Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Programming Language—Common Lisp

20. Files

Files i



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

ii Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

20.1

20.1.1

20.1.2

File System Concepts

This section describes the Common Lisp interface to file systems. The model used by this in-
terface assumes that files are named by filenames, that a filename can be represented by a
pathname object, and that given a pathname a stream can be constructed that connects to a file
whose filename it represents.

For information about opening and closing files, and manipulating their contents, see Chapter 21
(Streams).

Figure 20-1 lists some operators that are applicable to files and directories.

compile-file file-length open
delete-file file-position probe-file
directory file-write-date rename-file
file-author load with-open-file

Figure 20-1. File and Directory Operations

Coercion of Streams to Pathnames

A stream associated with a file is either a file stream or a synonym stream whose target is a
stream associated with a file. Such streams can be used as pathname designators.

Normally, when a stream associated with a file is used as a pathname designator, it denotes the
pathname used to open the file; this may be, but is not required to be, the actual name of the

file.

Some functions, such as truename and delete-file, coerce streams to pathnames in a different way
that involves referring to the actual file that is open, which might or might not be the file whose
name was opened originally. Such special situations are always notated specifically and are not
the default.

File Operations on Open and Closed Streams

Many functions that perform file operations accept either open or closed streams as arguments;
see Section 21.1.3 (Stream Arguments to Standardized Functions).

Of these, the functions in Figure 202 treat open and closed streams differently.

delete-file file-author probe-file
directory file-write-date truename

Figure 20-2. File Functions that Treat Open and Closed Streams Differently

Files 20-1



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

20.1.3

Since treatment of open streams by the file system may vary considerably between implementa-
tions, however, a closed stream might be the most reliable kind of argument for some of these
functions—in particular, those in Figure 20-3. For example, in some file systems, open files are
written under temporary names and not renamed until closed and/or are held invisible until
closed. In general, any code that is intended to be portable should use such functions carefully.

directory probe-file truename

Figure 20-3. File Functions where Closed Streams Might Work Best

Truenames
Many file systems permit more than one filename to designate a particular file.

Even where multiple names are possible, most file systems have a convention for generating a
canonical filename in such situations. Such a canonical filename (or the pathname representing
such a filename) is called a truename.

The truename of a file may differ from other filenames for the file because of symbolic links,
version numbers, logical device translations in the file system, logical pathname translations
within Common Lisp, or other artifacts of the file system.

The truename for a file is often, but not necessarily, unique for each file. For instance, a Unix file
with multiple hard links could have several truenames.

20.1.3.1 Examples of Truenames

For example, a DEC TOPS-20 system with files PS:<JOE>F00.TXT.1 and PS:<JOE>F00.TXT.2
might permit the second file to be referred to as PS:<JOE>F00.TXT.0, since the “.0” notation
denotes “newest” version of several files. In the same file system, a “logical device” “JOE:”
might be taken to refer to PS:<JOE>” and so the names JOE:F00.TXT.2 or JOE:F00.TXT.0 might
refer to PS:<JOE>F00.TXT.2. In all of these cases, the truename of the file would probably be
PS:<JOE>F00.TXT.2.

If a file is a symbolic link to another file (in a file system permitting such a thing), it is conven-
tional for the truename to be the canonical name of the file after any symbolic links have been
followed; that is, it is the canonical name of the file whose contents would become available if an
input stream to that file were opened.

In the case of a file still being created (that is, of an output stream open to such a file), the exact
truename of the file might not be known until the stream is closed. In this case, the function
truename might return different values for such a stream before and after it was closed. In fact,
before it is closed, the name returned might not even be a valid name in the file system—for
example, while a file is being written, it might have version :newest and might only take on

a specific numeric value later when the file is closed even in a file system where all files have
numeric versions.

20—2 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

directory Function

Syntax:

directory pathspec &key — pathnames

Arguments and Values:
pathspec—a pathname designator, which may contain wild components.

pathnames—a, list of physical pathnames.

Description:
Determines which, if any, files that are present in the file system have names matching pathspec,
and returns a fresh list of pathnames corresponding to the truenames of those files.

An implementation may be extended to accept implementation-defined keyword arguments to
directory.

Affected By:

The host computer’s file system.

Exceptional Situations:
If the attempt to obtain a directory listing is not successful, an error of type file-error is signaled.

See Also:

pathname, logical-pathname, ensure-directories-exist, Section 20.1 (File System Concepts),
Section 21.1.1.1.2 (Open and Closed Streams), Section 19.1.2 (Pathnames as Filenames)

Notes:

If the pathspec is not wild, the resulting list will contain either zero or one elements.

Common Lisp specifies “¢key” in the argument list to directory even though no standardized
keyword arguments to directory are defined. “:allow-other-keys t” may be used in conforming
programs in order to quietly ignore any additional keywords which are passed by the program but
not supported by the tmplementation.

probe-file Function

Syntax:

probe-file pathspec — truename

Arguments and Values:

Files 20-3



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

pathspec—a pathname designator.

truename—a, physical pathname or nil.

Description:
probe-file tests whether a file exists.

probe-file returns false if there is no file named pathspec, and otherwise returns the truename of
pathspec.

If the pathspec designator is an open stream, then probe-file produces the truename of its
associated file. If pathspec is a stream, whether open or closed, it is coerced to a pathname as if
by the function pathname.

Affected By:

The host computer’s file system.

Exceptional Situations:
An error of type file-error is signaled if pathspec is wild.

An error of type file-error is signaled if the file system cannot perform the requested operation.

See Also:

truename, open, ensure-directories-exist, pathname, logical-pathname, Section 20.1 (File
System Concepts), Section 21.1.1.1.2 (Open and Closed Streams), Section 19.1.2 (Pathnames as
Filenames)

ensure-directories-exist Function

Syntax:

ensure-directories-exist pathspec &key verbose — pathspec, created

Arguments and Values:
pathspec—a pathname designator.

verbose—a generalized boolean.
created—a generalized boolean.

Description:

Tests whether the directories containing the specified file actually exist, and attempts to create
them if they do not.

20-4 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

If the containing directories do not exist and if verbose is true, then the implementation is
permitted (but not required) to perform output to standard output saying what directories were
created. If the containing directories exist, or if verbose is false, this function performs no output.

The primary value is the given pathspec so that this operation can be straightforwardly composed
with other file manipulation expressions. The secondary value, created, is true if any directories
were created.

Affected By:

The host computer’s file system.

Exceptional Situations:
An error of type file-error is signaled if the host, device, or directory part of pathspec is wild.

If the directory creation attempt is not successful, an error of type file-error is signaled; if this
occurs, it might be the case that none, some, or all of the requested creations have actually
occurred within the file system.

See Also:

probe-file, open, Section 19.1.2 (Pathnames as Filenames)

truename Function

Syntax:

truename filespec — truename

Arguments and Values:
filespec—a pathname designator.

truename—a physical pathname.

Description:
truename tries to find the file indicated by filespec and returns its truename. If the filespec
designator is an open stream, its associated file is used. If filespec is a stream, truename can be
used whether the stream is open or closed. It is permissible for truename to return more specific
information after the stream is closed than when the stream was open. If filespec is a pathname
it represents the name used to open the file. This may be, but is not required to be, the actual
name of the file.

Examples:

;; An example involving version numbers. Note that the precise nature of
;3 the truename is implementation-dependent while the file is still open.
(with-open-file (stream ">vistor>test.text.newest")

Files 20-5



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(values (pathname stream)
(truename stream)))
— #P"S:>vistor>test.text.newest", #P"S:>vistor>test.text.1"
N #P"S:>vistor>test.text.newest", #P"S:>vistor>test.text.newest"
RN #P"S:>vistor>test.text.newest", #P"S:>vistor>_temp_._temp_.1"

;3 In this case, the file is closed when the truename is tried, so the
;3 truename information is reliable.
(with-open-file (stream ">vistor>test.text.newest")
(close stream)
(values (pathname stream)
(truename stream)))
— #P"S:>vistor>test.text.newest", #P"S:>vistor>test.text.1"

;; An example involving TOP-20’s implementation-dependent concept
;; of logical devices -- in this case, "DOC:" is shorthand for
;5 "PS:<DOCUMENTATION>"
(with-open-file (stream "CMUC::DOC:DUMPER.HLP")
(values (pathname stream)
(truename stream)))
— #P"CMUC: :DOC:DUMPER.HLP", #P"CMUC: :PS:<DOCUMENTATION>DUMPER.HLP.13"

Exceptional Situations:

An error of type file-error is signaled if an appropriate file cannot be located within the file
system for the given filespec, or if the file system cannot perform the requested operation.

An error of type file-error is signaled if pathname is wild.

See Also:
pathname, logical-pathname, Section 20.1 (File System Concepts), Section 19.1.2 (Pathnames as
Filenames)

Notes:

truename may be used to account for any filename translations performed by the file system.

ﬁle-aut hOI’ Function

Syntax:

file-author pathspec — author

Arguments and Values:
pathspec—a pathname designator.

20-6 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

author—a string or nil.

Description:

Returns a string naming the author of the file specified by pathspec, or nil if the author’s name
cannot be determined.

Examples:

(with-open-file (stream ">relativity>general.text")
(file-author s))
— "albert"

Affected By:

The host computer’s file system.

Other users of the file named by pathspec.

Exceptional Situations:
An error of type file-error is signaled if pathspec is wild.

An error of type file-error is signaled if the file system cannot perform the requested operation.

See Also:
pathname, logical-pathname, Section 20.1 (File System Concepts), Section 19.1.2 (Pathnames as
Filenames)
file-write-date Function
Syntax:

file-write-date pathspec — date

Arguments and Values:
pathspec—a pathname designator.

date—a universal time or nil.

Description:

Returns a universal time representing the time at which the file specified by pathspec was last
written (or created), or returns nil if such a time cannot be determined.

Examples:

(with-open-file (s "noel.text"
:direction :output :if-exists :error)

Files 20-7



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(format s "“&Dear Santa,”2)I was good this year.
Please leave lots of toys. 2}Love, Sue”
~2%attachments: milk, cookies™%")

(truename s))

— #P"CUPID:/susan/noel.text"

(with-open-file (s "noel.text")

(file-write-date s))

— 2902600800

Affected By:

The host computer’s file system.

Exceptional Situations:
An error of type file-error is signaled if pathspec is wild.

An error of type file-error is signaled if the file system cannot perform the requested operation.

See Also:

Section 25.1.4.2 (Universal Time), Section 19.1.2 (Pathnames as Filenames)

rename-file Function

Syntax:

rename-file filespec new-name — defaulted-new-name, old-truename, new-truename

Arguments and Values:
filespec—a pathname designator.

new-name—a pathname designator other than a stream.
defaulted-new-name—a pathname

old-truename—a physical pathname.

new-truename—a physical pathname.

Description:
rename-file modifies the file system in such a way that the file indicated by filespec is renamed to
defaulted-new-name.

It is an error to specify a filename containing a wild component, for filespec to contain a nil
component where the file system does not permit a nil component, or for the result of defaulting
missing components of new-name from filespec to contain a nil component where the file system
does not permit a nil component.

20-8 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

If new-name is a logical pathname, rename-file returns a logical pathname as its primary value.

rename-file returns three values if successful. The primary value, defaulted-new-name, is the re-
sulting name which is composed of new-name with any missing components filled in by performing
a merge-pathnames operation using filespec as the defaults. The secondary value, old-truename,
is the truename of the file before it was renamed. The tertiary value, new-truename, is the true-
name of the file after it was renamed.

If the filespec designator is an open stream, then the stream itself and the file associated with it
are affected (if the file system permits).

Examples:

;; An example involving logical pathnames.
(with-open-file (stream "sys:chemistry;lead.text"
:direction :output :if-exists :error)
(princ "eureka" stream)
(values (pathname stream) (truename stream)))
— #P"SYS:CHEMISTRY;LEAD.TEXT.NEWEST", #P"Q:>sys>chem>lead.text.1"
(rename-file "sys:chemistry;lead.text" "gold.text")
— #P"SYS:CHEMISTRY;GOLD.TEXT.NEWEST",
#P"Q:>sys>chem>lead.text.1",
#P"Q:>sys>chem>gold.text.1"

Exceptional Situations:
If the renaming operation is not successful, an error of type file-error is signaled.

An error of type file-error might be signaled if filespec is wild.

See Also:

truename, pathname, logical-pathname, Section 20.1 (File System Concepts), Section 19.1.2
(Pathnames as Filenames)

delete-file Function

Syntax:
delete-file filespec — t

Arguments and Values:
filespec—a pathname designator.

Description:
Deletes the file specified by filespec.

Files 20-9



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

If the filespec designator is an open stream, then filespec and the file associated with it are
affected (if the file system permits), in which case filespec might be closed immediately, and
the deletion might be immediate or delayed until filespec is explicitly closed, depending on the
requirements of the file system.

It is implementation-dependent whether an attempt to delete a nonexistent file is considered to be
successful.

delete-file returns true if it succeeds, or signals an error of type file-error if it does not.

The consequences are undefined if filespec has a wild component, or if filespec has a nil compo-
nent and the file system does not permit a nil component.

Examples:

(with-open-file (s "delete-me.text" :direction :output :if-exists :error))

— NIL

(setq p (probe-file "delete-me.text")) — #P"R:>fred>delete-me.text.1"

(delete-file p) — T

(probe-file "delete-me.text") — false

(with-open-file (s "delete-me.text" :direction :output :if-exists :error)
(delete-file s))

— T

(probe-file "delete-me.text") — false

Exceptional Situations:
If the deletion operation is not successful, an error of type file-error is signaled.

An error of type file-error might be signaled if filespec is wild.

See Also:
pathname, logical-pathname, Section 20.1 (File System Concepts), Section 19.1.2 (Pathnames as
Filenames)
file-error Condition Type

Class Precedence List:

file-error, error, serious-condition, condition, t

Description:
The type file-error consists of error conditions that occur during an attempt to open or close
a file, or during some low-level transactions with a file system. The “offending pathname” is
initialized by the :pathname initialization argument to make-condition, and is accessed by the
function file-error-pathname.

20-10 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

See Also:

file-error-pathname, open, probe-file, directory, ensure-directories-exist

file-error-pathname

Function

Syntax:

file-error-pathname condition — pathspec

Arguments and Values:
condition—a condition of type file-error.

pathspec—a pathname designator.

Description:
Returns the “offending pathname” of a condition of type file-error.

Exceptional Situations:

See Also:
file-error, Chapter 9 (Conditions)

Files

20-11



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

20-12 Programming Language—Common Lisp



