
Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Programming Language—Common Lisp

7. Objects

Objects i

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

ii Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

7.1 Object Creation and Initialization
The generic function make-instance creates and returns a new instance of a class. The first
argument is a class or the name of a class, and the remaining arguments form an initialization
argument list.

The initialization of a new instance consists of several distinct steps, including the following:
combining the explicitly supplied initialization arguments with default values for the unsupplied
initialization arguments, checking the validity of the initialization arguments, allocating storage
for the instance, filling slots with values, and executing user-supplied methods that perform
additional initialization. Each step of make-instance is implemented by a generic function to
provide a mechanism for customizing that step. In addition, make-instance is itself a generic
function and thus also can be customized.

The object system specifies system-supplied primary methods for each step and thus specifies
a well-defined standard behavior for the entire initialization process. The standard behavior
provides four simple mechanisms for controlling initialization:

• Declaring a symbol to be an initialization argument for a slot . An initialization argument
is declared by using the :initarg slot option to defclass. This provides a mechanism for
supplying a value for a slot in a call to make-instance.

• Supplying a default value form for an initialization argument. Default value forms
for initialization arguments are defined by using the :default-initargs class option
to defclass. If an initialization argument is not explicitly provided as an argument
to make-instance, the default value form is evaluated in the lexical environment of
the defclass form that defined it, and the resulting value is used as the value of the
initialization argument.

• Supplying a default initial value form for a slot . A default initial value form for a slot
is defined by using the :initform slot option to defclass. If no initialization argument
associated with that slot is given as an argument to make-instance or is defaulted by
:default-initargs, this default initial value form is evaluated in the lexical environment
of the defclass form that defined it, and the resulting value is stored in the slot . The
:initform form for a local slot may be used when creating an instance, when updating
an instance to conform to a redefined class, or when updating an instance to conform to
the definition of a different class. The :initform form for a shared slot may be used when
defining or re-defining the class.

• Defining methods for initialize-instance and shared-initialize. The slot-filling
behavior described above is implemented by a system-supplied primary method
for initialize-instance which invokes shared-initialize. The generic function
shared-initialize implements the parts of initialization shared by these four situations:
when making an instance, when re-initializing an instance, when updating an instance to
conform to a redefined class, and when updating an instance to conform to the definition
of a different class. The system-supplied primary method for shared-initialize directly

Objects 7–1

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

implements the slot-filling behavior described above, and initialize-instance simply
invokes shared-initialize.

7.1.1 Initialization Arguments
An initialization argument controls object creation and initialization. It is often convenient to use
keyword symbols to name initialization arguments, but the name of an initialization argument
can be any symbol , including nil. An initialization argument can be used in two ways: to fill a
slot with a value or to provide an argument for an initialization method . A single initialization
argument can be used for both purposes.

An initialization argument list is a property list of initialization argument names and values. Its
structure is identical to a property list and also to the portion of an argument list processed for
&key parameters. As in those lists, if an initialization argument name appears more than once
in an initialization argument list, the leftmost occurrence supplies the value and the remaining
occurrences are ignored. The arguments to make-instance (after the first argument) form an
initialization argument list .

An initialization argument can be associated with a slot . If the initialization argument has a
value in the initialization argument list , the value is stored into the slot of the newly created
object , overriding any :initform form associated with the slot . A single initialization argument
can initialize more than one slot . An initialization argument that initializes a shared slot stores
its value into the shared slot , replacing any previous value.

An initialization argument can be associated with a method . When an object is created and
a particular initialization argument is supplied, the generic functions initialize-instance,
shared-initialize, and allocate-instance are called with that initialization argument’s name
and value as a keyword argument pair. If a value for the initialization argument is not supplied in
the initialization argument list , the method ’s lambda list supplies a default value.

Initialization arguments are used in four situations: when making an instance, when re-initializing
an instance, when updating an instance to conform to a redefined class, and when updating an
instance to conform to the definition of a different class.

Because initialization arguments are used to control the creation and initialization of an instance
of some particular class, we say that an initialization argument is “an initialization argument for”
that class.

7.1.2 Declaring the Validity of Initialization Arguments
Initialization arguments are checked for validity in each of the four situations that use them. An
initialization argument may be valid in one situation and not another. For example, the system-
supplied primary method for make-instance defined for the class standard-class checks the
validity of its initialization arguments and signals an error if an initialization argument is supplied
that is not declared as valid in that situation.

There are two means for declaring initialization arguments valid.

7–2 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

• Initialization arguments that fill slots are declared as valid by the :initarg slot option
to defclass. The :initarg slot option is inherited from superclasses. Thus the set of
valid initialization arguments that fill slots for a class is the union of the initialization
arguments that fill slots declared as valid by that class and its superclasses. Initialization
arguments that fill slots are valid in all four contexts.

• Initialization arguments that supply arguments to methods are declared as valid by
defining those methods. The keyword name of each keyword parameter specified in
the method ’s lambda list becomes an initialization argument for all classes for which
the method is applicable. The presence of &allow-other-keys in the lambda list of an
applicable method disables validity checking of initialization arguments. Thus method
inheritance controls the set of valid initialization arguments that supply arguments to
methods. The generic functions for which method definitions serve to declare initializa-
tion arguments valid are as follows:

– Making an instance of a class: allocate-instance, initialize-instance, and
shared-initialize. Initialization arguments declared as valid by these methods are
valid when making an instance of a class.

– Re-initializing an instance: reinitialize-instance and shared-initialize. Initializa-
tion arguments declared as valid by these methods are valid when re-initializing
an instance.

– Updating an instance to conform to a redefined class: update-instance-for-redefined-class
and shared-initialize. Initialization arguments declared as valid by these methods
are valid when updating an instance to conform to a redefined class.

– Updating an instance to conform to the definition of a different class:
update-instance-for-different-class and shared-initialize. Initialization ar-
guments declared as valid by these methods are valid when updating an instance
to conform to the definition of a different class.

The set of valid initialization arguments for a class is the set of valid initialization arguments
that either fill slots or supply arguments to methods, along with the predefined initialization
argument :allow-other-keys. The default value for :allow-other-keys is nil. Validity checking of
initialization arguments is disabled if the value of the initialization argument :allow-other-keys is
true.

7.1.3 Defaulting of Initialization Arguments
A default value form can be supplied for an initialization argument by using the
:default-initargs class option. If an initialization argument is declared valid by some particular
class, its default value form might be specified by a different class. In this case :default-initargs

is used to supply a default value for an inherited initialization argument.

Objects 7–3

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

The :default-initargs option is used only to provide default values for initialization argu-
ments; it does not declare a symbol as a valid initialization argument name. Furthermore, the
:default-initargs option is used only to provide default values for initialization arguments when
making an instance.

The argument to the :default-initargs class option is a list of alternating initialization argu-
ment names and forms. Each form is the default value form for the corresponding initialization
argument. The default value form of an initialization argument is used and evaluated only if that
initialization argument does not appear in the arguments to make-instance and is not defaulted
by a more specific class. The default value form is evaluated in the lexical environment of the
defclass form that supplied it; the resulting value is used as the initialization argument’s value.

The initialization arguments supplied to make-instance are combined with defaulted initialization
arguments to produce a defaulted initialization argument list . A defaulted initialization argument
list is a list of alternating initialization argument names and values in which unsupplied initializa-
tion arguments are defaulted and in which the explicitly supplied initialization arguments appear
earlier in the list than the defaulted initialization arguments. Defaulted initialization arguments
are ordered according to the order in the class precedence list of the classes that supplied the
default values.

There is a distinction between the purposes of the :default-initargs and the :initform options
with respect to the initialization of slots. The :default-initargs class option provides a mech-
anism for the user to give a default value form for an initialization argument without knowing
whether the initialization argument initializes a slot or is passed to a method . If that initialization
argument is not explicitly supplied in a call to make-instance, the default value form is used, just
as if it had been supplied in the call. In contrast, the :initform slot option provides a mechanism
for the user to give a default initial value form for a slot . An :initform form is used to initial-
ize a slot only if no initialization argument associated with that slot is given as an argument to
make-instance or is defaulted by :default-initargs.

The order of evaluation of default value forms for initialization arguments and the order of evalu-
ation of :initform forms are undefined. If the order of evaluation is important, initialize-instance
or shared-initialize methods should be used instead.

7.1.4 Rules for Initialization Arguments
The :initarg slot option may be specified more than once for a given slot .

The following rules specify when initialization arguments may be multiply defined:

• A given initialization argument can be used to initialize more than one slot if the same
initialization argument name appears in more than one :initarg slot option.

• A given initialization argument name can appear in the lambda list of more than one
initialization method .

7–4 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

• A given initialization argument name can appear both in an :initarg slot option and in
the lambda list of an initialization method .

If two or more initialization arguments that initialize the same slot are given in the arguments to
make-instance, the leftmost of these initialization arguments in the initialization argument list
supplies the value, even if the initialization arguments have different names.

If two or more different initialization arguments that initialize the same slot have default values
and none is given explicitly in the arguments to make-instance, the initialization argument
that appears in a :default-initargs class option in the most specific of the classes supplies the
value. If a single :default-initargs class option specifies two or more initialization arguments
that initialize the same slot and none is given explicitly in the arguments to make-instance, the
leftmost in the :default-initargs class option supplies the value, and the values of the remaining
default value forms are ignored.

Initialization arguments given explicitly in the arguments to make-instance appear to the left
of defaulted initialization arguments. Suppose that the classes C1 and C2 supply the values of
defaulted initialization arguments for different slots, and suppose that C1 is more specific than
C2; then the defaulted initialization argument whose value is supplied by C1 is to the left of the
defaulted initialization argument whose value is supplied by C2 in the defaulted initialization
argument list . If a single :default-initargs class option supplies the values of initialization
arguments for two different slots, the initialization argument whose value is specified farther
to the left in the :default-initargs class option appears farther to the left in the defaulted
initialization argument list .

If a slot has both an :initform form and an :initarg slot option, and the initialization argument
is defaulted using :default-initargs or is supplied to make-instance, the captured :initform

form is neither used nor evaluated.

The following is an example of the above rules:

(defclass q () ((x :initarg a)))

(defclass r (q) ((x :initarg b))

(:default-initargs a 1 b 2))

Defaulted
Form Initialization Argument List Contents of Slot X
(make-instance ’r) (a 1 b 2) 1

(make-instance ’r ’a 3) (a 3 b 2) 3

(make-instance ’r ’b 4) (b 4 a 1) 4

(make-instance ’r ’a 1 ’a 2) (a 1 a 2 b 2) 1

Objects 7–5

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

7.1.5 Shared-Initialize
The generic function shared-initialize is used to fill the slots of an instance using initialization
arguments and :initform forms when an instance is created, when an instance is re-initialized,
when an instance is updated to conform to a redefined class, and when an instance is updated
to conform to a different class. It uses standard method combination. It takes the following
arguments: the instance to be initialized, a specification of a set of names of slots accessible in
that instance, and any number of initialization arguments. The arguments after the first two
must form an initialization argument list .

The second argument to shared-initialize may be one of the following:

• It can be a (possibly empty) list of slot names, which specifies the set of those slot
names.

• It can be the symbol t, which specifies the set of all of the slots.

There is a system-supplied primary method for shared-initialize whose first parameter specializer
is the class standard-object. This method behaves as follows on each slot , whether shared or
local:

• If an initialization argument in the initialization argument list specifies a value for that
slot , that value is stored into the slot , even if a value has already been stored in the slot
before the method is run. The affected slots are independent of which slots are indicated
by the second argument to shared-initialize.

• Any slots indicated by the second argument that are still unbound at this point are
initialized according to their :initform forms. For any such slot that has an :initform

form, that form is evaluated in the lexical environment of its defining defclass form
and the result is stored into the slot . For example, if a before method stores a value
in the slot , the :initform form will not be used to supply a value for the slot . If the
second argument specifies a name that does not correspond to any slots accessible in the
instance, the results are unspecified.

• The rules mentioned in Section 7.1.4 (Rules for Initialization Arguments) are obeyed.

The generic function shared-initialize is called by the system-supplied primary methods for
reinitialize-instance, update-instance-for-different-class, update-instance-for-redefined-class,
and initialize-instance. Thus, methods can be written for shared-initialize to specify actions that
should be taken in all of these contexts.

7–6 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

7.1.6 Initialize-Instance
The generic function initialize-instance is called by make-instance to initialize a newly created
instance. It uses standard method combination. Methods for initialize-instance can be defined in
order to perform any initialization that cannot be achieved simply by supplying initial values for
slots.

During initialization, initialize-instance is invoked after the following actions have been taken:

• The defaulted initialization argument list has been computed by combining the supplied
initialization argument list with any default initialization arguments for the class.

• The validity of the defaulted initialization argument list has been checked. If any of the
initialization arguments has not been declared as valid, an error is signaled.

• A new instance whose slots are unbound has been created.

The generic function initialize-instance is called with the new instance and the defaulted initial-
ization arguments. There is a system-supplied primary method for initialize-instance whose
parameter specializer is the class standard-object. This method calls the generic function
shared-initialize to fill in the slots according to the initialization arguments and the :initform

forms for the slots; the generic function shared-initialize is called with the following arguments:
the instance, t, and the defaulted initialization arguments.

Note that initialize-instance provides the defaulted initialization argument list in its call to
shared-initialize, so the first step performed by the system-supplied primary method for
shared-initialize takes into account both the initialization arguments provided in the call to
make-instance and the defaulted initialization argument list .

Methods for initialize-instance can be defined to specify actions to be taken when an instance
is initialized. If only after methods for initialize-instance are defined, they will be run after the
system-supplied primary method for initialization and therefore will not interfere with the default
behavior of initialize-instance.

The object system provides two functions that are useful in the bodies of initialize-instance
methods. The function slot-boundp returns a generic boolean value that indicates whether
a specified slot has a value; this provides a mechanism for writing after methods for
initialize-instance that initialize slots only if they have not already been initialized. The function
slot-makunbound causes the slot to have no value.

7.1.7 Definitions of Make-Instance and Initialize-Instance
The generic function make-instance behaves as if it were defined as follows, except that certain
optimizations are permitted:

(defmethod make-instance ((class standard-class) &rest initargs)

...

Objects 7–7

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(let ((instance (apply #’allocate-instance class initargs)))

(apply #’initialize-instance instance initargs)

instance))

(defmethod make-instance ((class-name symbol) &rest initargs)

(apply #’make-instance (find-class class-name) initargs))

The elided code in the definition of make-instance augments the initargs with any defaulted
initialization arguments and checks the resulting initialization arguments to determine whether
an initialization argument was supplied that neither filled a slot nor supplied an argument to an
applicable method .

The generic function initialize-instance behaves as if it were defined as follows, except that
certain optimizations are permitted:

(defmethod initialize-instance ((instance standard-object) &rest initargs)

(apply #’shared-initialize instance t initargs)))

These procedures can be customized.

Customizing at the Programmer Interface level includes using the :initform, :initarg,
and :default-initargs options to defclass, as well as defining methods for make-instance,
allocate-instance, and initialize-instance. It is also possible to define methods for
shared-initialize, which would be invoked by the generic functions reinitialize-instance,
update-instance-for-redefined-class, update-instance-for-different-class, and
initialize-instance. The meta-object level supports additional customization.

Implementations are permitted to make certain optimizations to initialize-instance and
shared-initialize. The description of shared-initialize in Chapter 7 mentions the possible op-
timizations.

7–8 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

7.2 Changing the Class of an Instance
The function change-class can be used to change the class of an instance from its current
class, Cfrom, to a different class, Cto; it changes the structure of the instance to conform to the
definition of the class Cto.

Note that changing the class of an instance may cause slots to be added or deleted. Changing the
class of an instance does not change its identity as defined by the eq function.

When change-class is invoked on an instance, a two-step updating process takes place. The
first step modifies the structure of the instance by adding new local slots and discarding local
slots that are not specified in the new version of the instance. The second step initializes the
newly added local slots and performs any other user-defined actions. These two steps are further
described in the two following sections.

7.2.1 Modifying the Structure of the Instance
In order to make the instance conform to the class Cto, local slots specified by the class Cto that
are not specified by the class Cfrom are added, and local slots not specified by the class Cto that
are specified by the class Cfrom are discarded.

The values of local slots specified by both the class Cto and the class Cfrom are retained. If such a
local slot was unbound, it remains unbound.

The values of slots specified as shared in the class Cfrom and as local in the class Cto are retained.

This first step of the update does not affect the values of any shared slots.

7.2.2 Initializing Newly Added Local Slots
The second step of the update initializes the newly added slots and performs
any other user-defined actions. This step is implemented by the generic function
update-instance-for-different-class. The generic function update-instance-for-different-class is
invoked by change-class after the first step of the update has been completed.

The generic function update-instance-for-different-class is invoked on arguments computed by
change-class. The first argument passed is a copy of the instance being updated and is an in-
stance of the class Cfrom; this copy has dynamic extent within the generic function change-class.
The second argument is the instance as updated so far by change-class and is an instance of the
class Cto. The remaining arguments are an initialization argument list .

There is a system-supplied primary method for update-instance-for-different-class that has two
parameter specializers, each of which is the class standard-object. First this method checks the
validity of initialization arguments and signals an error if an initialization argument is supplied
that is not declared as valid. (For more information, see Section 7.1.2 (Declaring the Validity of
Initialization Arguments).) Then it calls the generic function shared-initialize with the following
arguments: the new instance, a list of names of the newly added slots, and the initialization
arguments it received.

Objects 7–9

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

7.2.3 Customizing the Change of Class of an Instance
Methods for update-instance-for-different-class may be defined to specify actions to be taken
when an instance is updated. If only after methods for update-instance-for-different-class are
defined, they will be run after the system-supplied primary method for initialization and will not
interfere with the default behavior of update-instance-for-different-class.

Methods for shared-initialize may be defined to customize class redefinition. For more informa-
tion, see Section 7.1.5 (Shared-Initialize).

7–10 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

7.3 Reinitializing an Instance
The generic function reinitialize-instance may be used to change the values of slots according to
initialization arguments.

The process of reinitialization changes the values of some slots and performs any user-defined
actions. It does not modify the structure of an instance to add or delete slots, and it does not use
any :initform forms to initialize slots.

The generic function reinitialize-instance may be called directly. It takes one required argument,
the instance. It also takes any number of initialization arguments to be used by methods for
reinitialize-instance or for shared-initialize. The arguments after the required instance must
form an initialization argument list .

There is a system-supplied primary method for reinitialize-instance whose parameter specializer
is the class standard-object. First this method checks the validity of initialization arguments and
signals an error if an initialization argument is supplied that is not declared as valid. (For more
information, see Section 7.1.2 (Declaring the Validity of Initialization Arguments).) Then it calls
the generic function shared-initialize with the following arguments: the instance, nil, and the
initialization arguments it received.

7.3.1 Customizing Reinitialization
Methods for reinitialize-instance may be defined to specify actions to be taken when an instance
is updated. If only after methods for reinitialize-instance are defined, they will be run after the
system-supplied primary method for initialization and therefore will not interfere with the default
behavior of reinitialize-instance.

Methods for shared-initialize may be defined to customize class redefinition. For more informa-
tion, see Section 7.1.5 (Shared-Initialize).

Objects 7–11

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

7.4 Meta-Objects
The implementation of the object system manipulates classes, methods, and generic functions.
The object system contains a set of generic functions defined by methods on classes; the behavior
of those generic functions defines the behavior of the object system. The instances of the classes
on which those methods are defined are called meta-objects.

7.4.1 Standard Meta-objects
The object system supplies a set of meta-objects, called standard meta-objects. These
include the class standard-object and instances of the classes standard-method,
standard-generic-function, and method-combination.

• The class standard-method is the default class of methods defined by the defmethod
and defgeneric forms.

• The class standard-generic-function is the default class of generic functions defined by
the forms defmethod, defgeneric, and defclass.

• The class named standard-object is an instance of the class standard-class and
is a superclass of every class that is an instance of standard-class except itself and
structure-class.

• Every method combination object is an instance of a subclass of class
method-combination.

7–12 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

7.5 Slots

7.5.1 Introduction to Slots
An object of metaclass standard-class has zero or more named slots. The slots of an object are
determined by the class of the object . Each slot can hold one value. The name of a slot is a
symbol that is syntactically valid for use as a variable name.

When a slot does not have a value, the slot is said to be unbound . When an unbound slot is
read, the generic function slot-unbound is invoked. The system-supplied primary method for
slot-unbound on class t signals an error. If slot-unbound returns, its primary value is used that
time as the value of the slot .

The default initial value form for a slot is defined by the :initform slot option. When the
:initform form is used to supply a value, it is evaluated in the lexical environment in which
the defclass form was evaluated. The :initform along with the lexical environment in which the
defclass form was evaluated is called a captured initialization form. For more details, see Section
7.1 (Object Creation and Initialization).

A local slot is defined to be a slot that is accessible to exactly one instance, namely the one in
which the slot is allocated. A shared slot is defined to be a slot that is visible to more than one
instance of a given class and its subclasses.

A class is said to define a slot with a given name when the defclass form for that class contains
a slot specifier with that name. Defining a local slot does not immediately create a slot ; it
causes a slot to be created each time an instance of the class is created. Defining a shared slot
immediately creates a slot .

The :allocation slot option to defclass controls the kind of slot that is defined. If the value of
the :allocation slot option is :instance, a local slot is created. If the value of :allocation is
:class, a shared slot is created.

A slot is said to be accessible in an instance of a class if the slot is defined by the class of the
instance or is inherited from a superclass of that class. At most one slot of a given name can be
accessible in an instance. A shared slot defined by a class is accessible in all instances of that
class. A detailed explanation of the inheritance of slots is given in Section 7.5.3 (Inheritance of
Slots and Slot Options).

7.5.2 Accessing Slots
Slots can be accessed in two ways: by use of the primitive function slot-value and by use of
generic functions generated by the defclass form.

The function slot-value can be used with any of the slot names specified in the defclass form to
access a specific slot accessible in an instance of the given class.

Objects 7–13

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

The macro defclass provides syntax for generating methods to read and write slots. If a reader
method is requested, a method is automatically generated for reading the value of the slot , but
no method for storing a value into it is generated. If a writer method is requested, a method is
automatically generated for storing a value into the slot , but no method for reading its value is
generated. If an accessor method is requested, a method for reading the value of the slot and a
method for storing a value into the slot are automatically generated. Reader and writer methods
are implemented using slot-value.

When a reader or writer method is specified for a slot , the name of the generic function to which
the generated method belongs is directly specified. If the name specified for the writer method is
the symbol name, the name of the generic function for writing the slot is the symbol name, and the
generic function takes two arguments: the new value and the instance, in that order. If the name
specified for the accessor method is the symbol name, the name of the generic function for reading
the slot is the symbol name, and the name of the generic function for writing the slot is the list
(setf name).

A generic function created or modified by supplying :reader, :writer, or :accessor slot options
can be treated exactly as an ordinary generic function.

Note that slot-value can be used to read or write the value of a slot whether or not reader or
writer methods exist for that slot . When slot-value is used, no reader or writer methods are
invoked.

The macro with-slots can be used to establish a lexical environment in which specified slots are
lexically available as if they were variables. The macro with-slots invokes the function slot-value
to access the specified slots.

The macro with-accessors can be used to establish a lexical environment in which specified slots
are lexically available through their accessors as if they were variables. The macro with-accessors
invokes the appropriate accessors to access the specified slots.

7.5.3 Inheritance of Slots and Slot Options
The set of the names of all slots accessible in an instance of a class C is the union of the sets of
names of slots defined by C and its superclasses. The structure of an instance is the set of names
of local slots in that instance.

In the simplest case, only one class among C and its superclasses defines a slot with a given slot
name. If a slot is defined by a superclass of C, the slot is said to be inherited. The characteris-
tics of the slot are determined by the slot specifier of the defining class. Consider the defining
class for a slot S. If the value of the :allocation slot option is :instance, then S is a local slot
and each instance of C has its own slot named S that stores its own value. If the value of the
:allocation slot option is :class, then S is a shared slot , the class that defined S stores the
value, and all instances of C can access that single slot . If the :allocation slot option is omitted,
:instance is used.

In general, more than one class among C and its superclasses can define a slot with a given

7–14 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

name. In such cases, only one slot with the given name is accessible in an instance of C, and the
characteristics of that slot are a combination of the several slot specifiers, computed as follows:

• All the slot specifiers for a given slot name are ordered from most specific to least spe-
cific, according to the order in C’s class precedence list of the classes that define them.
All references to the specificity of slot specifiers immediately below refers to this ordering.

• The allocation of a slot is controlled by the most specific slot specifier . If the most
specific slot specifier does not contain an :allocation slot option, :instance is used. Less
specific slot specifiers do not affect the allocation.

• The default initial value form for a slot is the value of the :initform slot option in the
most specific slot specifier that contains one. If no slot specifier contains an :initform

slot option, the slot has no default initial value form.

• The contents of a slot will always be of type (and T1 . . . Tn) where T1 . . . Tn are the
values of the :type slot options contained in all of the slot specifiers. If no slot specifier
contains the :type slot option, the contents of the slot will always be of type t. The
consequences of attempting to store in a slot a value that does not satisfy the type of the
slot are undefined.

• The set of initialization arguments that initialize a given slot is the union of the initializa-
tion arguments declared in the :initarg slot options in all the slot specifiers.

• The documentation string for a slot is the value of the :documentation slot option in the
most specific slot specifier that contains one. If no slot specifier contains a :documentation

slot option, the slot has no documentation string .

A consequence of the allocation rule is that a shared slot can be shadowed . For example, if a
class C1 defines a slot named S whose value for the :allocation slot option is :class, that slot is
accessible in instances of C1 and all of its subclasses. However, if C2 is a subclass of C1 and also
defines a slot named S, C1’s slot is not shared by instances of C2 and its subclasses. When a class
C1 defines a shared slot , any subclass C2 of C1 will share this single slot unless the defclass form
for C2 specifies a slot of the same name or there is a superclass of C2 that precedes C1 in the
class precedence list of C2 that defines a slot of the same name.

A consequence of the type rule is that the value of a slot satisfies the type constraint of each slot
specifier that contributes to that slot . Because the result of attempting to store in a slot a value
that does not satisfy the type constraint for the slot is undefined, the value in a slot might fail to
satisfy its type constraint.

The :reader, :writer, and :accessor slot options create methods rather than define the charac-
teristics of a slot . Reader and writer methods are inherited in the sense described in Section 7.6.7
(Inheritance of Methods).

Methods that access slots use only the name of the slot and the type of the slot ’s value. Suppose
a superclass provides a method that expects to access a shared slot of a given name, and a

Objects 7–15

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

subclass defines a local slot with the same name. If the method provided by the superclass is used
on an instance of the subclass, the method accesses the local slot .

7–16 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

7.6 Generic Functions and Methods

7.6.1 Introduction to Generic Functions
A generic function is a function whose behavior depends on the classes or identities of the
arguments supplied to it. A generic function object is associated with a set of methods, a lambda
list , a method combination2, and other information.

Like an ordinary function, a generic function takes arguments, performs a series of operations,
and perhaps returns useful values. An ordinary function has a single body of code that is always
executed when the function is called. A generic function has a set of bodies of code of which a
subset is selected for execution. The selected bodies of code and the manner of their combina-
tion are determined by the classes or identities of one or more of the arguments to the generic
function and by its method combination.

Ordinary functions and generic functions are called with identical syntax.

Generic functions are true functions that can be passed as arguments and used as the first
argument to funcall and apply.

A binding of a function name to a generic function can be established in one of several ways. It
can be established in the global environment by ensure-generic-function, defmethod (implicitly,
due to ensure-generic-function) or defgeneric (also implicitly, due to ensure-generic-function).
No standardized mechanism is provided for establishing a binding of a function name to a generic
function in the lexical environment .

When a defgeneric form is evaluated, one of three actions is taken (due to
ensure-generic-function):

• If a generic function of the given name already exists, the existing generic function
object is modified. Methods specified by the current defgeneric form are added, and
any methods in the existing generic function that were defined by a previous defgeneric
form are removed. Methods added by the current defgeneric form might replace methods
defined by defmethod, defclass, define-condition, or defstruct. No other methods in the
generic function are affected or replaced.

• If the given name names an ordinary function, a macro, or a special operator , an error is
signaled.

• Otherwise a generic function is created with the methods specified by the method defini-
tions in the defgeneric form.

Some operators permit specification of the options of a generic function, such as the type of
method combination it uses or its argument precedence order . These operators will be referred
to as “operators that specify generic function options.” The only standardized operator in this
category is defgeneric.

Objects 7–17

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Some operators define methods for a generic function. These operators will be referred to as
method-defining operators; their associated forms are called method-defining forms. The
standardized method-defining operators are listed in Figure 7–1.

defgeneric defmethod defclass
define-condition defstruct

Figure 7–1. Standardized Method-Defining Operators

Note that of the standardized method-defining operators only defgeneric can specify generic
function options. defgeneric and any implementation-defined operators that can specify generic
function options are also referred to as “operators that specify generic function options.”

7.6.2 Introduction to Methods
Methods define the class-specific or identity-specific behavior and operations of a generic function.

A method object is associated with code that implements the method’s behavior, a sequence of
parameter specializers that specify when the given method is applicable, a lambda list , and a
sequence of qualifiers that are used by the method combination facility to distinguish among
methods.

A method object is not a function and cannot be invoked as a function. Various mechanisms in
the object system take a method object and invoke its method function, as is the case when a
generic function is invoked. When this occurs it is said that the method is invoked or called.

A method-defining form contains the code that is to be run when the arguments to the generic
function cause the method that it defines to be invoked. When a method-defining form is evalu-
ated, a method object is created and one of four actions is taken:

• If a generic function of the given name already exists and if a method object already
exists that agrees with the new one on parameter specializers and qualifiers, the new
method object replaces the old one. For a definition of one method agreeing with another
on parameter specializers and qualifiers, see Section 7.6.3 (Agreement on Parameter
Specializers and Qualifiers).

• If a generic function of the given name already exists and if there is no method object
that agrees with the new one on parameter specializers and qualifiers, the existing generic
function object is modified to contain the new method object .

• If the given name names an ordinary function, a macro, or a special operator , an error is
signaled.

• Otherwise a generic function is created with the method specified by the method-defining
form.

7–18 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

If the lambda list of a new method is not congruent with the lambda list of the generic function,
an error is signaled. If a method-defining operator that cannot specify generic function options
creates a new generic function, a lambda list for that generic function is derived from the lambda
list of the method in the method-defining form in such a way as to be congruent with it. For
a discussion of congruence, see Section 7.6.4 (Congruent Lambda-lists for all Methods of a
Generic Function).

Each method has a specialized lambda list , which determines when that method can be ap-
plied. A specialized lambda list is like an ordinary lambda list except that a specialized param-
eter may occur instead of the name of a required parameter. A specialized parameter is a list
(variable-name parameter-specializer-name), where parameter-specializer-name is one of the
following:

a symbol

denotes a parameter specializer which is the class named by that symbol .

a class

denotes a parameter specializer which is the class itself.

(eql form)

denotes a parameter specializer which satisfies the type specifier (eql object), where object
is the result of evaluating form. The form form is evaluated in the lexical environment in
which the method-defining form is evaluated. Note that form is evaluated only once, at
the time the method is defined, not each time the generic function is called.

Parameter specializer names are used in macros intended as the user-level interface (defmethod),
while parameter specializers are used in the functional interface.

Only required parameters may be specialized, and there must be a parameter specializer for each
required parameter. For notational simplicity, if some required parameter in a specialized lambda
list in a method-defining form is simply a variable name, its parameter specializer defaults to the
class t.

Given a generic function and a set of arguments, an applicable method is a method for that
generic function whose parameter specializers are satisfied by their corresponding arguments. The
following definition specifies what it means for a method to be applicable and for an argument to
satisfy a parameter specializer .

Let 〈A1, . . . , An〉 be the required arguments to a generic function in order. Let 〈P1, . . . , Pn〉 be the
parameter specializers corresponding to the required parameters of the method M in order. The
method M is applicable when each Ai is of the type specified by the type specifier Pi. Because
every valid parameter specializer is also a valid type specifier , the function typep can be used
during method selection to determine whether an argument satisfies a parameter specializer .

A method all of whose parameter specializers are the class t is called a default method; it is

Objects 7–19

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

always applicable but may be shadowed by a more specific method.

Methods can have qualifiers, which give the method combination procedure a way to distinguish
among methods. A method that has one or more qualifiers is called a qualified method . A method
with no qualifiers is called an unqualified method . A qualifier is any non-list . The qualifiers
defined by the standardized method combination types are symbols.

In this specification, the terms “primary method” and “auxiliary method” are used to partition
methods within a method combination type according to their intended use. In standard method
combination, primary methods are unqualified methods and auxiliary methods are methods with a
single qualifier that is one of :around, :before, or :after. Methods with these qualifiers are called
around methods, before methods, and after methods, respectively. When a method combination
type is defined using the short form of define-method-combination, primary methods are meth-
ods qualified with the name of the type of method combination, and auxiliary methods have the
qualifier :around. Thus the terms “primary method” and “auxiliary method” have only a relative
definition within a given method combination type.

7.6.3 Agreement on Parameter Specializers and Qualifiers
Two methods are said to agree with each other on parameter specializers and qualifiers if the
following conditions hold:

1. Both methods have the same number of required parameters. Suppose the parameter
specializers of the two methods are P1,1 . . . P1,n and P2,1 . . . P2,n.

2. For each 1 ≤ i ≤ n, P1,i agrees with P2,i. The parameter specializer P1,i agrees with P2,i

if P1,i and P2,i are the same class or if P1,i = (eql object1), P2,i = (eql object2), and
(eql object1 object2). Otherwise P1,i and P2,i do not agree.

3. The two lists of qualifiers are the same under equal.

7.6.4 Congruent Lambda-lists for all Methods of a Generic
Function

These rules define the congruence of a set of lambda lists, including the lambda list of each
method for a given generic function and the lambda list specified for the generic function itself, if
given.

1. Each lambda list must have the same number of required parameters.

2. Each lambda list must have the same number of optional parameters. Each method can
supply its own default for an optional parameter.

3. If any lambda list mentions &rest or &key, each lambda list must mention one or both of
them.

7–20 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

4. If the generic function lambda list mentions &key, each method must accept all of the
keyword names mentioned after &key, either by accepting them explicitly, by specifying
&allow-other-keys, or by specifying &rest but not &key. Each method can accept
additional keyword arguments of its own. The checking of the validity of keyword names
is done in the generic function, not in each method. A method is invoked as if the
keyword argument pair whose name is :allow-other-keys and whose value is true were
supplied, though no such argument pair will be passed.

5. The use of &allow-other-keys need not be consistent across lambda lists. If
&allow-other-keys is mentioned in the lambda list of any applicable method or of the
generic function, any keyword arguments may be mentioned in the call to the generic
function.

6. The use of &aux need not be consistent across methods.

If a method-defining operator that cannot specify generic function options creates a
generic function, and if the lambda list for the method mentions keyword arguments, the
lambda list of the generic function will mention &key (but no keyword arguments).

7.6.5 Keyword Arguments in Generic Functions and Methods
When a generic function or any of its methods mentions &key in a lambda list , the specific
set of keyword arguments accepted by the generic function varies according to the applicable
methods. The set of keyword arguments accepted by the generic function for a particular call
is the union of the keyword arguments accepted by all applicable methods and the keyword
arguments mentioned after &key in the generic function definition, if any. A method that has
&rest but not &key does not affect the set of acceptable keyword arguments. If the lambda list
of any applicable method or of the generic function definition contains &allow-other-keys, all
keyword arguments are accepted by the generic function.

The lambda list congruence rules require that each method accept all of the keyword arguments
mentioned after &key in the generic function definition, by accepting them explicitly, by specify-
ing &allow-other-keys, or by specifying &rest but not &key. Each method can accept additional
keyword arguments of its own, in addition to the keyword arguments mentioned in the generic
function definition.

If a generic function is passed a keyword argument that no applicable method accepts, an error
should be signaled; see Section 3.5 (Error Checking in Function Calls).

7.6.5.1 Examples of Keyword Arguments in Generic Functions and Methods

For example, suppose there are two methods defined for width as follows:

(defmethod width ((c character-class) &key font) ...)

(defmethod width ((p picture-class) &key pixel-size) ...)

Objects 7–21

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Assume that there are no other methods and no generic function definition for width. The evalua-
tion of the following form should signal an error because the keyword argument :pixel-size is not
accepted by the applicable method.

(width (make-instance ‘character-class :char #\Q)

:font ’baskerville :pixel-size 10)

The evaluation of the following form should signal an error.

(width (make-instance ‘picture-class :glyph (glyph #\Q))

:font ’baskerville :pixel-size 10)

The evaluation of the following form will not signal an error if the class named character-

picture-class is a subclass of both picture-class and character-class.

(width (make-instance ‘character-picture-class :char #\Q)

:font ’baskerville :pixel-size 10)

7.6.6 Method Selection and Combination
When a generic function is called with particular arguments, it must determine the code to
execute. This code is called the effective method for those arguments. The effective method
is a combination of the applicable methods in the generic function that calls some or all of the
methods.

If a generic function is called and no methods are applicable, the generic function
no-applicable-method is invoked, with the results from that call being used as the results of
the call to the original generic function. Calling no-applicable-method takes precedence over
checking for acceptable keyword arguments; see Section 7.6.5 (Keyword Arguments in Generic
Functions and Methods).

When the effective method has been determined, it is invoked with the same arguments as were
passed to the generic function. Whatever values it returns are returned as the values of the
generic function.

7.6.6.1 Determining the Effective Method

The effective method is determined by the following three-step procedure:

1. Select the applicable methods.

2. Sort the applicable methods by precedence order, putting the most specific method first.

3. Apply method combination to the sorted list of applicable methods, producing the
effective method.

7–22 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

7.6.6.1.1 Selecting the Applicable Methods

This step is described in Section 7.6.2 (Introduction to Methods).

7.6.6.1.2 Sorting the Applicable Methods by Precedence Order

To compare the precedence of two methods, their parameter specializers are examined in order.
The default examination order is from left to right, but an alternative order may be specified by
the :argument-precedence-order option to defgeneric or to any of the other operators that specify
generic function options.

The corresponding parameter specializers from each method are compared. When a pair of
parameter specializers agree, the next pair are compared for agreement. If all corresponding
parameter specializers agree, the two methods must have different qualifiers; in this case, either
method can be selected to precede the other. For information about agreement, see Section 7.6.3
(Agreement on Parameter Specializers and Qualifiers).

If some corresponding parameter specializers do not agree, the first pair of parameter specializers
that do not agree determines the precedence. If both parameter specializers are classes, the more
specific of the two methods is the method whose parameter specializer appears earlier in the class
precedence list of the corresponding argument. Because of the way in which the set of applicable
methods is chosen, the parameter specializers are guaranteed to be present in the class precedence
list of the class of the argument.

If just one of a pair of corresponding parameter specializers is (eql object), the method with
that parameter specializer precedes the other method . If both parameter specializers are eql
expressions, the specializers must agree (otherwise the two methods would not both have been
applicable to this argument).

The resulting list of applicable methods has the most specific method first and the least specific
method last.

7.6.6.1.3 Applying method combination to the sorted list of applicable methods

In the simple case—if standard method combination is used and all applicable methods are
primary methods—the effective method is the most specific method. That method can call
the next most specific method by using the function call-next-method. The method that
call-next-method will call is referred to as the next method. The predicate next-method-p
tests whether a next method exists. If call-next-method is called and there is no next most
specific method, the generic function no-next-method is invoked.

In general, the effective method is some combination of the applicable methods. It is described
by a form that contains calls to some or all of the applicable methods, returns the value or values
that will be returned as the value or values of the generic function, and optionally makes some of
the methods accessible by means of call-next-method.

The role of each method in the effective method is determined by its qualifiers and the specificity
of the method. A qualifier serves to mark a method, and the meaning of a qualifier is determined

Objects 7–23

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

by the way that these marks are used by this step of the procedure. If an applicable method
has an unrecognized qualifier , this step signals an error and does not include that method in the
effective method.

When standard method combination is used together with qualified methods, the effective method
is produced as described in Section 7.6.6.2 (Standard Method Combination).

Another type of method combination can be specified by using the :method-combination option of
defgeneric or of any of the other operators that specify generic function options. In this way this
step of the procedure can be customized.

New types of method combination can be defined by using the define-method-combination
macro.

7.6.6.2 Standard Method Combination

Standard method combination is supported by the class standard-generic-function. It is used
if no other type of method combination is specified or if the built-in method combination type
standard is specified.

Primary methods define the main action of the effective method, while auxiliary methods modify
that action in one of three ways. A primary method has no method qualifiers.

An auxiliary method is a method whose qualifier is :before, :after, or :around. Standard method
combination allows no more than one qualifier per method; if a method definition specifies more
than one qualifier per method, an error is signaled.

• A before method has the keyword :before as its only qualifier . A before method specifies
code that is to be run before any primary methods.

• An after method has the keyword :after as its only qualifier . An after method specifies
code that is to be run after primary methods.

• An around method has the keyword :around as its only qualifier . An around method spec-
ifies code that is to be run instead of other applicable methods, but which might contain
explicit code which calls some of those shadowed methods (via call-next-method).

The semantics of standard method combination is as follows:

• If there are any around methods, the most specific around method is called. It supplies
the value or values of the generic function.

• Inside the body of an around method , call-next-method can be used to call the next
method . When the next method returns, the around method can execute more code,
perhaps based on the returned value or values. The generic function no-next-method
is invoked if call-next-method is used and there is no applicable method to call. The
function next-method-p may be used to determine whether a next method exists.

7–24 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

• If an around method invokes call-next-method, the next most specific around method
is called, if one is applicable. If there are no around methods or if call-next-method is
called by the least specific around method , the other methods are called as follows:

– All the before methods are called, in most-specific-first order. Their values are
ignored. An error is signaled if call-next-method is used in a before method .

– The most specific primary method is called. Inside the body of a primary
method, call-next-method may be used to call the next most specific primary
method. When that method returns, the previous primary method can execute
more code, perhaps based on the returned value or values. The generic function
no-next-method is invoked if call-next-method is used and there are no more
applicable primary methods. The function next-method-p may be used to de-
termine whether a next method exists. If call-next-method is not used, only the
most specific primary method is called.

– All the after methods are called in most-specific-last order. Their values are
ignored. An error is signaled if call-next-method is used in an after method .

• If no around methods were invoked, the most specific primary method supplies the value
or values returned by the generic function. The value or values returned by the invocation
of call-next-method in the least specific around method are those returned by the most
specific primary method.

In standard method combination, if there is an applicable method but no applicable primary
method, an error is signaled.

The before methods are run in most-specific-first order while the after methods are run in least-
specific-first order. The design rationale for this difference can be illustrated with an example.
Suppose class C1 modifies the behavior of its superclass, C2, by adding before methods and
after methods. Whether the behavior of the class C2 is defined directly by methods on C2 or
is inherited from its superclasses does not affect the relative order of invocation of methods on
instances of the class C1. Class C1’s before method runs before all of class C2’s methods. Class
C1’s after method runs after all of class C2’s methods.

By contrast, all around methods run before any other methods run. Thus a less specific around
method runs before a more specific primary method.

If only primary methods are used and if call-next-method is not used, only the most specific
method is invoked; that is, more specific methods shadow more general ones.

7.6.6.3 Declarative Method Combination

The macro define-method-combination defines new forms of method combination. It provides
a mechanism for customizing the production of the effective method. The default procedure for
producing an effective method is described in Section 7.6.6.1 (Determining the Effective Method).

Objects 7–25

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

There are two forms of define-method-combination. The short form is a simple facility while
the long form is more powerful and more verbose. The long form resembles defmacro in that
the body is an expression that computes a Lisp form; it provides mechanisms for implementing
arbitrary control structures within method combination and for arbitrary processing of method
qualifiers.

7.6.6.4 Built-in Method Combination Types

The object system provides a set of built-in method combination types. To specify that a generic
function is to use one of these method combination types, the name of the method combina-
tion type is given as the argument to the :method-combination option to defgeneric or to the
:method-combination option to any of the other operators that specify generic function options.

The names of the built-in method combination types are listed in Figure 7–2.

+ append max nconc progn
and list min or standard

Figure 7–2. Built-in Method Combination Types

The semantics of the standard built-in method combination type is described in Section 7.6.6.2
(Standard Method Combination). The other built-in method combination types are called simple
built-in method combination types.

The simple built-in method combination types act as though they were defined by the short form
of define-method-combination. They recognize two roles for methods:

• An around method has the keyword symbol :around as its sole qualifier . The meaning of
:around methods is the same as in standard method combination. Use of the functions
call-next-method and next-method-p is supported in around methods.

• A primary method has the name of the method combination type as its sole qualifier .
For example, the built-in method combination type and recognizes methods whose sole
qualifier is and; these are primary methods. Use of the functions call-next-method and
next-method-p is not supported in primary methods.

The semantics of the simple built-in method combination types is as follows:

• If there are any around methods, the most specific around method is called. It supplies
the value or values of the generic function.

• Inside the body of an around method , the function call-next-method can be used to call
the next method . The generic function no-next-method is invoked if call-next-method
is used and there is no applicable method to call. The function next-method-p may be
used to determine whether a next method exists. When the next method returns, the
around method can execute more code, perhaps based on the returned value or values.

7–26 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

• If an around method invokes call-next-method, the next most specific around method
is called, if one is applicable. If there are no around methods or if call-next-method is
called by the least specific around method , a Lisp form derived from the name of the
built-in method combination type and from the list of applicable primary methods is
evaluated to produce the value of the generic function. Suppose the name of the method
combination type is operator and the call to the generic function is of the form

(generic-function a1 . . . an)

Let M1, . . . , Mk be the applicable primary methods in order; then the derived Lisp form
is

(operator 〈M1 a1 . . . an〉 . . . 〈Mk a1 . . . an〉)

If the expression 〈Mi a1 . . . an〉 is evaluated, the method Mi will be applied to the argu-
ments a1 . . . an. For example, if operator is or, the expression 〈Mi a1 . . . an〉 is evaluated
only if 〈Mj a1 . . . an〉, 1 ≤ j < i, returned nil.

The default order for the primary methods is :most-specific-first. However, the
order can be reversed by supplying :most-specific-last as the second argument to the
:method-combination option.

The simple built-in method combination types require exactly one qualifier per method. An
error is signaled if there are applicable methods with no qualifiers or with qualifiers that are not
supported by the method combination type. An error is signaled if there are applicable around
methods and no applicable primary methods.

7.6.7 Inheritance of Methods
A subclass inherits methods in the sense that any method applicable to all instances of a class is
also applicable to all instances of any subclass of that class.

The inheritance of methods acts the same way regardless of which of the method-defining opera-
tors created the methods.

The inheritance of methods is described in detail in Section 7.6.6 (Method Selection and Combi-
nation).

Objects 7–27

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

function-keywords Standard Generic Function

Syntax:
function-keywords method → keys, allow-other-keys-p

Method Signatures:
function-keywords (method standard-method)

Arguments and Values:
method—a method .

keys—a list .

allow-other-keys-p—a generalized boolean.

Description:
Returns the keyword parameter specifiers for a method .

Two values are returned: a list of the explicitly named keywords and a generalized boolean that
states whether &allow-other-keys had been specified in the method definition.

Examples:

(defmethod gf1 ((a integer) &optional (b 2)

&key (c 3) ((:dee d) 4) e ((eff f)))

(list a b c d e f))

→ #<STANDARD-METHOD GF1 (INTEGER) 36324653>

(find-method #’gf1 ’() (list (find-class ’integer)))

→ #<STANDARD-METHOD GF1 (INTEGER) 36324653>

(function-keywords *)

→ (:C :DEE :E EFF), false
(defmethod gf2 ((a integer))

(list a b c d e f))

→ #<STANDARD-METHOD GF2 (INTEGER) 42701775>

(function-keywords (find-method #’gf1 ’() (list (find-class ’integer))))

→ (), false
(defmethod gf3 ((a integer) &key b c d &allow-other-keys)

(list a b c d e f))

(function-keywords *)

→ (:B :C :D), true

Affected By:
defmethod

7–28 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

See Also:
defmethod

ensure-generic-function Function

Syntax:
ensure-generic-function function-name &key argument-precedence-order declare

documentation environment
generic-function-class lambda-list
method-class method-combination

→ generic-function

Arguments and Values:
function-name—a function name.

The keyword arguments correspond to the option arguments of defgeneric, except that the
:method-class and :generic-function-class arguments can be class objects as well as names.

Method-combination – method combination object.

Environment – the same as the &environment argument to macro expansion functions and is used
to distinguish between compile-time and run-time environments.

generic-function—a generic function object .

Description:
The function ensure-generic-function is used to define a globally named generic function with
no methods or to specify or modify options and declarations that pertain to a globally named
generic function as a whole.

If function-name is not fbound in the global environment , a new generic function is created. If
(fdefinition function-name) is an ordinary function, a macro, or a special operator , an error is
signaled.

If function-name is a list , it must be of the form (setf symbol). If function-name specifies a
generic function that has a different value for any of the following arguments, the generic func-
tion is modified to have the new value: :argument-precedence-order, :declare, :documentation,
:method-combination.

If function-name specifies a generic function that has a different value for the :lambda-list

argument, and the new value is congruent with the lambda lists of all existing methods or there
are no methods, the value is changed; otherwise an error is signaled.

Objects 7–29

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

If function-name specifies a generic function that has a different value for the
:generic-function-class argument and if the new generic function class is compatible with
the old, change-class is called to change the class of the generic function; otherwise an error is
signaled.

If function-name specifies a generic function that has a different value for the :method-class

argument, the value is changed, but any existing methods are not changed.

Affected By:
Existing function binding of function-name.

Exceptional Situations:
If (fdefinition function-name) is an ordinary function, a macro, or a special operator , an error of
type error is signaled.

If function-name specifies a generic function that has a different value for the :lambda-list

argument, and the new value is not congruent with the lambda list of any existing method , an
error of type error is signaled.

If function-name specifies a generic function that has a different value for the
:generic-function-class argument and if the new generic function class not is compatible with
the old, an error of type error is signaled.

See Also:
defgeneric

allocate-instance Standard Generic Function

Syntax:
allocate-instance class &rest initargs &key &allow-other-keys → new-instance

Method Signatures:
allocate-instance (class standard-class) &rest initargs

allocate-instance (class structure-class) &rest initargs

Arguments and Values:
class—a class.

initargs—a list of keyword/value pairs (initialization argument names and values).

new-instance—an object whose class is class.

7–30 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Description:
The generic function allocate-instance creates and returns a new instance of the class, without
initializing it. When the class is a standard class, this means that the slots are unbound ; when
the class is a structure class, this means the slots’ values are unspecified.

The caller of allocate-instance is expected to have already checked the initialization arguments.

The generic function allocate-instance is called by make-instance, as described in Section 7.1
(Object Creation and Initialization).

See Also:
defclass, make-instance, class-of , Section 7.1 (Object Creation and Initialization)

Notes:
The consequences of adding methods to allocate-instance is unspecified. This capability might be
added by the Metaobject Protocol .

reinitialize-instance Standard Generic Function

Syntax:
reinitialize-instance instance &rest initargs &key &allow-other-keys → instance

Method Signatures:
reinitialize-instance (instance standard-object) &rest initargs

Arguments and Values:
instance—an object .

initargs—an initialization argument list .

Description:
The generic function reinitialize-instance can be used to change the values of local slots of an
instance according to initargs. This generic function can be called by users.

The system-supplied primary method for reinitialize-instance checks the validity of initargs and
signals an error if an initarg is supplied that is not declared as valid. The method then calls the
generic function shared-initialize with the following arguments: the instance, nil (which means no
slots should be initialized according to their initforms), and the initargs it received.

Side Effects:
The generic function reinitialize-instance changes the values of local slots.

Objects 7–31

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Exceptional Situations:
The system-supplied primary method for reinitialize-instance signals an error if an initarg is
supplied that is not declared as valid.

See Also:
initialize-instance, shared-initialize, update-instance-for-redefined-class,
update-instance-for-different-class, slot-boundp, slot-makunbound, Section 7.3 (Reinitial-
izing an Instance), Section 7.1.4 (Rules for Initialization Arguments), Section 7.1.2 (Declaring the
Validity of Initialization Arguments)

Notes:
Initargs are declared as valid by using the :initarg option to defclass, or by defining methods for
reinitialize-instance or shared-initialize. The keyword name of each keyword parameter specifier
in the lambda list of any method defined on reinitialize-instance or shared-initialize is declared
as a valid initialization argument name for all classes for which that method is applicable.

shared-initialize Standard Generic Function

Syntax:
shared-initialize instance slot-names &rest initargs &key &allow-other-keys → instance

Method Signatures:
shared-initialize (instance standard-object) slot-names &rest initargs

Arguments and Values:
instance—an object .

slot-names—a list or t.

initargs—a list of keyword/value pairs (of initialization argument names and values).

Description:
The generic function shared-initialize is used to fill the slots of an instance using ini-
targs and :initform forms. It is called when an instance is created, when an instance is re-
initialized, when an instance is updated to conform to a redefined class, and when an in-
stance is updated to conform to a different class. The generic function shared-initialize is
called by the system-supplied primary method for initialize-instance, reinitialize-instance,
update-instance-for-redefined-class, and update-instance-for-different-class.

The generic function shared-initialize takes the following arguments: the instance to be initial-
ized, a specification of a set of slot-names accessible in that instance, and any number of initargs.
The arguments after the first two must form an initialization argument list . The system-supplied

7–32 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

shared-initialize

primary method on shared-initialize initializes the slots with values according to the initargs and
supplied :initform forms. Slot-names indicates which slots should be initialized according to their
:initform forms if no initargs are provided for those slots.

The system-supplied primary method behaves as follows, regardless of whether the slots are local
or shared:

• If an initarg in the initialization argument list specifies a value for that slot , that value is
stored into the slot , even if a value has already been stored in the slot before the method
is run.

• Any slots indicated by slot-names that are still unbound at this point are initialized
according to their :initform forms. For any such slot that has an :initform form, that
form is evaluated in the lexical environment of its defining defclass form and the result
is stored into the slot . For example, if a before method stores a value in the slot , the
:initform form will not be used to supply a value for the slot .

• The rules mentioned in Section 7.1.4 (Rules for Initialization Arguments) are obeyed.

The slots-names argument specifies the slots that are to be initialized according to their :initform

forms if no initialization arguments apply. It can be a list of slot names, which specifies the set of
those slot names; or it can be the symbol t, which specifies the set of all of the slots.

See Also:
initialize-instance, reinitialize-instance, update-instance-for-redefined-class,
update-instance-for-different-class, slot-boundp, slot-makunbound, Section 7.1 (Object
Creation and Initialization), Section 7.1.4 (Rules for Initialization Arguments), Section 7.1.2
(Declaring the Validity of Initialization Arguments)

Notes:
Initargs are declared as valid by using the :initarg option to defclass, or by defining methods
for shared-initialize. The keyword name of each keyword parameter specifier in the lambda list
of any method defined on shared-initialize is declared as a valid initarg name for all classes for
which that method is applicable.

Implementations are permitted to optimize :initform forms that neither produce nor depend
on side effects, by evaluating these forms and storing them into slots before running any
initialize-instance methods, rather than by handling them in the primary initialize-instance
method. (This optimization might be implemented by having the allocate-instance method copy
a prototype instance.)

Implementations are permitted to optimize default initial value forms for initargs associated with
slots by not actually creating the complete initialization argument list when the only method that
would receive the complete list is the method on standard-object. In this case default initial
value forms can be treated like :initform forms. This optimization has no visible effects other
than a performance improvement.

Objects 7–33

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

update-instance-for-different-class Standard Generic
Function

Syntax:
update-instance-for-different-class previous current &rest initargs &key &allow-other-keys

→ implementation-dependent

Method Signatures:
update-instance-for-different-class (previous standard-object)

(current standard-object)
&rest initargs

Arguments and Values:
previous—a copy of the original instance.

current—the original instance (altered).

initargs—an initialization argument list .

Description:
The generic function update-instance-for-different-class is not intended to be called by program-
mers. Programmers may write methods for it. The function update-instance-for-different-class
is called only by the function change-class.

The system-supplied primary method on update-instance-for-different-class checks the validity
of initargs and signals an error if an initarg is supplied that is not declared as valid. This method
then initializes slots with values according to the initargs, and initializes the newly added slots
with values according to their :initform forms. It does this by calling the generic function
shared-initialize with the following arguments: the instance (current), a list of names of the
newly added slots, and the initargs it received. Newly added slots are those local slots for which
no slot of the same name exists in the previous class.

Methods for update-instance-for-different-class can be defined to specify actions to be taken
when an instance is updated. If only after methods for update-instance-for-different-class are
defined, they will be run after the system-supplied primary method for initialization and therefore
will not interfere with the default behavior of update-instance-for-different-class.

Methods on update-instance-for-different-class can be defined to initialize slots differently from
change-class. The default behavior of change-class is described in Section 7.2 (Changing the
Class of an Instance).

7–34 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

The arguments to update-instance-for-different-class are computed by change-class. When
change-class is invoked on an instance, a copy of that instance is made; change-class then de-
structively alters the original instance. The first argument to update-instance-for-different-class,
previous, is that copy; it holds the old slot values temporarily. This argument has dynamic ex-
tent within change-class; if it is referenced in any way once update-instance-for-different-class
returns, the results are undefined. The second argument to update-instance-for-different-class,
current, is the altered original instance. The intended use of previous is to extract old slot val-
ues by using slot-value or with-slots or by invoking a reader generic function, or to run other
methods that were applicable to instances of the original class.

Examples:
See the example for the function change-class.

Exceptional Situations:
The system-supplied primary method on update-instance-for-different-class signals an error if an
initialization argument is supplied that is not declared as valid.

See Also:
change-class, shared-initialize, Section 7.2 (Changing the Class of an Instance), Section 7.1.4
(Rules for Initialization Arguments), Section 7.1.2 (Declaring the Validity of Initialization Argu-
ments)

Notes:
Initargs are declared as valid by using the :initarg option to defclass, or by defining methods for
update-instance-for-different-class or shared-initialize. The keyword name of each keyword pa-
rameter specifier in the lambda list of any method defined on update-instance-for-different-class
or shared-initialize is declared as a valid initarg name for all classes for which that method is
applicable.

The value returned by update-instance-for-different-class is ignored by change-class.

update-instance-for-redefined-class Standard Generic
Function

Syntax:
update-instance-for-redefined-class instance

added-slots discarded-slots
property-list
&rest initargs &key &allow-other-keys

→ {result}*

Objects 7–35

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

update-instance-for-redefined-class

Method Signatures:
update-instance-for-redefined-class (instance standard-object)

added-slots discarded-slots
property-list
&rest initargs

Arguments and Values:
instance—an object .

added-slots—a list .

discarded-slots—a list .

property-list—a list .

initargs—an initialization argument list .

result—an object .

Description:
The generic function update-instance-for-redefined-class is not intended to be
called by programmers. Programmers may write methods for it. The generic func-
tion update-instance-for-redefined-class is called by the mechanism activated by
make-instances-obsolete.

The system-supplied primary method on update-instance-for-redefined-class checks the validity
of initargs and signals an error if an initarg is supplied that is not declared as valid. This method
then initializes slots with values according to the initargs, and initializes the newly added-slots
with values according to their :initform forms. It does this by calling the generic function
shared-initialize with the following arguments: the instance, a list of names of the newly added-
slots to instance, and the initargs it received. Newly added-slots are those local slots for which no
slot of the same name exists in the old version of the class.

When make-instances-obsolete is invoked or when a class has been redefined and an in-
stance is being updated, a property-list is created that captures the slot names and val-
ues of all the discarded-slots with values in the original instance. The structure of the in-
stance is transformed so that it conforms to the current class definition. The arguments to
update-instance-for-redefined-class are this transformed instance, a list of added-slots to the
instance, a list discarded-slots from the instance, and the property-list containing the slot names
and values for slots that were discarded and had values. Included in this list of discarded slots are
slots that were local in the old class and are shared in the new class.

The value returned by update-instance-for-redefined-class is ignored.

Examples:

7–36 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

update-instance-for-redefined-class

(defclass position () ())

(defclass x-y-position (position)

((x :initform 0 :accessor position-x)

(y :initform 0 :accessor position-y)))

;;; It turns out polar coordinates are used more than Cartesian

;;; coordinates, so the representation is altered and some new

;;; accessor methods are added.

(defmethod update-instance-for-redefined-class :before

((pos x-y-position) added deleted plist &key)

;; Transform the x-y coordinates to polar coordinates

;; and store into the new slots.

(let ((x (getf plist ’x))

(y (getf plist ’y)))

(setf (position-rho pos) (sqrt (+ (* x x) (* y y)))

(position-theta pos) (atan y x))))

(defclass x-y-position (position)

((rho :initform 0 :accessor position-rho)

(theta :initform 0 :accessor position-theta)))

;;; All instances of the old x-y-position class will be updated

;;; automatically.

;;; The new representation is given the look and feel of the old one.

(defmethod position-x ((pos x-y-position))

(with-slots (rho theta) pos (* rho (cos theta))))

(defmethod (setf position-x) (new-x (pos x-y-position))

(with-slots (rho theta) pos

(let ((y (position-y pos)))

(setq rho (sqrt (+ (* new-x new-x) (* y y)))

theta (atan y new-x))

new-x)))

(defmethod position-y ((pos x-y-position))

(with-slots (rho theta) pos (* rho (sin theta))))

(defmethod (setf position-y) (new-y (pos x-y-position))

(with-slots (rho theta) pos

(let ((x (position-x pos)))

(setq rho (sqrt (+ (* x x) (* new-y new-y)))

Objects 7–37

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

theta (atan new-y x))

new-y)))

Exceptional Situations:
The system-supplied primary method on update-instance-for-redefined-class signals an error if
an initarg is supplied that is not declared as valid.

See Also:
make-instances-obsolete, shared-initialize, Section 4.3.6 (Redefining Classes), Section 7.1.4
(Rules for Initialization Arguments), Section 7.1.2 (Declaring the Validity of Initialization Argu-
ments)

Notes:
Initargs are declared as valid by using the :initarg option to defclass, or by defining methods for
update-instance-for-redefined-class or shared-initialize. The keyword name of each keyword pa-
rameter specifier in the lambda list of any method defined on update-instance-for-redefined-class
or shared-initialize is declared as a valid initarg name for all classes for which that method is
applicable.

change-class Standard Generic Function

Syntax:
change-class instance new-class &key &allow-other-keys → instance

Method Signatures:
change-class (instance standard-object) (new-class standard-class) &rest initargs

change-class (instance t) (new-class symbol) &rest initargs

Arguments and Values:
instance—an object .

new-class—a class designator .

initargs—an initialization argument list .

Description:
The generic function change-class changes the class of an instance to new-class. It destructively
modifies and returns the instance.

7–38 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

change-class

If in the old class there is any slot of the same name as a local slot in the new-class, the value
of that slot is retained. This means that if the slot has a value, the value returned by slot-value
after change-class is invoked is eql to the value returned by slot-value before change-class is
invoked. Similarly, if the slot was unbound, it remains unbound. The other slots are initialized as
described in Section 7.2 (Changing the Class of an Instance).

After completing all other actions, change-class invokes update-instance-for-different-class. The
generic function update-instance-for-different-class can be used to assign values to slots in the
transformed instance. See Section 7.2.2 (Initializing Newly Added Local Slots).

If the second of the above methods is selected, that method invokes change-class on instance,
(find-class new-class), and the initargs.

Examples:

(defclass position () ())

(defclass x-y-position (position)

((x :initform 0 :initarg :x)

(y :initform 0 :initarg :y)))

(defclass rho-theta-position (position)

((rho :initform 0)

(theta :initform 0)))

(defmethod update-instance-for-different-class :before ((old x-y-position)

(new rho-theta-position)

&key)

;; Copy the position information from old to new to make new

;; be a rho-theta-position at the same position as old.

(let ((x (slot-value old ’x))

(y (slot-value old ’y)))

(setf (slot-value new ’rho) (sqrt (+ (* x x) (* y y)))

(slot-value new ’theta) (atan y x))))

;;; At this point an instance of the class x-y-position can be

;;; changed to be an instance of the class rho-theta-position using

;;; change-class:

(setq p1 (make-instance ’x-y-position :x 2 :y 0))

(change-class p1 ’rho-theta-position)

;;; The result is that the instance bound to p1 is now an instance of

;;; the class rho-theta-position. The update-instance-for-different-class

;;; method performed the initialization of the rho and theta slots based

Objects 7–39

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

;;; on the value of the x and y slots, which were maintained by

;;; the old instance.

See Also:
update-instance-for-different-class, Section 7.2 (Changing the Class of an Instance)

Notes:
The generic function change-class has several semantic difficulties. First, it performs a destruc-
tive operation that can be invoked within a method on an instance that was used to select that
method . When multiple methods are involved because methods are being combined, the methods
currently executing or about to be executed may no longer be applicable. Second, some imple-
mentations might use compiler optimizations of slot access, and when the class of an instance is
changed the assumptions the compiler made might be violated. This implies that a programmer
must not use change-class inside a method if any methods for that generic function access any
slots, or the results are undefined.

slot-boundp Function

Syntax:
slot-boundp instance slot-name → generalized-boolean

Arguments and Values:
instance—an object .

slot-name—a symbol naming a slot of instance.

generalized-boolean—a generalized boolean.

Description:
Returns true if the slot named slot-name in instance is bound; otherwise, returns false.

Exceptional Situations:
If no slot of the name slot-name exists in the instance, slot-missing is called as follows:

(slot-missing (class-of instance)
instance
slot-name
’slot-boundp)

(If slot-missing is invoked and returns a value, a boolean equivalent to its primary value is
returned by slot-boundp.)

7–40 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

The specific behavior depends on instance’s metaclass. An error is never signaled if instance has
metaclass standard-class. An error is always signaled if instance has metaclass built-in-class.
The consequences are undefined if instance has any other metaclass–an error might or might not
be signaled in this situation. Note in particular that the behavior for conditions and structures is
not specified.

See Also:
slot-makunbound, slot-missing

Notes:
The function slot-boundp allows for writing after methods on initialize-instance in order to
initialize only those slots that have not already been bound.

Although no implementation is required to do so, implementors are strongly encouraged to
implement the function slot-boundp using the function slot-boundp-using-class described in the
Metaobject Protocol .

slot-exists-p Function

Syntax:
slot-exists-p object slot-name → generalized-boolean

Arguments and Values:
object—an object .

slot-name—a symbol .

generalized-boolean—a generalized boolean.

Description:
Returns true if the object has a slot named slot-name.

Affected By:
defclass, defstruct

See Also:
defclass, slot-missing

Notes:
Although no implementation is required to do so, implementors are strongly encouraged to
implement the function slot-exists-p using the function slot-exists-p-using-class described in
the Metaobject Protocol .

Objects 7–41

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

slot-makunbound Function

Syntax:
slot-makunbound instance slot-name → instance

Arguments and Values:
instance – instance.

Slot-name—a symbol .

Description:
The function slot-makunbound restores a slot of the name slot-name in an instance to the
unbound state.

Exceptional Situations:
If no slot of the name slot-name exists in the instance, slot-missing is called as follows:

(slot-missing (class-of instance)
instance
slot-name
’slot-makunbound)

(Any values returned by slot-missing in this case are ignored by slot-makunbound.)

The specific behavior depends on instance’s metaclass. An error is never signaled if instance has
metaclass standard-class. An error is always signaled if instance has metaclass built-in-class.
The consequences are undefined if instance has any other metaclass–an error might or might not
be signaled in this situation. Note in particular that the behavior for conditions and structures is
not specified.

See Also:
slot-boundp, slot-missing

Notes:
Although no implementation is required to do so, implementors are strongly encouraged to
implement the function slot-makunbound using the function slot-makunbound-using-class

described in the Metaobject Protocol .

7–42 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

slot-missing

slot-missing Standard Generic Function

Syntax:
slot-missing class object slot-name operation &optional new-value → {result}*

Method Signatures:
slot-missing (class t) object slot-name

operation &optional new-value

Arguments and Values:
class—the class of object.

object—an object .

slot-name—a symbol (the name of a would-be slot).

operation—one of the symbols setf , slot-boundp, slot-makunbound, or slot-value.

new-value—an object .

result—an object .

Description:
The generic function slot-missing is invoked when an attempt is made to access a slot in an
object whose metaclass is standard-class and the slot of the name slot-name is not a name of a
slot in that class. The default method signals an error.

The generic function slot-missing is not intended to be called by programmers. Programmers
may write methods for it.

The generic function slot-missing may be called during evaluation of slot-value,
(setf slot-value), slot-boundp, and slot-makunbound. For each of these operations the
corresponding symbol for the operation argument is slot-value, setf , slot-boundp, and
slot-makunbound respectively.

The optional new-value argument to slot-missing is used when the operation is attempting to set
the value of the slot .

If slot-missing returns, its values will be treated as follows:

• If the operation is setf or slot-makunbound, any values will be ignored by the caller.

• If the operation is slot-value, only the primary value will be used by the caller, and all other
values will be ignored.

Objects 7–43

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

• If the operation is slot-boundp, any boolean equivalent of the primary value of the method
might be is used, and all other values will be ignored.

Exceptional Situations:
The default method on slot-missing signals an error of type error.

See Also:
defclass, slot-exists-p, slot-value

Notes:
The set of arguments (including the class of the instance) facilitates defining methods on the
metaclass for slot-missing.

slot-unbound Standard Generic Function

Syntax:
slot-unbound class instance slot-name → {result}*

Method Signatures:
slot-unbound (class t) instance slot-name

Arguments and Values:
class—the class of the instance.

instance—the instance in which an attempt was made to read the unbound slot .

slot-name—the name of the unbound slot .

result—an object .

Description:
The generic function slot-unbound is called when an unbound slot is read in an instance whose
metaclass is standard-class. The default method signals an error of type unbound-slot. The
name slot of the unbound-slot condition is initialized to the name of the offending variable, and
the instance slot of the unbound-slot condition is initialized to the offending instance.

The generic function slot-unbound is not intended to be called by programmers. Programmers
may write methods for it. The function slot-unbound is called only indirectly by slot-value.

If slot-unbound returns, only the primary value will be used by the caller, and all other values
will be ignored.

7–44 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Exceptional Situations:
The default method on slot-unbound signals an error of type unbound-slot.

See Also:
slot-makunbound

Notes:
An unbound slot may occur if no :initform form was specified for the slot and the slot value has
not been set, or if slot-makunbound has been called on the slot .

slot-value Function

Syntax:
slot-value object slot-name → value

Arguments and Values:
object—an object .

name—a symbol .

value—an object .

Description:
The function slot-value returns the value of the slot named slot-name in the object. If there is no
slot named slot-name, slot-missing is called. If the slot is unbound, slot-unbound is called.

The macro setf can be used with slot-value to change the value of a slot .

Examples:

(defclass foo ()

((a :accessor foo-a :initarg :a :initform 1)

(b :accessor foo-b :initarg :b)

(c :accessor foo-c :initform 3)))

→ #<STANDARD-CLASS FOO 244020371>

(setq foo1 (make-instance ’foo :a ’one :b ’two))

→ #<FOO 36325624>

(slot-value foo1 ’a) → ONE

(slot-value foo1 ’b) → TWO

(slot-value foo1 ’c) → 3

(setf (slot-value foo1 ’a) ’uno) → UNO

(slot-value foo1 ’a) → UNO

(defmethod foo-method ((x foo))

Objects 7–45

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(slot-value x ’a))

→ #<STANDARD-METHOD FOO-METHOD (FOO) 42720573>

(foo-method foo1) → UNO

Exceptional Situations:
If an attempt is made to read a slot and no slot of the name slot-name exists in the object,
slot-missing is called as follows:

(slot-missing (class-of instance)
instance
slot-name
’slot-value)

(If slot-missing is invoked, its primary value is returned by slot-value.)

If an attempt is made to write a slot and no slot of the name slot-name exists in the object,
slot-missing is called as follows:

(slot-missing (class-of instance)
instance
slot-name
’setf

new-value)

(If slot-missing returns in this case, any values are ignored.)

The specific behavior depends on object’s metaclass. An error is never signaled if object has
metaclass standard-class. An error is always signaled if object has metaclass built-in-class. The
consequences are unspecified if object has any other metaclass–an error might or might not be
signaled in this situation. Note in particular that the behavior for conditions and structures is not
specified.

See Also:
slot-missing, slot-unbound, with-slots

Notes:
Although no implementation is required to do so, implementors are strongly encouraged to
implement the function slot-value using the function slot-value-using-class described in the
Metaobject Protocol .

Implementations may optimize slot-value by compiling it inline.

7–46 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

method-qualifiers Standard Generic Function

Syntax:
method-qualifiers method → qualifiers

Method Signatures:
method-qualifiers (method standard-method)

Arguments and Values:
method—a method .

qualifiers—a proper list .

Description:
Returns a list of the qualifiers of the method .

Examples:

(defmethod some-gf :before ((a integer)) a)

→ #<STANDARD-METHOD SOME-GF (:BEFORE) (INTEGER) 42736540>

(method-qualifiers *) → (:BEFORE)

See Also:
define-method-combination

no-applicable-method Standard Generic Function

Syntax:
no-applicable-method generic-function &rest function-arguments → {result}*

Method Signatures:
no-applicable-method (generic-function t)

&rest function-arguments

Arguments and Values:
generic-function—a generic function on which no applicable method was found.

function-arguments—arguments to the generic-function.

result—an object .

Objects 7–47

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Description:
The generic function no-applicable-method is called when a generic function is invoked and no
method on that generic function is applicable. The default method signals an error.

The generic function no-applicable-method is not intended to be called by programmers. Pro-
grammers may write methods for it.

Exceptional Situations:
The default method signals an error of type error.

See Also:

no-next-method Standard Generic Function

Syntax:
no-next-method generic-function method &rest args → {result}*

Method Signatures:
no-next-method (generic-function standard-generic-function)

(method standard-method)
&rest args

Arguments and Values:
generic-function – generic function to which method belongs.

method – method that contained the call to call-next-method for which there is no next method .

args – arguments to call-next-method.

result—an object .

Description:
The generic function no-next-method is called by call-next-method when there is no next
method .

The generic function no-next-method is not intended to be called by programmers. Program-
mers may write methods for it.

Exceptional Situations:
The system-supplied method on no-next-method signals an error of type error.

See Also:
call-next-method

7–48 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

remove-method Standard Generic Function

Syntax:
remove-method generic-function method → generic-function

Method Signatures:
remove-method (generic-function standard-generic-function)

method

Arguments and Values:
generic-function—a generic function.

method—a method .

Description:
The generic function remove-method removes a method from generic-function by modifying the
generic-function (if necessary).

remove-method must not signal an error if the method is not one of the methods on the generic-
function.

See Also:
find-method

make-instance Standard Generic Function

Syntax:
make-instance class &rest initargs &key &allow-other-keys → instance

Method Signatures:
make-instance (class standard-class) &rest initargs

make-instance (class symbol) &rest initargs

Arguments and Values:
class—a class, or a symbol that names a class.

initargs—an initialization argument list .

Objects 7–49

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

instance—a fresh instance of class class.

Description:
The generic function make-instance creates and returns a new instance of the given class.

If the second of the above methods is selected, that method invokes make-instance on the argu-
ments (find-class class) and initargs.

The initialization arguments are checked within make-instance.

The generic function make-instance may be used as described in Section 7.1 (Object Creation
and Initialization).

Exceptional Situations:
If any of the initialization arguments has not been declared as valid, an error of type error is
signaled.

See Also:
defclass, class-of , allocate-instance, initialize-instance, Section 7.1 (Object Creation and
Initialization)

make-instances-obsolete Standard Generic Function

Syntax:
make-instances-obsolete class → class

Method Signatures:
make-instances-obsolete (class standard-class)

make-instances-obsolete (class symbol)

Arguments and Values:
class—a class designator .

Description:
The function make-instances-obsolete has the effect of initiating the process of updating the
instances of the class. During updating, the generic function update-instance-for-redefined-class
will be invoked.

The generic function make-instances-obsolete is invoked automatically by the system when
defclass has been used to redefine an existing standard class and the set of local slots accessible
in an instance is changed or the order of slots in storage is changed. It can also be explicitly
invoked by the user.

7–50 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

If the second of the above methods is selected, that method invokes make-instances-obsolete on
(find-class class).

Examples:

See Also:
update-instance-for-redefined-class, Section 4.3.6 (Redefining Classes)

make-load-form Standard Generic Function

Syntax:
make-load-form object &optional environment → creation-form[, initialization-form]

Method Signatures:
make-load-form (object standard-object) &optional environment

make-load-form (object structure-object) &optional environment

make-load-form (object condition) &optional environment

make-load-form (object class) &optional environment

Arguments and Values:
object—an object .

environment—an environment object .

creation-form—a form.

initialization-form—a form.

Description:
The generic function make-load-form creates and returns one or two forms, a creation-form and
an initialization-form, that enable load to construct an object equivalent to object. Environment
is an environment object corresponding to the lexical environment in which the forms will be
processed.

The file compiler calls make-load-form to process certain classes of literal objects; see Section
3.2.4.4 (Additional Constraints on Externalizable Objects).

Conforming programs may call make-load-form directly, providing object is a generalized instance
of standard-object, structure-object, or condition.

The creation form is a form that, when evaluated at load time, should return an object that is
equivalent to object. The exact meaning of equivalent depends on the type of object and is up to

Objects 7–51

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

make-load-form

the programmer who defines a method for make-load-form; see Section 3.2.4 (Literal Objects in
Compiled Files).

The initialization form is a form that, when evaluated at load time, should perform fur-
ther initialization of the object . The value returned by the initialization form is ignored. If
make-load-form returns only one value, the initialization form is nil, which has no effect. If
object appears as a constant in the initialization form, at load time it will be replaced by the
equivalent object constructed by the creation form; this is how the further initialization gains
access to the object .

Both the creation-form and the initialization-form may contain references to any externalizable
object . However, there must not be any circular dependencies in creation forms. An example
of a circular dependency is when the creation form for the object X contains a reference to the
object Y, and the creation form for the object Y contains a reference to the object X. Initialization
forms are not subject to any restriction against circular dependencies, which is the reason that
initialization forms exist; see the example of circular data structures below.

The creation form for an object is always evaluated before the initialization form for that object .
When either the creation form or the initialization form references other objects that have not
been referenced earlier in the file being compiled , the compiler ensures that all of the referenced
objects have been created before evaluating the referencing form. When the referenced object is
of a type which the file compiler processes using make-load-form, this involves evaluating the
creation form returned for it. (This is the reason for the prohibition against circular references
among creation forms).

Each initialization form is evaluated as soon as possible after its associated creation form, as de-
termined by data flow. If the initialization form for an object does not reference any other objects
not referenced earlier in the file and processed by the file compiler using make-load-form, the
initialization form is evaluated immediately after the creation form. If a creation or initialization
form F does contain references to such objects, the creation forms for those other objects are
evaluated before F , and the initialization forms for those other objects are also evaluated before F
whenever they do not depend on the object created or initialized by F . Where these rules do not
uniquely determine an order of evaluation between two creation/initialization forms, the order of
evaluation is unspecified.

While these creation and initialization forms are being evaluated, the objects are possibly in an
uninitialized state, analogous to the state of an object between the time it has been created by
allocate-instance and it has been processed fully by initialize-instance. Programmers writing
methods for make-load-form must take care in manipulating objects not to depend on slots that
have not yet been initialized.

It is implementation-dependent whether load calls eval on the forms or does some other operation
that has an equivalent effect. For example, the forms might be translated into different but
equivalent forms and then evaluated, they might be compiled and the resulting functions called
by load, or they might be interpreted by a special-purpose function different from eval. All that
is required is that the effect be equivalent to evaluating the forms.

7–52 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

make-load-form

The method specialized on class returns a creation form using the name of the class if the class
has a proper name in environment, signaling an error of type error if it does not have a proper
name. Evaluation of the creation form uses the name to find the class with that name, as if by
calling find-class. If a class with that name has not been defined, then a class may be computed
in an implementation-defined manner. If a class cannot be returned as the result of evaluating the
creation form, then an error of type error is signaled.

Both conforming implementations and conforming programs may further specialize
make-load-form.

Examples:

(defclass obj ()

((x :initarg :x :reader obj-x)

(y :initarg :y :reader obj-y)

(dist :accessor obj-dist)))

→ #<STANDARD-CLASS OBJ 250020030>

(defmethod shared-initialize :after ((self obj) slot-names &rest keys)

(declare (ignore slot-names keys))

(unless (slot-boundp self ’dist)

(setf (obj-dist self)

(sqrt (+ (expt (obj-x self) 2) (expt (obj-y self) 2))))))

→ #<STANDARD-METHOD SHARED-INITIALIZE (:AFTER) (OBJ T) 26266714>

(defmethod make-load-form ((self obj) &optional environment)

(declare (ignore environment))

;; Note that this definition only works because X and Y do not

;; contain information which refers back to the object itself.

;; For a more general solution to this problem, see revised example below.

‘(make-instance ’,(class-of self)

:x ’,(obj-x self) :y ’,(obj-y self)))

→ #<STANDARD-METHOD MAKE-LOAD-FORM (OBJ) 26267532>

(setq obj1 (make-instance ’obj :x 3.0 :y 4.0)) → #<OBJ 26274136>

(obj-dist obj1) → 5.0

(make-load-form obj1) → (MAKE-INSTANCE ’OBJ :X ’3.0 :Y ’4.0)

In the above example, an equivalent instance of obj is reconstructed by using the values of two of
its slots. The value of the third slot is derived from those two values.

Another way to write the make-load-form method in that example is to use
make-load-form-saving-slots. The code it generates might yield a slightly different result from
the make-load-form method shown above, but the operational effect will be the same. For exam-
ple:

;; Redefine method defined above.

(defmethod make-load-form ((self obj) &optional environment)

(make-load-form-saving-slots self

Objects 7–53

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

make-load-form

:slot-names ’(x y)

:environment environment))

→ #<STANDARD-METHOD MAKE-LOAD-FORM (OBJ) 42755655>

;; Try MAKE-LOAD-FORM on object created above.

(make-load-form obj1)

→ (ALLOCATE-INSTANCE ’#<STANDARD-CLASS OBJ 250020030>),

(PROGN

(SETF (SLOT-VALUE ’#<OBJ 26274136> ’X) ’3.0)

(SETF (SLOT-VALUE ’#<OBJ 26274136> ’Y) ’4.0)

(INITIALIZE-INSTANCE ’#<OBJ 26274136>))

In the following example, instances of my-frob are “interned” in some way. An equivalent instance
is reconstructed by using the value of the name slot as a key for searching existing objects. In this
case the programmer has chosen to create a new object if no existing object is found; alternatively
an error could have been signaled in that case.

(defclass my-frob ()

((name :initarg :name :reader my-name)))

(defmethod make-load-form ((self my-frob) &optional environment)

(declare (ignore environment))

‘(find-my-frob ’,(my-name self) :if-does-not-exist :create))

In the following example, the data structure to be dumped is circular, because each parent has a
list of its children and each child has a reference back to its parent. If make-load-form is called
on one object in such a structure, the creation form creates an equivalent object and fills in the
children slot, which forces creation of equivalent objects for all of its children, grandchildren, etc.
At this point none of the parent slots have been filled in. The initialization form fills in the parent
slot , which forces creation of an equivalent object for the parent if it was not already created.
Thus the entire tree is recreated at load time. At compile time, make-load-form is called once
for each object in the tree. All of the creation forms are evaluated, in implementation-dependent
order, and then all of the initialization forms are evaluated, also in implementation-dependent
order.

(defclass tree-with-parent () ((parent :accessor tree-parent)

(children :initarg :children)))

(defmethod make-load-form ((x tree-with-parent) &optional environment)

(declare (ignore environment))

(values

;; creation form

‘(make-instance ’,(class-of x) :children ’,(slot-value x ’children))

;; initialization form

‘(setf (tree-parent ’,x) ’,(slot-value x ’parent))))

In the following example, the data structure to be dumped has no special properties and an
equivalent structure can be reconstructed simply by reconstructing the slots’ contents.

(defstruct my-struct a b c)

7–54 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(defmethod make-load-form ((s my-struct) &optional environment)

(make-load-form-saving-slots s :environment environment))

Exceptional Situations:
The methods specialized on standard-object, structure-object, and condition all signal an error
of type error.

It is implementation-dependent whether calling make-load-form on a generalized instance of a
system class signals an error or returns creation and initialization forms.

See Also:
compile-file, make-load-form-saving-slots, Section 3.2.4.4 (Additional Constraints on Externaliz-
able Objects) Section 3.1 (Evaluation), Section 3.2 (Compilation)

Notes:
The file compiler calls make-load-form in specific circumstances detailed in Section 3.2.4.4
(Additional Constraints on Externalizable Objects).

Some implementations may provide facilities for defining new subclasses of classes which are
specified as system classes. (Some likely candidates include generic-function, method, and
stream). Such implementations should document how the file compiler processes instances of
such classes when encountered as literal objects, and should document any relevant methods for
make-load-form.

make-load-form-saving-slots Function

Syntax:
make-load-form-saving-slots object &key slot-names environment
→ creation-form, initialization-form

Arguments and Values:
object—an object .

slot-names—a list .

environment—an environment object .

creation-form—a form.

initialization-form—a form.

Description:
Returns forms that, when evaluated , will construct an object equivalent to object, without
executing initialization forms. The slots in the new object that correspond to initialized slots in

Objects 7–55

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

object are initialized using the values from object. Uninitialized slots in object are not initialized
in the new object . make-load-form-saving-slots works for any instance of standard-object or
structure-object.

Slot-names is a list of the names of the slots to preserve. If slot-names is not supplied, its value is
all of the local slots.

make-load-form-saving-slots returns two values, thus it can deal with circular structures.
Whether the result is useful in an application depends on whether the object’s type and slot
contents fully capture the application’s idea of the object’s state.

Environment is the environment in which the forms will be processed.

See Also:
make-load-form, make-instance, setf , slot-value, slot-makunbound

Notes:
make-load-form-saving-slots can be useful in user-written make-load-form methods.

When the object is an instance of standard-object, make-load-form-saving-slots could return a
creation form that calls allocate-instance and an initialization form that contains calls to setf of
slot-value and slot-makunbound, though other functions of similar effect might actually be used.

with-accessors Macro

Syntax:
with-accessors ({slot-entry}*) instance-form {declaration}* {form}*
→ {result}*

slot-entry ::=(variable-name accessor-name)

Arguments and Values:
variable-name—a variable name; not evaluated.

accessor-name—a function name; not evaluated.

instance-form—a form; evaluated.

declaration—a declare expression; not evaluated.

forms—an implicit progn.

results—the values returned by the forms.

7–56 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

with-accessors

Description:
Creates a lexical environment in which the slots specified by slot-entry are lexically available
through their accessors as if they were variables. The macro with-accessors invokes the appropri-
ate accessors to access the slots specified by slot-entry . Both setf and setq can be used to set the
value of the slot .

Examples:

(defclass thing ()

((x :initarg :x :accessor thing-x)

(y :initarg :y :accessor thing-y)))

→ #<STANDARD-CLASS THING 250020173>

(defmethod (setf thing-x) :before (new-x (thing thing))

(format t "~&Changing X from ~D to ~D in ~S.~%"

(thing-x thing) new-x thing))

(setq thing1 (make-instance ’thing :x 1 :y 2)) → #<THING 43135676>

(setq thing2 (make-instance ’thing :x 7 :y 8)) → #<THING 43147374>

(with-accessors ((x1 thing-x) (y1 thing-y))

thing1

(with-accessors ((x2 thing-x) (y2 thing-y))

thing2

(list (list x1 (thing-x thing1) y1 (thing-y thing1)

x2 (thing-x thing2) y2 (thing-y thing2))

(setq x1 (+ y1 x2))

(list x1 (thing-x thing1) y1 (thing-y thing1)

x2 (thing-x thing2) y2 (thing-y thing2))

(setf (thing-x thing2) (list x1))

(list x1 (thing-x thing1) y1 (thing-y thing1)

x2 (thing-x thing2) y2 (thing-y thing2)))))

. Changing X from 1 to 9 in #<THING 43135676>.

. Changing X from 7 to (9) in #<THING 43147374>.

→ ((1 1 2 2 7 7 8 8)

9

(9 9 2 2 7 7 8 8)

(9)

(9 9 2 2 (9) (9) 8 8))

Affected By:
defclass

Exceptional Situations:
The consequences are undefined if any accessor-name is not the name of an accessor for the
instance.

Objects 7–57

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

See Also:
with-slots, symbol-macrolet

Notes:
A with-accessors expression of the form:

(with-accessors (slot-entry1 . . . slot-entryn) instance-form form1 . . . formk)

expands into the equivalent of

(let ((in instance-form))

(symbol-macrolet (Q1 . . .Qn) form1 . . . formk))

where Qi is

(variable-namei () (accessor-namei in))

with-slots Macro

Syntax:
with-slots ({slot-entry}*) instance-form {declaration}* {form}*
→ {result}*

slot-entry ::=slot-name | (variable-name slot-name)

Arguments and Values:
slot-name—a slot name; not evaluated.

variable-name—a variable name; not evaluated.

instance-form—a form; evaluted to produce instance.

instance—an object .

declaration—a declare expression; not evaluated.

forms—an implicit progn.

results—the values returned by the forms.

7–58 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

with-slots

Description:
The macro with-slots establishes a lexical environment for referring to the slots in the instance
named by the given slot-names as though they were variables. Within such a context the value of
the slot can be specified by using its slot name, as if it were a lexically bound variable. Both setf
and setq can be used to set the value of the slot .

The macro with-slots translates an appearance of the slot name as a variable into a call to
slot-value.

Examples:

(defclass thing ()

((x :initarg :x :accessor thing-x)

(y :initarg :y :accessor thing-y)))

→ #<STANDARD-CLASS THING 250020173>

(defmethod (setf thing-x) :before (new-x (thing thing))

(format t "~&Changing X from ~D to ~D in ~S.~%"

(thing-x thing) new-x thing))

(setq thing (make-instance ’thing :x 0 :y 1)) → #<THING 62310540>

(with-slots (x y) thing (incf x) (incf y)) → 2

(values (thing-x thing) (thing-y thing)) → 1, 2

(setq thing1 (make-instance ’thing :x 1 :y 2)) → #<THING 43135676>

(setq thing2 (make-instance ’thing :x 7 :y 8)) → #<THING 43147374>

(with-slots ((x1 x) (y1 y))

thing1

(with-slots ((x2 x) (y2 y))

thing2

(list (list x1 (thing-x thing1) y1 (thing-y thing1)

x2 (thing-x thing2) y2 (thing-y thing2))

(setq x1 (+ y1 x2))

(list x1 (thing-x thing1) y1 (thing-y thing1)

x2 (thing-x thing2) y2 (thing-y thing2))

(setf (thing-x thing2) (list x1))

(list x1 (thing-x thing1) y1 (thing-y thing1)

x2 (thing-x thing2) y2 (thing-y thing2)))))

. Changing X from 7 to (9) in #<THING 43147374>.

→ ((1 1 2 2 7 7 8 8)

9

(9 9 2 2 7 7 8 8)

(9)

(9 9 2 2 (9) (9) 8 8))

Affected By:
defclass

Objects 7–59

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Exceptional Situations:
The consequences are undefined if any slot-name is not the name of a slot in the instance.

See Also:
with-accessors, slot-value, symbol-macrolet

Notes:
A with-slots expression of the form:

(with-slots (slot-entry1 . . . slot-entryn) instance-form form1 . . . formk)

expands into the equivalent of

(let ((in instance-form))

(symbol-macrolet (Q1 . . .Qn) form1 . . . formk))

where Qi is

(slot-entryi () (slot-value in ’slot-entryi))

if slot-entryi is a symbol and is

(variable-namei () (slot-value in ’slot-namei))

if slot-entryi is of the form

(variable-namei slot-namei)

defclass Macro

Syntax:
defclass class-name ({superclass-name}*) ({slot-specifier}*) [[↓class-option]]
→ new-class

slot-specifier::= slot-name | (slot-name [[↓slot-option]])

slot-name::= symbol

slot-option::= {:reader reader-function-name}* |
{:writer writer-function-name}* |

7–60 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

defclass

{:accessor reader-function-name}* |
{:allocation allocation-type} |
{:initarg initarg-name}* |
{:initform form} |
{:type type-specifier} |
{:documentation string}

function-name::= {symbol | (setf symbol)}
class-option::= (:default-initargs . initarg-list) |

(:documentation string) |
(:metaclass class-name)

Arguments and Values:
Class-name—a non-nil symbol .

Superclass-name–a non-nil symbol .

Slot-name–a symbol . The slot-name argument is a symbol that is syntactically valid for use as a
variable name.

Reader-function-name—a non-nil symbol . :reader can be supplied more than once for a given slot .

Writer-function-name—a generic function name. :writer can be supplied more than once for a
given slot .

Reader-function-name—a non-nil symbol . :accessor can be supplied more than once for a given
slot .

Allocation-type—(member :instance :class). :allocation can be supplied once at most for a
given slot .

Initarg-name—a symbol . :initarg can be supplied more than once for a given slot .

Form—a form. :init-form can be supplied once at most for a given slot .

Type-specifier—a type specifier . :type can be supplied once at most for a given slot .

Class-option— refers to the class as a whole or to all class slots.

Initarg-list—a list of alternating initialization argument names and default initial value forms.
:default-initargs can be supplied at most once.

Class-name—a non-nil symbol . :metaclass can be supplied once at most.

new-class—the new class object .

Description:
The macro defclass defines a new named class. It returns the new class object as its result.

Objects 7–61

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

defclass

The syntax of defclass provides options for specifying initialization arguments for slots, for
specifying default initialization values for slots, and for requesting that methods on specified
generic functions be automatically generated for reading and writing the values of slots. No
reader or writer functions are defined by default; their generation must be explicitly requested.
However, slots can always be accessed using slot-value.

Defining a new class also causes a type of the same name to be defined. The predicate
(typep object class-name) returns true if the class of the given object is the class named by
class-name itself or a subclass of the class class-name. A class object can be used as a type speci-
fier . Thus (typep object class) returns true if the class of the object is class itself or a subclass of
class.

The class-name argument specifies the proper name of the new class. If a class with the same
proper name already exists and that class is an instance of standard-class, and if the defclass
form for the definition of the new class specifies a class of class standard-class, the existing class
is redefined, and instances of it (and its subclasses) are updated to the new definition at the time
that they are next accessed . For details, see Section 4.3.6 (Redefining Classes).

Each superclass-name argument specifies a direct superclass of the new class. If the superclass list
is empty, then the superclass defaults depending on the metaclass, with standard-object being
the default for standard-class.

The new class will inherit slots and methods from each of its direct superclasses, from their direct
superclasses, and so on. For a discussion of how slots and methods are inherited, see Section 4.3.4
(Inheritance).

The following slot options are available:

• The :reader slot option specifies that an unqualified method is to be defined on the
generic function named reader-function-name to read the value of the given slot .

• The :writer slot option specifies that an unqualified method is to be defined on the
generic function named writer-function-name to write the value of the slot .

• The :accessor slot option specifies that an unqualified method is to be defined on
the generic function named reader-function-name to read the value of the given slot
and that an unqualified method is to be defined on the generic function named
(setf reader-function-name) to be used with setf to modify the value of the slot .

• The :allocation slot option is used to specify where storage is to be allocated for the
given slot . Storage for a slot can be located in each instance or in the class object itself.
The value of the allocation-type argument can be either the keyword :instance or the
keyword :class. If the :allocation slot option is not specified, the effect is the same as
specifying :allocation :instance.

– If allocation-type is :instance, a local slot of the name slot-name is allocated in
each instance of the class.

7–62 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

defclass

– If allocation-type is :class, a shared slot of the given name is allocated in the
class object created by this defclass form. The value of the slot is shared by all
instances of the class. If a class C1 defines such a shared slot , any subclass C2 of
C1 will share this single slot unless the defclass form for C2 specifies a slot of the
same name or there is a superclass of C2 that precedes C1 in the class precedence
list of C2 and that defines a slot of the same name.

• The :initform slot option is used to provide a default initial value form to be used in
the initialization of the slot . This form is evaluated every time it is used to initialize the
slot . The lexical environment in which this form is evaluated is the lexical environment
in which the defclass form was evaluated. Note that the lexical environment refers both
to variables and to functions. For local slots, the dynamic environment is the dynamic
environment in which make-instance is called; for shared slots, the dynamic environment
is the dynamic environment in which the defclass form was evaluated. See Section 7.1
(Object Creation and Initialization).

No implementation is permitted to extend the syntax of defclass to allow
(slot-name form) as an abbreviation for (slot-name :initform form).

• The :initarg slot option declares an initialization argument named initarg-name and
specifies that this initialization argument initializes the given slot . If the initialization
argument has a value in the call to initialize-instance, the value will be stored into
the given slot , and the slot’s :initform slot option, if any, is not evaluated. If none of
the initialization arguments specified for a given slot has a value, the slot is initialized
according to the :initform slot option, if specified.

• The :type slot option specifies that the contents of the slot will always be of the specified
data type. It effectively declares the result type of the reader generic function when
applied to an object of this class. The consequences of attempting to store in a slot a
value that does not satisfy the type of the slot are undefined. The :type slot option is
further discussed in Section 7.5.3 (Inheritance of Slots and Slot Options).

• The :documentation slot option provides a documentation string for the slot .
:documentation can be supplied once at most for a given slot .

Each class option is an option that refers to the class as a whole. The following class options are
available:

• The :default-initargs class option is followed by a list of alternating initialization ar-
gument names and default initial value forms. If any of these initialization arguments
does not appear in the initialization argument list supplied to make-instance, the cor-
responding default initial value form is evaluated, and the initialization argument name
and the form’s value are added to the end of the initialization argument list before the in-
stance is created; see Section 7.1 (Object Creation and Initialization). The default initial
value form is evaluated each time it is used. The lexical environment in which this form
is evaluated is the lexical environment in which the defclass form was evaluated. The

Objects 7–63

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

defclass

dynamic environment is the dynamic environment in which make-instance was called.
If an initialization argument name appears more than once in a :default-initargs class
option, an error is signaled.

• The :documentation class option causes a documentation string to be attached with the
class object , and attached with kind type to the class-name. :documentation can be
supplied once at most.

• The :metaclass class option is used to specify that instances of the class being defined
are to have a different metaclass than the default provided by the system (the class
standard-class).

Note the following rules of defclass for standard classes:

• It is not required that the superclasses of a class be defined before the defclass form for
that class is evaluated.

• All the superclasses of a class must be defined before an instance of the class can be
made.

• A class must be defined before it can be used as a parameter specializer in a defmethod
form.

The object system can be extended to cover situations where these rules are not obeyed.

Some slot options are inherited by a class from its superclasses, and some can be shadowed
or altered by providing a local slot description. No class options except :default-initargs are
inherited. For a detailed description of how slots and slot options are inherited, see Section 7.5.3
(Inheritance of Slots and Slot Options).

The options to defclass can be extended. It is required that all implementations signal an error if
they observe a class option or a slot option that is not implemented locally.

It is valid to specify more than one reader, writer, accessor, or initialization argument for a
slot . No other slot option can appear more than once in a single slot description, or an error is
signaled.

If no reader, writer, or accessor is specified for a slot , the slot can only be accessed by the func-
tion slot-value.

If a defclass form appears as a top level form, the compiler must make the class name be rec-
ognized as a valid type name in subsequent declarations (as for deftype) and be recognized as a
valid class name for defmethod parameter specializers and for use as the :metaclass option of
a subsequent defclass. The compiler must make the class definition available to be returned by
find-class when its environment argument is a value received as the environment parameter of a
macro.

7–64 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Exceptional Situations:
If there are any duplicate slot names, an error of type program-error is signaled.

If an initialization argument name appears more than once in :default-initargs class option, an
error of type program-error is signaled.

If any of the following slot options appears more than once in a single slot description, an error of
type program-error is signaled: :allocation, :initform, :type, :documentation.

It is required that all implementations signal an error of type program-error if they observe a
class option or a slot option that is not implemented locally.

See Also:
documentation, initialize-instance, make-instance, slot-value, Section 4.3 (Classes), Section
4.3.4 (Inheritance), Section 4.3.6 (Redefining Classes), Section 4.3.5 (Determining the Class
Precedence List), Section 7.1 (Object Creation and Initialization)

defgeneric Macro

Syntax:
defgeneric function-name gf-lambda-list [[↓option | {↓method-description}*]]
→ new-generic

option::=(:argument-precedence-order {parameter-name}+) |
(declare {gf-declaration}+) |
(:documentation gf-documentation) |
(:method-combination method-combination {method-combination-argument}*) |
(:generic-function-class generic-function-class) |
(:method-class method-class)

method-description::=(:method {method-qualifier}* specialized-lambda-list
[[{declaration}* | documentation]] {form}*)

Arguments and Values:
function-name—a function name.

generic-function-class—a non-nil symbol naming a class.

gf-declaration—an optimize declaration specifier ; other declaration specifiers are not permitted.

gf-documentation—a string ; not evaluated.

gf-lambda-list—a generic function lambda list .

Objects 7–65

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

defgeneric

method-class—a non-nil symbol naming a class.

method-combination-argument—an object.

method-combination-name—a symbol naming a method combination type.

method-qualifiers, specialized-lambda-list, declarations, documentation, forms—as per defmethod.

new-generic—the generic function object .

parameter-name—a symbol that names a required parameter in the lambda-list. (If the
:argument-precedence-order option is specified, each required parameter in the lambda-list must
be used exactly once as a parameter-name.)

Description:
The macro defgeneric is used to define a generic function or to specify options and declarations
that pertain to a generic function as a whole.

If function-name is a list it must be of the form (setf symbol). If (fboundp function-name) is
false, a new generic function is created. If (fdefinition function-name) is a generic function,
that generic function is modified. If function-name names an ordinary function, a macro, or a
special operator , an error is signaled.

The effect of the defgeneric macro is as if the following three steps were performed: first, methods
defined by previous defgeneric forms are removed; second, ensure-generic-function is called; and
finally, methods specified by the current defgeneric form are added to the generic function.

Each method-description defines a method on the generic function. The lambda list of each method
must be congruent with the lambda list specified by the gf-lambda-list option. If no method
descriptions are specified and a generic function of the same name does not already exist, a
generic function with no methods is created.

The gf-lambda-list argument of defgeneric specifies the shape of lambda lists for the methods
on this generic function. All methods on the resulting generic function must have lambda lists
that are congruent with this shape. If a defgeneric form is evaluated and some methods for that
generic function have lambda lists that are not congruent with that given in the defgeneric form,
an error is signaled. For further details on method congruence, see Section 7.6.4 (Congruent
Lambda-lists for all Methods of a Generic Function).

The generic function passes to the method all the argument values passed to it, and only those;
default values are not supported. Note that optional and keyword arguments in method defini-
tions, however, can have default initial value forms and can use supplied-p parameters.

The following options are provided. Except as otherwise noted, a given option may occur only
once.

• The :argument-precedence-order option is used to specify the order in which the required
arguments in a call to the generic function are tested for specificity when selecting a

7–66 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

defgeneric

particular method . Each required argument, as specified in the gf-lambda-list argument,
must be included exactly once as a parameter-name so that the full and unambiguous
precedence order is supplied. If this condition is not met, an error is signaled.

• The declare option is used to specify declarations that pertain to the generic function.

An optimize declaration specifier is allowed. It specifies whether method selection should
be optimized for speed or space, but it has no effect on methods. To control how a
method is optimized, an optimize declaration must be placed directly in the defmethod
form or method description. The optimization qualities speed and space are the only
qualities this standard requires, but an implementation can extend the object system to
recognize other qualities. A simple implementation that has only one method selection
technique and ignores optimize declaration specifiers is valid.

The special, ftype, function, inline, notinline, and declaration declarations are not per-
mitted. Individual implementations can extend the declare option to support additional
declarations. If an implementation notices a declaration specifier that it does not support
and that has not been proclaimed as a non-standard declaration identifier name in a
declaration proclamation, it should issue a warning.

The declare option may be specified more than once. The effect is the same as if the lists
of declaration specifiers had been appended together into a single list and specified as a
single declare option.

• The :documentation argument is a documentation string to be attached to the generic
function object , and to be attached with kind function to the function-name.

• The :generic-function-class option may be used to specify that the generic func-
tion is to have a different class than the default provided by the system (the class
standard-generic-function). The class-name argument is the name of a class that can
be the class of a generic function. If function-name specifies an existing generic function
that has a different value for the :generic-function-class argument and the new generic
function class is compatible with the old, change-class is called to change the class of the
generic function; otherwise an error is signaled.

• The :method-class option is used to specify that all methods on this generic func-
tion are to have a different class from the default provided by the system (the class
standard-method). The class-name argument is the name of a class that is capable of
being the class of a method .

• The :method-combination option is followed by a symbol that names a type of method
combination. The arguments (if any) that follow that symbol depend on the type of
method combination. Note that the standard method combination type does not support
any arguments. However, all types of method combination defined by the short form of
define-method-combination accept an optional argument named order , defaulting to
:most-specific-first, where a value of :most-specific-last reverses the order of the
primary methods without affecting the order of the auxiliary methods.

Objects 7–67

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

The method-description arguments define methods that will be associated with the generic func-
tion. The method-qualifier and specialized-lambda-list arguments in a method description are the
same as for defmethod.

The form arguments specify the method body. The body of the method is enclosed in an implicit
block . If function-name is a symbol , this block bears the same name as the generic function. If
function-name is a list of the form (setf symbol), the name of the block is symbol .

Implementations can extend defgeneric to include other options. It is required that an implemen-
tation signal an error if it observes an option that is not implemented locally.

defgeneric is not required to perform any compile-time side effects. In particular, the methods
are not installed for invocation during compilation. An implementation may choose to store
information about the generic function for the purposes of compile-time error-checking (such as
checking the number of arguments on calls, or noting that a definition for the function name has
been seen).

Examples:

Exceptional Situations:
If function-name names an ordinary function, a macro, or a special operator , an error of type
program-error is signaled.

Each required argument, as specified in the gf-lambda-list argument, must be included exactly
once as a parameter-name, or an error of type program-error is signaled.

The lambda list of each method specified by a method-description must be congruent with the
lambda list specified by the gf-lambda-list option, or an error of type error is signaled.

If a defgeneric form is evaluated and some methods for that generic function have lambda lists
that are not congruent with that given in the defgeneric form, an error of type error is signaled.

A given option may occur only once, or an error of type program-error is signaled.

If function-name specifies an existing generic function that has a different value for the
:generic-function-class argument and the new generic function class is compatible with the
old, change-class is called to change the class of the generic function; otherwise an error of type
error is signaled.

Implementations can extend defgeneric to include other options. It is required that an imple-
mentation signal an error of type program-error if it observes an option that is not implemented
locally.

See Also:
defmethod, documentation, ensure-generic-function, generic-function, Section 7.6.4 (Congru-
ent Lambda-lists for all Methods of a Generic Function)

7–68 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

defmethod

defmethod Macro

Syntax:
defmethod function-name {method-qualifier}* specialized-lambda-list

[[{declaration}* | documentation]] {form}*
→ new-method

function-name::= {symbol | (setf symbol)}

method-qualifier::= non-list

specialized-lambda-list::= ({var | (var parameter-specializer-name)}*
[&optional {var | (var [initform [supplied-p-parameter]])}*]
[&rest var]
[&key{var | ({var | (keywordvar)} [initform [supplied-p-parameter]])}*

[&allow-other-keys]]
[&aux {var | (var [initform])}*])

parameter-specializer-name::= symbol | (eql eql-specializer-form)

Arguments and Values:
declaration—a declare expression; not evaluated.

documentation—a string ; not evaluated.

var—a variable name.

eql-specializer-form—a form.

Form—a form.

Initform—a form.

Supplied-p-parameter—variable name.

new-method—the new method object .

Description:
The macro defmethod defines a method on a generic function.

If (fboundp function-name) is nil, a generic function is created with default values for the ar-
gument precedence order (each argument is more specific than the arguments to its right in
the argument list), for the generic function class (the class standard-generic-function), for the
method class (the class standard-method), and for the method combination type (the standard
method combination type). The lambda list of the generic function is congruent with the lambda

Objects 7–69

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

defmethod

list of the method being defined; if the defmethod form mentions keyword arguments, the lambda
list of the generic function will mention &key (but no keyword arguments). If function-name
names an ordinary function, a macro, or a special operator , an error is signaled.

If a generic function is currently named by function-name, the lambda list of the method must be
congruent with the lambda list of the generic function. If this condition does not hold, an error is
signaled. For a definition of congruence in this context, see Section 7.6.4 (Congruent Lambda-lists
for all Methods of a Generic Function).

Each method-qualifier argument is an object that is used by method combination to identify the
given method . The method combination type might further restrict what a method qualifier can
be. The standard method combination type allows for unqualified methods and methods whose
sole qualifier is one of the keywords :before, :after, or :around.

The specialized-lambda-list argument is like an ordinary lambda list except that the names of
required parameters can be replaced by specialized parameters. A specialized parameter is a
list of the form (var parameter-specializer-name). Only required parameters can be special-
ized. If parameter-specializer-name is a symbol it names a class; if it is a list , it is of the form
(eql eql-specializer-form). The parameter specializer name (eql eql-specializer-form) indicates that
the corresponding argument must be eql to the object that is the value of eql-specializer-form for
the method to be applicable. The eql-specializer-form is evaluated at the time that the expansion
of the defmethod macro is evaluated. If no parameter specializer name is specified for a given
required parameter, the parameter specializer defaults to the class t. For further discussion, see
Section 7.6.2 (Introduction to Methods).

The form arguments specify the method body. The body of the method is enclosed in an implicit
block . If function-name is a symbol , this block bears the same name as the generic function. If
function-name is a list of the form (setf symbol), the name of the block is symbol.

The class of the method object that is created is that given by the method class option of the
generic function on which the method is defined.

If the generic function already has a method that agrees with the method being defined on
parameter specializers and qualifiers, defmethod replaces the existing method with the one now
being defined. For a definition of agreement in this context. see Section 7.6.3 (Agreement on
Parameter Specializers and Qualifiers).

The parameter specializers are derived from the parameter specializer names as described in
Section 7.6.2 (Introduction to Methods).

The expansion of the defmethod macro “refers to” each specialized parameter (see the descrip-
tion of ignore within the description of declare). This includes parameters that have an explicit
parameter specializer name of t. This means that a compiler warning does not occur if the body
of the method does not refer to a specialized parameter, while a warning might occur if the body
of the method does not refer to an unspecialized parameter. For this reason, a parameter that
specializes on t is not quite synonymous with an unspecialized parameter in this context.

Declarations at the head of the method body that apply to the method’s lambda variables are

7–70 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

treated as bound declarations whose scope is the same as the corresponding bindings.

Declarations at the head of the method body that apply to the functional bindings of
call-next-method or next-method-p apply to references to those functions within the method
body forms. Any outer bindings of the function names call-next-method and next-method-p,
and declarations associated with such bindings are shadowed2 within the method body forms.

The scope of free declarations at the head of the method body is the entire method body, which
includes any implicit local function definitions but excludes initialization forms for the lambda
variables.

defmethod is not required to perform any compile-time side effects. In particular, the methods
are not installed for invocation during compilation. An implementation may choose to store
information about the generic function for the purposes of compile-time error-checking (such as
checking the number of arguments on calls, or noting that a definition for the function name has
been seen).

Documentation is attached as a documentation string to the method object .

Affected By:
The definition of the referenced generic function.

Exceptional Situations:
If function-name names an ordinary function, a macro, or a special operator , an error of type
error is signaled.

If a generic function is currently named by function-name, the lambda list of the method must be
congruent with the lambda list of the generic function, or an error of type error is signaled.

See Also:
defgeneric, documentation, Section 7.6.2 (Introduction to Methods), Section 7.6.4 (Congruent
Lambda-lists for all Methods of a Generic Function), Section 7.6.3 (Agreement on Parameter
Specializers and Qualifiers), Section 3.4.11 (Syntactic Interaction of Documentation Strings and
Declarations)

find-class Accessor

Syntax:
find-class symbol &optional errorp environment → class

(setf (find-class symbol &optional errorp environment) new-class)

Objects 7–71

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Arguments and Values:
symbol—a symbol .

errorp—a generalized boolean. The default is true.

environment – same as the &environment argument to macro expansion functions and is used
to distinguish between compile-time and run-time environments. The &environment argument
has dynamic extent ; the consequences are undefined if the &environment argument is referred to
outside the dynamic extent of the macro expansion function.

class—a class object , or nil.

Description:
Returns the class object named by the symbol in the environment. If there is no such class, nil is
returned if errorp is false; otherwise, if errorp is true, an error is signaled.

The class associated with a particular symbol can be changed by using setf with find-class; or,
if the new class given to setf is nil, the class association is removed (but the class object itself
is not affected). The results are undefined if the user attempts to change or remove the class
associated with a symbol that is defined as a type specifier in this standard. See Section 4.3.7
(Integrating Types and Classes).

When using setf of find-class, any errorp argument is evaluated for effect, but any values it re-
turns are ignored; the errorp parameter is permitted primarily so that the environment parameter
can be used.

The environment might be used to distinguish between a compile-time and a run-time environ-
ment.

Exceptional Situations:
If there is no such class and errorp is true, find-class signals an error of type error.

See Also:
defmacro, Section 4.3.7 (Integrating Types and Classes)

next-method-p Local Function

Syntax:
next-method-p 〈no arguments〉 → generalized-boolean

Arguments and Values:
generalized-boolean—a generalized boolean.

7–72 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Description:
The locally defined function next-method-p can be used within the body forms (but not the
lambda list) defined by a method-defining form to determine whether a next method exists.

The function next-method-p has lexical scope and indefinite extent .

Whether or not next-method-p is fbound in the global environment is implementation-dependent ;
however, the restrictions on redefinition and shadowing of next-method-p are the same as for
symbols in the COMMON-LISP package which are fbound in the global environment . The conse-
quences of attempting to use next-method-p outside of a method-defining form are undefined.

See Also:
call-next-method, defmethod, call-method

call-method, make-method Local Macro

Syntax:
call-method method &optional next-method-list → {result}*
make-method form → method-object

Arguments and Values:
method—a method object , or a list (see below); not evaluated.

method-object—a method object .

next-method-list—a list of method objects; not evaluated.

results—the values returned by the method invocation.

Description:
The macro call-method is used in method combination. It hides the implementation-dependent
details of how methods are called. The macro call-method has lexical scope and can only be used
within an effective method form.

Whether or not call-method is fbound in the global environment is implementation-dependent ;
however, the restrictions on redefinition and shadowing of call-method are the same as for sym-
bols in the COMMON-LISP package which are fbound in the global environment . The consequences of
attempting to use call-method outside of an effective method form are undefined.

The macro call-method invokes the specified method , supplying it with arguments and with
definitions for call-next-method and for next-method-p. If the invocation of call-method is
lexically inside of a make-method, the arguments are those that were supplied to that method.

Objects 7–73

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Otherwise the arguments are those that were supplied to the generic function. The definitions of
call-next-method and next-method-p rely on the specified next-method-list.

If method is a list , the first element of the list must be the symbol make-method and the second
element must be a form. Such a list specifies a method object whose method function has a body
that is the given form.

Next-method-list can contain method objects or lists, the first element of which must be the
symbol make-method and the second element of which must be a form.

Those are the only two places where make-method can be used. The form used with
make-method is evaluated in the null lexical environment augmented with a local macro
definition for call-method and with bindings named by symbols not accessible from the
COMMON-LISP-USER package.

The call-next-method function available to method will call the first method in next-method-list.
The call-next-method function available in that method , in turn, will call the second method in
next-method-list, and so on, until the list of next methods is exhausted.

If next-method-list is not supplied, the call-next-method function available to method signals an
error of type control-error and the next-method-p function available to method returns nil.

Examples:

See Also:
call-next-method, define-method-combination, next-method-p

call-next-method Local Function

Syntax:
call-next-method &rest args → {result}*

Arguments and Values:
arg—an object .

results—the values returned by the method it calls.

Description:
The function call-next-method can be used within the body forms (but not the lambda list) of a
method defined by a method-defining form to call the next method .

If there is no next method , the generic function no-next-method is called.

The type of method combination used determines which methods can invoke call-next-method.
The standard method combination type allows call-next-method to be used within primary

7–74 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

methods and around methods. For generic functions using a type of method combination defined
by the short form of define-method-combination, call-next-method can be used in around
methods only.

When call-next-method is called with no arguments, it passes the current method ’s original
arguments to the next method . Neither argument defaulting, nor using setq, nor rebinding
variables with the same names as parameters of the method affects the values call-next-method
passes to the method it calls.

When call-next-method is called with arguments, the next method is called with those argu-
ments.

If call-next-method is called with arguments but omits optional arguments, the next method
called defaults those arguments.

The function call-next-method returns any values that are returned by the next method .

The function call-next-method has lexical scope and indefinite extent and can only be used
within the body of a method defined by a method-defining form.

Whether or not call-next-method is fbound in the global environment is implementation-
dependent ; however, the restrictions on redefinition and shadowing of call-next-method are
the same as for symbols in the COMMON-LISP package which are fbound in the global environment .
The consequences of attempting to use call-next-method outside of a method-defining form are
undefined.

Affected By:
defmethod, call-method, define-method-combination.

Exceptional Situations:
When providing arguments to call-next-method, the following rule must be satisfied or an
error of type error should be signaled: the ordered set of applicable methods for a changed set of
arguments for call-next-method must be the same as the ordered set of applicable methods for
the original arguments to the generic function. Optimizations of the error checking are possible,
but they must not change the semantics of call-next-method.

See Also:
define-method-combination, defmethod, next-method-p, no-next-method, call-method, Sec-
tion 7.6.6 (Method Selection and Combination), Section 7.6.6.2 (Standard Method Combination),
Section 7.6.6.4 (Built-in Method Combination Types)

Objects 7–75

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

compute-applicable-methods Standard Generic Function

Syntax:
compute-applicable-methods generic-function function-arguments → methods

Method Signatures:
compute-applicable-methods (generic-function standard-generic-function)

Arguments and Values:
generic-function—a generic function.

function-arguments—a list of arguments for the generic-function.

methods—a list of method objects.

Description:
Given a generic-function and a set of function-arguments, the function compute-applicable-methods
returns the set of methods that are applicable for those arguments sorted according to precedence
order. See Section 7.6.6 (Method Selection and Combination).

Affected By:
defmethod

See Also:
Section 7.6.6 (Method Selection and Combination)

define-method-combination Macro

Syntax:
define-method-combination name [[↓short-form-option]]
→ name

define-method-combination name lambda-list
({method-group-specifier}*)
[(:arguments . args-lambda-list)]
[(:generic-function generic-function-symbol)]
[[{declaration}* | documentation]]
{form}*

→ name

7–76 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

define-method-combination

short-form-option::=:documentation documentation |
:identity-with-one-argument identity-with-one-argument |
:operator operator

method-group-specifier ::=(name {{qualifier-pattern}+ | predicate} [[↓long-form-option]])

long-form-option::=:description description |
:order order |
:required required-p

Arguments and Values:
args-lambda-list—a define-method-combination arguments lambda list .

declaration—a declare expression; not evaluated.

description—a format control .

documentation—a string ; not evaluated.

forms—an implicit progn that must compute and return the form that specifies how the methods
are combined, that is, the effective method .

generic-function-symbol—a symbol .

identity-with-one-argument—a generalized boolean.

lambda-list—ordinary lambda list .

name—a symbol . Non-keyword , non-nil symbols are usually used.

operator—an operator . Name and operator are often the same symbol . This is the default, but it
is not required.

order—:most-specific-first or :most-specific-last; evaluated.

predicate—a symbol that names a function of one argument that returns a generalized boolean.

qualifier-pattern—a list , or the symbol *.

required-p—a generalized boolean.

Description:
The macro define-method-combination is used to define new types of method combination.

There are two forms of define-method-combination. The short form is a simple facility for the
cases that are expected to be most commonly needed. The long form is more powerful but more
verbose. It resembles defmacro in that the body is an expression, usually using backquote, that
computes a form. Thus arbitrary control structures can be implemented. The long form also

Objects 7–77

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

define-method-combination

allows arbitrary processing of method qualifiers.

Short Form

The short form syntax of define-method-combination is recognized when the
second subform is a non-nil symbol or is not present. When the short form is
used, name is defined as a type of method combination that produces a Lisp form
(operator method-call method-call . . .). The operator is a symbol that can be the name
of a function, macro, or special operator . The operator can be supplied by a keyword
option; it defaults to name.

Keyword options for the short form are the following:

• The :documentation option is used to document the method-combination type;
see description of long form below.

• The :identity-with-one-argument option enables an optimization when its value
is true (the default is false). If there is exactly one applicable method and it is a
primary method, that method serves as the effective method and operator is not
called. This optimization avoids the need to create a new effective method and
avoids the overhead of a function call. This option is designed to be used with
operators such as progn, and, +, and max.

• The :operator option specifies the name of the operator. The operator argument
is a symbol that can be the name of a function, macro, or special form.

These types of method combination require exactly one qualifier per method. An error is
signaled if there are applicable methods with no qualifiers or with qualifiers that are not
supported by the method combination type.

A method combination procedure defined in this way recognizes two roles for methods.
A method whose one qualifier is the symbol naming this type of method combination is
defined to be a primary method. At least one primary method must be applicable or an
error is signaled. A method with :around as its one qualifier is an auxiliary method that
behaves the same as an around method in standard method combination. The function
call-next-method can only be used in around methods; it cannot be used in primary
methods defined by the short form of the define-method-combination macro.

A method combination procedure defined in this way accepts an optional argument
named order , which defaults to :most-specific-first. A value of :most-specific-last
reverses the order of the primary methods without affecting the order of the auxiliary
methods.

The short form automatically includes error checking and support for around methods.

For a discussion of built-in method combination types, see Section 7.6.6.4 (Built-in
Method Combination Types).

7–78 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

define-method-combination

Long Form

The long form syntax of define-method-combination is recognized when the second
subform is a list.

The lambda-list receives any arguments provided after the name of the method combina-
tion type in the :method-combination option to defgeneric.

A list of method group specifiers follows. Each specifier selects a subset of the applicable
methods to play a particular role, either by matching their qualifiers against some
patterns or by testing their qualifiers with a predicate. These method group specifiers
define all method qualifiers that can be used with this type of method combination.

The car of each method-group-specifier is a symbol which names a variable. During the
execution of the forms in the body of define-method-combination, this variable is bound
to a list of the methods in the method group. The methods in this list occur in the order
specified by the :order option.

If qualifier-pattern is a symbol it must be *. A method matches a qualifier-pattern if the
method’s list of qualifiers is equal to the qualifier-pattern (except that the symbol * in a
qualifier-pattern matches anything). Thus a qualifier-pattern can be one of the following:
the empty list , which matches unqualified methods; the symbol *, which matches all
methods; a true list, which matches methods with the same number of qualifiers as the
length of the list when each qualifier matches the corresponding list element; or a dotted
list that ends in the symbol * (the * matches any number of additional qualifiers).

Each applicable method is tested against the qualifier-patterns and predicates in left-to-
right order. As soon as a qualifier-pattern matches or a predicate returns true, the method
becomes a member of the corresponding method group and no further tests are made.
Thus if a method could be a member of more than one method group, it joins only the
first such group. If a method group has more than one qualifier-pattern, a method need
only satisfy one of the qualifier-patterns to be a member of the group.

The name of a predicate function can appear instead of qualifier-patterns in a method
group specifier. The predicate is called for each method that has not been assigned to
an earlier method group; it is called with one argument, the method’s qualifier list . The
predicate should return true if the method is to be a member of the method group. A
predicate can be distinguished from a qualifier-pattern because it is a symbol other than
nil or *.

If there is an applicable method that does not fall into any method group, the function
invalid-method-error is called.

Method group specifiers can have keyword options following the qualifier patterns or
predicate. Keyword options can be distinguished from additional qualifier patterns
because they are neither lists nor the symbol *. The keyword options are as follows:

• The :description option is used to provide a description of the role of methods

Objects 7–79

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

define-method-combination

in the method group. Programming environment tools use (apply #’format

stream format-control (method-qualifiers method)) to print this description,
which is expected to be concise. This keyword option allows the description of a
method qualifier to be defined in the same module that defines the meaning of
the method qualifier . In most cases, format-control will not contain any format
directives, but they are available for generality. If :description is not supplied,
a default description is generated based on the variable name and the qualifier
patterns and on whether this method group includes the unqualified methods.

• The :order option specifies the order of methods. The order argument is a form
that evaluates to :most-specific-first or :most-specific-last. If it evaluates
to any other value, an error is signaled. If :order is not supplied, it defaults to
:most-specific-first.

• The :required option specifies whether at least one method in this method
group is required. If its value is true and the method group is empty (that is, no
applicable methods match the qualifier patterns or satisfy the predicate), an error
is signaled. If :required is not supplied, it defaults to nil.

The use of method group specifiers provides a convenient syntax to select methods, to
divide them among the possible roles, and to perform the necessary error checking. It is
possible to perform further filtering of methods in the body forms by using normal list-
processing operations and the functions method-qualifiers and invalid-method-error.
It is permissible to use setq on the variables named in the method group specifiers and
to bind additional variables. It is also possible to bypass the method group specifier
mechanism and do everything in the body forms. This is accomplished by writing a
single method group with * as its only qualifier-pattern; the variable is then bound to a
list of all of the applicable methods, in most-specific-first order.

The body forms compute and return the form that specifies how the methods are com-
bined, that is, the effective method. The effective method is evaluated in the null lexical
environment augmented with a local macro definition for call-method and with bindings
named by symbols not accessible from the COMMON-LISP-USER package. Given a method
object in one of the lists produced by the method group specifiers and a list of next
methods, call-method will invoke the method such that call-next-method has available
the next methods.

When an effective method has no effect other than to call a single method, some imple-
mentations employ an optimization that uses the single method directly as the effective
method, thus avoiding the need to create a new effective method. This optimization is ac-
tive when the effective method form consists entirely of an invocation of the call-method
macro whose first subform is a method object and whose second subform is nil or unsup-
plied. Each define-method-combination body is responsible for stripping off redundant
invocations of progn, and, multiple-value-prog1, and the like, if this optimization is
desired.

The list (:arguments . lambda-list) can appear before any declarations or documentation

7–80 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

define-method-combination

string . This form is useful when the method combination type performs some specific be-
havior as part of the combined method and that behavior needs access to the arguments
to the generic function. Each parameter variable defined by lambda-list is bound to a
form that can be inserted into the effective method. When this form is evaluated during
execution of the effective method, its value is the corresponding argument to the generic
function; the consequences of using such a form as the place in a setf form are undefined.
Argument correspondence is computed by dividing the :arguments lambda-list and the
generic function lambda-list into three sections: the required parameters, the optional
parameters, and the keyword and rest parameters. The arguments supplied to the generic
function for a particular call are also divided into three sections; the required arguments
section contains as many arguments as the generic function has required parameters,
the optional arguments section contains as many arguments as the generic function has
optional parameters, and the keyword/rest arguments section contains the remaining
arguments. Each parameter in the required and optional sections of the :arguments

lambda-list accesses the argument at the same position in the corresponding section of
the arguments. If the section of the :arguments lambda-list is shorter, extra arguments are
ignored. If the section of the :arguments lambda-list is longer, excess required parameters
are bound to forms that evaluate to nil and excess optional parameters are bound to their
initforms. The keyword parameters and rest parameters in the :arguments lambda-list
access the keyword/rest section of the arguments. If the :arguments lambda-list contains
&key, it behaves as if it also contained &allow-other-keys.

In addition, &whole var can be placed first in the :arguments lambda-list. It causes var to
be bound to a form that evaluates to a list of all of the arguments supplied to the generic
function. This is different from &rest because it accesses all of the arguments, not just
the keyword/rest arguments.

Erroneous conditions detected by the body should be reported with
method-combination-error or invalid-method-error; these functions add any neces-
sary contextual information to the error message and will signal the appropriate error.

The body forms are evaluated inside of the bindings created by the lambda list and
method group specifiers. Declarations at the head of the body are positioned directly
inside of bindings created by the lambda list and outside of the bindings of the method
group variables. Thus method group variables cannot be declared in this way. locally
may be used around the body, however.

Within the body forms, generic-function-symbol is bound to the generic function object .

Documentation is attached as a documentation string to name (as kind
method-combination) and to the method combination object .

Note that two methods with identical specializers, but with different qualifiers, are
not ordered by the algorithm described in Step 2 of the method selection and combi-
nation process described in Section 7.6.6 (Method Selection and Combination). Nor-
mally the two methods play different roles in the effective method because they have
different qualifiers, and no matter how they are ordered in the result of Step 2, the

Objects 7–81

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

define-method-combination

effective method is the same. If the two methods play the same role and their order
matters, an error is signaled. This happens as part of the qualifier pattern matching in
define-method-combination.

If a define-method-combination form appears as a top level form, the compiler must make
the method combination name be recognized as a valid method combination name in subse-
quent defgeneric forms. However, the method combination is executed no earlier than when
the define-method-combination form is executed, and possibly as late as the time that generic
functions that use the method combination are executed.

Examples:
Most examples of the long form of define-method-combination also illustrate the use of the
related functions that are provided as part of the declarative method combination facility.

;;; Examples of the short form of define-method-combination

(define-method-combination and :identity-with-one-argument t)

(defmethod func and ((x class1) y) ...)

;;; The equivalent of this example in the long form is:

(define-method-combination and

(&optional (order :most-specific-first))

((around (:around))

(primary (and) :order order :required t))

(let ((form (if (rest primary)

‘(and ,@(mapcar #’(lambda (method)

‘(call-method ,method))

primary))

‘(call-method ,(first primary)))))

(if around

‘(call-method ,(first around)

(,@(rest around)

(make-method ,form)))

form)))

;;; Examples of the long form of define-method-combination

;The default method-combination technique

(define-method-combination standard ()

((around (:around))

(before (:before))

(primary () :required t)

(after (:after)))

(flet ((call-methods (methods)

7–82 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

define-method-combination

(mapcar #’(lambda (method)

‘(call-method ,method))

methods)))

(let ((form (if (or before after (rest primary))

‘(multiple-value-prog1

(progn ,@(call-methods before)

(call-method ,(first primary)

,(rest primary)))

,@(call-methods (reverse after)))

‘(call-method ,(first primary)))))

(if around

‘(call-method ,(first around)

(,@(rest around)

(make-method ,form)))

form))))

;A simple way to try several methods until one returns non-nil

(define-method-combination or ()

((methods (or)))

‘(or ,@(mapcar #’(lambda (method)

‘(call-method ,method))

methods)))

;A more complete version of the preceding

(define-method-combination or

(&optional (order ’:most-specific-first))

((around (:around))

(primary (or)))

;; Process the order argument

(case order

(:most-specific-first)

(:most-specific-last (setq primary (reverse primary)))

(otherwise (method-combination-error "~S is an invalid order.~@

:most-specific-first and :most-specific-last are the possible values."

order)))

;; Must have a primary method

(unless primary

(method-combination-error "A primary method is required."))

;; Construct the form that calls the primary methods

(let ((form (if (rest primary)

‘(or ,@(mapcar #’(lambda (method)

‘(call-method ,method))

primary))

‘(call-method ,(first primary)))))

;; Wrap the around methods around that form

Objects 7–83

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

define-method-combination

(if around

‘(call-method ,(first around)

(,@(rest around)

(make-method ,form)))

form)))

;The same thing, using the :order and :required keyword options

(define-method-combination or

(&optional (order ’:most-specific-first))

((around (:around))

(primary (or) :order order :required t))

(let ((form (if (rest primary)

‘(or ,@(mapcar #’(lambda (method)

‘(call-method ,method))

primary))

‘(call-method ,(first primary)))))

(if around

‘(call-method ,(first around)

(,@(rest around)

(make-method ,form)))

form)))

;This short-form call is behaviorally identical to the preceding

(define-method-combination or :identity-with-one-argument t)

;Order methods by positive integer qualifiers

;:around methods are disallowed to keep the example small

(define-method-combination example-method-combination ()

((methods positive-integer-qualifier-p))

‘(progn ,@(mapcar #’(lambda (method)

‘(call-method ,method))

(stable-sort methods #’<

:key #’(lambda (method)

(first (method-qualifiers method)))))))

(defun positive-integer-qualifier-p (method-qualifiers)

(and (= (length method-qualifiers) 1)

(typep (first method-qualifiers) ’(integer 0 *))))

;;; Example of the use of :arguments

(define-method-combination progn-with-lock ()

((methods ()))

(:arguments object)

‘(unwind-protect

(progn (lock (object-lock ,object))

7–84 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

,@(mapcar #’(lambda (method)

‘(call-method ,method))

methods))

(unlock (object-lock ,object))))

Side Effects:
The compiler is not required to perform any compile-time side-effects.

Exceptional Situations:
Method combination types defined with the short form require exactly one qualifier per method.
An error of type error is signaled if there are applicable methods with no qualifiers or with
qualifiers that are not supported by the method combination type. At least one primary method
must be applicable or an error of type error is signaled.

If an applicable method does not fall into any method group, the system signals an error of type
error indicating that the method is invalid for the kind of method combination in use.

If the value of the :required option is true and the method group is empty (that is, no applicable
methods match the qualifier patterns or satisfy the predicate), an error of type error is signaled.

If the :order option evaluates to a value other than :most-specific-first or :most-specific-last,
an error of type error is signaled.

See Also:
call-method, call-next-method, documentation, method-qualifiers, method-combination-error,
invalid-method-error, defgeneric, Section 7.6.6 (Method Selection and Combination), Section
7.6.6.4 (Built-in Method Combination Types), Section 3.4.11 (Syntactic Interaction of Documen-
tation Strings and Declarations)

Notes:
The :method-combination option of defgeneric is used to specify that a generic function should
use a particular method combination type. The first argument to the :method-combination option
is the name of a method combination type and the remaining arguments are options for that
type.

find-method Standard Generic Function

Syntax:
find-method generic-function method-qualifiers specializers &optional errorp
→ method

Objects 7–85

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

find-method

Method Signatures:
find-method (generic-function standard-generic-function)

method-qualifiers specializers &optional errorp

Arguments and Values:
generic-function—a generic function.

method-qualifiers—a list .

specializers—a list .

errorp—a generalized boolean. The default is true.

method—a method object , or nil.

Description:
The generic function find-method takes a generic function and returns the method object that
agrees on qualifiers and parameter specializers with the method-qualifiers and specializers argu-
ments of find-method. Method-qualifiers contains the method qualifiers for the method . The
order of the method qualifiers is significant. For a definition of agreement in this context, see
Section 7.6.3 (Agreement on Parameter Specializers and Qualifiers).

The specializers argument contains the parameter specializers for the method . It must correspond
in length to the number of required arguments of the generic function, or an error is signaled.
This means that to obtain the default method on a given generic-function, a list whose elements
are the class t must be given.

If there is no such method and errorp is true, find-method signals an error. If there is no such
method and errorp is false, find-method returns nil.

Examples:

(defmethod some-operation ((a integer) (b float)) (list a b))

→ #<STANDARD-METHOD SOME-OPERATION (INTEGER FLOAT) 26723357>

(find-method #’some-operation ’() (mapcar #’find-class ’(integer float)))

→ #<STANDARD-METHOD SOME-OPERATION (INTEGER FLOAT) 26723357>

(find-method #’some-operation ’() (mapcar #’find-class ’(integer integer)))

. Error: No matching method

(find-method #’some-operation ’() (mapcar #’find-class ’(integer integer)) nil)

→ NIL

Affected By:
add-method, defclass, defgeneric, defmethod

Exceptional Situations:
If the specializers argument does not correspond in length to the number of required arguments of

7–86 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

the generic-function, an an error of type error is signaled.

If there is no such method and errorp is true, find-method signals an error of type error.

See Also:
Section 7.6.3 (Agreement on Parameter Specializers and Qualifiers)

add-method Standard Generic Function

Syntax:
add-method generic-function method → generic-function

Method Signatures:
add-method (generic-function standard-generic-function)

(method method)

Arguments and Values:
generic-function—a generic function object .

method—a method object .

Description:
The generic function add-method adds a method to a generic function.

If method agrees with an existing method of generic-function on parameter specializers and quali-
fiers, the existing method is replaced.

Exceptional Situations:
The lambda list of the method function of method must be congruent with the lambda list of
generic-function, or an error of type error is signaled.

If method is a method object of another generic function, an error of type error is signaled.

See Also:
defmethod, defgeneric, find-method, remove-method, Section 7.6.3 (Agreement on Parameter
Specializers and Qualifiers)

Objects 7–87

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

initialize-instance Standard Generic Function

Syntax:
initialize-instance instance &rest initargs &key &allow-other-keys → instance

Method Signatures:
initialize-instance (instance standard-object) &rest initargs

Arguments and Values:
instance—an object .

initargs—a defaulted initialization argument list .

Description:
Called by make-instance to initialize a newly created instance. The generic function is called
with the new instance and the defaulted initialization argument list .

The system-supplied primary method on initialize-instance initializes the slots of the instance
with values according to the initargs and the :initform forms of the slots. It does this by calling
the generic function shared-initialize with the following arguments: the instance, t (this indicates
that all slots for which no initialization arguments are provided should be initialized according to
their :initform forms), and the initargs.

Programmers can define methods for initialize-instance to specify actions to be taken when an
instance is initialized. If only after methods are defined, they will be run after the system-supplied
primary method for initialization and therefore will not interfere with the default behavior of
initialize-instance.

See Also:
shared-initialize, make-instance, slot-boundp, slot-makunbound, Section 7.1 (Object Creation
and Initialization), Section 7.1.4 (Rules for Initialization Arguments), Section 7.1.2 (Declaring the
Validity of Initialization Arguments)

class-name Standard Generic Function

Syntax:
class-name class → name

Method Signatures:
class-name (class class)

7–88 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Arguments and Values:
class—a class object .

name—a symbol .

Description:
Returns the name of the given class.

See Also:
find-class, Section 4.3 (Classes)

Notes:
If S is a symbol such that S =(class-name C) and C =(find-class S), then S is the proper
name of C. For further discussion, see Section 4.3 (Classes).

The name of an anonymous class is nil.

(setf class-name) Standard Generic Function

Syntax:
(setf class-name) new-value class → new-value

Method Signatures:
(setf class-name) new-value (class class)

Arguments and Values:
new-value—a symbol .

class—a class.

Description:
The generic function (setf class-name) sets the name of a class object.

See Also:
find-class, proper name, Section 4.3 (Classes)

Objects 7–89

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

class-of Function

Syntax:
class-of object → class

Arguments and Values:
object—an object .

class—a class object .

Description:
Returns the class of which the object is a direct instance.

Examples:

(class-of ’fred) → #<BUILT-IN-CLASS SYMBOL 610327300>

(class-of 2/3) → #<BUILT-IN-CLASS RATIO 610326642>

(defclass book () ()) → #<STANDARD-CLASS BOOK 33424745>

(class-of (make-instance ’book)) → #<STANDARD-CLASS BOOK 33424745>

(defclass novel (book) ()) → #<STANDARD-CLASS NOVEL 33424764>

(class-of (make-instance ’novel)) → #<STANDARD-CLASS NOVEL 33424764>

(defstruct kons kar kdr) → KONS

(class-of (make-kons :kar 3 :kdr 4)) → #<STRUCTURE-CLASS KONS 250020317>

See Also:
make-instance, type-of

unbound-slot Condition Type

Class Precedence List:
unbound-slot, cell-error, error, serious-condition, condition, t

Description:
The object having the unbound slot is initialized by the :instance initialization argument to
make-condition, and is accessed by the function unbound-slot-instance.

The name of the cell (see cell-error) is the name of the slot.

7–90 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

See Also:
cell-error-name, unbound-slot-object, Section 9.1 (Condition System Concepts)

unbound-slot-instance Function

Syntax:
unbound-slot-instance condition → instance

Arguments and Values:
condition—a condition of type unbound-slot.

instance—an object .

Description:
Returns the instance which had the unbound slot in the situation represented by the condition.

See Also:
cell-error-name, unbound-slot, Section 9.1 (Condition System Concepts)

Objects 7–91

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

7–92 Programming Language—Common Lisp

