
Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Programming Language—Common Lisp

23. Reader

Reader i

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

ii Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

23.1 Reader Concepts

23.1.1 Dynamic Control of the Lisp Reader
Various aspects of the Lisp reader can be controlled dynamically. See Section 2.1.1 (Readtables)
and Section 2.1.2 (Variables that affect the Lisp Reader).

23.1.2 Effect of Readtable Case on the Lisp Reader
The readtable case of the current readtable affects the Lisp reader in the following ways:

:upcase

When the readtable case is :upcase, unescaped constituent characters are converted to
uppercase, as specified in Section 2.2 (Reader Algorithm).

:downcase

When the readtable case is :downcase, unescaped constituent characters are converted to
lowercase.

:preserve

When the readtable case is :preserve, the case of all characters remains unchanged.

:invert

When the readtable case is :invert, then if all of the unescaped letters in the extended
token are of the same case, those (unescaped) letters are converted to the opposite case.

23.1.2.1 Examples of Effect of Readtable Case on the Lisp Reader

(defun test-readtable-case-reading ()

(let ((*readtable* (copy-readtable nil)))

(format t "READTABLE-CASE Input Symbol-name~

~%-----------------------------------~

~%")

(dolist (readtable-case ’(:upcase :downcase :preserve :invert))

(setf (readtable-case *readtable*) readtable-case)

(dolist (input ’("ZEBRA" "Zebra" "zebra"))

(format t "~&:~A~16T~A~24T~A"

(string-upcase readtable-case)

input

(symbol-name (read-from-string input)))))))

Reader 23–1

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

The output from (test-readtable-case-reading) should be as follows:

READTABLE-CASE Input Symbol-name

:UPCASE ZEBRA ZEBRA

:UPCASE Zebra ZEBRA

:UPCASE zebra ZEBRA

:DOWNCASE ZEBRA zebra

:DOWNCASE Zebra zebra

:DOWNCASE zebra zebra

:PRESERVE ZEBRA ZEBRA

:PRESERVE Zebra Zebra

:PRESERVE zebra zebra

:INVERT ZEBRA zebra

:INVERT Zebra Zebra

:INVERT zebra ZEBRA

23.1.3 Argument Conventions of Some Reader Functions

23.1.3.1 The EOF-ERROR-P argument

Eof-error-p in input function calls controls what happens if input is from a file (or any other
input source that has a definite end) and the end of the file is reached. If eof-error-p is true
(the default), an error of type end-of-file is signaled at end of file. If it is false, then no error is
signaled, and instead the function returns eof-value.

Functions such as read that read the representation of an object rather than a single charac-
ter always signals an error, regardless of eof-error-p, if the file ends in the middle of an object
representation. For example, if a file does not contain enough right parentheses to balance the
left parentheses in it, read signals an error. If a file ends in a symbol or a number immediately
followed by end-of-file, read reads the symbol or number successfully and when called again will
act according to eof-error-p. Similarly, the function read-line successfully reads the last line of a
file even if that line is terminated by end-of-file rather than the newline character. Ignorable text,
such as lines containing only whitespace2 or comments, are not considered to begin an object ; if
read begins to read an expression but sees only such ignorable text, it does not consider the file
to end in the middle of an object . Thus an eof-error-p argument controls what happens when the
file ends between objects.

23–2 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

23.1.3.2 The RECURSIVE-P argument

If recursive-p is supplied and not nil, it specifies that this function call is not an outermost call to
read but an embedded call, typically from a reader macro function. It is important to distinguish
such recursive calls for three reasons.

1. An outermost call establishes the context within which the #n= and #n# syntax is scoped.
Consider, for example, the expression

(cons ’#3=(p q r) ’(x y . #3#))

If the single-quote reader macro were defined in this way:

(set-macro-character #\’ ;incorrect

#’(lambda (stream char)

(declare (ignore char))

(list ’quote (read stream))))

then each call to the single-quote reader macro function would establish independent
contexts for the scope of read information, including the scope of identifications between
markers like “#3=” and “#3#”. However, for this expression, the scope was clearly in-
tended to be determined by the outer set of parentheses, so such a definition would be
incorrect. The correct way to define the single-quote reader macro uses recursive-p:

(set-macro-character #\’ ;correct

#’(lambda (stream char)

(declare (ignore char))

(list ’quote (read stream t nil t))))

2. A recursive call does not alter whether the reading process is to preserve whites-
pace2 or not (as determined by whether the outermost call was to read or
read-preserving-whitespace). Suppose again that single-quote were to be defined as
shown above in the incorrect definition. Then a call to read-preserving-whitespace
that read the expression ’foo〈Space〉 would fail to preserve the space character fol-
lowing the symbol foo because the single-quote reader macro function calls read, not
read-preserving-whitespace, to read the following expression (in this case foo). The cor-
rect definition, which passes the value true for recursive-p to read, allows the outermost
call to determine whether whitespace2 is preserved.

3. When end-of-file is encountered and the eof-error-p argument is not nil, the kind of error
that is signaled may depend on the value of recursive-p. If recursive-p is true, then the
end-of-file is deemed to have occurred within the middle of a printed representation; if
recursive-p is false, then the end-of-file may be deemed to have occurred between objects
rather than within the middle of one.

Reader 23–3

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

readtable System Class

Class Precedence List:
readtable, t

Description:
A readtable maps characters into syntax types for the Lisp reader ; see Chapter 2 (Syntax). A
readtable also contains associations between macro characters and their reader macro functions,
and records information about the case conversion rules to be used by the Lisp reader when
parsing symbols.

Each simple character must be representable in the readtable. It is implementation-defined
whether non-simple characters can have syntax descriptions in the readtable.

See Also:
Section 2.1.1 (Readtables), Section 22.1.3.13 (Printing Other Objects)

copy-readtable Function

Syntax:
copy-readtable &optional from-readtable to-readtable → readtable

Arguments and Values:
from-readtable—a readtable designator . The default is the current readtable.

to-readtable—a readtable or nil. The default is nil.

readtable—the to-readtable if it is non-nil , or else a fresh readtable.

Description:
copy-readtable copies from-readtable.

If to-readtable is nil, a new readtable is created and returned. Otherwise the readtable specified by
to-readtable is modified and returned.

copy-readtable copies the setting of readtable-case.

Examples:

(setq zvar 123) → 123

(set-syntax-from-char #\z #\’ (setq table2 (copy-readtable))) → T

zvar → 123

(copy-readtable table2 *readtable*) → #<READTABLE 614000277>

23–4 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

zvar → VAR

(setq *readtable* (copy-readtable)) → #<READTABLE 46210223>

zvar → VAR

(setq *readtable* (copy-readtable nil)) → #<READTABLE 46302670>

zvar → 123

See Also:
readtable, *readtable*

Notes:

(setq *readtable* (copy-readtable nil))

restores the input syntax to standard Common Lisp syntax, even if the initial readtable has been
clobbered (assuming it is not so badly clobbered that you cannot type in the above expression).

On the other hand,

(setq *readtable* (copy-readtable))

replaces the current readtable with a copy of itself. This is useful if you want to save a copy of a
readtable for later use, protected from alteration in the meantime. It is also useful if you want to
locally bind the readtable to a copy of itself, as in:

(let ((*readtable* (copy-readtable))) ...)

make-dispatch-macro-character Function

Syntax:
make-dispatch-macro-character char &optional non-terminating-p readtable → t

Arguments and Values:
char—a character .

non-terminating-p—a generalized boolean. The default is false.

readtable—a readtable. The default is the current readtable.

Description:
make-dispatch-macro-character makes char be a dispatching macro character in readtable.

Initially, every character in the dispatch table associated with the char has an associated function
that signals an error of type reader-error.

Reader 23–5

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

If non-terminating-p is true, the dispatching macro character is made a non-terminating macro
character ; if non-terminating-p is false, the dispatching macro character is made a terminating
macro character .

Examples:

(get-macro-character #\{) → NIL, false
(make-dispatch-macro-character #\{) → T

(not (get-macro-character #\{)) → false

The readtable is altered.

See Also:
readtable, set-dispatch-macro-character

read, read-preserving-whitespace Function

Syntax:
read &optional input-stream eof-error-p eof-value recursive-p → object

read-preserving-whitespace &optional input-stream eof-error-p
eof-value recursive-p

→ object

Arguments and Values:
input-stream—an input stream designator .

eof-error-p—a generalized boolean. The default is true.

eof-value—an object . The default is nil.

recursive-p—a generalized boolean. The default is false.

object—an object (parsed by the Lisp reader) or the eof-value.

Description:
read parses the printed representation of an object from input-stream and builds such an object .

read-preserving-whitespace is like read but preserves any whitespace2 character that delimits
the printed representation of the object . read-preserving-whitespace is exactly like read when
the recursive-p argument to read-preserving-whitespace is true.

23–6 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

read, read-preserving-whitespace

When *read-suppress* is false, read throws away the delimiting character required by certain
printed representations if it is a whitespace2 character ; but read preserves the character (using
unread-char) if it is syntactically meaningful, because it could be the start of the next expression.

If a file ends in a symbol or a number immediately followed by an end of file1, read reads the
symbol or number successfully; when called again, it sees the end of file1 and only then acts
according to eof-error-p. If a file contains ignorable text at the end, such as blank lines and
comments, read does not consider it to end in the middle of an object .

If recursive-p is true, the call to read is expected to be made from within some function that itself
has been called from read or from a similar input function, rather than from the top level.

Both functions return the object read from input-stream. Eof-value is returned if eof-error-p is false
and end of file is reached before the beginning of an object .

Examples:

(read)

. ’a

→ (QUOTE A)

(with-input-from-string (is " ") (read is nil ’the-end)) → THE-END

(defun skip-then-read-char (s c n)

(if (char= c #\{) (read s t nil t) (read-preserving-whitespace s))

(read-char-no-hang s)) → SKIP-THEN-READ-CHAR

(let ((*readtable* (copy-readtable nil)))

(set-dispatch-macro-character #\# #\{ #’skip-then-read-char)

(set-dispatch-macro-character #\# #\} #’skip-then-read-char)

(with-input-from-string (is "#{123 x #}123 y")

(format t "~S ~S" (read is) (read is)))) → #\x, #\Space, NIL

As an example, consider this reader macro definition:

(defun slash-reader (stream char)

(declare (ignore char))

‘(path . ,(loop for dir = (read-preserving-whitespace stream t nil t)

then (progn (read-char stream t nil t)

(read-preserving-whitespace stream t nil t))

collect dir

while (eql (peek-char nil stream nil nil t) #\/))))

(set-macro-character #\/ #’slash-reader)

Consider now calling read on this expression:

(zyedh /usr/games/zork /usr/games/boggle)

The / macro reads objects separated by more / characters; thus /usr/games/zork is intended to
read as (path usr games zork). The entire example expression should therefore be read as

Reader 23–7

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(zyedh (path usr games zork) (path usr games boggle))

However, if read had been used instead of read-preserving-whitespace, then after the reading of
the symbol zork, the following space would be discarded; the next call to peek-char would see the
following /, and the loop would continue, producing this interpretation:

(zyedh (path usr games zork usr games boggle))

There are times when whitespace2 should be discarded. If a command interpreter takes single-
character commands, but occasionally reads an object then if the whitespace2 after a symbol is not
discarded it might be interpreted as a command some time later after the symbol had been read.

Affected By:
standard-input, *terminal-io*, *readtable*, *read-default-float-format*, *read-base*,
read-suppress, *package*, *read-eval*.

Exceptional Situations:
read signals an error of type end-of-file, regardless of eof-error-p, if the file ends in the mid-
dle of an object representation. For example, if a file does not contain enough right parenthe-
ses to balance the left parentheses in it, read signals an error. This is detected when read or
read-preserving-whitespace is called with recursive-p and eof-error-p non-nil , and end-of-file is
reached before the beginning of an object .

If eof-error-p is true, an error of type end-of-file is signaled at the end of file.

See Also:
peek-char, read-char, unread-char, read-from-string, read-delimited-list, parse-integer,
Chapter 2 (Syntax), Section 23.1 (Reader Concepts)

read-delimited-list Function

Syntax:
read-delimited-list char &optional input-stream recursive-p → list

Arguments and Values:
char—a character .

input-stream—an input stream designator . The default is standard input .

recursive-p—a generalized boolean. The default is false.

list—a list of the objects read.

23–8 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

read-delimited-list

Description:
read-delimited-list reads objects from input-stream until the next character after an object ’s
representation (ignoring whitespace2 characters and comments) is char .

read-delimited-list looks ahead at each step for the next non-whitespace2 character and peeks
at it as if with peek-char. If it is char , then the character is consumed and the list of objects is
returned. If it is a constituent or escape character , then read is used to read an object , which is
added to the end of the list . If it is a macro character , its reader macro function is called; if the
function returns a value, that value is added to the list . The peek-ahead process is then repeated.

If recursive-p is true, this call is expected to be embedded in a higher-level call to read or a
similar function.

It is an error to reach end-of-file during the operation of read-delimited-list.

The consequences are undefined if char has a syntax type of whitespace2 in the current readtable.

Examples:

(read-delimited-list #\]) 1 2 3 4 5 6]
→ (1 2 3 4 5 6)

Suppose you wanted #{a b c . . . z} to read as a list of all pairs of the elements a, b, c, . . ., z, for
example.

#{p q z a} reads as ((p q) (p z) (p a) (q z) (q a) (z a))

This can be done by specifying a macro-character definition for #{ that does two things: reads in
all the items up to the }, and constructs the pairs. read-delimited-list performs the first task.

(defun |#{-reader| (stream char arg)

(declare (ignore char arg))

(mapcon #’(lambda (x)

(mapcar #’(lambda (y) (list (car x) y)) (cdr x)))

(read-delimited-list #\} stream t))) → |#{-reader|

(set-dispatch-macro-character #\# #\{ #’|#{-reader|) → T

(set-macro-character #\} (get-macro-character #\) nil))

Note that true is supplied for the recursive-p argument.

It is necessary here to give a definition to the character } as well to prevent it from being a
constituent. If the line

(set-macro-character #\} (get-macro-character #\) nil))

shown above were not included, then the } in

#{ p q z a}

Reader 23–9

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

would be considered a constituent character, part of the symbol named a}. This could be cor-
rected by putting a space before the }, but it is better to call set-macro-character.

Giving } the same definition as the standard definition of the character) has the twin benefit of
making it terminate tokens for use with read-delimited-list and also making it invalid for use in
any other context. Attempting to read a stray } will signal an error.

Affected By:
standard-input, *readtable*, *terminal-io*.

See Also:
read, peek-char, read-char, unread-char.

Notes:
read-delimited-list is intended for use in implementing reader macros. Usually it is desirable
for char to be a terminating macro character so that it can be used to delimit tokens; how-
ever, read-delimited-list makes no attempt to alter the syntax specified for char by the current
readtable. The caller must make any necessary changes to the readtable syntax explicitly.

read-from-string Function

Syntax:
read-from-string string &optional eof-error-p eof-value

&key start end preserve-whitespace

→ object, position

Arguments and Values:
string—a string .

eof-error-p—a generalized boolean. The default is true.

eof-value—an object . The default is nil.

start, end—bounding index designators of string . The defaults for start and end are 0 and nil,
respectively.

preserve-whitespace—a generalized boolean. The default is false.

object—an object (parsed by the Lisp reader) or the eof-value.

position—an integer greater than or equal to zero, and less than or equal to one more than the
length of the string .

23–10 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Description:
Parses the printed representation of an object from the subsequence of string bounded by start and
end , as if read had been called on an input stream containing those same characters.

If preserve-whitespace is true, the operation will preserve whitespace2 as read-preserving-whitespace
would do.

If an object is successfully parsed, the primary value, object, is the object that was parsed. If
eof-error-p is false and if the end of the substring is reached, eof-value is returned.

The secondary value, position, is the index of the first character in the bounded string that was
not read. The position may depend upon the value of preserve-whitespace. If the entire string was
read, the position returned is either the length of the string or one greater than the length of the
string .

Examples:

(read-from-string " 1 3 5" t nil :start 2) → 3, 5

(read-from-string "(a b c)") → (A B C), 7

Exceptional Situations:
If the end of the supplied substring occurs before an object can be read, an error is signaled if
eof-error-p is true. An error is signaled if the end of the substring occurs in the middle of an
incomplete object .

See Also:
read, read-preserving-whitespace

Notes:
The reason that position is allowed to be beyond the length of the string is to permit (but not
require) the implementation to work by simulating the effect of a trailing delimiter at the end
of the bounded string . When preserve-whitespace is true, the position might count the simulated
delimiter.

readtable-case Accessor

Syntax:
readtable-case readtable → mode

(setf (readtable-case readtable) mode)

Arguments and Values:
readtable—a readtable.

Reader 23–11

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

mode—a case sensitivity mode.

Description:
Accesses the readtable case of readtable, which affects the way in which the Lisp Reader reads
symbols and the way in which the Lisp Printer writes symbols.

Examples:
See Section 23.1.2.1 (Examples of Effect of Readtable Case on the Lisp Reader) and Section
22.1.3.3.2.1 (Examples of Effect of Readtable Case on the Lisp Printer).

Exceptional Situations:
Should signal an error of type type-error if readtable is not a readtable. Should signal an error of
type type-error if mode is not a case sensitivity mode.

See Also:
readtable, *print-escape*, Section 2.2 (Reader Algorithm), Section 23.1.2 (Effect of Readtable
Case on the Lisp Reader), Section 22.1.3.3.2 (Effect of Readtable Case on the Lisp Printer)

Notes:
copy-readtable copies the readtable case of the readtable.

readtablep Function

Syntax:
readtablep object → generalized-boolean

Arguments and Values:
object—an object .

generalized-boolean—a generalized boolean.

Description:
Returns true if object is of type readtable; otherwise, returns false.

Examples:

(readtablep *readtable*) → true
(readtablep (copy-readtable)) → true
(readtablep ’*readtable*) → false

Notes:

(readtablep object) ≡ (typep object ’readtable)

23–12 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

set-dispatch-macro-character, get-dispatch-macro-
character Function

Syntax:
get-dispatch-macro-character disp-char sub-char &optional readtable → function

set-dispatch-macro-character disp-char sub-char new-function &optional readtable → t

Arguments and Values:
disp-char—a character .

sub-char—a character .

readtable—a readtable designator . The default is the current readtable.

function—a function designator or nil.

new-function—a function designator .

Description:
set-dispatch-macro-character causes new-function to be called when disp-char followed by sub-
char is read. If sub-char is a lowercase letter, it is converted to its uppercase equivalent. It is an
error if sub-char is one of the ten decimal digits.

set-dispatch-macro-character installs a new-function to be called when a particular dispatching
macro character pair is read. New-function is installed as the dispatch function to be called when
readtable is in use and when disp-char is followed by sub-char .

For more information about how the new-function is invoked, see Section 2.1.4.4 (Macro Charac-
ters).

get-dispatch-macro-character retrieves the dispatch function associated with disp-char and
sub-char in readtable.

get-dispatch-macro-character returns the macro-character function for sub-char under disp-
char , or nil if there is no function associated with sub-char . If sub-char is a decimal digit,
get-dispatch-macro-character returns nil.

Examples:

(get-dispatch-macro-character #\# #\{) → NIL

(set-dispatch-macro-character #\# #\{ ;dispatch on #{

#’(lambda(s c n)

(let ((list (read s nil (values) t))) ;list is object after #n{

Reader 23–13

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(when (consp list) ;return nth element of list

(unless (and n (< 0 n (length list))) (setq n 0))

(setq list (nth n list)))

list))) → T

#{(1 2 3 4) → 1

#3{(0 1 2 3) → 3

#{123 → 123

If it is desired that #$foo : as if it were (dollars foo).

(defun |#$-reader| (stream subchar arg)

(declare (ignore subchar arg))

(list ’dollars (read stream t nil t))) → |#$-reader|

(set-dispatch-macro-character #\# #\$ #’|#$-reader|) → T

See Also:
Section 2.1.4.4 (Macro Characters)

Side Effects:
The readtable is modified.

Affected By:
readtable.

Exceptional Situations:
For either function, an error is signaled if disp-char is not a dispatching macro character in
readtable.

See Also:
readtable

Notes:
It is necessary to use make-dispatch-macro-character to set up the dispatch character before
specifying its sub-characters.

set-macro-character, get-macro-character Function

Syntax:
get-macro-character char &optional readtable → function, non-terminating-p

set-macro-character char new-function &optional non-terminating-p readtable → t

23–14 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

set-macro-character, get-macro-character

Arguments and Values:
char—a character .

non-terminating-p—a generalized boolean. The default is false.

readtable—a readtable designator . The default is the current readtable.

function—nil, or a designator for a function of two arguments.

new-function—a function designator .

Description:
get-macro-character returns as its primary value, function, the reader macro function associated
with char in readtable (if any), or else nil if char is not a macro character in readtable. The sec-
ondary value, non-terminating-p, is true if char is a non-terminating macro character ; otherwise,
it is false.

set-macro-character causes char to be a macro character associated with the reader macro
function new-function (or the designator for new-function) in readtable. If non-terminating-p is
true, char becomes a non-terminating macro character ; otherwise it becomes a terminating macro
character .

Examples:

(get-macro-character #\{) → NIL, false
(not (get-macro-character #\;)) → false

The following is a possible definition for the single-quote reader macro in standard syntax :

(defun single-quote-reader (stream char)

(declare (ignore char))

(list ’quote (read stream t nil t))) → SINGLE-QUOTE-READER

(set-macro-character #\’ #’single-quote-reader) → T

Here single-quote-reader reads an object following the single-quote and returns a list of quote
and that object . The char argument is ignored.

The following is a possible definition for the semicolon reader macro in standard syntax :

(defun semicolon-reader (stream char)

(declare (ignore char))

;; First swallow the rest of the current input line.

;; End-of-file is acceptable for terminating the comment.

(do () ((char= (read-char stream nil #\Newline t) #\Newline)))

;; Return zero values.

(values)) → SEMICOLON-READER

(set-macro-character #\; #’semicolon-reader) → T

Reader 23–15

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Side Effects:
The readtable is modified.

See Also:
readtable

set-syntax-from-char Function

Syntax:
set-syntax-from-char to-char from-char &optional to-readtable from-readtable → t

Arguments and Values:
to-char—a character .

from-char—a character .

to-readtable—a readtable. The default is the current readtable.

from-readtable—a readtable designator . The default is the standard readtable.

Description:
set-syntax-from-char makes the syntax of to-char in to-readtable be the same as the syntax of
from-char in from-readtable.

set-syntax-from-char copies the syntax types of from-char . If from-char is a macro character , its
reader macro function is copied also. If the character is a dispatching macro character , its entire
dispatch table of reader macro functions is copied. The constituent traits of from-char are not
copied.

A macro definition from a character such as " can be copied to another character; the standard
definition for " looks for another character that is the same as the character that invoked it. The
definition of (can not be meaningfully copied to {, on the other hand. The result is that lists are
of the form {a b c), not {a b c}, because the definition always looks for a closing parenthesis, not
a closing brace.

Examples:

(set-syntax-from-char #\7 #\;) → T

123579 → 1235

Side Effects:
The to-readtable is modified.

23–16 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Affected By:
The existing values in the from-readtable.

See Also:
set-macro-character, make-dispatch-macro-character, Section 2.1.4 (Character Syntax Types)

Notes:
The constituent traits of a character are “hard wired” into the parser for extended tokens. For
example, if the definition of S is copied to *, then * will become a constituent that is alphabetic2

but that cannot be used as a short float exponent marker . For further information, see Section
2.1.4.2 (Constituent Traits).

with-standard-io-syntax Macro

Syntax:
with-standard-io-syntax {form}* → {result}*

Arguments and Values:
forms—an implicit progn.

results—the values returned by the forms.

Description:
Within the dynamic extent of the body of forms, all reader/printer control variables, including
any implementation-defined ones not specified by this standard, are bound to values that produce
standard read/print behavior. The values for the variables specified by this standard are listed in
Figure 23–1.

Reader 23–17

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Variable Value
package The CL-USER package
print-array t
print-base 10

print-case :upcase

print-circle nil
print-escape t
print-gensym t
print-length nil
print-level nil
print-lines nil
print-miser-width nil
print-pprint-dispatch The standard pprint dispatch table
print-pretty nil
print-radix nil
print-readably t
print-right-margin nil
read-base 10

read-default-float-format single-float
read-eval t
read-suppress nil
readtable The standard readtable

Figure 23–1. Values of standard control variables

Examples:

(with-open-file (file pathname :direction :output)

(with-standard-io-syntax

(print data file)))

;;; ... Later, in another Lisp:

(with-open-file (file pathname :direction :input)

(with-standard-io-syntax

(setq data (read file))))

23–18 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

∗read-base∗ Variable

Value Type:
a radix .

Initial Value:
10.

Description:
Controls the interpretation of tokens by read as being integers or ratios.

The value of *read-base*, called the current input base, is the radix in which integers and
ratios are to be read by the Lisp reader . The parsing of other numeric types (e.g., floats) is not
affected by this option.

The effect of *read-base* on the reading of any particular rational number can be locally overrid-
den by explicit use of the #O, #X, #B, or #nR syntax or by a trailing decimal point.

Examples:

(dotimes (i 6)

(let ((*read-base* (+ 10. i)))

(let ((object (read-from-string "(\\DAD DAD |BEE| BEE 123. 123)")))

(print (list *read-base* object)))))

. (10 (DAD DAD BEE BEE 123 123))

. (11 (DAD DAD BEE BEE 123 146))

. (12 (DAD DAD BEE BEE 123 171))

. (13 (DAD DAD BEE BEE 123 198))

. (14 (DAD 2701 BEE BEE 123 227))

. (15 (DAD 3088 BEE 2699 123 258))

→ NIL

Notes:
Altering the input radix can be useful when reading data files in special formats.

∗read-default-float-format∗ Variable

Value Type:
one of the atomic type specifiers short-float, single-float, double-float, or long-float, or else some
other type specifier defined by the implementation to be acceptable.

Reader 23–19

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Initial Value:
The symbol single-float.

Description:
Controls the floating-point format that is to be used when reading a floating-point number that
has no exponent marker or that has e or E for an exponent marker . Other exponent markers
explicitly prescribe the floating-point format to be used.

The printer uses *read-default-float-format* to guide the choice of exponent markers when
printing floating-point numbers.

Examples:

(let ((*read-default-float-format* ’double-float))

(read-from-string "(1.0 1.0e0 1.0s0 1.0f0 1.0d0 1.0L0)"))

→ (1.0 1.0 1.0 1.0 1.0 1.0) ;Implementation has float format F.

→ (1.0 1.0 1.0s0 1.0 1.0 1.0) ;Implementation has float formats S and F.

→ (1.0d0 1.0d0 1.0 1.0 1.0d0 1.0d0) ;Implementation has float formats F and D.

→ (1.0d0 1.0d0 1.0s0 1.0 1.0d0 1.0d0) ;Implementation has float formats S, F, D.

→ (1.0d0 1.0d0 1.0 1.0 1.0d0 1.0L0) ;Implementation has float formats F, D, L.

→ (1.0d0 1.0d0 1.0s0 1.0 1.0d0 1.0L0) ;Implementation has formats S, F, D, L.

∗read-eval∗ Variable

Value Type:
a generalized boolean.

Initial Value:
true.

Description:
If it is true, the #. reader macro has its normal effect. Otherwise, that reader macro signals an
error of type reader-error.

See Also:
print-readably

Notes:
If *read-eval* is false and *print-readably* is true, any method for print-object that would
output a reference to the #. reader macro either outputs something different or signals an error of
type print-not-readable.

23–20 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

∗read-suppress∗
∗read-suppress∗ Variable

Value Type:
a generalized boolean.

Initial Value:
false.

Description:
This variable is intended primarily to support the operation of the read-time conditional nota-
tions #+ and #-. It is important for the reader macros which implement these notations to be able
to skip over the printed representation of an expression despite the possibility that the syntax
of the skipped expression may not be entirely valid for the current implementation, since #+ and
#- exist in order to allow the same program to be shared among several Lisp implementations
(including dialects other than Common Lisp) despite small incompatibilities of syntax.

If it is false, the Lisp reader operates normally.

If the value of *read-suppress* is true, read, read-preserving-whitespace, read-delimited-list,
and read-from-string all return a primary value of nil when they complete successfully; however,
they continue to parse the representation of an object in the normal way, in order to skip over
the object , and continue to indicate end of file in the normal way. Except as noted below, any
standardized reader macro2 that is defined to read2 a following object or token will do so, but not
signal an error if the object read is not of an appropriate type or syntax. The standard syntax
and its associated reader macros will not construct any new objects (e.g., when reading the
representation of a symbol , no symbol will be constructed or interned).

Extended tokens

All extended tokens are completely uninterpreted. Errors such as those that might
otherwise be signaled due to detection of invalid potential numbers, invalid patterns of
package markers, and invalid uses of the dot character are suppressed.

Dispatching macro characters (including sharpsign)

Dispatching macro characters continue to parse an infix numerical argument, and invoke
the dispatch function. The standardized sharpsign reader macros do not enforce any
constraints on either the presence of or the value of the numerical argument.

#=

The #= notation is totally ignored. It does not read a following object . It produces no
object , but is treated as whitespace2.

##

Reader 23–21

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

The ## notation always produces nil.

No matter what the value of *read-suppress*, parentheses still continue to delimit and construct
lists; the #(notation continues to delimit vectors; and comments, strings, and the single-quote
and backquote notations continue to be interpreted properly. Such situations as ’), #<, #), and
#〈Space〉 continue to signal errors.

Examples:

(let ((*read-suppress* t))

(mapcar #’read-from-string

’("#(foo bar baz)" "#P(:type :lisp)" "#c1.2"

"#.(PRINT ’FOO)" "#3AHELLO" "#S(INTEGER)"

"#*ABC" "#\GARBAGE" "#RALPHA" "#3R444")))

→ (NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL)

See Also:
read, Chapter 2 (Syntax)

Notes:
Programmers and implementations that define additional macro characters are strongly encour-
aged to make them respect *read-suppress* just as standardized macro characters do. That is,
when the value of *read-suppress* is true, they should ignore type errors when reading a follow-
ing object and the functions that implement dispatching macro characters should tolerate nil as
their infix parameter value even if a numeric value would ordinarily be required.

∗readtable∗ Variable

Value Type:
a readtable.

Initial Value:
A readtable that conforms to the description of Common Lisp syntax in Chapter 2 (Syntax).

Description:
The value of *readtable* is called the current readtable. It controls the parsing behavior of the
Lisp reader , and can also influence the Lisp printer (e.g., see the function readtable-case).

Examples:

(readtablep *readtable*) → true
(setq zvar 123) → 123

23–22 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(set-syntax-from-char #\z #\’ (setq table2 (copy-readtable))) → T

zvar → 123

(setq *readtable* table2) → #<READTABLE>

zvar → VAR

(setq *readtable* (copy-readtable nil)) → #<READTABLE>

zvar → 123

Affected By:
compile-file, load

See Also:
compile-file, load, readtable, Section 2.1.1.1 (The Current Readtable)

reader-error Condition Type

Class Precedence List:
reader-error, parse-error, stream-error, error, serious-condition, condition, t

Description:
The type reader-error consists of error conditions that are related to tokenization and parsing
done by the Lisp reader .

See Also:
read, stream-error-stream, Section 23.1 (Reader Concepts)

Reader 23–23

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

23–24 Programming Language—Common Lisp

