Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Programming Language—Common Lisp

6. Iteration

Iteration 1

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

ii Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

6.1 The LOOP Facility

6.1.1 Overview of the Loop Facility

6.1.1.1

The loop macro performs iteration.

Simple vs Extended Loop

loop forms are partitioned into two categories: simple loop forms and extended loop forms.

6.1.1.1.1 Simple Loop

A simple loop form is one that has a body containing only compound forms. Each form is
evaluated in turn from left to right. When the last form has been evaluated, then the first form is
evaluated again, and so on, in a never-ending cycle. A simple loop form establishes an implicit
block named nil. The execution of a simple loop can be terminated by explicitly transfering
control to the implicit block (using return or return-from) or to some ezit point outside of the
block (e.g., using throw, go, or return-from).

6.1.1.1.2 Extended Loop

6.1.1.2

An extended loop form is one that has a body containing atomic expressions. When the loop
macro processes such a form, it invokes a facility that is commonly called “the Loop Facility.”

The Loop Facility provides standardized access to mechanisms commonly used in iterations
through Loop schemas, which are introduced by loop keywords.

The body of an extended loop form is divided into loop clauses, each which is in turn made up of
loop keywords and forms.

Loop Keywords

Loop keywords are not true keywordsy; they are special symbols, recognized by name rather than
object identity, that are meaningful only to the loop facility. A loop keyword is a symbol but is
recognized by its name (not its identity), regardless of the packages in which it is accessible.

In general, loop keywords are not external symbols of the COMMON-LISP package, except in the
coincidental situation that a symbol with the same name as a loop keyword was needed for some
other purpose in Common Lisp. For example, there is a symbol in the COMMON-LISP package whose
name is "UNLESS" but not one whose name is "UNTIL".

If no loop keywords are supplied in a loop form, the Loop Facility executes the loop body repeat-
edly; see Section 6.1.1.1.1 (Simple Loop).

Iteration 6-1

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

6.1.1.3

6.1.1.4

Parsing Loop Clauses

The syntactic parts of an extended loop form are called clauses; the rules for parsing are deter-
mined by that clause’s keyword. The following example shows a loop form with six clauses:

(loop for i from 1 to (compute-top-value) ; first clause
while (not (unacceptable i)) ; second clause
collect (square i) ; third clause
do (format t "Working on "D now" i) ; fourth clause
when (evenp i) ; fifth clause

do (format t "°D is a non-odd number" i)
finally (format t "About to exit!")) ; sixth clause

Each loop keyword introduces either a compound loop clause or a simple loop clause that can con-
sist of a loop keyword followed by a single form. The number of forms in a clause is determined
by the loop keyword that begins the clause and by the auxiliary keywords in the clause. The
keywords do, doing, initially, and finally are the only loop keywords that can take any number
of forms and group them as an implicit progn.

Loop clauses can contain auxiliary keywords, which are sometimes called prepositions. For
example, the first clause in the code above includes the prepositions from and to, which mark the
value from which stepping begins and the value at which stepping ends.

For detailed information about loop syntax, see the macro loop.

Expanding Loop Forms

A loop macro form expands into a form containing one or more binding forms (that establish
bindings of loop variables) and a block and a tagbody (that express a looping control structure).
The variables established in loop are bound as if by let or lambda.

Implementations can interleave the setting of initial values with the bindings. However, the
assignment of the initial values is always calculated in the order specified by the user. A variable
is thus sometimes bound to a meaningless value of the correct type, and then later in the prologue
it is set to the true initial value by using setq. One implication of this interleaving is that it

is implementation-dependent whether the lexical environment in which the initial value forms
(variously called the forml1, form2, form3, step-fun, vector, hash-table, and package) in any for-
as-subclause, except for-as-equals-then, are evaluated includes only the loop variables preceding
that form or includes more or all of the loop variables; the form1 and form2 in a for-as-equals-then
form includes the lexical environment of all the loop variables.

After the form is expanded, it consists of three basic parts in the tagbody: the loop prologue, the
loop body, and the loop epilogue.

Loop prologue

The loop prologue contains forms that are executed before iteration begins, such as
any automatic variable initializations prescribed by the variable clauses, along with any

6—2 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

6.1.1.5

initially clauses in the order they appear in the source.

Loop body

The loop body contains those forms that are executed during iteration, including
application-specific calculations, termination tests, and variable stepping;.

Loop epilogue

The loop epilogue contains forms that are executed after iteration terminates, such as
finally clauses, if any, along with any implicit return value from an accumulation clause
or an termination-test clause.

Some clauses from the source form contribute code only to the loop prologue; these clauses must
come before other clauses that are in the main body of the loop form. Others contribute code
only to the loop epilogue. All other clauses contribute to the final translated form in the same
order given in the original source form of the loop.

Expansion of the loop macro produces an implicit block named nil unless named is supplied. Thus,
return-from (and sometimes return) can be used to return values from loop or to exit loop.

Summary of Loop Clauses

Loop clauses fall into one of the following categories:

6.1.1.5.1 Summary of Variable Initialization and Stepping Clauses

The for and as constructs provide iteration control clauses that establish a variable to be initial-
ized. for and as clauses can be combined with the loop keyword and to get parallel initialization
and stepping:. Otherwise, the initialization and stepping; are sequential.

The with construct is similar to a single let clause. with clauses can be combined using the loop
keyword and to get parallel initialization.

For more information, see Section 6.1.2 (Variable Initialization and Stepping Clauses).

6.1.1.5.2 Summary of Value Accumulation Clauses

The collect (or collecting) construct takes one form in its clause and adds the value of that
form to the end of a list of values. By default, the list of values is returned when the loop
finishes.

The append (or appending) construct takes one form in its clause and appends the value of that
form to the end of a list of values. By default, the list of values is returned when the loop
finishes.

The nconc (or nconcing) construct is similar to the append construct, but its list values are
concatenated as if by the function nconc. By default, the list of values is returned when the loop
finishes.

Iteration 6—3

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

The sum (or summing) construct takes one form in its clause that must evaluate to a number and
accumulates the sum of all these numbers. By default, the cumulative sum is returned when the
loop finishes.

The count (or counting) construct takes one form in its clause and counts the number of times
that the form evaluates to true. By default, the count is returned when the loop finishes.

The minimize (or minimizing) construct takes one form in its clause and determines the minimum
value obtained by evaluating that form. By default, the minimum value is returned when the
loop finishes.

The maximize (or maximizing) construct takes one form in its clause and determines the maximum
value obtained by evaluating that form. By default, the maximum value is returned when the
loop finishes.

For more information, see Section 6.1.3 (Value Accumulation Clauses).

6.1.1.5.3 Summary of Termination Test Clauses

The for and as constructs provide a termination test that is determined by the iteration control
clause.

The repeat construct causes termination after a specified number of iterations. (It uses an
internal variable to keep track of the number of iterations.)

The while construct takes one form, a test, and terminates the iteration if the test evaluates to
false. A while clause is equivalent to the expression (if (not test) (loop-finish)).

The until construct is the inverse of while; it terminates the iteration if the test evaluates to any
non-nil value. An until clause is equivalent to the expression (if test (loop-finish)).

The always construct takes one form and terminates the loop if the form ever evaluates to false;
in this case, the loop form returns nil. Otherwise, it provides a default return value of t.

The never construct takes one form and terminates the loop if the form ever evaluates to true; in
this case, the loop form returns nil. Otherwise, it provides a default return value of t.

The thereis construct takes one form and terminates the loop if the form ever evaluates to a
non-nil object; in this case, the loop form returns that object. Otherwise, it provides a default
return value of nil.

If multiple termination test clauses are specified, the loop form terminates if any are satisfied.

For more information, see Section 6.1.4 (Termination Test Clauses).

6—4 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

6.1.1.5.4 Summary of Unconditional Execution Clauses

The do (or doing) construct evaluates all forms in its clause.

The return construct takes one form. Any values returned by the form are immediately returned
by the loop form. It is equivalent to the clause do (return-from block-name value), where block-
name is the name specified in a named clause, or nil if there is no named clause.

For more information, see Section 6.1.5 (Unconditional Execution Clauses).

6.1.1.5.5 Summary of Conditional Execution Clauses

The if and when constructs take one form as a test and a clause that is executed when the test
yields true. The clause can be a value accumulation, unconditional, or another conditional clause;
it can also be any combination of such clauses connected by the loop and keyword.

The loop unless construct is similar to the loop when construct except that it complements the
test result.

The loop else construct provides an optional component of if, when, and unless clauses that is
executed when an if or when test yields false or when an unless test yields true. The component
is one of the clauses described under if.

The loop end construct provides an optional component to mark the end of a conditional clause.

For more information, see Section 6.1.6 (Conditional Execution Clauses).

6.1.1.5.6 Summary of Miscellaneous Clauses

6.1.1.6

The loop named construct gives a name for the block of the loop.

The loop initially construct causes its forms to be evaluated in the loop prologue, which
precedes all loop code except for initial settings supplied by the constructs with, for, or as.

The loop finally construct causes its forms to be evaluated in the loop epilogue after normal
iteration terminates.

For more information, see Section 6.1.7 (Miscellaneous Clauses).

Order of Execution

With the exceptions listed below, clauses are executed in the loop body in the order in which
they appear in the source. Execution is repeated until a clause terminates the loop or until a
return, go, or throw form is encountered which transfers control to a point outside of the loop.
The following actions are exceptions to the linear order of execution:

e All variables are initialized first, regardless of where the establishing clauses appear in the
source. The order of initialization follows the order of these clauses.

Iteration 6-5

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

e The code for any initially clauses is collected into one progn in the order in which the
clauses appear in the source. The collected code is executed once in the loop prologue
after any implicit variable initializations.

e The code for any finally clauses is collected into one progn in the order in which the
clauses appear in the source. The collected code is executed once in the loop epilogue
before any implicit values from the accumulation clauses are returned. Explicit returns
anywhere in the source, however, will exit the loop without executing the epilogue code.

e A with clause introduces a variable binding and an optional initial value. The initial
values are calculated in the order in which the with clauses occur.

e Iteration control clauses implicitly perform the following actions:
— initialize variables;
— step variables, generally between each execution of the loop body;

— perform termination tests, generally just before the execution of the loop body.

6.1.1.7 Destructuring

The d-type-spec argument is used for destructuring. If the d-type-spec argument consists solely

of the type fixnum, float, t, or nil, the of-type keyword is optional. The of-type construct is
optional in these cases to provide backwards compatibility; thus, the following two expressions are
the same:

;535 This expression uses the old syntax for type specifiers.
(loop for i fixnum upfrom 3 ...)

;55 This expression uses the new syntax for type specifiers.
(loop for i of-type fixnum upfrom 3 ...)

;; Declare X and Y to be of type VECTOR and FIXNUM respectively.
(loop for (x y) of-type (vector fixnum)
in 1 do ...)

A type specifier for a destructuring pattern is a tree of type specifiers with the same shape as the
tree of variable names, with the following exceptions:

e When aligning the trees, an atom in the tree of type specifiers that matches a cons in the
variable tree declares the same type for each variable in the subtree rooted at the cons.

e A cons in the tree of type specifiers that matches an atom in the tree of variable names is
a compound type specifer.

Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Destructuring allows binding of a set of variables to a corresponding set of values anywhere that
a value can normally be bound to a single variable. During loop expansion, each variable in

the variable list is matched with the values in the values list. If there are more variables in the
variable list than there are values in the values list, the remaining variables are given a value of
nil. If there are more values than variables listed, the extra values are discarded.

To assign values from a list to the variables a, b, and c, the for clause could be used to bind the
variable numlist to the car of the supplied form, and then another for clause could be used to
bind the variables a, b, and c sequentially.

;; Collect values by using FOR constructs.
(loop for numlist in ’((1 2 4.0) (5 6 8.3) (8 9 10.4))
for a of-type integer = (first numlist)
and b of-type integer = (second numlist)
and c of-type float = (third numlist)
collect (list c b a))
— ((4.0 2 1) (8.3 6 5) (10.4 9 8))

Destructuring makes this process easier by allowing the variables to be bound in each loop
iteration. Types can be declared by using a list of type-spec arguments. If all the types are the
same, a shorthand destructuring syntax can be used, as the second example illustrates.

;3 Destructuring simplifies the process.
(loop for (a b c) of-type (integer integer float) in
’((1 2 4.0) (566 8.3) (89 10.4))
collect (list c b a))
— ((4.0 2 1) (8.3 6 5) (10.4 9 8))

;3 If all the types are the same, this way is even simpler.
(loop for (a b c) of-type float in
’((1.0 2.0 4.0) (5.0 6.0 8.3) (8.0 9.0 10.4))
collect (list c b a))
— ((4.0 2.0 1.0) (8.3 6.0 5.0) (10.4 9.0 8.0))

If destructuring is used to declare or initialize a number of groups of variables into types, the loop
keyword and can be used to simplify the process further. ;; Initialize and declare variables
in parallel by using the AND construct.
(loop with (a b) of-type float = ’(1.0 2.0)
and (c d) of-type integer = ’(3 4)
and (e f)
return (list a b c d e £))
— (1.0 2.0 3 4 NIL NIL)

If nil is used in a destructuring list, no variable is provided for its place.

(loop for (a nil b) = (1 2 3)

Iteration 6-7

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

6.1.1.8

do (return (list a b)))
— (1 3)

Note that dotted lists can specify destructuring.

(loop for (x . y) = (1 . 2)
do (return y))
— 2
(loop for ((a . b) (c . d)) of-type ((float . float) (integer . integer)) in
P(((1.2 . 2.4) (3. 4)) ((8.4. 4.6) (5. 6)))
collect (list a b ¢ d))
— ((1.2 2.4 34) (3.4 4.656))

An error of type program-error is signaled (at macro expansion time) if the same variable is
bound twice in any variable-binding clause of a single loop expression. Such variables include
local variables, iteration control variables, and variables found by destructuring.

Restrictions on Side-Effects

See Section 3.6 (Traversal Rules and Side Effects).

6.1.2 Variable Initialization and Stepping Clauses

6.1.2.1

Iteration Control

Iteration control clauses allow direction of loop iteration. The loop keywords for and as designate
iteration control clauses. Iteration control clauses differ with respect to the specification of
termination tests and to the initialization and stepping, of loop variables. Iteration clauses by
themselves do not cause the Loop Facility to return values, but they can be used in conjunction
with value-accumulation clauses to return values.

All variables are initialized in the loop prologue. A wvariable binding has lexical scope unless it is
proclaimed special; thus, by default, the variable can be accessed only by forms that lie textually
within the loop. Stepping assignments are made in the loop body before any other forms are
evaluated in the body.

The variable argument in iteration control clauses can be a destructuring list. A destructuring list
is a tree whose non-nil atoms are variable names. See Section 6.1.1.7 (Destructuring).

The iteration control clauses for, as, and repeat must precede any other loop clauses, except
initially, with, and named, since they establish variable bindings. When iteration control clauses
are used in a loop, the corresponding termination tests in the loop body are evaluated before any
other loop body code is executed.

If multiple iteration clauses are used to control iteration, variable initialization and stepping,
occur sequentially by default. The and construct can be used to connect two or more iteration

6—8 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

clauses when sequential binding and stepping; are not necessary. The iteration behavior of clauses
joined by and is analogous to the behavior of the macro do with respect to do*.

The for and as clauses iterate by using one or more local loop variables that are initialized to
some value and that can be modified or stepped; after each iteration. For these clauses, iteration
terminates when a local variable reaches some supplied value or when some other loop clause
terminates iteration. At each iteration, variables can be stepped; by an increment or a decrement
or can be assigned a new value by the evaluation of a form). Destructuring can be used to assign
values to variables during iteration.

The for and as keywords are synonyms; they can be used interchangeably. There are seven
syntactic formats for these constructs. In each syntactic format, the type of var can be supplied
by the optional type-spec argument. If var is a destructuring list, the type supplied by the type-
spec argument must appropriately match the elements of the list. By convention, for introduces
new iterations and as introduces iterations that depend on a previous iteration specification.

6.1.2.1.1 The for-as-arithmetic subclause

In the for-as-arithmetic subclause, the for or as construct iterates from the value supplied by
form1 to the value supplied by form2 in increments or decrements denoted by form3. Each
expression is evaluated only once and must evaluate to a number. The variable var is bound to
the value of forml in the first iteration and is stepped; by the value of form3 in each succeeding
iteration, or by 1 if form3 is not provided. The following loop keywords serve as valid prepositions
within this syntax. At least one of the prepositions must be used; and at most one from each line
may be used in a single subclause.

from | downfrom | upfrom
to | downto | upto | below | above

by

The prepositional phrases in each subclause may appear in any order. For example, either
“from x by y” or “by y from x” is permitted. However, because left-to-right order of evalua-
tion is preserved, the effects will be different in the case of side effects. Consider:

(let ((x 1)) (loop for i from x by (incf x) to 10 collect i))
— (13579)
(let ((x 1)) (loop for i by (incf x) from x to 10 collect i))
— (2 4 6 8 10)

The descriptions of the prepositions follow:

from

The loop keyword from specifies the value from which stepping; begins, as supplied by
form1. Stepping; is incremental by default. If decremental stepping; is desired, the
preposition downto or above must be used with form2. For incremental stepping,, the
default from value is 0.

Iteration 6—9

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

downfrom, upfrom

The loop keyword downfrom indicates that the variable var is decreased in decrements
supplied by form3; the loop keyword upfrom indicates that var is increased in increments
supplied by form3.

to

The loop keyword to marks the end value for stepping; supplied in form2. Stepping; is
incremental by default. If decremental stepping; is desired, the preposition downfrom must
be used with form1, or else the preposition downto or above should be used instead of to
with form2.

downto, upto

The loop keyword downto specifies decremental stepping; the loop keyword upto specifies
incremental stepping. In both cases, the amount of change on each step is specified by
form3, and the loop terminates when the variable var passes the value of form2. Since
there is no default for forml in decremental steppingi, a forml value must be supplied
(using from or downfrom) when downto is supplied.

below, above

The loop keywords below and above are analogous to upto and downto respectively. These
keywords stop iteration just before the value of the variable var reaches the value supplied
by form2; the end value of form2 is not included. Since there is no default for forml in
decremental stepping;, a forml value must be supplied (using from or downfrom) when
above is supplied.

by

The loop keyword by marks the increment or decrement supplied by form3. The value of
form3 can be any positive number. The default value is 1.

In an iteration control clause, the for or as construct causes termination when the supplied limit
is reached. That is, iteration continues until the value var is stepped to the exclusive or inclusive
limit supplied by form2. The range is exclusive if form3 increases or decreases var to the value of
form2 without reaching that value; the loop keywords below and above provide exclusive limits.
An inclusive limit allows var to attain the value of form2; to, downto, and upto provide inclusive
limits.

6.1.2.1.1.1 Examples of for-as-arithmetic subclause
;; Print some numbers.
(loop for i from 1 to 3

do (print i))
> 1

6-10 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

> 2
> 3
— NIL

;3 Print every third number.
(loop for i from 10 downto 1 by 3
do (print i))

> 10

> 7

> 4

> 1

— NIL

;; Step incrementally from the default starting value.
(loop for i below 3
do (print i))
> 0
> 1
> 2
— NIL

6.1.2.1.2 The for-as-in-list subclause

In the for-as-in-list subclause, the for or as construct iterates over the contents of a list. It checks
for the end of the list as if by using endp. The variable var is bound to the successive elements

of the list in forml before each iteration. At the end of each iteration, the function step-fun is
applied to the list; the default value for step-fun is cdr. The loop keywords in and by serve as
valid prepositions in this syntax. The for or as construct causes termination when the end of the
list is reached.

6.1.2.1.2.1 Examples of for-as-in-list subclause

;; Print every item in a list.
(loop for item in ’(1 2 3) do (print item))
> 1
> 2
> 3
— NIL

;; Print every other item in a list.
(loop for item in ’(1 2 3 4 5) by #’cddr
do (print item))
> 1
> 3
> 5
— NIL

Iteration 6-11

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

;3 Destructure a list, and sum the x values using fixnum arithmetic.
(loop for (item . x) of-type (t . fixnum) in ’((A . 1) (B . 2) (C . 3))
unless (eq item ’B) sum x)
— 4

6.1.2.1.3 The for-as-on-list subclause

In the for-as-on-list subclause, the for or as construct iterates over a list. It checks for the end of
the list as if by using atom. The variable var is bound to the successive tails of the list in form1.
At the end of each iteration, the function step-fun is applied to the list; the default value for step-
fun is cdr. The loop keywords on and by serve as valid prepositions in this syntax. The for or as
construct causes termination when the end of the list is reached.

6.1.2.1.3.1 Examples of for-as-on-list subclause

;; Collect successive tails of a list.
(loop for sublist on ’(a b c d)
collect sublist)
— ((ABCD) (BCD) (CD) (D))

;; Print a list by using destructuring with the loop keyword ON.
(loop for (item) on ’(1 2 3)
do (print item))
> 1
> 2
> 3
— NIL

6.1.2.1.4 The for-as-equals-then subclause

In the for-as-equals-then subclause the for or as construct initializes the variable var by setting it
to the result of evaluating form1 on the first iteration, then setting it to the result of evaluating
form2 on the second and subsequent iterations. If form2 is omitted, the construct uses forml on
the second and subsequent iterations. The loop keywords = and then serve as valid prepositions in
this syntax. This construct does not provide any termination tests.

6.1.2.1.4.1 Examples of for-as-equals-then subclause

;; Collect some numbers.

(loop for item = 1 then (+ item 10)
for iteration from 1 to 5
collect item)

— (1 11 21 31 41)

6—12 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

6.1.2.1.5 The for-as-across subclause

In the for-as-across subclause the for or as construct binds the variable var to the value of each
element in the array vector. The loop keyword across marks the array vector; across is used as a
preposition in this syntax. Iteration stops when there are no more elements in the supplied array
that can be referenced. Some implementations might recognize a the special form in the vector
form to produce more efficient code.

6.1.2.1.5.1 Examples of for-as-across subclause

(loop for char across (the simple-string (find-message channel))
do (write-char char stream))

6.1.2.1.6 The for-as-hash subclause

In the for-as-hash subclause the for or as construct iterates over the elements, keys, and values of
a hash-table. In this syntax, a compound preposition is used to designate access to a hash table.
The variable var takes on the value of each hash key or hash value in the supplied hash-table. The
following loop keywords serve as valid prepositions within this syntax:

being
The keyword being introduces either the Loop schema hash-key or hash-value.

each, the

The loop keyword each follows the loop keyword being when hash-key or hash-value is
used. The loop keyword the is used with hash-keys and hash-values only for ease of
reading. This agreement isn’t required.

hash-key, hash-keys

These loop keywords access each key entry of the hash table. If the name hash-value is
supplied in a using construct with one of these Loop schemas, the iteration can optionally
access the keyed value. The order in which the keys are accessed is undefined; empty slots
in the hash table are ignored.

hash-value, hash-values

These loop keywords access each value entry of a hash table. If the name hash-key is
supplied in a using construct with one of these Loop schemas, the iteration can optionally
access the key that corresponds to the value. The order in which the keys are accessed is
undefined; empty slots in the hash table are ignored.

using

The loop keyword using introduces the optional key or the keyed value to be accessed.
It allows access to the hash key if iteration is over the hash values, and the hash value if
iteration is over the hash keys.

Iteration 6-13

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

in, of
These loop prepositions introduce hash-table.
In effect
being {each | the} {hash-value | hash-values | hash-key | hash-keys} {in | of}
is a compound preposition.

Iteration stops when there are no more hash keys or hash values to be referenced in the supplied
hash-table.

6.1.2.1.7 The for-as-package subclause

In the for-as-package subclause the for or as construct iterates over the symbols in a package. In
this syntax, a compound preposition is used to designate access to a package. The variable var
takes on the value of each symbol in the supplied package. The following loop keywords serve as
valid prepositions within this syntax:

being

The keyword being introduces either the Loop schema symbol, present-symbol, or
external-symbol.

each, the

The loop keyword each follows the loop keyword being when symbol, present-symbol, or
external-symbol is used. The loop keyword the is used with symbols, present-symbols,
and external-symbols only for ease of reading. This agreement isn’t required.

present-symbol, present-symbols

These Loop schemas iterate over the symbols that are present in a package. The package
to be iterated over is supplied in the same way that package arguments to find-package
are supplied. If the package for the iteration is not supplied, the current package is used.
If a package that does not exist is supplied, an error of type package-error is signaled.

symbol, symbols

These Loop schemas iterate over symbols that are accessible in a given package. The
package to be iterated over is supplied in the same way that package arguments to
find-package are supplied. If the package for the iteration is not supplied, the cur-
rent package is used. If a package that does not exist is supplied, an error of type
package-error is signaled.

external-symbol, external-symbols

These Loop schemas iterate over the external symbols of a package. The package to be
iterated over is supplied in the same way that package arguments to find-package are

6—14 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

supplied. If the package for the iteration is not supplied, the current package is used. If a
package that does not exist is supplied, an error of type package-error is signaled.

in, of
These loop prepositions introduce package.
In effect

being {each |the} {symbol |symbols ‘present—symbol |present—symbols |externa1—symbol|
external-symbols} {in | of}

is a compound preposition.

Iteration stops when there are no more symbols to be referenced in the supplied package.

6.1.2.1.7.1 Examples of for-as-package subclause

6.1.2.2

(let ((*package* (make-package "TEST-PACKAGE-1")))
;; For effect, intern some symbols
(read-from-string "(THIS IS A TEST)")

(export (intern "THIS"))
(loop for x being each present-symbol of *package*
do (print x)))
> A
> TEST
> THIS
> IS
— NIL

Local Variable Initializations

When a loop form is executed, the local variables are bound and are initialized to some value.
These local variables exist until loop iteration terminates, at which point they cease to exist.
Implicit variables are also established by iteration control clauses and the into preposition of
accumulation clauses.

The with construct initializes variables that are local to a loop. The variables are initialized

one time only. If the optional type-spec argument is supplied for the variable var, but there

is no related expression to be evaluated, var is initialized to an appropriate default value for

its type. For example, for the types t, number, and float, the default values are nil, 0, and

0.0 respectively. The consequences are undefined if a type-spec argument is supplied for var

if the related expression returns a value that is not of the supplied type. By default, the with
construct initializes variables sequentially; that is, one variable is assigned a value before the
next expression is evaluated. However, by using the loop keyword and to join several with clauses,

Iteration 6-15

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

initializations can be forced to occur in parallel; that is, all of the supplied forms are evaluated,
and the results are bound to the respective variables simultaneously.

Sequential binding is used when it is desireable for the initialization of some variables to depend
on the values of previously bound variables. For example, suppose the variables a, b, and c are to
be bound in sequence:

(loop with a = 1
with b = (+ a 2)
with ¢ = (+ b 3)
return (list a b c¢))
— (1 3 6)

The execution of the above loop is equivalent to the execution of the following code:

(block nil
(let* ((a 1)
(b +a2)
(c (+b3)))
(tagbody

(next-loop (return (list a b c¢))
(go next-loop)
end-loop))))

If the values of previously bound variables are not needed for the initialization of other local
variables, an and clause can be used to specify that the bindings are to occur in parallel:

(loop with a = 1

and b = 2

and ¢ = 3

return (list a b c¢))
— (12 3)

The execution of the above loop is equivalent to the execution of the following code:

(block nil
(let ((a 1)
(b 2)
(c 30
(tagbody
(next-loop (return (list a b c))
(go next-loop)
end-loop))))

6.1.2.2.1 Examples of WITH clause

;; These bindings occur in sequence.

6-16 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(loop with a = 1
with b = (+ a 2)
with ¢ = (+ b 3)
return (list a b c¢))
— (1 3 6)

;; These bindings occur in parallel.
(setq a 5 b 10)
— 10
(loop with a = 1
and b = (+ a 2)
and ¢ = (+ b 3)
return (list a b c¢))
— (17 13)

;; This example shows a shorthand way to declare local variables
;; that are of different types.
(loop with (a b c) of-type (float integer float)
return (format nil "“A “A “A" a b c))
— "0.0 0 0.0"

;3 This example shows a shorthand way to declare local variables
;; that are the same type.
(loop with (a b c) of-type float
return (format nil ""A "A A" a b c))
— "0.0 0.0 0.0"

6.1.3 Value Accumulation Clauses

The constructs collect, collecting, append, appending, nconc, nconcing, count, counting, maximize,
maximizing, minimize, minimizing, sum, and summing, allow values to be accumulated in a loop.

The constructs collect, collecting, append, appending, nconc, and nconcing, designate clauses
that accumulate values in lists and return them. The constructs count, counting, maximize,
maximizing, minimize, minimizing, sum, and summing designate clauses that accumulate and return
numerical values.

During each iteration, the constructs collect and collecting collect the value of the supplied
form into a list. When iteration terminates, the list is returned. The argument var is set to the
list of collected values; if var is supplied, the loop does not return the final list automatically. If
var is not supplied, it is equivalent to supplying an internal name for var and returning its value
in a finally clause. The var argument is bound as if by the construct with. No mechanism is
provided for declaring the type of var; it must be of type list.

The constructs append, appending, nconc, and nconcing are similar to collect except that the
values of the supplied form must be lists.

Iteration 6—17

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

e The append keyword causes its list values to be concatenated into a single list, as if they
were arguments to the function append.

e The nconc keyword causes its list values to be concatenated into a single list, as if they
were arguments to the function nconc.

The argument var is set to the list of concatenated values; if var is supplied, loop does not
return the final list automatically. The var argument is bound as if by the construct with. A type
cannot be supplied for var; it must be of type list. The construct nconc destructively modifies its
argument lists.

The count construct counts the number of times that the supplied form returns true. The ar-
gument var accumulates the number of occurrences; if var is supplied, loop does not return the
final count automatically. The var argument is bound as if by the construct with to a zero of the
appropriate type. Subsequent values (including any necessary coercions) are computed as if by
the function 1+. If into var is used, a type can be supplied for var with the type-spec argument;
the consequences are unspecified if a nonnumeric type is supplied. If there is no into variable, the
optional type-spec argument applies to the internal variable that is keeping the count. The default
type is implementation-dependent; but it must be a supertype of type fixnum.

The maximize and minimize constructs compare the value of the supplied form obtained during
the first iteration with values obtained in successive iterations. The maximum (for maximize) or
minimum (for minimize) value encountered is determined (as if by the function max for maximize
and as if by the function min for minimize) and returned. If the maximize or minimize clause

is never executed, the accumulated value is unspecified. The argument var accumulates the
maximum or minimum value; if var is supplied, loop does not return the maximum or minimum
automatically. The var argument is bound as if by the construct with. If into var is used, a

type can be supplied for var with the type-spec argument; the consequences are unspecified if a
nonnumeric type is supplied. If there is no into variable, the optional type-spec argument applies
to the internal variable that is keeping the maximum or minimum value. The default type is
implementation-dependent; but it must be a supertype of type real.

The sum construct forms a cumulative sum of the successive primary values of the supplied

form at each iteration. The argument var is used to accumulate the sum; if var is supplied, loop
does not return the final sum automatically. The var argument is bound as if by the construct
with to a zero of the appropriate type. Subsequent values (including any necessary coercions)
are computed as if by the function +. If into var is used, a type can be supplied for var with
the type-spec argument; the consequences are unspecified if a nonnumeric type is supplied. If
there is no into variable, the optional type-spec argument applies to the internal variable that is
keeping the sum. The default type is implementation-dependent; but it must be a supertype of
type number.

If into is used, the construct does not provide a default return value; however, the variable is
available for use in any finally clause.

Certain kinds of accumulation clauses can be combined in a loop if their destination is the
same (the result of loop or an into var) because they are considered to accumulate conceptually

6—18 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

compatible quantities. In particular, any elements of following sets of accumulation clauses can be
mixed with other elements of the same set for the same destination in a loop form:

® collect, append, nconc
° sum, count

® maximize, minimize

;; Collect every name and the kids in one list by using
;; COLLECT and APPEND.
(loop for name in ’(fred sue alice joe june)
for kids in ’((bob ken) () () (kris sunshine) ())
collect name
append kids)
— (FRED BOB KEN SUE ALICE JOE KRIS SUNSHINE JUNE)

Any two clauses that do not accumulate the same type of object can coexist in a loop only if each
clause accumulates its values into a different variable.

6.1.3.1 Examples of COLLECT clause

;3 Collect all the symbols in a list.
(loop for i in ’(bird 3 4 turtle (1 . 4) horse cat)
when (symbolp i) collect i)
— (BIRD TURTLE HORSE CAT)

;3 Collect and return odd numbers.
(loop for i from 1 to 10
if (oddp i) collect i)
— (13579

;3 Collect items into local variable, but don’t return them.
(loop for i in ’(a b ¢ d) by #’cddr
collect i into my-list
finally (print my-list))
> (A C)
— NIL

Iteration 6—19

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

6.1.3.2 Examples of APPEND and NCONC clauses

;3 Use APPEND to concatenate some sublists.
(loop for x in ’((a) (b) ((c)))
append x)
— (A B (C))

;3 NCONC some sublists together. Note that only lists made by the
;3 call to LIST are modified.
(loop for i upfrom O
as x in ’(a b (c))
nconc (if (evenp i) (list x) nil))
— (A (©C))

6.1.3.3 Examples of COUNT clause

(loop for i in ’(a b nil ¢ nil d e)
count i)
— 5

6.1.3.4 Examples of MAXIMIZE and MINIMIZE clauses

(loop for i in (2 1 5 3 4)
maximize i)
— b
(loop for i in (2 1 5 3 4)
minimize i)
— 1

;3 In this example, FIXNUM applies to the internal variable that holds
;; the maximum value.
(setq series ’(1.2 4.3 5.7))
— (1.2 4.3 5.7)
(loop for v in series
maximize (round v) of-type fixnum)
— 6

;; In this example, FIXNUM applies to the variable RESULT.
(loop for v of-type float in series
minimize (round v) into result of-type fixnum
finally (return result))

6—20 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

6.1.3.5 Examples of SUM clause

(loop for i of-type fixnum in ’(1 2 3 4 5)
sum i)
— 15
(setq series (1.2 4.3 5.7))
— (1.2 4.3 5.7)
(loop for v in series
sum (* 2.0 v))
— 22.4

6.1.4 Termination Test Clauses

The repeat construct causes iteration to terminate after a specified number of times. The loop
body executes n times, where n is the value of the expression form. The form argument is evalu-
ated one time in the loop prologue. If the expression evaluates to 0 or to a negative number, the
loop body is not evaluated.

The constructs always, never, thereis, while, until, and the macro loop-finish allow conditional
termination of iteration within a loop.

The constructs always, never, and thereis provide specific values to be returned when a loop
terminates. Using always, never, or thereis in a loop with value accumulation clauses that are
not into causes an error of type program-error to be signaled (at macro expansion time). Since
always, never, and thereis use the return-from special operator to terminate iteration, any
finally clause that is supplied is not evaluated when exit occurs due to any of these constructs.
In all other respects these constructs behave like the while and until constructs.

The always construct takes one form and terminates the loop if the form ever evaluates to nil;
in this case, it returns nil. Otherwise, it provides a default return value of t. If the value of the
supplied form is never nil, some other construct can terminate the iteration.

The never construct terminates iteration the first time that the value of the supplied form is
non-nil; the loop returns nil. If the value of the supplied form is always nil, some other construct
can terminate the iteration. Unless some other clause contributes a return value, the default value
returned is t.

The thereis construct terminates iteration the first time that the value of the supplied form

is mon-nil; the loop returns the value of the supplied form. If the value of the supplied form is
always nil, some other construct can terminate the iteration. Unless some other clause contributes
a return value, the default value returned is nil.

There are two differences between the thereis and until constructs:

e The until construct does not return a value or nil based on the value of the supplied
form.

Iteration 6—21

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

6.1.4.1

e The until construct executes any finally clause. Since thereis uses the return-from
special operator to terminate iteration, any finally clause that is supplied is not evalu-
ated when exit occurs due to thereis.

The while construct allows iteration to continue until the supplied form evaluates to false. The
supplied form is reevaluated at the location of the while clause.

The until construct is equivalent to while (not form).... If the value of the supplied form is
non-nil, iteration terminates.

Termination-test control constructs can be used anywhere within the loop body. The termination
tests are used in the order in which they appear. If an until or while clause causes termination,
any clauses that precede it in the source are still evaluated. If the until and while constructs
cause termination, control is passed to the loop epilogue, where any finally clauses will be
executed.

There are two differences between the never and until constructs:
e The until construct does not return t or nil based on the value of the supplied form.

e The until construct does not bypass any finally clauses. Since never uses the
return-from special operator to terminate iteration, any finally clause that is supplied is
not evaluated when exit occurs due to never.

In most cases it is not necessary to use loop-finish because other loop control clauses terminate
the loop. The macro loop-finish is used to provide a normal exit from a nested conditional inside
a loop. Since loop-finish transfers control to the loop epilogue, using loop-finish within a finally
expression can cause infinite looping.

Examples of REPEAT clause

(loop repeat 3
do (format t "“&What I say three times is true.~%"))

> What I say three times is true.
> What I say three times is true.
> What I say three times is true.
— NIL

(loop repeat -15

do (format t "What you see is what you expect”%"))

— NIL

6—22 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

6.1.4.2

Examples of ALWAYS, NEVER, and THEREIS clauses

;; Make sure I is always less than 11 (two ways).
;; The FOR construct terminates these loops.
(loop for i from O to 10
always (< i 11))
— T
(loop for i from O to 10
never (> i 11))
— T

;3 If I exceeds 10 return I; otherwise, return NIL.
;; The THEREIS construct terminates this loop.
(loop for i from O
thereis (when (> i 10) i))
— 11

;55 The FINALLY clause is not evaluated in these examples.
(loop for i from O to 10
always (< i 9)
finally (print "you won’t see this"))
— NIL
(loop never t
finally (print "you won’t see this"))
— NIL
(loop thereis "Here is my value"
finally (print "you won’t see this"))
— "Here is my value"

;; The FOR construct terminates this loop, so the FINALLY clause
;3 1s evaluated.
(loop for i from 1 to 10
thereis (> i 11)
finally (prinl ’got-here))
> GOT-HERE
— NIL

;3 If this code could be used to find a counterexample to Fermat’s
;3 last theorem, it would still not return the value of the

;; counterexample because all of the THEREIS clauses in this example
;; only return T. But if Fermat is right, that won’t matter

;; because this won’t terminate.

(loop for z upfrom 2

Iteration

6—23

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

6.1.4.3

thereis
(loop for n upfrom 3 below (log z 2)
thereis
(loop for x below z
thereis
(loop for y below z
thereis (= (+ (expt x n) (expt y n))
(expt z n))))))

Examples of WHILE and UNTIL clauses

(loop while (hungry-p) do (eat))

;3 UNTIL NOT is equivalent to WHILE.
(loop until (not C(hungry-p)) do (eat))

;3 Collect the length and the items of STACK.
(let ((stack ’(abcde £)))
(loop for item = (length stack) then (pop stack)
collect item
while stack))
— (ABCDETF)

;; Use WHILE to terminate a loop that otherwise wouldn’t terminate.
;; Note that WHILE occurs after the WHEN.
(loop for i fixnum from 3
when (oddp i) collect i
while (< i 5))
— (3 5)

6.1.5 Unconditional Execution Clauses

The do and doing constructs evaluate the supplied forms wherever they occur in the expanded
form of loop. The form argument can be any compound form. Each form is evaluated in every
iteration. Because every loop clause must begin with a loop keyword, the keyword do is used when
no control action other than execution is required.

The return construct takes one form. Any wvalues returned by the form are immediately returned
by the loop form. It is equivalent to the clause do (return-from block-name value), where block-
name is the name specified in a named clause, or nil if there is no named clause.

6—24 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

6.1.5.1 Examples of unconditional execution

6.1.6

;3 Print numbers and their squares.
;; The DO construct applies to multiple forms.
(loop for i from 1 to 3
do (print i)
(print (x i 1)))

v vVvvVvyvVvVvVvyv
© WP NP

— NIL

Conditional Execution Clauses

The if, when, and unless constructs establish conditional control in a loop. If the test passes, the
succeeding loop clause is executed. If the test does not pass, the succeeding clause is skipped, and
program control moves to the clause that follows the loop keyword else. If the test does not pass
and no else clause is supplied, control is transferred to the clause or construct following the entire
conditional clause.

If conditional clauses are nested, each else is paired with the closest preceding conditional clause
that has no associated else or end.

In the if and when clauses, which are synonymous, the test passes if the value of form is true.
In the unless clause, the test passes if the value of form is false.

Clauses that follow the test expression can be grouped by using the loop keyword and to produce
a conditional block consisting of a compound clause.

The loop keyword it can be used to refer to the result of the test expression in a clause. Use the

loop keyword it in place of the form in a return clause or an accumulation clause that is inside a
conditional execution clause. If multiple clauses are connected with and, the it construct must be
in the first clause in the block.

The optional loop keyword end marks the end of the clause. If this keyword is not supplied, the
next loop keyword marks the end. The construct end can be used to distinguish the scoping of
compound clauses.

Iteration 6—25

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

6.1.6.1 Examples of WHEN clause

;; Signal an exceptional condition.
(loop for item in (1 2 3 a 4 5)
when (not (numberp item))
return (cerror "enter new value" "non-numeric value: ~s" item))
Error: non-numeric value: A

;; The previous example is equivalent to the following one.
(loop for item in (1 2 3 a 4 5)
when (not (numberp item))
do (return
(cerror "Enter new value" "non-numeric value: ~s" item)))
Error: non-numeric value: A

;; This example parses a simple printed string representation from

;3 BUFFER (which is itself a string) and returns the index of the

;3 closing double-quote character.

(let ((buffer "\"a\" \"b\""))
(loop initially (unless (char= (char buffer 0) #\")
(loop-finish))

for i of-type fixnum from 1 below (length (the string buffer))
when (char= (char buffer i) #\")
return i))

— 2

;3 The collected value is returned.
(loop for i from 1 to 10
when (> i 5)
collect i
finally (prinl ’got-here))
> GOT-HERE
— (67 8 9 10)

;; Return both the count of collected numbers and the numbers.
(loop for i from 1 to 10
when (> i 5)
collect i into number-list
and count i into number-count
finally (return (values number-count number-list)))
— 5, (6 78 9 10)

6.1.7 Miscellaneous Clauses

6—26 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

6.1.7.1

Control Transfer Clauses

The named construct establishes a name for an implicit block surrounding the entire loop so that
the return-from special operator can be used to return values from or to exit loop. Only one
name per loop form can be assigned. If used, the named construct must be the first clause in the
loop expression.

The return construct takes one form. Any values returned by the form are immediately returned
by the loop form. This construct is similar to the return-from special operator and the return
macro. The return construct does not execute any finally clause that the loop form is given.

6.1.7.1.1 Examples of NAMED clause

6.1.7.2

;3 Just name and return.
(loop named max
for i from 1 to 10
do (print i)
do (return-from max ’done))
> 1
— DONE

Initial and Final Execution
The initially and finally constructs evaluate forms that occur before and after the loop body.

The initially construct causes the supplied compound-forms to be evaluated in the loop pro-
logue, which precedes all loop code except for initial settings supplied by constructs with, for, or
as. The code for any initially clauses is executed in the order in which the clauses appeared in
the loop.

The finally construct causes the supplied compound-forms to be evaluated in the loop epilogue
after normal iteration terminates. The code for any finally clauses is executed in the order in
which the clauses appeared in the loop. The collected code is executed once in the loop epilogue
before any implicit values are returned from the accumulation clauses. An explicit transfer of
control (e.g., by return, go, or throw) from the loop body, however, will exit the loop without
executing the epilogue code.

Clauses such as return, always, never, and thereis can bypass the finally clause. return (or
return-from, if the named option was supplied) can be used after finally to return values from

a loop. Such an explicit return inside the finally clause takes precedence over returning the
accumulation from clauses supplied by such keywords as collect, nconc, append, sum, count,
maximize, and minimize; the accumulation values for these preempted clauses are not returned by
loop if return or return-from is used.

Iteration 6—27

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

6.1.8 Examples of Miscellaneous Loop Features

(let ((1 0)) ; no loop keywords are used
(loop (incf i) (if (= i 3) (return i)))) — 3
(let ((1 0)(F 0))
(tagbody
(loop (incf j 3) (imcf i) (if (= i 3) (go exit)))
exit)
3 =9

In the following example, the variable x is stepped before y is stepped; thus, the value of y reflects
the updated value of x:

(loop for x from 1 to 10
for y = nil then x
collect (list x y))

— ((1 NIL) (2 2) (33) (44) (65) (686) (17) (88) (99) (10 10))

In this example, x and y are stepped in parallel:

(loop for x from 1 to 10
and y = nil then x
collect (list x y))

— ((1 NIL) (21) (32) (43) (64) (65) (76) (87) (98) (10 9))

6.1.8.1 Examples of clause grouping

;3 Group conditional clauses.
(loop for i in ’(1 324 2345 323 2 4 235 252)
when (oddp i)
do (print i)
and collect i into odd-numbers
and do (terpri)

else ; I is even.
collect i into even-numbers
finally
(return (values odd-numbers even-numbers)))
> 1
>
> 2345
>
> 323
>
> 235

— (1 2345 323 235), (324 2 4 252)

6—28 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

;; Collect numbers larger than 3.
(loop for i in ’(1 2 3 4 5 6)
when (and (> i 3) i)
collect it) ; IT refers to (and (> i 3) i).
— (4 5 6)

;; Find a number in a list.
(loop for i in ’(1 2 3 4 5 6)
when (and (> i 3) i)
return it)
— 4

;; The above example is similar to the following ome.
(loop for i in ’(1 2 3 4 5 6)
thereis (and (> i 3) 1))
— 4

;; Nest conditional clauses.
(let ((list ’(0 3.0 apple 4 5 9.8 orange banana)))
(loop for i in list
when (numberp i)
when (floatp i)
collect i into float-numbers
else ; Not (floatp 1)
collect i into other-numbers
else ; Not (numberp i)
when (symbolp i)
collect i into symbol-list
else ; Not (symbolp i)
do (error "found a funny value in list ~S, value ~“S7%" list i)
finally (return (values float-numbers other-numbers symbol-list))))
— (3.0 9.8), (0 4 5), (APPLE ORANGE BANANA)

;5 Without the END preposition, the last AND would apply to the
;; inner IF rather than the outer one.
(loop for x from O to 3
do (print x)
if (zerop (mod x 2))
do (princ " a"
and if (zerop (floor x 2))
do (princ " b")
end

Iteration 6—29

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

and do (princ " c"))

>0 abc
> 1

>2 ac
> 3

— NIL

6.1.9 Notes about Loop

Types can be supplied for loop variables. It is not necessary to supply a type for any variable, but
supplying the type can ensure that the variable has a correctly typed initial value, and it can also
enable compiler optimizations (depending on the implementation).

The clause repeat n ... is roughly equivalent to a clause such as
(loop for internal-variable downfrom (- n 1) to 0 ...)
but in some implementations, the repeat construct might be more efficient.

Within the executable parts of the loop clauses and around the entire loop form, variables can be
bound by using let.

Use caution when using a variable named IT (in any package) in connection with loop, since it is
a loop keyword that can be used in place of a form in certain contexts.

There is no standardized mechanism for users to add extensions to loop.

6—30 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

dO, dox Macro

Syntax:
do ({var | (var [init-form [step-form]])}*)
(end-test-form {result-form}*)
{declaration}* {tag | statement}*

— {result}*

do* ({var | (var [init-form [step-form]])}*)
(end-test-form {result-form}*)
{declaration}* {tag | statement}*

— {result}*

Arguments and Values:
var—a symbol.

init-form—a, form.

step-form—a, form.

end-test-form—a form.

result-forms—an implicit progn.

declaration—a declare expression; not evaluated.

tag—a go tag; not evaluated.

statement—a, compound form; evaluated as described below.

results—if a return or return-from form is executed, the values passed from that form; other-
wise, the wvalues returned by the result-forms.

Description:
do iterates over a group of statements while a test condition holds. do accepts an arbitrary
number of iteration vars which are bound within the iteration and stepped in parallel. An initial
value may be supplied for each iteration variable by use of an init-form. Step-forms may be used
to specify how the vars should be updated on succeeding iterations through the loop. Step-
forms may be used both to generate successive values or to accumulate results. If the end-test-
form condition is met prior to an execution of the body, the iteration terminates. Tags label
statements.

do* is exactly like do except that the bindings and steppings of the vars are performed sequen-
tially rather than in parallel.

Iteration 6—31

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

do, dox

Before the first iteration, all the init-forms are evaluated, and each var is bound to the value of its
respective init-form, if supplied. This is a binding, not an assignment; when the loop terminates,
the old values of those variables will be restored. For do, all of the init-forms are evaluated before
any var is bound. The init-forms can refer to the bindings of the vars visible before beginning
execution of do. For do*, the first init-form is evaluated, then the first var is bound to that value,
then the second init-form is evaluated, then the second var is bound, and so on; in general, the kth
init-form can refer to the new binding of the jth var if j < k, and otherwise to the old binding of
the jth var.

At the beginning of each iteration, after processing the variables, the end-test-form is evaluated. If
the result is false, execution proceeds with the body of the do (or do*) form. If the result is true,
the result-forms are evaluated in order as an implicit progn, and then do or do* returns.

At the beginning of each iteration other than the first, vars are updated as follows. All the step-
forms, if supplied, are evaluated, from left to right, and the resulting values are assigned to the
respective vars. Any var that has no associated step-form is not assigned to. For do, all the step-
forms are evaluated before any var is updated; the assignment of values to vars is done in parallel,
as if by psetq. Because all of the step-forms are evaluated before any of the vars are altered, a
step-form when evaluated always has access to the old values of all the vars, even if other step-
forms precede it. For do*, the first step-form is evaluated, then the value is assigned to the first
var, then the second step-form is evaluated, then the value is assigned to the second var, and

so on; the assignment of values to variables is done sequentially, as if by setq. For either do or
do*, after the vars have been updated, the end-test-form is evaluated as described above, and the
iteration continues.

The remainder of the do (or do*) form constitutes an implicit tagbody. Tags may appear within
the body of a do loop for use by go statements appearing in the body (but such go statements
may not appear in the variable specifiers, the end-test-form, or the result-forms). When the end
of a do body is reached, the next iteration cycle (beginning with the evaluation of step-forms)
occurs.

An implicit block named nil surrounds the entire do (or do*) form. A return statement may be
used at any point to exit the loop immediately.

Init-form is an initial value for the var with which it is associated. If init-form is omitted, the
initial value of var is nil. If a declaration is supplied for a var, init-form must be consistent with
the declaration.

Declarations can appear at the beginning of a do (or do*) body. They apply to code in the do (or
do*) body, to the bindings of the do (or do*) vars, to the step-forms, to the end-test-form, and to
the result-forms.

Examples:
(do ((temp-one 1 (1+ temp-one))

(temp-two 0 (1- temp-two)))
((> (- temp-one temp-two) 5) temp-one)) — 4

6—32 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

do, dox

(do ((temp-one 1 (1+ temp-one))
(temp-two O (1+ temp-one)))
((= 3 temp-two) temp-one)) — 3

(do* ((temp-one 1 (1+ temp-one))
(temp-two O (1+ temp-one)))
((= 3 temp-two) temp-one)) — 2

(do ((O (+3 DN
(nil) ;Do forever.
(format t "~JInput “D:" j)
(let ((item (read)))
(if (null item) (return) ;Process items until NIL seen.
(format t "“&Output “D: “S" j item))))
Input O: banana
Output O: BANANA
Input 1: (57 boxes)
Output 1: (57 BOXES)
Input 2: NIL
— NIL

AR VAR VAR VARV,

(setq a-vector (vector 1 nil 3 nil))

(do ((1 0 (+ 1 1)) ;Sets every null element of a-vector to zero.
(n (array-dimension a-vector 0)))
((=1in))

(when (null (aref a-vector i))
(setf (aref a-vector i) 0))) — NIL
a-vector — #(1 0 3 0)

(do ((x e (cdr x))
(oldx x x))
((null x))
body)

is an example of parallel assignment to index variables. On the first iteration, the value of oldx is
whatever value x had before the do was entered. On succeeding iterations, oldx contains the value
that x had on the previous iteration.

(do ((x foo (cdr x))
(y bar (cdr y))
(z () (cons (f (car x) (car y)) z)))
((or (null x) (null y))
(nreverse z)))

does the same thing as (mapcar #’f foo bar). The step computation for z is an example of the

Iteration 6—33

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

do, dox

fact that variables are stepped in parallel. Also, the body of the loop is empty.

(defun list-reverse (list)
(do ((x list (cdr x))
(y >0 (comns (car x) y)))
((endp %) y)))

As an example of nested iterations, consider a data structure that is a list of conses. The car
of each cons is a list of symbols, and the cdr of each cons is a list of equal length containing
corresponding values. Such a data structure is similar to an association list, but is divided into

“frames”; the overall structure resembles a rib-cage. A lookup function on such a data structure
might be:

(defun ribcage-lookup (sym ribcage)
(do ((r ribcage (cdr r)))
((aull r) nil)
(do ((s (caar r) (cdr s))
(v (cdar r) (cdr v)))
((null s))
(when (eq (car s) sym)
(return-from ribcage-lookup (car v)))))) — RIBCAGE-LOOKUP

See Also:

other iteration functions (dolist, dotimes, and loop) and more primitive functionality (tagbody,
g07kﬂock,return,let7and.setq)

Notes:

If end-test-form is nil, the test will never succeed. This provides an idiom for “do forever”: the
body of the do or do* is executed repeatedly. The infinite loop can be terminated by the use of
return, return-from, go to an outer level, or throw.

A do form may be explained in terms of the more primitive forms block, return, let, loop,
tagbody, and psetq as follows:

(block nil
(let ((varl init1)
(var2 init2)

(varn initn))
declarations
(loop (when end-test (return (progn . result)))
(tagbody . tagbody)
(psetq varl stepl
var2 step2

;Aén stepn))))

6—34 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

do* is similar, except that let* and setq replace the let and psetq, respectively.

dotimes Macro

Syntax:

dotimes (var count-form [result-form)) {declaration}* {tag | statement}*
— {result}*

Arguments and Values:
var—a symbol.

count-form—a, form.

result-form—a form.

declaration—a declare ezpression; not evaluated.

tag—a go tag; not evaluated.

statement—a compound form; evaluated as described below.

results—if a return or return-from form is executed, the values passed from that form; other-
wise, the values returned by the result-form or nil if there is no result-form.

Description:
dotimes iterates over a series of integers.

dotimes evaluates count-form, which should produce an integer. If count-form is zero or negative,
the body is not executed. dotimes then executes the body once for each integer from 0 up to but
not including the value of count-form, in the order in which the tags and statements occur, with
var bound to each integer. Then result-form is evaluated. At the time result-form is processed, var
is bound to the number of times the body was executed. Tags label statements.

An implicit block named nil surrounds dotimes. return may be used to terminate the loop
immediately without performing any further iterations, returning zero or more values.

The body of the loop is an implicit tagbody; it may contain tags to serve as the targets of go
statements. Declarations may appear before the body of the loop.

The scope of the binding of var does not include the count-form, but the result-form is included.

It is implementation-dependent whether dotimes establishes a new binding of var on each itera-
tion or whether it establishes a binding for var once at the beginning and then assigns it on any
subsequent iterations.

Iteration 6—35

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:

(dotimes (temp-one 10 temp-one)) — 10

(setq temp-two 0) — O

(dotimes (temp-one 10 t) (incf temp-two)) — T
temp-two — 10

Here is an example of the use of dotimes in processing strings:

;55 True if the specified subsequence of the string is a
;5; palindrome (reads the same forwards and backwards).
(defun palindromep (string &optional
(start 0)
(end (length string)))
(dotimes (k (floor (- end start) 2) t)
(unless (char-equal (char string (+ start k))
(char string (- end k 1)))
(return nil))))
(palindromep "Able was I ere I saw Elba") — T
(palindromep "A man, a plan, a canal--Panama!") — NIL
(remove-if-not #’alpha-char-p ;Remove punctuation.
"A man, a plan, a canal--Panama!")
— "AmanaplanacanalPanama"
(palindromep
(remove-if-not #’alpha-char-p
"A man, a plan, a canal--Panama!")) — T
(palindromep
(remove-if-not
#’alpha-char-p
"Unremarkable was I ere I saw Elba Kramer, nu?")) — T
(palindromep
(remove-if-not
#’alpha-char-p
"A man, a plan, a cat, a ham, a yak,
a yam, a hat, a canal--Panama!")) — T

See Also:
do, dolist, tagbody

Notes:

go may be used within the body of dotimes to transfer control to a statement labeled by a tag.

6—36 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

dolist

dolist Macro

Syntax:

dolist (var list-form [result-form]) {declaration}* {tag | statement}*
— {result}*

Arguments and Values:
var—a symbol.

list-form—a. form.

result-form—a. form.

declaration—a declare expression; not evaluated.

tag—a go tag; not evaluated.

statement—a compound form; evaluated as described below.

results—if a return or return-from form is executed, the values passed from that form; other-
wise, the values returned by the result-form or nil if there is no result-form.

Description:

dolist iterates over the elements of a list. The body of dolist is like a tagbody. It consists of a
series of tags and statements.

dolist evaluates list-form, which should produce a list. It then executes the body once for each
element in the list, in the order in which the tags and statements occur, with var bound to the
element. Then result-form is evaluated. tags label statements.

At the time result-form is processed, var is bound to nil.

An implicit block named nil surrounds dolist. return may be used to terminate the loop immedi-
ately without performing any further iterations, returning zero or more values.

The scope of the binding of var does not include the list-form, but the result-form is included.

It is implementation-dependent whether dolist establishes a new binding of var on each iteration
or whether it establishes a binding for var once at the beginning and then assigns it on any
subsequent iterations.

Examples:

(setq temp-two ’()) — NIL
(dolist (temp-one ’(1 2 3 4) temp-two) (push temp-one temp-two)) — (4 3 2 1)

(setq temp-two 0) — O

Iteration 6—37

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(dolist (temp-one ’(1 2 3 4)) (incf temp-two)) — NIL
temp-two — 4

(dolist (x ’(a b ¢ d)) (prinil x) (princ " "))

>ABCD
— NIL
See Also:
do, dotimes, tagbody, Section 3.6 (Traversal Rules and Side Effects)
Notes:
go may be used within the body of dolist to transfer control to a statement labeled by a tag.
lOOp Macro
Syntax:

The “simple” loop form:

loop {compound-form}* — {result}*

The “extended” loop form:

loop [|name-clause] {|variable-clause}* {|main-clause}* — {result}*
name-clause::=named name
variable-clause::= | with-clause | |initial-final | |for-as-clause
with-clause::=with varl [type-spec| [= form1]| {and var2 [type-spec] [= form2]}*
main-clause::=| unconditional | |accumulation | | conditional | |termination-test | |initial-final
initial-final ::=initially {compound-form}™ | finally {compound-form}™
unconditional::={do | doing} {compound-form}* | return {form | it}
accumulation::=| list-accumulation | | numeric-accumulation

/ist—accumu/ation:::{collect | collecting | append | appending | nconc nconcing} {form | it}
[into simple-var]
numeric-accumulation::={count | counting | sum | summing |
maximize ‘ maximizing | minimize | minimizing} {form | it}

[into simple-var] [type-spec]

6—38 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

loop

conditional::={if | when | unless} form |selectable-clause {and |selectable-clause}*
[else |selectable-clause {and |selectable-clause}*|
[end]

selectable-clause::= | unconditional | |accumulation | | conditional
termination-test::=while form | until form | repeat form | always form | never form | thereis form
for-as-clause::={for | as} |for-as-subclause {and |for-as-subclause}*

for-as-subclause::=| for-as-arithmetic | | for-as-in-list | | for-as-on-list | | for-as-equals-then |
Lfor-as-across | | for-as-hash | | for-as-package

for-as-arithmetic::=var [type-spec| | for-as-arithmetic-subclause
for-as-arithmetic-subclause::= | arithmetic-up | | arithmetic-downto | | arithmetic-downfrom
arithmetic-up::=[{from | upfrom} form1 | {to | upto | below} form2 | by form3]"
arithmetic-downto::=[{from form1}' | {{downto | above} form2}" | by form3]

arithmetic-downfrom::=[{downfrom forml}1 | {to | downto | above} form2 | by form3]
for-as-in-list ::=var [type-spec] in forml [by step-fun|
for-as-on-list::=var [type-spec] on forml1 [by step-fun|
for-as-equals-then::=var [type-spec|] = formI1 [then form2]
for-as-across::=var [type-spec] across vector
for-as-hash::=var [type-spec| being {each | the}

{{hash-key | hash-keys} {in | of } hash-table

[using (hash-value other-var)] |

{hash—value | hash—values} {in ‘ of} hash-table
[using (hash-key other-var)]}

for-as-package::=var [type-spec]| being {each | the}
{symbol | symbols |
present-symbol | present-symbols ‘
external-symbol | external—symbols}
[{in | of} package]

Iteration 6—39

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

loop

type-spec::=| simple-type-spec | | destructured-type-spec
simple-type-spec::=fixnum | float | t | nil
destructured-type-spec::=of-type d-type-spec
d-type-spec::=type-specifier | (d-type-spec . d-type-spec)
var::=| d-var-spec

varl ::=|d-var-spec

var2::=|d-var-spec

other-var::=| d-var-spec

d-var-spec::=simple-var | nil | (| d-var-spec . |d-var-spec)

Arguments and Values:
compound-form—a compound form.

name—a symbol.

simple-var—a symbol (a variable name).

form, form1, form2, form3—a form.

step-fun—a form that evaluates to a function of one argument.
vector—a form that evaluates to a vector.

hash-table—a, form that evaluates to a hash table.

package—a form that evaluates to a package designator.

type-specifier—a type specifier. This might be either an atomic type specifier or a compound
type specifier, which introduces some additional complications to proper parsing in the face of
destructuring; for further information, see Section 6.1.1.7 (Destructuring).

result—an object.

Description:
For details, see Section 6.1 (The LOOP Facility).

Examples:

;3 An example of the simple form of LOOP.
(defun sqrt-advisor ()
(loop (format t "~“&Number: ")

6—40 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(let ((n (parse-integer (read-line) :junk-allowed t)))
(when (not n) (return))
(format t "“&The square root of "D is “D.”%" n (sqrt n)))))
— SQRT-ADVISOR
(sqrt-advisor)
> Number: 5«
> The square root of 5 is 2.236068.
> Number: 4«
> The square root of 4 is 2.
> Number: done<«>
— NIL

;3 An example of the extended form of LOOP.
(defun square-advisor ()
(loop as n = (progn (format t "~“&Number: ")
(parse-integer (read-line) :junk-allowed t))
while n
do (format t "“&The square of "D is “D.”%" n (* n n))))
— SQUARE-ADVISOR
(square-advisor)
> Number: 4«
> The square of 4 is 16.
> Number: 23«2
> The square of 23 is 529.
> Number: done«<>
— NIL

;3 Another example of the extended form of LOOP.
(loop for n from 1 to 10
when (oddp n)

collect n)
— (13579
See Also:
do, dolist, dotimes, return, go, throw, Section 6.1.1.7 (Destructuring)
Notes:

Except that loop-finish cannot be used within a simple loop form, a simple loop form is related
to an extended loop form in the following way:

(Loop {compound-form}*) = (loop do {compound-form}*)

Iteration 6—41

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

loop-finish

lo Op-ﬁl’liSh Local Macro

Syntax:

loop-finish (no arguments) —|

Description:

The loop-finish macro can be used lexically within an extended loop form to terminate that
form “normally.” That is, it transfers control to the loop epilogue of the lexically innermost
extended loop form. This permits execution of any finally clause (for effect) and the return of
any accumulated result.

Examples:

;3 Terminate the loop, but return the accumulated count.
(loop for i in ’(1 2 3 stop-here 4 5 6)
when (symbolp i) do (loop-finish)
count i)
— 3

;3 The preceding loop is equivalent to:
(loop for i in ’(1 2 3 stop-here 4 5 6)
until (symbolp i)
count i)
— 3

;; While LOOP-FINISH can be used can be used in a variety of
;; situations it is really most needed in a situation where a need
;3 to exit is detected at other than the loop’s ‘top level’
;5 (where UNTIL or WHEN often work just as well), or where some
;; computation must occur between the point where a need to exit is
;; detected and the point where the exit actually occurs. For example:
(defun tokenize-sentence (string)
(macrolet ((add-word (wvar svar)
‘(when ,wvar
(push (coerce (nreverse ,wvar) ’string) ,svar)
(setq ,wvar nil))))
(loop with word = ’() and sentence = ’() and endpos = nil
for i below (length string)
do (let ((char (aref string i)))
(case char
(#\Space (add-word word sentence))
(#\. (setq endpos (1+ i)) (loop-finish))
(otherwise (push char word))))
finally (add-word word sentence)

6—42 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

loop-finish

(return (values (nreverse sentence) endpos)))))
— TOKENIZE-SENTENCE

(tokenize-sentence "this is a sentence. this is another sentence.")
— ("this" "is" "a" "sentence"), 19

(tokenize-sentence "this is a sentence")
— ("this" "is" "a" "sentence"), NIL

Side Effects:

Transfers control.

Exceptional Situations:

Whether or not loop-finish is fbound in the global environment is implementation-dependent;
however, the restrictions on redefinition and shadowing of loop-finish are the same as for symbols
in the COMMON-LISP package which are fbound in the global environment. The consequences of
attempting to use loop-finish outside of loop are undefined.

See Also:
loop, Section 6.1 (The LOOP Facility)

Notes:

Iteration 6—43

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

6—44 Programming Language—Common Lisp

