
Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Programming Language—Common Lisp

11. Packages

Packages i

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

ii Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

11.1 Package Concepts

11.1.1 Introduction to Packages
A package establishes a mapping from names to symbols. At any given time, one package is
current. The current package is the one that is the value of *package*. When using the Lisp
reader , it is possible to refer to symbols in packages other than the current one through the use of
package prefixes in the printed representation of the symbol .

Figure 11–1 lists some defined names that are applicable to packages. Where an operator takes an
argument that is either a symbol or a list of symbols, an argument of nil is treated as an empty
list of symbols. Any package argument may be either a string , a symbol , or a package. If a symbol
is supplied, its name will be used as the package name.

modules import provide
package in-package rename-package
defpackage intern require
do-all-symbols list-all-packages shadow
do-external-symbols make-package shadowing-import
do-symbols package-name unexport
export package-nicknames unintern
find-all-symbols package-shadowing-symbols unuse-package
find-package package-use-list use-package
find-symbol package-used-by-list

Figure 11–1. Some Defined Names related to Packages

11.1.1.1 Package Names and Nicknames

Each package has a name (a string) and perhaps some nicknames (also strings). These are
assigned when the package is created and can be changed later.

There is a single namespace for packages. The function find-package translates a package name
or nickname into the associated package. The function package-name returns the name of
a package. The function package-nicknames returns a list of all nicknames for a package.
rename-package removes a package’s current name and nicknames and replaces them with new
ones specified by the caller.

11.1.1.2 Symbols in a Package

Packages 11–1

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

11.1.1.2.1 Internal and External Symbols

The mappings in a package are divided into two classes, external and internal. The symbols
targeted by these different mappings are called external symbols and internal symbols of the
package. Within a package, a name refers to one symbol or to none; if it does refer to a symbol ,
then it is either external or internal in that package, but not both. External symbols are part
of the package’s public interface to other packages. Symbols become external symbols of a given
package if they have been exported from that package.

A symbol has the same name no matter what package it is present in, but it might be an external
symbol of some packages and an internal symbol of others.

11.1.1.2.2 Package Inheritance

Packages can be built up in layers. From one point of view, a package is a single collection
of mappings from strings into internal symbols and external symbols. However, some of these
mappings might be established within the package itself, while other mappings are inherited from
other packages via use-package. A symbol is said to be present in a package if the mapping is in
the package itself and is not inherited from somewhere else.

There is no way to inherit the internal symbols of another package; to refer to an internal symbol
using the Lisp reader , a package containing the symbol must be made to be the current package,
a package prefix must be used, or the symbol must be imported into the current package.

11.1.1.2.3 Accessibility of Symbols in a Package

A symbol becomes accessible in a package if that is its home package when it is created, or if it
is imported into that package, or by inheritance via use-package.

If a symbol is accessible in a package, it can be referred to when using the Lisp reader without
a package prefix when that package is the current package, regardless of whether it is present or
inherited.

Symbols from one package can be made accessible in another package in two ways.

– Any individual symbol can be added to a package by use of import. After the call to
import the symbol is present in the importing package. The status of the symbol in the
package it came from (if any) is unchanged, and the home package for this symbol is
unchanged. Once imported , a symbol is present in the importing package and can be
removed only by calling unintern.

A symbol is shadowed3 by another symbol in some package if the first symbol
would be accessible by inheritance if not for the presence of the second symbol . See
shadowing-import.

– The second mechanism for making symbols from one package accessible in another is
provided by use-package. All of the external symbols of the used package are inherited

11–2 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

by the using package. The function unuse-package undoes the effects of a previous
use-package.

11.1.1.2.4 Locating a Symbol in a Package

When a symbol is to be located in a given package the following occurs:

– The external symbols and internal symbols of the package are searched for the symbol .
– The external symbols of the used packages are searched in some unspecified order. The

order does not matter; see the rules for handling name conflicts listed below.

11.1.1.2.5 Prevention of Name Conflicts in Packages

Within one package, any particular name can refer to at most one symbol . A name conflict is
said to occur when there would be more than one candidate symbol . Any time a name conflict is
about to occur, a correctable error is signaled.

The following rules apply to name conflicts:

– Name conflicts are detected when they become possible, that is, when the package
structure is altered. Name conflicts are not checked during every name lookup.

– If the same symbol is accessible to a package through more than one path, there is no
name conflict. A symbol cannot conflict with itself. Name conflicts occur only between
distinct symbols with the same name (under string=).

– Every package has a list of shadowing symbols. A shadowing symbol takes precedence
over any other symbol of the same name that would otherwise be accessible in the
package. A name conflict involving a shadowing symbol is always resolved in favor of
the shadowing symbol , without signaling an error (except for one exception involving
import). See shadow and shadowing-import.

– The functions use-package, import, and export check for name conflicts.

– shadow and shadowing-import never signal a name-conflict error.

– unuse-package and unexport do not need to do any name-conflict checking. unintern
does name-conflict checking only when a symbol being uninterned is a shadowing symbol .

– Giving a shadowing symbol to unintern can uncover a name conflict that had previously
been resolved by the shadowing.

– Package functions signal name-conflict errors of type package-error before making any
change to the package structure. When multiple changes are to be made, it is permissible
for the implementation to process each change separately. For example, when export is

Packages 11–3

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

given a list of symbols, aborting from a name conflict caused by the second symbol in the
list might still export the first symbol in the list . However, a name-conflict error caused
by export of a single symbol will be signaled before that symbol ’s accessibility in any
package is changed.

– Continuing from a name-conflict error must offer the user a chance to resolve the name
conflict in favor of either of the candidates. The package structure should be altered to
reflect the resolution of the name conflict, via shadowing-import, unintern, or unexport.

– A name conflict in use-package between a symbol present in the using package and an
external symbol of the used package is resolved in favor of the first symbol by making it a
shadowing symbol , or in favor of the second symbol by uninterning the first symbol from
the using package.

– A name conflict in export or unintern due to a package’s inheriting two distinct symbols
with the same name (under string=) from two other packages can be resolved in favor of
either symbol by importing it into the using package and making it a shadowing symbol ,
just as with use-package.

11.1.2 Standardized Packages
This section describes the packages that are available in every conforming implementation. A
summary of the names and nicknames of those standardized packages is given in Figure 11–2.

Name Nicknames
COMMON-LISP CL

COMMON-LISP-USER CL-USER

KEYWORD none

Figure 11–2. Standardized Package Names

11.1.2.1 The COMMON-LISP Package

The COMMON-LISP package contains the primitives of the Common Lisp system as defined by this
specification. Its external symbols include all of the defined names (except for defined names in
the KEYWORD package) that are present in the Common Lisp system, such as car, cdr, *package*,
etc. The COMMON-LISP package has the nickname CL.

The COMMON-LISP package has as external symbols those symbols enumerated in the figures in
Section 1.9 (Symbols in the COMMON-LISP Package), and no others. These external symbols are
present in the COMMON-LISP package but their home package need not be the COMMON-LISP package.

For example, the symbol HELP cannot be an external symbol of the COMMON-LISP package because
it is not mentioned in Section 1.9 (Symbols in the COMMON-LISP Package). In contrast, the

11–4 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

symbol variable must be an external symbol of the COMMON-LISP package even though it has no
definition because it is listed in that section (to support its use as a valid second argument to the
function documentation).

The COMMON-LISP package can have additional internal symbols.

11.1.2.1.1 Constraints on the COMMON-LISP Package for Conforming
Implementations

In a conforming implementation, an external symbol of the COMMON-LISP package can have a
function, macro, or special operator definition, a global variable definition (or other status as a
dynamic variable due to a special proclamation), or a type definition only if explicitly permitted
in this standard. For example, fboundp yields false for any external symbol of the COMMON-LISP

package that is not the name of a standardized function, macro or special operator , and boundp
returns false for any external symbol of the COMMON-LISP package that is not the name of a stan-
dardized global variable. It also follows that conforming programs can use external symbols of
the COMMON-LISP package as the names of local lexical variables with confidence that those names
have not been proclaimed special by the implementation unless those symbols are names of
standardized global variables.

A conforming implementation must not place any property on an external symbol of the
COMMON-LISP package using a property indicator that is either an external symbol of any stan-
dardized package or a symbol that is otherwise accessible in the COMMON-LISP-USER package.

11.1.2.1.2 Constraints on the COMMON-LISP Package for Conforming Programs

Except where explicitly allowed, the consequences are undefined if any of the following actions are
performed on an external symbol of the COMMON-LISP package:

1. Binding or altering its value (lexically or dynamically). (Some exceptions are noted
below.)

2. Defining, undefining, or binding it as a function. (Some exceptions are noted below.)

3. Defining, undefining, or binding it as a macro or compiler macro. (Some exceptions are
noted below.)

4. Defining it as a type specifier (via defstruct, defclass, deftype, define-condition).

5. Defining it as a structure (via defstruct).

6. Defining it as a declaration with a declaration proclamation.

7. Defining it as a symbol macro.

8. Altering its home package.

Packages 11–5

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

9. Tracing it (via trace).

10. Declaring or proclaiming it special (via declare, declaim, or proclaim).

11. Declaring or proclaiming its type or ftype (via declare, declaim, or proclaim). (Some
exceptions are noted below.)

12. Removing it from the COMMON-LISP package.

13. Defining a setf expander for it (via defsetf or define-setf-method).

14. Defining, undefining, or binding its setf function name.

15. Defining it as a method combination type (via define-method-combination).

16. Using it as the class-name argument to setf of find-class.

17. Binding it as a catch tag .

18. Binding it as a restart name.

19. Defining a method for a standardized generic function which is applicable when all of the
arguments are direct instances of standardized classes.

11.1.2.1.2.1 Some Exceptions to Constraints on the COMMON-LISP Package for Conforming
Programs

If an external symbol of the COMMON-LISP package is not globally defined as a standardized dynamic
variable or constant variable, it is allowed to lexically bind it and to declare the type of that
binding , and it is allowed to locally establish it as a symbol macro (e.g., with symbol-macrolet).

Unless explicitly specified otherwise, if an external symbol of the COMMON-LISP package is globally
defined as a standardized dynamic variable, it is permitted to bind or assign that dynamic
variable provided that the “Value Type” constraints on the dynamic variable are maintained, and
that the new value of the variable is consistent with the stated purpose of the variable.

If an external symbol of the COMMON-LISP package is not defined as a standardized function, macro,
or special operator , it is allowed to lexically bind it as a function (e.g., with flet), to declare the
ftype of that binding , and (in implementations which provide the ability to do so) to trace that
binding .

If an external symbol of the COMMON-LISP package is not defined as a standardized function, macro,
or special operator , it is allowed to lexically bind it as a macro (e.g., with macrolet).

If an external symbol of the COMMON-LISP package is not defined as a standardized function, macro,
or special operator , it is allowed to lexically bind its setf function name as a function, and to
declare the ftype of that binding .

11–6 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

11.1.2.2 The COMMON-LISP-USER Package

The COMMON-LISP-USER package is the current package when a Common Lisp system starts up.
This package uses the COMMON-LISP package. The COMMON-LISP-USER package has the nickname
CL-USER. The COMMON-LISP-USER package can have additional symbols interned within it; it can use
other implementation-defined packages.

11.1.2.3 The KEYWORD Package

The KEYWORD package contains symbols, called keywords1, that are typically used as special mark-
ers in programs and their associated data expressions1.

Symbol tokens that start with a package marker are parsed by the Lisp reader as symbols in the
KEYWORD package; see Section 2.3.4 (Symbols as Tokens). This makes it notationally convenient
to use keywords when communicating between programs in different packages. For example, the
mechanism for passing keyword parameters in a call uses keywords1 to name the corresponding
arguments; see Section 3.4.1 (Ordinary Lambda Lists).

Symbols in the KEYWORD package are, by definition, of type keyword.

11.1.2.3.1 Interning a Symbol in the KEYWORD Package

The KEYWORD package is treated differently than other packages in that special actions are taken
when a symbol is interned in it. In particular, when a symbol is interned in the KEYWORD package,
it is automatically made to be an external symbol and is automatically made to be a constant
variable with itself as a value.

11.1.2.3.2 Notes about The KEYWORD Package

It is generally best to confine the use of keywords to situations in which there are a finitely
enumerable set of names to be selected between. For example, if there were two states of a light
switch, they might be called :on and :off.

In situations where the set of names is not finitely enumerable (i.e., where name conflicts might
arise) it is frequently best to use symbols in some package other than KEYWORD so that conflicts will
be naturally avoided. For example, it is generally not wise for a program to use a keyword1 as a
property indicator , since if there were ever another program that did the same thing, each would
clobber the other’s data.

11.1.2.4 Implementation-Defined Packages

Other, implementation-defined packages might be present in the initial Common Lisp environ-
ment.

It is recommended, but not required, that the documentation for a conforming implementation
contain a full list of all package names initially present in that implementation but not specified
in this specification. (See also the function list-all-packages.)

Packages 11–7

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

package System Class

Class Precedence List:
package, t

Description:
A package is a namespace that maps symbol names to symbols; see Section 11.1 (Package Con-
cepts).

See Also:
Section 11.1 (Package Concepts), Section 22.1.3.13 (Printing Other Objects), Section 2.3.4
(Symbols as Tokens)

export Function

Syntax:
export symbols &optional package → t

Arguments and Values:
symbols—a designator for a list of symbols.

package—a package designator . The default is the current package.

Description:
export makes one or more symbols that are accessible in package (whether directly or by inheri-
tance) be external symbols of that package.

If any of the symbols is already accessible as an external symbol of package, export has no effect
on that symbol . If the symbol is present in package as an internal symbol, it is simply changed
to external status. If it is accessible as an internal symbol via use-package, it is first imported
into package, then exported . (The symbol is then present in the package whether or not package
continues to use the package through which the symbol was originally inherited.)

export makes each symbol accessible to all the packages that use package. All of these packages
are checked for name conflicts: (export s p) does (find-symbol (symbol-name s) q) for each pack-
age q in (package-used-by-list p). Note that in the usual case of an export during the initial
definition of a package, the result of package-used-by-list is nil and the name-conflict checking
takes negligible time. When multiple changes are to be made, for example when export is given a
list of symbols, it is permissible for the implementation to process each change separately, so that
aborting from a name conflict caused by any but the first symbol in the list does not unexport the
first symbol in the list. However, aborting from a name-conflict error caused by export of one of

11–8 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

symbols does not leave that symbol accessible to some packages and inaccessible to others; with
respect to each of symbols processed, export behaves as if it were as an atomic operation.

A name conflict in export between one of symbols being exported and a symbol already present
in a package that would inherit the newly-exported symbol may be resolved in favor of the
exported symbol by uninterning the other one, or in favor of the already-present symbol by
making it a shadowing symbol.

Examples:

(make-package ’temp :use nil) → #<PACKAGE "TEMP">

(use-package ’temp) → T

(intern "TEMP-SYM" ’temp) → TEMP::TEMP-SYM, NIL

(find-symbol "TEMP-SYM") → NIL, NIL

(export (find-symbol "TEMP-SYM" ’temp) ’temp) → T

(find-symbol "TEMP-SYM") → TEMP-SYM, :INHERITED

Side Effects:
The package system is modified.

Affected By:
Accessible symbols.

Exceptional Situations:
If any of the symbols is not accessible at all in package, an error of type package-error is signaled
that is correctable by permitting the user to interactively specify whether that symbol should be
imported .

See Also:
import, unexport, Section 11.1 (Package Concepts)

find-symbol Function

Syntax:
find-symbol string &optional package → symbol, status

Arguments and Values:
string—a string .

package—a package designator . The default is the current package.

symbol—a symbol accessible in the package, or nil.

status—one of :inherited, :external, :internal, or nil.

Packages 11–9

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

find-symbol

Description:
find-symbol locates a symbol whose name is string in a package. If a symbol named string is
found in package, directly or by inheritance, the symbol found is returned as the first value; the
second value is as follows:

:internal

If the symbol is present in package as an internal symbol .

:external

If the symbol is present in package as an external symbol .

:inherited

If the symbol is inherited by package through use-package, but is not present in package.

If no such symbol is accessible in package, both values are nil.

Examples:

(find-symbol "NEVER-BEFORE-USED") → NIL, NIL

(find-symbol "NEVER-BEFORE-USED") → NIL, NIL

(intern "NEVER-BEFORE-USED") → NEVER-BEFORE-USED, NIL

(intern "NEVER-BEFORE-USED") → NEVER-BEFORE-USED, :INTERNAL

(find-symbol "NEVER-BEFORE-USED") → NEVER-BEFORE-USED, :INTERNAL

(find-symbol "never-before-used") → NIL, NIL

(find-symbol "CAR" ’common-lisp-user) → CAR, :INHERITED

(find-symbol "CAR" ’common-lisp) → CAR, :EXTERNAL

(find-symbol "NIL" ’common-lisp-user) → NIL, :INHERITED

(find-symbol "NIL" ’common-lisp) → NIL, :EXTERNAL

(find-symbol "NIL" (prog1 (make-package "JUST-TESTING" :use ’())

(intern "NIL" "JUST-TESTING")))

→ JUST-TESTING::NIL, :INTERNAL

(export ’just-testing::nil ’just-testing)

(find-symbol "NIL" ’just-testing) → JUST-TESTING:NIL, :EXTERNAL

(find-symbol "NIL" "KEYWORD")

→ NIL, NIL
or→ :NIL, :EXTERNAL

(find-symbol (symbol-name :nil) "KEYWORD") → :NIL, :EXTERNAL

Affected By:
intern, import, export, use-package, unintern, unexport, unuse-package

See Also:
intern, find-all-symbols

11–10 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Notes:
find-symbol is operationally equivalent to intern, except that it never creates a new symbol .

find-package Function

Syntax:
find-package name → package

Arguments and Values:
name—a string designator or a package object .

package—a package object or nil.

Description:
If name is a string designator , find-package locates and returns the package whose name or
nickname is name. This search is case sensitive. If there is no such package, find-package returns
nil.

If name is a package object , that package object is returned.

Examples:

(find-package ’common-lisp) → #<PACKAGE "COMMON-LISP">

(find-package "COMMON-LISP-USER") → #<PACKAGE "COMMON-LISP-USER">

(find-package ’not-there) → NIL

Affected By:
The set of packages created by the implementation.

defpackage, delete-package, make-package, rename-package

See Also:
make-package

Packages 11–11

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

find-all-symbols Function

Syntax:
find-all-symbols string → symbols

Arguments and Values:
string—a string designator .

symbols—a list of symbols.

Description:
find-all-symbols searches every registered package for symbols that have a name that is the same
(under string=) as string . A list of all such symbols is returned. Whether or how the list is
ordered is implementation-dependent .

Examples:

(find-all-symbols ’car)

→ (CAR)
or→ (CAR VEHICLES:CAR)
or→ (VEHICLES:CAR CAR)

(intern "CAR" (make-package ’temp :use nil)) → TEMP::CAR, NIL

(find-all-symbols ’car)

→ (TEMP::CAR CAR)
or→ (CAR TEMP::CAR)
or→ (TEMP::CAR CAR VEHICLES:CAR)
or→ (CAR TEMP::CAR VEHICLES:CAR)

See Also:
find-symbol

import Function

Syntax:
import symbols &optional package → t

Arguments and Values:
symbols—a designator for a list of symbols.

package—a package designator . The default is the current package.

11–12 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Description:
import adds symbol or symbols to the internals of package, checking for name conflicts with ex-
isting symbols either present in package or accessible to it. Once the symbols have been imported ,
they may be referenced in the importing package without the use of a package prefix when using
the Lisp reader .

A name conflict in import between the symbol being imported and a symbol inherited from some
other package can be resolved in favor of the symbol being imported by making it a shadowing
symbol, or in favor of the symbol already accessible by not doing the import. A name conflict in
import with a symbol already present in the package may be resolved by uninterning that symbol ,
or by not doing the import.

The imported symbol is not automatically exported from the current package, but if it is al-
ready present and external, then the fact that it is external is not changed. If any symbol to be
imported has no home package (i.e., (symbol-package symbol) → nil), import sets the home
package of the symbol to package.

If the symbol is already present in the importing package, import has no effect.

Examples:

(import ’common-lisp::car (make-package ’temp :use nil)) → T

(find-symbol "CAR" ’temp) → CAR, :INTERNAL

(find-symbol "CDR" ’temp) → NIL, NIL

The form (import ’editor:buffer) takes the external symbol named buffer in the EDITOR package
(this symbol was located when the form was read by the Lisp reader) and adds it to the current
package as an internal symbol . The symbol buffer is then present in the current package.

Side Effects:
The package system is modified.

Affected By:
Current state of the package system.

Exceptional Situations:
import signals a correctable error of type package-error if any of the symbols to be imported has
the same name (under string=) as some distinct symbol (under eql) already accessible in the
package, even if the conflict is with a shadowing symbol of the package.

See Also:
shadow, export

Packages 11–13

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

list-all-packages Function

Syntax:
list-all-packages 〈no arguments〉 → packages

Arguments and Values:
packages—a list of package objects.

Description:
list-all-packages returns a fresh list of all registered packages.

Examples:

(let ((before (list-all-packages)))

(make-package ’temp)

(set-difference (list-all-packages) before)) → (#<PACKAGE "TEMP">)

Affected By:
defpackage, delete-package, make-package

rename-package Function

Syntax:
rename-package package new-name &optional new-nicknames → package-object

Arguments and Values:
package—a package designator .

new-name—a package designator .

new-nicknames—a list of string designators. The default is the empty list .

package-object—the renamed package object .

Description:
Replaces the name and nicknames of package. The old name and all of the old nicknames of
package are eliminated and are replaced by new-name and new-nicknames.

The consequences are undefined if new-name or any new-nickname conflicts with any existing
package names.

11–14 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:

(make-package ’temporary :nicknames ’("TEMP")) → #<PACKAGE "TEMPORARY">

(rename-package ’temp ’ephemeral) → #<PACKAGE "EPHEMERAL">

(package-nicknames (find-package ’ephemeral)) → ()

(find-package ’temporary) → NIL

(rename-package ’ephemeral ’temporary ’(temp fleeting))

→ #<PACKAGE "TEMPORARY">

(package-nicknames (find-package ’temp)) → ("TEMP" "FLEETING")

See Also:
make-package

shadow Function

Syntax:
shadow symbol-names &optional package → t

Arguments and Values:
symbol-names—a designator for a list of string designators.

package—a package designator . The default is the current package.

Description:
shadow assures that symbols with names given by symbol-names are present in the package.

Specifically, package is searched for symbols with the names supplied by symbol-names. For each
such name, if a corresponding symbol is not present in package (directly, not by inheritance),
then a corresponding symbol is created with that name, and inserted into package as an internal
symbol . The corresponding symbol , whether pre-existing or newly created, is then added, if not
already present, to the shadowing symbols list of package.

Examples:

(package-shadowing-symbols (make-package ’temp)) → NIL

(find-symbol ’car ’temp) → CAR, :INHERITED

(shadow ’car ’temp) → T

(find-symbol ’car ’temp) → TEMP::CAR, :INTERNAL

(package-shadowing-symbols ’temp) → (TEMP::CAR)

(make-package ’test-1) → #<PACKAGE "TEST-1">

(intern "TEST" (find-package ’test-1)) → TEST-1::TEST, NIL

(shadow ’test-1::test (find-package ’test-1)) → T

Packages 11–15

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(shadow ’TEST (find-package ’test-1)) → T

(assert (not (null (member ’test-1::test (package-shadowing-symbols

(find-package ’test-1))))))

(make-package ’test-2) → #<PACKAGE "TEST-2">

(intern "TEST" (find-package ’test-2)) → TEST-2::TEST, NIL

(export ’test-2::test (find-package ’test-2)) → T

(use-package ’test-2 (find-package ’test-1)) ;should not error

Side Effects:
shadow changes the state of the package system in such a way that the package consistency rules
do not hold across the change.

Affected By:
Current state of the package system.

See Also:
package-shadowing-symbols, Section 11.1 (Package Concepts)

Notes:
If a symbol with a name in symbol-names already exists in package, but by inheritance, the
inherited symbol becomes shadowed3 by a newly created internal symbol .

shadowing-import Function

Syntax:
shadowing-import symbols &optional package → t

Arguments and Values:
symbols—a designator for a list of symbols.

package —a package designator . The default is the current package.

Description:
shadowing-import is like import, but it does not signal an error even if the importation of a
symbol would shadow some symbol already accessible in package.

shadowing-import inserts each of symbols into package as an internal symbol, regardless of
whether another symbol of the same name is shadowed by this action. If a different symbol of the
same name is already present in package, that symbol is first uninterned from package. The new
symbol is added to package’s shadowing-symbols list.

11–16 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

shadowing-import does name-conflict checking to the extent that it checks whether a distinct
existing symbol with the same name is accessible; if so, it is shadowed by the new symbol , which
implies that it must be uninterned if it was present in package.

Examples:

(in-package "COMMON-LISP-USER") → #<PACKAGE "COMMON-LISP-USER">

(setq sym (intern "CONFLICT")) → CONFLICT

(intern "CONFLICT" (make-package ’temp)) → TEMP::CONFLICT, NIL

(package-shadowing-symbols ’temp) → NIL

(shadowing-import sym ’temp) → T

(package-shadowing-symbols ’temp) → (CONFLICT)

Side Effects:
shadowing-import changes the state of the package system in such a way that the consistency
rules do not hold across the change.

package’s shadowing-symbols list is modified.

Affected By:
Current state of the package system.

See Also:
import, unintern, package-shadowing-symbols

delete-package Function

Syntax:
delete-package package → generalized-boolean

Arguments and Values:
package—a package designator .

generalized-boolean—a generalized boolean.

Description:
delete-package deletes package from all package system data structures. If the operation is
successful, delete-package returns true, otherwise nil. The effect of delete-package is that the
name and nicknames of package cease to be recognized package names. The package object is
still a package (i.e., packagep is true of it) but package-name returns nil. The consequences
of deleting the COMMON-LISP package or the KEYWORD package are undefined. The consequences of
invoking any other package operation on package once it has been deleted are unspecified. In
particular, the consequences of invoking find-symbol, intern and other functions that look for a

Packages 11–17

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

delete-package

symbol name in a package are unspecified if they are called with *package* bound to the deleted
package or with the deleted package as an argument.

If package is a package object that has already been deleted, delete-package immediately returns
nil.

After this operation completes, the home package of any symbol whose home package had previ-
ously been package is implementation-dependent . Except for this, symbols accessible in package
are not modified in any other way; symbols whose home package is not package remain un-
changed.

Examples:

(setq *foo-package* (make-package "FOO" :use nil))

(setq *foo-symbol* (intern "FOO" *foo-package*))

(export *foo-symbol* *foo-package*)

(setq *bar-package* (make-package "BAR" :use ’("FOO")))

(setq *bar-symbol* (intern "BAR" *bar-package*))

(export *foo-symbol* *bar-package*)

(export *bar-symbol* *bar-package*)

(setq *baz-package* (make-package "BAZ" :use ’("BAR")))

(symbol-package *foo-symbol*) → #<PACKAGE "FOO">

(symbol-package *bar-symbol*) → #<PACKAGE "BAR">

(prin1-to-string *foo-symbol*) → "FOO:FOO"

(prin1-to-string *bar-symbol*) → "BAR:BAR"

(find-symbol "FOO" *bar-package*) → FOO:FOO, :EXTERNAL

(find-symbol "FOO" *baz-package*) → FOO:FOO, :INHERITED

(find-symbol "BAR" *baz-package*) → BAR:BAR, :INHERITED

(packagep *foo-package*) → true
(packagep *bar-package*) → true
(packagep *baz-package*) → true

(package-name *foo-package*) → "FOO"

(package-name *bar-package*) → "BAR"

(package-name *baz-package*) → "BAZ"

(package-use-list *foo-package*) → ()

(package-use-list *bar-package*) → (#<PACKAGE "FOO">)

(package-use-list *baz-package*) → (#<PACKAGE "BAR">)

11–18 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

delete-package

(package-used-by-list *foo-package*) → (#<PACKAGE "BAR">)

(package-used-by-list *bar-package*) → (#<PACKAGE "BAZ">)

(package-used-by-list *baz-package*) → ()

(delete-package *bar-package*)

. Error: Package BAZ uses package BAR.

. If continued, BAZ will be made to unuse-package BAR,

. and then BAR will be deleted.

. Type :CONTINUE to continue.

. Debug> :CONTINUE

→ T

(symbol-package *foo-symbol*) → #<PACKAGE "FOO">

(symbol-package *bar-symbol*) is unspecified

(prin1-to-string *foo-symbol*) → "FOO:FOO"

(prin1-to-string *bar-symbol*) is unspecified

(find-symbol "FOO" *bar-package*) is unspecified

(find-symbol "FOO" *baz-package*) → NIL, NIL

(find-symbol "BAR" *baz-package*) → NIL, NIL

(packagep *foo-package*) → T

(packagep *bar-package*) → T

(packagep *baz-package*) → T

(package-name *foo-package*) → "FOO"

(package-name *bar-package*) → NIL

(package-name *baz-package*) → "BAZ"

(package-use-list *foo-package*) → ()

(package-use-list *bar-package*) is unspecified

(package-use-list *baz-package*) → ()

(package-used-by-list *foo-package*) → ()

(package-used-by-list *bar-package*) is unspecified

(package-used-by-list *baz-package*) → ()

Exceptional Situations:
If the package designator is a name that does not currently name a package, a correctable error
of type package-error is signaled. If correction is attempted, no deletion action is attempted;
instead, delete-package immediately returns nil.

Packages 11–19

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

If package is used by other packages, a correctable error of type package-error is signaled. If
correction is attempted, unuse-package is effectively called to remove any dependencies, caus-
ing package’s external symbols to cease being accessible to those packages that use package.
delete-package then deletes package just as it would have had there been no packages that used
it.

See Also:
unuse-package

make-package Function

Syntax:
make-package package-name &key nicknames use → package

Arguments and Values:
package-name—a string designator .

nicknames—a list of string designators. The default is the empty list .

use—a list of package designators. The default is implementation-defined .

package—a package.

Description:
Creates a new package with the name package-name.

Nicknames are additional names which may be used to refer to the new package.

use specifies zero or more packages the external symbols of which are to be inherited by the new
package. See the function use-package.

Examples:

(make-package ’temporary :nicknames ’("TEMP" "temp")) → #<PACKAGE "TEMPORARY">

(make-package "OWNER" :use ’("temp")) → #<PACKAGE "OWNER">

(package-used-by-list ’temp) → (#<PACKAGE "OWNER">)

(package-use-list ’owner) → (#<PACKAGE "TEMPORARY">)

Affected By:
The existence of other packages in the system.

Exceptional Situations:
The consequences are unspecified if packages denoted by use do not exist.

11–20 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

A correctable error is signaled if the package-name or any of the nicknames is already the name or
nickname of an existing package.

See Also:
defpackage, use-package

Notes:
In situations where the packages to be used contain symbols which would conflict, it is necessary
to first create the package with :use ’(), then to use shadow or shadowing-import to address
the conflicts, and then after that to use use-package once the conflicts have been addressed.

When packages are being created as part of the static definition of a program rather than dynam-
ically by the program, it is generally considered more stylistically appropriate to use defpackage
rather than make-package.

with-package-iterator Macro

Syntax:
with-package-iterator (name package-list-form &rest symbol-types) {declaration}* {form}*
→ {result}*

Arguments and Values:
name—a symbol .

package-list-form—a form; evaluated once to produce a package-list.

package-list—a designator for a list of package designators.

symbol-type—one of the symbols :internal, :external, or :inherited.

declaration—a declare expression; not evaluated.

forms—an implicit progn.

results—the values of the forms.

Description:
Within the lexical scope of the body forms, the name is defined via macrolet such that successive
invocations of (name) will return the symbols, one by one, from the packages in package-list.

It is unspecified whether symbols inherited from multiple packages are returned more than once.
The order of symbols returned does not necessarily reflect the order of packages in package-list.
When package-list has more than one element, it is unspecified whether duplicate symbols are
returned once or more than once.

Packages 11–21

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

with-package-iterator

Symbol-types controls which symbols that are accessible in a package are returned as follows:

:internal

The symbols that are present in the package, but that are not exported .

:external

The symbols that are present in the package and are exported .

:inherited

The symbols that are exported by used packages and that are not shadowed .

When more than one argument is supplied for symbol-types, a symbol is returned if its accessi-
bility matches any one of the symbol-types supplied. Implementations may extend this syntax by
recognizing additional symbol accessibility types.

An invocation of (name) returns four values as follows:

1. A flag that indicates whether a symbol is returned (true means that a symbol is re-
turned).

2. A symbol that is accessible in one the indicated packages.
3. The accessibility type for that symbol ; i.e., one of the symbols :internal, :external, or

:inherited.
4. The package from which the symbol was obtained. The package is one of the packages

present or named in package-list.

After all symbols have been returned by successive invocations of (name), then only one value is
returned, namely nil.

The meaning of the second, third, and fourth values is that the returned symbol is accessible in
the returned package in the way indicated by the second return value as follows:

:internal

Means present and not exported .

:external

Means present and exported .

:inherited

Means not present (thus not shadowed) but inherited from some used package.

It is unspecified what happens if any of the implicit interior state of an iteration is returned
outside the dynamic extent of the with-package-iterator form such as by returning some closure
over the invocation form.

11–22 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

with-package-iterator

Any number of invocations of with-package-iterator can be nested, and the body of the inner-
most one can invoke all of the locally established macros, provided all those macros have distinct
names.

Examples:
The following function should return t on any package, and signal an error if the usage of
with-package-iterator does not agree with the corresponding usage of do-symbols.

(defun test-package-iterator (package)

(unless (packagep package)

(setq package (find-package package)))

(let ((all-entries ’())

(generated-entries ’()))

(do-symbols (x package)

(multiple-value-bind (symbol accessibility)

(find-symbol (symbol-name x) package)

(push (list symbol accessibility) all-entries)))

(with-package-iterator (generator-fn package

:internal :external :inherited)

(loop

(multiple-value-bind (more? symbol accessibility pkg)

(generator-fn)

(unless more? (return))

(let ((l (multiple-value-list (find-symbol (symbol-name symbol)

package))))

(unless (equal l (list symbol accessibility))

(error "Symbol ~S not found as ~S in package ~A [~S]"

symbol accessibility (package-name package) l))

(push l generated-entries)))))

(unless (and (subsetp all-entries generated-entries :test #’equal)

(subsetp generated-entries all-entries :test #’equal))

(error "Generated entries and Do-Symbols entries don’t correspond"))

t))

The following function prints out every present symbol (possibly more than once):

(defun print-all-symbols ()

(with-package-iterator (next-symbol (list-all-packages)

:internal :external)

(loop

(multiple-value-bind (more? symbol) (next-symbol)

(if more?

(print symbol)

(return))))))

Packages 11–23

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Exceptional Situations:
with-package-iterator signals an error of type program-error if no symbol-types are supplied or if
a symbol-type is not recognized by the implementation is supplied.

The consequences are undefined if the local function named name established by
with-package-iterator is called after it has returned false as its primary value.

See Also:
Section 3.6 (Traversal Rules and Side Effects)

unexport Function

Syntax:
unexport symbols &optional package → t

Arguments and Values:
symbols—a designator for a list of symbols.

package—a package designator . The default is the current package.

Description:
unexport reverts external symbols in package to internal status; it undoes the effect of export.

unexport works only on symbols present in package, switching them back to internal status. If
unexport is given a symbol that is already accessible as an internal symbol in package, it does
nothing.

Examples:

(in-package "COMMON-LISP-USER") → #<PACKAGE "COMMON-LISP-USER">

(export (intern "CONTRABAND" (make-package ’temp)) ’temp) → T

(find-symbol "CONTRABAND") → NIL, NIL

(use-package ’temp) → T

(find-symbol "CONTRABAND") → CONTRABAND, :INHERITED

(unexport ’contraband ’temp) → T

(find-symbol "CONTRABAND") → NIL, NIL

Side Effects:
Package system is modified.

Affected By:
Current state of the package system.

11–24 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Exceptional Situations:
If unexport is given a symbol not accessible in package at all, an error of type package-error is
signaled.

The consequences are undefined if package is the KEYWORD package or the COMMON-LISP package.

See Also:
export, Section 11.1 (Package Concepts)

unintern Function

Syntax:
unintern symbol &optional package → generalized-boolean

Arguments and Values:
symbol—a symbol .

package—a package designator . The default is the current package.

generalized-boolean—a generalized boolean.

Description:
unintern removes symbol from package. If symbol is present in package, it is removed from
package and also from package’s shadowing symbols list if it is present there. If package is the
home package for symbol , symbol is made to have no home package. Symbol may continue to be
accessible in package by inheritance.

Use of unintern can result in a symbol that has no recorded home package, but that in fact is
accessible in some package. Common Lisp does not check for this pathological case, and such
symbols are always printed preceded by #:.

unintern returns true if it removes symbol , and nil otherwise.

Examples:

(in-package "COMMON-LISP-USER") → #<PACKAGE "COMMON-LISP-USER">

(setq temps-unpack (intern "UNPACK" (make-package ’temp))) → TEMP::UNPACK

(unintern temps-unpack ’temp) → T

(find-symbol "UNPACK" ’temp) → NIL, NIL

temps-unpack → #:UNPACK

Side Effects:
unintern changes the state of the package system in such a way that the consistency rules do not
hold across the change.

Packages 11–25

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Affected By:
Current state of the package system.

Exceptional Situations:
Giving a shadowing symbol to unintern can uncover a name conflict that had previously been
resolved by the shadowing. If package A uses packages B and C, A contains a shadowing symbol
x, and B and C each contain external symbols named x, then removing the shadowing symbol x
from A will reveal a name conflict between b:x and c:x if those two symbols are distinct. In this
case unintern will signal an error.

See Also:
Section 11.1 (Package Concepts)

in-package Macro

Syntax:
in-package name → package

Arguments and Values:
name—a string designator ; not evaluated.

package—the package named by name.

Description:
Causes the the package named by name to become the current package—that is, the value of
package. If no such package already exists, an error of type package-error is signaled.

Everything in-package does is also performed at compile time if the call appears as a top level
form.

Side Effects:
The variable *package* is assigned. If the in-package form is a top level form, this assignment
also occurs at compile time.

Exceptional Situations:
An error of type package-error is signaled if the specified package does not exist.

See Also:
package

11–26 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

unuse-package Function

Syntax:
unuse-package packages-to-unuse &optional package → t

Arguments and Values:
packages-to-unuse—a designator for a list of package designators.

package—a package designator . The default is the current package.

Description:
unuse-package causes package to cease inheriting all the external symbols of packages-to-unuse;
unuse-package undoes the effects of use-package. The packages-to-unuse are removed from the
use list of package.

Any symbols that have been imported into package continue to be present in package.

Examples:

(in-package "COMMON-LISP-USER") → #<PACKAGE "COMMON-LISP-USER">

(export (intern "SHOES" (make-package ’temp)) ’temp) → T

(find-symbol "SHOES") → NIL, NIL

(use-package ’temp) → T

(find-symbol "SHOES") → SHOES, :INHERITED

(find (find-package ’temp) (package-use-list ’common-lisp-user)) → #<PACKAGE "TEMP">

(unuse-package ’temp) → T

(find-symbol "SHOES") → NIL, NIL

Side Effects:
The use list of package is modified.

Affected By:
Current state of the package system.

See Also:
use-package, package-use-list

Packages 11–27

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

use-package Function

Syntax:
use-package packages-to-use &optional package → t

Arguments and Values:
packages-to-use—a designator for a list of package designators. The KEYWORD package may not be
supplied.

package—a package designator . The default is the current package. The package cannot be the
KEYWORD package.

Description:
use-package causes package to inherit all the external symbols of packages-to-use. The inherited
symbols become accessible as internal symbols of package.

Packages-to-use are added to the use list of package if they are not there already. All external
symbols in packages-to-use become accessible in package as internal symbols. use-package does
not cause any new symbols to be present in package but only makes them accessible by inheri-
tance.

use-package checks for name conflicts between the newly imported symbols and those already
accessible in package. A name conflict in use-package between two external symbols inherited by
package from packages-to-use may be resolved in favor of either symbol by importing one of them
into package and making it a shadowing symbol.

Examples:

(export (intern "LAND-FILL" (make-package ’trash)) ’trash) → T

(find-symbol "LAND-FILL" (make-package ’temp)) → NIL, NIL

(package-use-list ’temp) → (#<PACKAGE "TEMP">)

(use-package ’trash ’temp) → T

(package-use-list ’temp) → (#<PACKAGE "TEMP"> #<PACKAGE "TRASH">)

(find-symbol "LAND-FILL" ’temp) → TRASH:LAND-FILL, :INHERITED

Side Effects:
The use list of package may be modified.

See Also:
unuse-package, package-use-list, Section 11.1 (Package Concepts)

Notes:
It is permissible for a package P1 to use a package P2 even if P2 already uses P1. The using of
packages is not transitive, so no problem results from the apparent circularity.

11–28 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

defpackage

defpackage Macro

Syntax:
defpackage defined-package-name [[↓option]] → package

option::={(:nicknames {nickname}*)}* |
(:documentation string) |
{(:use {package-name}*)}* |
{(:shadow {↓symbol-name}*)}* |
{(:shadowing-import-from package-name {↓symbol-name}*)}* |
{(:import-from package-name {↓symbol-name}*)}* |
{(:export {↓symbol-name}*)}* |
{(:intern {↓symbol-name}*)}* |
(:size integer)

Arguments and Values:
defined-package-name—a string designator .

package-name—a package designator .

nickname—a string designator .

symbol-name—a string designator .

package—the package named package-name.

Description:
defpackage creates a package as specified and returns the package.

If defined-package-name already refers to an existing package, the name-to-package mapping
for that name is not changed. If the new definition is at variance with the current state of that
package, the consequences are undefined; an implementation might choose to modify the existing
package to reflect the new definition. If defined-package-name is a symbol , its name is used.

The standard options are described below.

:nicknames

The arguments to :nicknames set the package’s nicknames to the supplied names.

:documentation

The argument to :documentation specifies a documentation string ; it is attached as a

Packages 11–29

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

defpackage

documentation string to the package. At most one :documentation option can appear in a
single defpackage form.

:use

The arguments to :use set the packages that the package named by package-name will
inherit from. If :use is not supplied, it defaults to the same implementation-dependent
value as the :use argument to make-package.

:shadow

The arguments to :shadow, symbol-names, name symbols that are to be created in the
package being defined. These symbols are added to the list of shadowing symbols effec-
tively as if by shadow.

:shadowing-import-from

The symbols named by the argument symbol-names are found (involving a lookup as
if by find-symbol) in the specified package-name. The resulting symbols are imported
into the package being defined, and placed on the shadowing symbols list as if by
shadowing-import. In no case are symbols created in any package other than the one
being defined.

:import-from

The symbols named by the argument symbol-names are found in the package named
by package-name and they are imported into the package being defined. In no case are
symbols created in any package other than the one being defined.

:export

The symbols named by the argument symbol-names are found or created in the package
being defined and exported . The :export option interacts with the :use option, since
inherited symbols can be used rather than new ones created. The :export option interacts
with the :import-from and :shadowing-import-from options, since imported symbols can
be used rather than new ones created. If an argument to the :export option is accessible
as an (inherited) internal symbol via use-package, that the symbol named by symbol-
name is first imported into the package being defined, and is then exported from that
package.

:intern

The symbols named by the argument symbol-names are found or created in the package
being defined. The :intern option interacts with the :use option, since inherited symbols
can be used rather than new ones created.

:size

11–30 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

defpackage

The argument to the :size option declares the approximate number of symbols expected
in the package. This is an efficiency hint only and might be ignored by an implementa-
tion.

The order in which the options appear in a defpackage form is irrelevant. The order in which
they are executed is as follows:

1. :shadow and :shadowing-import-from.
2. :use.
3. :import-from and :intern.
4. :export.

Shadows are established first, since they might be necessary to block spurious name conflicts
when the :use option is processed. The :use option is executed next so that :intern and :export

options can refer to normally inherited symbols. The :export option is executed last so that it
can refer to symbols created by any of the other options; in particular, shadowing symbols and
imported symbols can be made external.

If a defpackage form appears as a top level form, all of the actions normally performed by this
macro at load time must also be performed at compile time.

Examples:

(defpackage "MY-PACKAGE"

(:nicknames "MYPKG" "MY-PKG")

(:use "COMMON-LISP")

(:shadow "CAR" "CDR")

(:shadowing-import-from "VENDOR-COMMON-LISP" "CONS")

(:import-from "VENDOR-COMMON-LISP" "GC")

(:export "EQ" "CONS" "FROBOLA")

)

(defpackage my-package

(:nicknames mypkg :MY-PKG) ; remember Common Lisp conventions for case

(:use common-lisp) ; conversion on symbols

(:shadow CAR :cdr #:cons)

(:export "CONS") ; this is the shadowed one.

)

Affected By:
Existing packages.

Exceptional Situations:
If one of the supplied :nicknames already refers to an existing package, an error of type
package-error is signaled.

Packages 11–31

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

defpackage

An error of type program-error should be signaled if :size or :documentation appears more than
once.

Since implementations might allow extended options an error of type program-error should be
signaled if an option is present that is not actually supported in the host implementation.

The collection of symbol-name arguments given to the options :shadow, :intern, :import-from,
and :shadowing-import-from must all be disjoint; additionally, the symbol-name arguments given
to :export and :intern must be disjoint. Disjoint in this context is defined as no two of the
symbol-names being string= with each other. If either condition is violated, an error of type
program-error should be signaled.

For the :shadowing-import-from and :import-from options, a correctable error of type
package-error is signaled if no symbol is accessible in the package named by package-name for
one of the argument symbol-names.

Name conflict errors are handled by the underlying calls to make-package, use-package, import,
and export. See Section 11.1 (Package Concepts).

See Also:
documentation, Section 11.1 (Package Concepts), Section 3.2 (Compilation)

Notes:
The :intern option is useful if an :import-from or a :shadowing-import-from option in a subse-
quent call to defpackage (for some other package) expects to find these symbols accessible but not
necessarily external.

It is recommended that the entire package definition is put in a single place, and that all
the package definitions of a program are in a single file. This file can be loaded before load-
ing or compiling anything else that depends on those packages. Such a file can be read in the
COMMON-LISP-USER package, avoiding any initial state issues.

defpackage cannot be used to create two “mutually recursive” packages, such as:

(defpackage my-package

(:use common-lisp your-package) ;requires your-package to exist first

(:export "MY-FUN"))

(defpackage your-package

(:use common-lisp)

(:import-from my-package "MY-FUN") ;requires my-package to exist first

(:export "MY-FUN"))

However, nothing prevents the user from using the package-affecting functions such as
use-package, import, and export to establish such links after a more standard use of defpackage.

The macroexpansion of defpackage could usefully canonicalize the names into strings, so that
even if a source file has random symbols in the defpackage form, the compiled file would only
contain strings.

11–32 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Frequently additional implementation-dependent options take the form of a keyword standing
by itself as an abbreviation for a list (keyword T); this syntax should be properly reported as an
unrecognized option in implementations that do not support it.

do-symbols, do-external-symbols, do-all-symbols
Macro

Syntax:
do-symbols (var [package [result-form]])

{declaration}* {tag | statement}*
→ {result}*

do-external-symbols (var [package [result-form]])
{declaration}* {tag | statement}*

→ {result}*
do-all-symbols (var [result-form])

{declaration}* {tag | statement}*
→ {result}*

Arguments and Values:
var—a variable name; not evaluated.

package—a package designator ; evaluated. The default in do-symbols and do-external-symbols
is the current package.

result-form—a form; evaluated as described below. The default is nil.

declaration—a declare expression; not evaluated.

tag—a go tag ; not evaluated.

statement—a compound form; evaluated as described below.

results—the values returned by the result-form if a normal return occurs, or else, if an explicit
return occurs, the values that were transferred.

Description:
do-symbols, do-external-symbols, and do-all-symbols iterate over the symbols of packages. For
each symbol in the set of packages chosen, the var is bound to the symbol , and the statements in
the body are executed. When all the symbols have been processed, result-form is evaluated and
returned as the value of the macro.

Packages 11–33

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

do-symbols, do-external-symbols, do-all-symbols

do-symbols iterates over the symbols accessible in package. Statements may execute more than
once for symbols that are inherited from multiple packages.

do-all-symbols iterates on every registered package. do-all-symbols will not process every symbol
whatsoever, because a symbol not accessible in any registered package will not be processed.
do-all-symbols may cause a symbol that is present in several packages to be processed more than
once.

do-external-symbols iterates on the external symbols of package.

When result-form is evaluated, var is bound and has the value nil.

An implicit block named nil surrounds the entire do-symbols, do-external-symbols, or
do-all-symbols form. return or return-from may be used to terminate the iteration prema-
turely.

If execution of the body affects which symbols are contained in the set of packages over which
iteration is occurring, other than to remove the symbol currently the value of var by using
unintern, the consequences are undefined.

For each of these macros, the scope of the name binding does not include any initial value form,
but the optional result forms are included.

Any tag in the body is treated as with tagbody.

Examples:

(make-package ’temp :use nil) → #<PACKAGE "TEMP">

(intern "SHY" ’temp) → TEMP::SHY, NIL ;SHY will be an internal symbol

;in the package TEMP

(export (intern "BOLD" ’temp) ’temp) → T ;BOLD will be external

(let ((lst ()))

(do-symbols (s (find-package ’temp)) (push s lst))

lst)

→ (TEMP::SHY TEMP:BOLD)
or→ (TEMP:BOLD TEMP::SHY)

(let ((lst ()))

(do-external-symbols (s (find-package ’temp) lst) (push s lst))

lst)

→ (TEMP:BOLD)

(let ((lst ()))

(do-all-symbols (s lst)

(when (eq (find-package ’temp) (symbol-package s)) (push s lst)))

lst)

→ (TEMP::SHY TEMP:BOLD)
or→ (TEMP:BOLD TEMP::SHY)

11–34 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

See Also:
intern, export, Section 3.6 (Traversal Rules and Side Effects)

intern Function

Syntax:
intern string &optional package → symbol, status

Arguments and Values:
string—a string .

package—a package designator . The default is the current package.

symbol—a symbol .

status—one of :inherited, :external, :internal, or nil.

Description:
intern enters a symbol named string into package. If a symbol whose name is the same as string
is already accessible in package, it is returned. If no such symbol is accessible in package, a new
symbol with the given name is created and entered into package as an internal symbol , or as an
external symbol if the package is the KEYWORD package; package becomes the home package of the
created symbol .

The first value returned by intern, symbol , is the symbol that was found or created. The meaning
of the secondary value, status, is as follows:

:internal

The symbol was found and is present in package as an internal symbol .

:external

The symbol was found and is present as an external symbol .

:inherited

The symbol was found and is inherited via use-package (which implies that the symbol is
internal).

nil

No pre-existing symbol was found, so one was created.

Packages 11–35

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

It is implementation-dependent whether the string that becomes the new symbol ’s name
is the given string or a copy of it. Once a string has been given as the string argument to
intern in this situation where a new symbol is created, the consequences are undefined if
a subsequent attempt is made to alter that string .

Examples:

(in-package "COMMON-LISP-USER") → #<PACKAGE "COMMON-LISP-USER">

(intern "Never-Before") → |Never-Before|, NIL

(intern "Never-Before") → |Never-Before|, :INTERNAL

(intern "NEVER-BEFORE" "KEYWORD") → :NEVER-BEFORE, NIL

(intern "NEVER-BEFORE" "KEYWORD") → :NEVER-BEFORE, :EXTERNAL

See Also:
find-symbol, read, symbol, unintern, Section 2.3.4 (Symbols as Tokens)

Notes:
intern does not need to do any name conflict checking because it never creates a new symbol if
there is already an accessible symbol with the name given.

package-name Function

Syntax:
package-name package → name

Arguments and Values:
package—a package designator .

name—a string or nil.

Description:
package-name returns the string that names package, or nil if the package designator is a
package object that has no name (see the function delete-package).

Examples:

(in-package "COMMON-LISP-USER") → #<PACKAGE "COMMON-LISP-USER">

(package-name *package*) → "COMMON-LISP-USER"

(package-name (symbol-package :test)) → "KEYWORD"

(package-name (find-package ’common-lisp)) → "COMMON-LISP"

(defvar *foo-package* (make-package "FOO"))

11–36 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(rename-package "FOO" "FOO0")

(package-name *foo-package*) → "FOO0"

Exceptional Situations:
Should signal an error of type type-error if package is not a package designator .

package-nicknames Function

Syntax:
package-nicknames package → nicknames

Arguments and Values:
package—a package designator .

nicknames—a list of strings.

Description:
Returns the list of nickname strings for package, not including the name of package.

Examples:

(package-nicknames (make-package ’temporary

:nicknames ’("TEMP" "temp")))

→ ("temp" "TEMP")

Exceptional Situations:
Should signal an error of type type-error if package is not a package designator .

package-shadowing-symbols Function

Syntax:
package-shadowing-symbols package → symbols

Arguments and Values:
package—a package designator .

symbols—a list of symbols.

Packages 11–37

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Description:
Returns a list of symbols that have been declared as shadowing symbols in package by shadow or
shadowing-import (or the equivalent defpackage options). All symbols on this list are present in
package.

Examples:

(package-shadowing-symbols (make-package ’temp)) → ()

(shadow ’cdr ’temp) → T

(package-shadowing-symbols ’temp) → (TEMP::CDR)

(intern "PILL" ’temp) → TEMP::PILL, NIL

(shadowing-import ’pill ’temp) → T

(package-shadowing-symbols ’temp) → (PILL TEMP::CDR)

Exceptional Situations:
Should signal an error of type type-error if package is not a package designator .

See Also:
shadow, shadowing-import

Notes:
Whether the list of symbols is fresh is implementation-dependent .

package-use-list Function

Syntax:
package-use-list package → use-list

Arguments and Values:
package—a package designator .

use-list—a list of package objects.

Description:
Returns a list of other packages used by package.

Examples:

(package-use-list (make-package ’temp)) → (#<PACKAGE "COMMON-LISP">)

(use-package ’common-lisp-user ’temp) → T

(package-use-list ’temp) → (#<PACKAGE "COMMON-LISP"> #<PACKAGE "COMMON-LISP-USER">)

11–38 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Exceptional Situations:
Should signal an error of type type-error if package is not a package designator .

See Also:
use-package, unuse-package

package-used-by-list Function

Syntax:
package-used-by-list package → used-by-list

Arguments and Values:
package—a package designator .

used-by-list—a list of package objects.

Description:
package-used-by-list returns a list of other packages that use package.

Examples:

(package-used-by-list (make-package ’temp)) → ()

(make-package ’trash :use ’(temp)) → #<PACKAGE "TRASH">

(package-used-by-list ’temp) → (#<PACKAGE "TRASH">)

Exceptional Situations:
Should signal an error of type type-error if package is not a package.

See Also:
use-package, unuse-package

Packages 11–39

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

packagep Function

Syntax:
packagep object → generalized-boolean

Arguments and Values:
object—an object .

generalized-boolean—a generalized boolean.

Description:
Returns true if object is of type package; otherwise, returns false.

Examples:

(packagep *package*) → true
(packagep ’common-lisp) → false
(packagep (find-package ’common-lisp)) → true

Notes:

(packagep object) ≡ (typep object ’package)

∗package∗ Variable

Value Type:
a package object .

Initial Value:
the COMMON-LISP-USER package.

Description:
Whatever package object is currently the value of *package* is referred to as the current package.

Examples:

(in-package "COMMON-LISP-USER") → #<PACKAGE "COMMON-LISP-USER">

package → #<PACKAGE "COMMON-LISP-USER">

(make-package "SAMPLE-PACKAGE" :use ’("COMMON-LISP"))

→ #<PACKAGE "SAMPLE-PACKAGE">

(list

11–40 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(symbol-package

(let ((*package* (find-package ’sample-package)))

(setq *some-symbol* (read-from-string "just-testing"))))

package)

→ (#<PACKAGE "SAMPLE-PACKAGE"> #<PACKAGE "COMMON-LISP-USER">)

(list (symbol-package (read-from-string "just-testing"))

package)

→ (#<PACKAGE "COMMON-LISP-USER"> #<PACKAGE "COMMON-LISP-USER">)

(eq ’foo (intern "FOO")) → true
(eq ’foo (let ((*package* (find-package ’sample-package)))

(intern "FOO")))

→ false

Affected By:
load, compile-file, in-package

See Also:
compile-file, in-package, load, package

package-error Condition Type

Class Precedence List:
package-error, error, serious-condition, condition, t

Description:
The type package-error consists of error conditions related to operations on packages. The
offending package (or package name) is initialized by the :package initialization argument to
make-condition, and is accessed by the function package-error-package.

See Also:
package-error-package, Chapter 9 (Conditions)

Packages 11–41

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

package-error-package

package-error-package Function

Syntax:
package-error-package condition → package

Arguments and Values:
condition—a condition of type package-error.

package—a package designator .

Description:
Returns a designator for the offending package in the situation represented by the condition.

Examples:

(package-error-package

(make-condition ’package-error

:package (find-package "COMMON-LISP")))

→ #<Package "COMMON-LISP">

See Also:
package-error

11–42 Programming Language—Common Lisp

