value of *package* is not changed:

Read-read consistency

Reading the same symbol name always results in the same symbol.

Print-read consistency

An interned symbol always prints as a sequence of characters that, when read back in,
yields the same symbol.

For information about how the Lisp printer treats symbols, see Section 22.1.3.3 (Printing
Symbols).

Print-print consistency

If two interned symbols are not the same, then their printed representations will be
different sequences of characters.

These rules are true regardless of any implicit interning. As long as the current package is not
changed, results are reproducible regardless of the order of loading files or the exact history of
what symbols were typed in when. If the value of *package* is changed and then changed back
to the previous value, consistency is maintained. The rules can be violated by changing the value
of *package*, forcing a change to symbols or to packages or to both by continuing from an error,
or calling one of the following functions: unintern, unexport, shadow, shadowing-import, or
unuse-package.

An inconsistency only applies if one of the restrictions is violated between two of the named
symbols. shadow, unexport, unintern, and shadowing-import can only affect the consistency of
symbols with the same names (under string=) as the ones supplied as arguments.

2—22 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.4 Standard Macro Characters

If the reader encounters a macro character, then its associated reader macro function is invoked
and may produce an object to be returned. This function may read the characters following the
macro character in the stream in any syntax and return the object represented by that syntax.

Any character can be made to be a macro character. The macro characters defined initially in a
conforming implementation include the following:

2.4.1 Left-Parenthesis

The left-parenthesis initiates reading of a list. read is called recursively to read successive objects
until a right parenthesis is found in the input stream. A list of the objects read is returned. Thus

(a b c)

is read as a list of three objects (the symbols a, b, and c). The right parenthesis need not imme-
diately follow the printed representation of the last object; whitespaces characters and comments
may precede it.

If no objects precede the right parenthesis, it reads as a list of zero objects (the empty list).

If a token that is just a dot not immediately preceded by an escape character is read after some
object then exactly one more object must follow the dot, possibly preceded or followed by whites-
paces or a comment, followed by the right parenthesis:

(abc . d

This means that the cdr of the last cons in the list is not nil, but rather the object whose repre-
sentation followed the dot. The above example might have been the result of evaluating

(cons ’a (cons ’b (cons ’c ’d)))

Similarly,

(cons ’this-one ’that-one) — (this-one . that-one)

It is permissible for the object following the dot to be a list:

(abcd. (ef. (g)) =(abcdefg)

For information on how the Lisp printer prints lists and conses, see Section 22.1.3.5 (Printing

Lists and Conses).

2.4.2 Right-Parenthesis

The right-parenthesis is invalid except when used in conjunction with the left parenthesis charac-
ter. For more information, see Section 2.2 (Reader Algorithm).

Syntax 2-23

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.4.3 Single-Quote

2.4.3.1

Syntax: ’{(exp))

A single-quote introduces an expression to be “quoted.” Single-quote followed by an ezpression
exp is treated by the Lisp reader as an abbreviation for and is parsed identically to the expression
(quote exp). See the special operator quote.

Examples of Single-Quote

’foo — FOO
’>foo — (QUOTE FO0O0)
(car ’’foo) — QUOTE

2.4.4 Semicolon

2441

2.4.4.2

Syntax: ;((text))
A semicolon introduces characters that are to be ignored, such as comments. The semicolon and

all characters up to and including the next newline or end of file are ignored.

Examples of Semicolon

(+ 3 ; three
4)
— 7

Notes about Style for Semicolon

Some text editors make assumptions about desired indentation based on the number of semi-
colons that begin a comment. The following style conventions are common, although not by any
means universal.

2.4.4.2.1 Use of Single Semicolon

Comments that begin with a single semicolon are all aligned to the same column at the right

(sometimes called the “comment column”). The text of such a comment generally applies only to
the line on which it appears. Occasionally two or three contain a single sentence together; this is
sometimes indicated by indenting all but the first with an additional space (after the semicolon).

2—24 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.4.4.2.2 Use of Double Semicolon

Comments that begin with a double semicolon are all aligned to the same level of indentation as
a form would be at that same position in the code. The text of such a comment usually describes
the state of the program at the point where the comment occurs, the code which follows the
comment, or both.

2.4.4.2.3 Use of Triple Semicolon

Comments that begin with a triple semicolon are all aligned to the left margin. Usually they are
used prior to a definition or set of definitions, rather than within a definition.

2.4.4.2.4 Use of Quadruple Semicolon

Comments that begin with a quadruple semicolon are all aligned to the left margin, and generally
contain only a short piece of text that serve as a title for the code which follows, and might be
used in the header or footer of a program that prepares code for presentation as a hardcopy
document.

2.4.4.2.5 Examples of Style for Semicolon

5555 Math Utilities

;33 FIB computes the the Fibonacci function in the traditional
;33 recursive way.

(defun fib (n)

(check-type n integer)

;; At this point we’re sure we have an integer argument.

;; Now we can get down to some serious computation.

(cond ((< n 0)
;; Hey, this is just supposed to be a simple example.
;3 Did you really expect me to handle the general case?
(error "FIB got "D as an argument." n))
((< n 2) n) ;£ib[0]=0 and fib[1]=1
;3 The cheap cases didn’t work.
;; Nothing more to do but recurse.
(t (+ (fib (- n 1)) ;The traditional formula

(fib (- n 2)))))) ; is fib[n-1]+fib[n-2].

Syntax 2-25

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.4.5 Double-Quote
Syntax: "((text)"

The double-quote is used to begin and end a string. When a double-quote is encountered, charac-
ters are read from the input stream and accumulated until another double-quote is encountered.
If a single escape character is seen, the single escape character is discarded, the next character is
accumulated, and accumulation continues. The accumulated characters up to but not including
the matching double-quote are made into a simple string and returned. It is implementation-
dependent which attributes of the accumulated characters are removed in this process.

Examples of the use of the double-quote character are in Figure 2-18.

"Foo" ;A string with three characters in it
o ;An empty string

"\"APL\\3607\" he cried." ;A string with twenty characters
“lx| = |-x|" ;A ten-character string

Figure 2-18. Examples of the use of double-quote

Note that to place a single escape character or a double-quote into a string, such a character must
be preceded by a single escape character. Note, too, that a multiple escape character need not be
quoted by a single escape character within a string.

For information on how the Lisp printer prints strings, see Section 22.1.3.4 (Printing Strings).

2.4.6 Backquote

The backquote introduces a template of a data structure to be built. For example, writing
‘(cond ((numberp ,x) ,Qy) (t (print ,x) ,Qy))
is roughly equivalent to writing

(list ’cond
(cons (list ’numberp x) y)
(list* °t (list ’print x) y))

Where a comma occurs in the template, the expression following the comma is to be evaluated
to produce an object to be inserted at that point. Assume b has the value 3, for example, then
evaluating the form denoted by ‘(a b ,b ,(+ b 1) b) produces the result (a b 3 4 b).

If a comma is immediately followed by an at-sign, then the form following the at-sign is evaluated
to produce a list of objects. These objects are then “spliced” into place in the template. For
example, if x has the value (a b ¢), then

‘(x ,x ,0x foo ,(cadr x) bar ,(cdr x) baz ,@(cdr x))
— (x (@abc) abc foo b bar (b ¢c) baz b c)

2-26 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

The backquote syntax can be summarized formally as follows.

“basic is the same as ’ basic, that is, (quote basic), for any expression basic that is not a
list or a general vector.

¢, form is the same as form, for any form, provided that the representation of form does
not begin with at-sign or dot. (A similar caveat holds for all occurrences of a form after a
comma.)

¢,@form has undefined consequences.

‘(x1 x2 x3 ... xn . atom) may be interpreted to mean
(append [x1] [x2] [x3] ... [xn] (quote atom))

where the brackets are used to indicate a transformation of an xj as follows:

— [form] is interpreted as (1ist ‘form), which contains a backquoted form that
must then be further interpreted.

— [,form] is interpreted as (1ist form).

— [,eform] is interpreted as form.

“(x1 x2 x3 ... xn) may be interpreted to mean the same as the backquoted form
“(x1 x2 x3 ... xn . nil), thereby reducing it to the previous case.
“(x1 x2 x3 ... xn . ,form) may be interpreted to mean

(append [x1] [x2] [x3] ... [xn] form)

where the brackets indicate a transformation of an xj as described above.
‘(x1 x2 x3 ... xn . ,@form) has undefined consequences.

‘#(x1 x2 x3 ... xn) may be interpreted to mean (apply #’vector ‘(x1 x2 x3 ... =xn)).

“

Anywhere “,@” may be used, the syntax “,.” may be used instead to indicate that it is permis-
sible to operate destructively on the list structure produced by the form following the “,.” (in
effect, to use nconc instead of append).

If the backquote syntax is nested, the innermost backquoted form should be expanded first.
This means that if several commas occur in a row, the leftmost one belongs to the innermost
backquote.

An implementation is free to interpret a backquoted form F; as any form F5 that, when eval-
uated, will produce a result that is the same under equal as the result implied by the above

Syntax 2-27

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.4.6.1

definition, provided that the side-effect behavior of the substitute form F is also consistent with
the description given above. The constructed copy of the template might or might not share list
structure with the template itself. As an example, the above definition implies that

‘((,a b) ,c ,0d)
will be interpreted as if it were
(append (list (append (list a) (list ’b) ’nil)) (list c¢) d ’nil)
but it could also be legitimately interpreted to mean any of the following:

(append (list (append (list a) (list ’b))) (list c) d)
(append (list (append (1list a) ’(b))) (list c) d)
(list* (coms a (b)) c d)

(1ist* (comns a (list ’b)) c d)

(append (list (cons a ’(b))) (list c) d)

(list* (cons a ’(b)) c (copy-list d))

Notes about Backquote

Since the exact manner in which the Lisp reader will parse an expression involving the back-
quote reader macro is not specified, an implementation is free to choose any representation that
preserves the semantics described.

Often an implementation will choose a representation that facilitates pretty printing of the
expression, so that (pprint ‘(a ,b)) will display ‘(a ,b) and not, for example, (1ist ’a b).
However, this is not a requirement.

Implementors who have no particular reason to make one choice or another might wish to refer
to IEEFE Standard for the Scheme Programming Language, which identifies a popular choice of
representation for such expressions that might provide useful to be useful compatibility for some
user communities. There is no requirement, however, that any conforming implementation use
this particular representation. This information is provided merely for cross-reference purposes.

2.4.7 Comma

The comma is part of the backquote syntax; see Section 2.4.6 (Backquote). Comma is invalid if
used other than inside the body of a backquote expression as described above.

2—28 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.4.8

Sharpsign

Sharpsign is a non-terminating dispatching macro character. It reads an optional sequence of
digits and then one more character, and uses that character to select a function to run as a reader
macro function.

The standard syntaz includes constructs introduced by the # character. The syntax of these
constructs is as follows: a character that identifies the type of construct is followed by arguments
in some form. If the character is a letter, its case is not important; #0 and #o are considered to be
equivalent, for example.

Certain # constructs allow an unsigned decimal number to appear between the # and the charac-
ter.

The reader macros associated with the dispatching macro character # are described later in this
section and summarized in Figure 2-19.

Syntax 2-29

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

dispatch char purpose dispatch char purpose
Backspace signals error { undefined*
Tab signals error } undefined*
Newline signals error + read-time conditional
Linefeed signals error - read-time conditional
Page signals error . read-time evaluation
Return signals error / undefined
Space signals error A a array
! undefined* B, b binary rational
" undefined C,c complex number
reference to = label D, d undefined
$ undefined E, e undefined
% undefined F,f undefined
& undefined G, g undefined
’ function abbreviation H, h undefined
(simple vector Li undefined
) signals error J, undefined
* bit vector K, k undefined
, undefined L, 1 undefined
: uninterned symbol M, m undefined
; undefined N, n undefined
< signals error 0,0 octal rational
= labels following object P, p pathname
> undefined Q, q undefined
? undefined* R, r radix-n rational
@ undefined S, s structure
[undefined* T, t undefined
\ character object U,u undefined
] undefined* V, v undefined
A undefined W, w undefined
_ undefined X, x hexadecimal rational
‘ undefined Y,y undefined
balanced comment 7,z undefined
~ undefined Rubout undefined

Figure 2—19. Standard # Dispatching Macro Character Syntax

The combinations marked by an asterisk (*) are explicitly reserved to the user. No conforming
implementation defines them.

Note also that digits do not appear in the preceding table. This is because the notations #0,
#1, ..., #9 are reserved for another purpose which occupies the same syntactic space. When a
digit follows a sharpsign, it is not treated as a dispatch character. Instead, an unsigned integer

2-30 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

argument is accumulated and passed as an argument to the reader macro for the character that
follows the digits. For example, #2A((1 2) (3 4)) is a use of #A with an argument of 2.

2.4.8.1 Sharpsign Backslash
Syntax: #\({(x))

When the token x is a single character long, this parses as the literal character char. Uppercase
and lowercase letters are distinguished after #\; #\A and #\a denote different character objects.
Any single character works after #\, even those that are normally special to read, such as left-
parenthesis and right-parenthesis.

In the single character case, the x must be followed by a non-constituent character. After #\ is
read, the reader backs up over the slash and then reads a token, treating the initial slash as a
single escape character (whether it really is or not in the current readtable).

When the token x is more than one character long, the x must have the syntax of a symbol
with no embedded package markers. In this case, the sharpsign backslash notation parses as the
character whose name is (string-upcase x); see Section 13.1.7 (Character Names).

For information about how the Lisp printer prints character objects, see Section 22.1.3.2 (Print-
ing Characters).

2.4.8.2 Sharpsign Single-Quote

Any expression preceded by #° (sharpsign followed by single-quote), as in #’ expression, is
treated by the Lisp reader as an abbreviation for and parsed identically to the expression
(function expression). See function. For example,

(apply #’+ 1) = (apply (function +) 1)

2.4.8.3 Sharpsign Left-Parenthesis

#(and) are used to notate a simple vector.

If an unsigned decimal integer appears between the # and (, it specifies explicitly the length of
the vector. The consequences are undefined if the number of objects specified before the closing

) exceeds the unsigned decimal integer. If the number of objects supplied before the closing)

is less than the unsigned decimal integer but greater than zero, the last object is used to fill all
remaining elements of the vector. The consequences are undefined if the unsigned decimal integer
is non-zero and number of objects supplied before the closing) is zero. For example,

#(abcccc)
#6(a b cc c c)
#6(a b c)

#6(a b c c)

Syntax 2-31

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.4.84

all mean the same thing: a vector of length 6 with elements a, b, and four occurrences of c. Other
examples follow:

#(a b c) ;A vector of length 3
#(2 3 57 11 13 17 19 23 29 31 37 41 43 47)

;A vector containing the primes below 50
#Q) ;An empty vector

The notation #() denotes an empty vector, as does #0().

For information on how the Lisp printer prints vectors, see Section 22.1.3.4 (Printing Strings),
Section 22.1.3.6 (Printing Bit Vectors), or Section 22.1.3.7 (Printing Other Vectors).
Sharpsign Asterisk

Syntax: #x(bits))

A simple bit vector is constructed containing the indicated bits (0’s and 1’s), where the leftmost
bit has index zero and the subsequent bits have increasing indices.

Syntax: #{(n)*((bits))

With an argument n, the vector to be created is of length n. If the number of bits is less than n
but greater than zero, the last bit is used to fill all remaining bits of the bit vector.

The notations #* and #0* each denote an empty bit vector.

Regardless of whether the optional numeric argument n is provided, the token that follows the
asterisk is delimited by a normal token delimiter. However, (unless the value of *read-suppress*
is true) an error of type reader-error is signaled if that token is not composed entirely of 0’s and
1’s, or if n was supplied and the token is composed of more than n bits, or if n is greater than
one, but no bits were specified. Neither a single escape nor a multiple escape is permitted in this
token.

For information on how the Lisp printer prints bit vectors, see Section 22.1.3.6 (Printing Bit
Vectors).

2.4.8.4.1 Examples of Sharpsign Asterisk

For example, #*%101111
#6%101111

#6*101

#6x1011

all mean the same thing: a vector of length 6 with elements 1, 0, 1, 1, 1, and 1.

For example:

#x ;An empty bit-vector

2—-32 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.4.8.5

2.4.8.6

2.4.8.7

2.4.8.8

Sharpsign Colon
Syntax: #:{(symbol-name))

#: introduces an uninterned symbol whose name is symbol-name. Every time this syntax is
encountered, a distinct uninterned symbol is created. The symbol-name must have the syntax of a
symbol with no package prefix.

For information on how the Lisp reader prints uninterned symbols, see Section 22.1.3.3 (Printing
Symbols).
Sharpsign Dot

#.foo is read as the object resulting from the evaluation of the object represented by foo. The
evaluation is done during the read process, when the #. notation is encountered. The #. syntax
therefore performs a read-time evaluation of foo.

The normal effect of #. is inhibited when the value of *read-eval* is false. In that situation, an
error of type reader-error is signaled.

For an object that does not have a convenient printed representation, a form that computes the
object can be given using the #. notation.

Sharpsign B

#Brational reads rational in binary (radix 2). For example,

#B1101 = 13 ;1101,
#b101/11 = 5/3

The consequences are undefined if the token immediately following the #B does not have the
syntax of a binary (i.e., radix 2) rational.

Sharpsign O

#0rational reads rational in octal (radix 8). For example,

#037/15 = 31/13
#0777 = 511
#0105 = 69 ;105g

The consequences are undefined if the token immediately following the #0 does not have the
syntax of an octal (i.e., radix 8) rational.

Syntax 2-33

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.4.8.9 Sharpsign X

#Xrational reads rational in hexadecimal (radix 16). The digits above 9 are the letters A through F
(the lowercase letters a through £ are also acceptable). For example,

#xFO0 = 3840
#x105 = 261 ;10514

The consequences are undefined if the token immediately following the #X does not have the
syntax of a hexadecimal (i.e., radix 16) rational.
2.4.8.10 Sharpsign R

#nR

#radixRrational reads rational in radix radix. radix must consist of only digits that are interpreted
as an integer in decimal radix; its value must be between 2 and 36 (inclusive). Only valid digits
for the specified radix may be used.

For example, #3r102 is another way of writing 11 (decimal), and #11R32 is another way of writing
35 (decimal). For radices larger than 10, letters of the alphabet are used in order for the digits
after 9. No alternate # notation exists for the decimal radix since a decimal point suffices.

Figure 2-20 contains examples of the use of #B, #0, #X, and #R.

#2r11010101 ;Another way of writing 213 decimal
#b11010101 ;Ditto

#b+11010101 ;Ditto

#0325 ;Ditto, in octal radix

#xD5 ;Ditto, in hexadecimal radix
#161+D5 ;Ditto

#0-300 ;Decimal -192, written in base 8
#3r-21010 ;Same thing in base 3

#25R-7H ;Same thing in base 25

#xACCEDED ;181202413, in hexadecimal radix

Figure 2—20. Radix Indicator Example

The consequences are undefined if the token immediately following the #nR does not have the
syntax of a rational in radix n.

2.4.8.11 Sharpsign C

#C reads a following object, which must be a list of length two whose elements are both reals.
These reals denote, respectively, the real and imaginary parts of a complex number. If the two
parts as notated are not of the same data type, then they are converted according to the rules of
floating-point contagion described in Section 12.1.1.2 (Contagion in Numeric Operations).

2—-34 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

#C(real imag) is equivalent to #. (complex (quote real) (quote imag)), except that #C is not
affected by *read-eval*. See the function complex.

Figure 2-21 contains examples of the use of #C.

#C(3.0s1 2.0s-1) ;A compler with small float parts.

#C(5 -3) ;A “Gaussian integer”

#C(5/3 7.0) ;Will be converted internally to #C(1.66666 7.0)
#C(0 1) ;The imaginary unit; that is, i.

Figure 2—21. Complex Number Example

For further information, see Section 22.1.3.1.4 (Printing Complexes) and Section 2.3.2.3 (Syntax
of a Complex).

2.4.8.12 Sharpsign A

#nA

#nhobject constructs an n-dimensional array, using object as the value of the :initial-contents
argument to make-array.

For example, #2A((0 1 5) (foo 2 (hot dog))) represents a 2-by-3 matrix:

0 1 5
foo 2 (hot dog)

In contrast, #1A((0 1 5) (foo 2 (hot dog))) represents a vector of length 2 whose elements are
lists:

(0 1 5) (foo 2 (hot dog))
#0A((0 1 5) (foo 2 (hot dog))) represents a zero-dimensional array whose sole element is a list:
((0 1 5) (foo 2 (hot dog)))

#0A foo represents a zero-dimensional array whose sole element is the symbol foo. The notation
#1A foo is not valid because foo is not a sequence.

If some dimension of the array whose representation is being parsed is found to be 0, all dimen-
sions to the right (i.e., the higher numbered dimensions) are also considered to be 0.

For information on how the Lisp printer prints arrays, see Section 22.1.3.4 (Printing Strings),
Section 22.1.3.6 (Printing Bit Vectors), Section 22.1.3.7 (Printing Other Vectors), or Section
22.1.3.8 (Printing Other Arrays).

Syntax 2-35

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.4.8.13 Sharpsign S

#s(name slotl valuel slot2 value2 ...) denotes a structure. This is valid only if name is the
name of a structure type already defined by defstruct and if the structure type has a standard
constructor function. Let cm stand for the name of this constructor function; then this syntax is
equivalent to

#.(cm keywordl ’valuel keyword2 ’value2 ...)
where each keywordj is the result of computing
(intern (string slotj) (find-package ’keyword))

The net effect is that the constructor function is called with the specified slots having the spec-
ified values. (This coercion feature is deprecated; in the future, keyword names will be taken in
the package they are read in, so symbols that are actually in the KEYWORD package should be used
if that is what is desired.)

Whatever object the constructor function returns is returned by the #S syntax.

For information on how the Lisp printer prints structures, see Section 22.1.3.12 (Printing Struc-
tures).

2.4.8.14 Sharpsign P
#P reads a following object, which must be a string.

#P ((expression)) is equivalent to #. (parse-namestring ’{(expression))), except that #P is not affected
by *read-eval*.

For information on how the Lisp printer prints pathnames, see Section 22.1.3.11 (Printing Path-
names).

2.4.8.15 Sharpsign Equal-Sign
#n=

#n=object reads as whatever object has object as its printed representation. However, that object
is labeled by n, a required unsigned decimal integer, for possible reference by the syntax #n#.
The scope of the label is the expression being read by the outermost call to read; within this
expression, the same label may not appear twice.

2-36 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.4.8.16 Sharpsign Sharpsign

#n#

#n#, where n is a required unsigned decimal integer, provides a reference to some object labeled
by #n=; that is, #n# represents a pointer to the same (eq) object labeled by #n=. For example, a
structure created in the variable y by this code:

(setq x (list ’p ’q))
(setq y (list (list ’a ’b) x ’foo x))
(rplacd (last y) (cdr y))

could be represented in this way:
((a b) . #1=(#2=(p q) foo #2# . #1#))

Without this notation, but with *print-length* set to 10 and *print-circle* set to nil, the
structure would print in this way:

((ab) (pq) foo (pq) (pq foo (pq (pq foo (p g ...)

A reference #n# may only occur after a label #n=; forward references are not permitted. The
reference may not appear as the labeled object itself (that is, #n=#n#) may not be written because
the object labeled by #n=is not well defined in this case.

2.4.8.17 Sharpsign Plus

#+ provides a read-time conditionalization facility; the syntax is #+test expression. If the feature
expression test succeeds, then this textual notation represents an object whose printed represen-
tation is expression. If the feature expression test fails, then this textual notation is treated as
whitespaces; that is, it is as if the “#+ test expression” did not appear and only a space appeared
in its place.

For a detailed description of success and failure in feature expressions, see Section 24.1.2.1 (Fea-
ture Expressions).

#+ operates by first reading the feature expression and then skipping over the form if the feature
expression fails. While reading the test, the current package is the KEYWORD package. Skipping over
the form is accomplished by binding *read-suppress* to true and then calling read.

For examples, see Section 24.1.2.1.1 (Examples of Feature Expressions).

2.4.8.18 Sharpsign Minus
#- is like #+ except that it skips the expression if the test succeeds; that is,
#-test expression = #+(not test) expression

For examples, see Section 24.1.2.1.1 (Examples of Feature Expressions).

Syntax 2-37

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.4.8.19 Sharpsign Vertical-Bar

#|...|# is treated as a comment by the reader. It must be balanced with respect to other occur-
rences of #| and |#, but otherwise may contain any characters whatsoever.

2.4.8.19.1 Examples of Sharpsign Vertical-Bar
The following are some examples that exploit the #|...|# notation:

;55 In this example, some debugging code is commented out with #|...|#
;35 Note that this kind of comment can occur in the middle of a line
;;; (because a delimiter marks where the end of the comment occurs)
;55 where a semicolon comment can only occur at the end of a line

;;; (because it comments out the rest of the line).

(defun add3 (n) #|(format t "“&Adding 3 to “D." n)|# (+ n 3))

;5; The examples that follow show issues related to #| ... |# nesting.

;55 In this first example, #| and |# always occur properly paired,
;53 so nesting works naturally.
(defun mention-fun-fact-1a ()
(format t "CL uses ; and #|...|# in comments."))
— MENTION-FUN-FACT-1A
(mention-fun-fact-1a)

> CL uses ; and #|...|# in comments.
— NIL
#| (defun mention-fun-fact-1b ()
(format t "CL uses ; and #|...|# in comments.")) |#

(fboundp ’mention-fun-fact-1b) — NIL

;55 In this example, vertical-bar followed by sharpsign needed to appear
;55 in a string without any matching sharpsign followed by vertical-bar
;55 having preceded this. To compensate, the programmer has included a
;5; slash separating the two characters. In case 2a, the slash is

;55 unnecessary but harmless, but in case 2b, the slash is critical to
;55 allowing the outer #| ... |# pair match. If the slash were not present,
;55 the outer comment would terminate prematurely.

(defun mention-fun-fact-2a ()

(format t "Don’t use |\# unmatched or you’ll get in trouble!"))

— MENTION-FUN-FACT-2A

(mention-fun-fact-2a)
> Don’t use |# unmatched or you’ll get in trouble!
— NIL

#| (defun mention-fun-fact-2b ()

2—-38 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(format t "Don’t use |\# unmatched or you’ll get in trouble!") |#
(fboundp ’mention-fun-fact-2b) — NIL

;55 In this example, the programmer attacks the mismatch problem in a
;53 different way. The sharpsign vertical bar in the comment is not needed
;55 for the correct parsing of the program normally (as in case 3a), but
;;; becomes important to avoid premature termination of a comment when such
;55 a program is commented out (as in case 3b).
(defun mention-fun-fact-3a () ; #|
(format t "Don’t use |# unmatched or you’ll get in trouble!"))
— MENTION-FUN-FACT-3A
(mention-fun-fact-3a)
> Don’t use |# unmatched or you’ll get in trouble!
— NIL
#1
(defun mention-fun-fact-3b () ; #|
(format t "Don’t use |# unmatched or you’ll get in trouble!"))
| #
(fboundp ’mention-fun-fact-3b) — NIL

2.4.8.19.2 Notes about Style for Sharpsign Vertical-Bar

Some text editors that purport to understand Lisp syntax treat any |...| as balanced pairs

that cannot nest (as if they were just balanced pairs of the multiple escapes used in notat-

ing certain symbols). To compensate for this deficiency, some programmers use the notation
#1...#1 ... 11#...||# instead of #|...#|...|#...|#. Note that this alternate usage is not a
different reader macro; it merely exploits the fact that the additional vertical-bars occur within
the comment in a way that tricks certain text editor into better supporting nested comments. As
such, one might sometimes see code like:

#11 (+ #11 3 |1#45) ||#
Such code is equivalent to:

#| (+ #| 3 |# 45) |#

2.4.8.20 Sharpsign Less-Than-Sign

#< is not valid reader syntax. The Lisp reader will signal an error of type reader-error on encoun-
tering #<. This syntax is typically used in the printed representation of objects that cannot be
read back in.

2.4.8.21 Sharpsign Whitespace

followed immediately by whitespace; is not valid reader syntax. The Lisp reader will signal an
error of type reader-error if it encounters the reader macro notation #(Newline) or #(Space).

Syntax 2-39

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.4.8.22 Sharpsign Right-Parenthesis
This is not valid reader syntax.

The Lisp reader will signal an error of type reader-error upon encountering #).

2.4.9 Re-Reading Abbreviated Expressions

Note that the Lisp reader will generally signal an error of type reader-error when reading an
expressions that has been abbreviated because of length or level limits (see *print-level*,
print-length, and *print-lines*) due to restrictions on “..”, “...” “#” followed by whites-
pacey, and “#)”.

2-40 Programming Language—Common Lisp

