
Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Programming Language—Common Lisp

21. Streams

Streams i

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

ii Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

21.1 Stream Concepts

21.1.1 Introduction to Streams
A stream is an object that can be used with an input or output function to identify an appropri-
ate source or sink of characters or bytes for that operation. A character stream is a source or
sink of characters. A binary stream is a source or sink of bytes.

Some operations may be performed on any kind of stream; Figure 21–1 provides a list of stan-
dardized operations that are potentially useful with any kind of stream.

close stream-element-type
input-stream-p streamp
interactive-stream-p with-open-stream
output-stream-p

Figure 21–1. Some General-Purpose Stream Operations

Other operations are only meaningful on certain stream types. For example, read-char is only
defined for character streams and read-byte is only defined for binary streams.

21.1.1.1 Abstract Classifications of Streams

21.1.1.1.1 Input, Output, and Bidirectional Streams

A stream, whether a character stream or a binary stream, can be an input stream (source of
data), an output stream (sink for data), both, or (e.g., when “:direction :probe” is given to
open) neither.

Figure 21–2 shows operators relating to input streams.

clear-input read-byte read-from-string
listen read-char read-line
peek-char read-char-no-hang read-preserving-whitespace
read read-delimited-list unread-char

Figure 21–2. Operators relating to Input Streams.

Streams 21–1

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Figure 21–3 shows operators relating to output streams.

clear-output prin1 write
finish-output prin1-to-string write-byte
force-output princ write-char
format princ-to-string write-line
fresh-line print write-string
pprint terpri write-to-string

Figure 21–3. Operators relating to Output Streams.

A stream that is both an input stream and an output stream is called a bidirectional stream.
See the functions input-stream-p and output-stream-p.

Any of the operators listed in Figure 21–2 or Figure 21–3 can be used with bidirectional streams.
In addition, Figure 21–4 shows a list of operators that relate specificaly to bidirectional streams.

y-or-n-p yes-or-no-p

Figure 21–4. Operators relating to Bidirectional Streams.

21.1.1.1.2 Open and Closed Streams

Streams are either open or closed.

Except as explicitly specified otherwise, operations that create and return streams return open
streams.

The action of closing a stream marks the end of its use as a source or sink of data, permitting the
implementation to reclaim its internal data structures, and to free any external resources which
might have been locked by the stream when it was opened.

Except as explicitly specified otherwise, the consequences are undefined when a closed stream is
used where a stream is called for.

Coercion of streams to pathnames is permissible for closed streams; in some situations, such as
for a truename computation, the result might be different for an open stream and for that same
stream once it has been closed .

21.1.1.1.3 Interactive Streams

An interactive stream is one on which it makes sense to perform interactive querying.

The precise meaning of an interactive stream is implementation-defined , and may depend on the
underlying operating system. Some examples of the things that an implementation might choose
to use as identifying characteristics of an interactive stream include:

21–2 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

• The stream is connected to a person (or equivalent) in such a way that the program can
prompt for information and expect to receive different input depending on the prompt.

• The program is expected to prompt for input and support “normal input editing”.

• read-char might wait for the user to type something before returning instead of immedi-
ately returning a character or end-of-file.

The general intent of having some streams be classified as interactive streams is to allow them to
be distinguished from streams containing batch (or background or command-file) input. Output
to batch streams is typically discarded or saved for later viewing, so interactive queries to such
streams might not have the expected effect.

Terminal I/O might or might not be an interactive stream.

21.1.1.2 Abstract Classifications of Streams

21.1.1.2.1 File Streams

Some streams, called file streams, provide access to files. An object of class file-stream is used
to represent a file stream.

The basic operation for opening a file is open, which typically returns a file stream (see its
dictionary entry for details). The basic operation for closing a stream is close. The macro
with-open-file is useful to express the common idiom of opening a file for the duration of a
given body of code, and assuring that the resulting stream is closed upon exit from that body.

21.1.1.3 Other Subclasses of Stream

The class stream has a number of subclasses defined by this specification. Figure 21–5 shows
some information about these subclasses.

Streams 21–3

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Class Related Operators
broadcast-stream make-broadcast-stream

broadcast-stream-streams
concatenated-stream make-concatenated-stream

concatenated-stream-streams
echo-stream make-echo-stream

echo-stream-input-stream
echo-stream-output-stream

string-stream make-string-input-stream
with-input-from-string
make-string-output-stream
with-output-to-string
get-output-stream-string

synonym-stream make-synonym-stream
synonym-stream-symbol

two-way-stream make-two-way-stream
two-way-stream-input-stream
two-way-stream-output-stream

Figure 21–5. Defined Names related to Specialized Streams

21.1.2 Stream Variables
Variables whose values must be streams are sometimes called stream variables.

Certain stream variables are defined by this specification to be the proper source of input or
output in various situations where no specific stream has been specified instead. A complete list
of such standardized stream variables appears in Figure 21–6. The consequences are undefined if
at any time the value of any of these variables is not an open stream.

Glossary Term Variable Name
debug I/O *debug-io*
error output *error-output*
query I/O *query-io*
standard input *standard-input*
standard output *standard-output*
terminal I/O *terminal-io*
trace output *trace-output*

Figure 21–6. Standardized Stream Variables

Note that, by convention, standardized stream variables have names ending in “-input*” if they
must be input streams, ending in “-output*” if they must be output streams, or ending in “-io*”
if they must be bidirectional streams.

21–4 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

User programs may assign or bind any standardized stream variable except *terminal-io*.

21.1.3 Stream Arguments to Standardized Functions
The operators in Figure 21–7 accept stream arguments that might be either open or closed
streams.

broadcast-stream-streams file-author pathnamep
close file-namestring probe-file
compile-file file-write-date rename-file
compile-file-pathname host-namestring streamp
concatenated-stream-streams load synonym-stream-symbol
delete-file logical-pathname translate-logical-pathname
directory merge-pathnames translate-pathname
directory-namestring namestring truename
dribble open two-way-stream-input-stream
echo-stream-input-stream open-stream-p two-way-stream-output-stream
echo-stream-ouput-stream parse-namestring wild-pathname-p
ed pathname with-open-file
enough-namestring pathname-match-p

Figure 21–7. Operators that accept either Open or Closed Streams

The operators in Figure 21–8 accept stream arguments that must be open streams.

clear-input output-stream-p read-char-no-hang
clear-output peek-char read-delimited-list
file-length pprint read-line
file-position pprint-fill read-preserving-whitespace
file-string-length pprint-indent stream-element-type
finish-output pprint-linear stream-external-format
force-output pprint-logical-block terpri
format pprint-newline unread-char
fresh-line pprint-tab with-open-stream
get-output-stream-string pprint-tabular write
input-stream-p prin1 write-byte
interactive-stream-p princ write-char
listen print write-line
make-broadcast-stream print-object write-string
make-concatenated-stream print-unreadable-object y-or-n-p
make-echo-stream read yes-or-no-p
make-synonym-stream read-byte
make-two-way-stream read-char

Figure 21–8. Operators that accept Open Streams only

Streams 21–5

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

21.1.4 Restrictions on Composite Streams
The consequences are undefined if any component of a composite stream is closed before the
composite stream is closed .

The consequences are undefined if the synonym stream symbol is not bound to an open stream
from the time of the synonym stream’s creation until the time it is closed .

21–6 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

stream System Class

Class Precedence List:
stream, t

Description:
A stream is an object that can be used with an input or output function to identify an appropri-
ate source or sink of characters or bytes for that operation.

For more complete information, see Section 21.1 (Stream Concepts).

See Also:
Section 21.1 (Stream Concepts), Section 22.1.3.13 (Printing Other Objects), Chapter 22 (Printer),
Chapter 23 (Reader)

broadcast-stream System Class

Class Precedence List:
broadcast-stream, stream, t

Description:
A broadcast stream is an output stream which has associated with it a set of zero or more output
streams such that any output sent to the broadcast stream gets passed on as output to each of the
associated output streams. (If a broadcast stream has no component streams, then all output to
the broadcast stream is discarded.)

The set of operations that may be performed on a broadcast stream is the intersection of those for
its associated output streams.

Some output operations (e.g., fresh-line) return values based on the state of the stream at the
time of the operation. Since these values might differ for each of the component streams, it is
necessary to describe their return value specifically:

• stream-element-type returns the value from the last component stream, or t if there are
no component streams.

• fresh-line returns the value from the last component stream, or nil if there are no compo-
nent streams.

Streams 21–7

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

• The functions file-length, file-position, file-string-length, and stream-external-format
return the value from the last component stream; if there are no component
streams, file-length and file-position return 0, file-string-length returns 1, and
stream-external-format returns :default.

• The functions streamp and output-stream-p always return true for broadcast streams.

• The functions open-stream-p tests whether the broadcast stream is open2, not whether
its component streams are open.

• The functions input-stream-p and interactive-stream-p return an implementation-defined ,
generalized boolean value.

• For the input operations clear-input listen, peek-char, read-byte, read-char-no-hang,
read-char, read-line, and unread-char, the consequences are undefined if the indicated
operation is performed. However, an implementation is permitted to define such a
behavior as an implementation-dependent extension.

For any output operations not having their return values explicitly specified above or elsewhere
in this document, it is defined that the values returned by such an operation are the values
resulting from performing the operation on the last of its component streams; the values resulting
from performing the operation on all preceding streams are discarded. If there are no component
streams, the value is implementation-dependent .

See Also:
broadcast-stream-streams, make-broadcast-stream

concatenated-stream System Class

Class Precedence List:
concatenated-stream, stream, t

Description:
A concatenated stream is an input stream which is a composite stream of zero or more other
input streams, such that the sequence of data which can be read from the concatenated stream
is the same as the concatenation of the sequences of data which could be read from each of the
constituent streams.

Input from a concatenated stream is taken from the first of the associated input streams until
it reaches end of file1; then that stream is discarded, and subsequent input is taken from the
next input stream, and so on. An end of file on the associated input streams is always managed
invisibly by the concatenated stream—the only time a client of a concatenated stream sees an end

21–8 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

of file is when an attempt is made to obtain data from the concatenated stream but it has no
remaining input streams from which to obtain such data.

See Also:
concatenated-stream-streams, make-concatenated-stream

echo-stream System Class

Class Precedence List:
echo-stream, stream, t

Description:
An echo stream is a bidirectional stream that gets its input from an associated input stream and
sends its output to an associated output stream.

All input taken from the input stream is echoed to the output stream. Whether the input is
echoed immediately after it is encountered, or after it has been read from the input stream is
implementation-dependent .

See Also:
echo-stream-input-stream, echo-stream-output-stream, make-echo-stream

file-stream System Class

Class Precedence List:
file-stream, stream, t

Description:
An object of type file-stream is a stream the direct source or sink of which is a file. Such a stream
is created explicitly by open and with-open-file, and implicitly by functions such as load that
process files.

See Also:
load, open, with-open-file

Streams 21–9

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

string-stream System Class

Class Precedence List:
string-stream, stream, t

Description:
A string stream is a stream which reads input from or writes output to an associated string .

The stream element type of a string stream is always a subtype of type character.

See Also:
make-string-input-stream, make-string-output-stream, with-input-from-string,
with-output-to-string

synonym-stream System Class

Class Precedence List:
synonym-stream, stream, t

Description:
A stream that is an alias for another stream, which is the value of a dynamic variable whose
name is the synonym stream symbol of the synonym stream.

Any operations on a synonym stream will be performed on the stream that is then the value of
the dynamic variable named by the synonym stream symbol . If the value of the variable should
change, or if the variable should be bound , then the stream will operate on the new value of the
variable.

See Also:
make-synonym-stream, synonym-stream-symbol

21–10 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

two-way-stream System Class

Class Precedence List:
two-way-stream, stream, t

Description:
A bidirectional composite stream that receives its input from an associated input stream and
sends its output to an associated output stream.

See Also:
make-two-way-stream, two-way-stream-input-stream, two-way-stream-output-stream

input-stream-p, output-stream-p Function

Syntax:
input-stream-p stream → generalized-boolean

output-stream-p stream → generalized-boolean

Arguments and Values:
stream—a stream.

generalized-boolean—a generalized boolean.

Description:
input-stream-p returns true if stream is an input stream; otherwise, returns false.

output-stream-p returns true if stream is an output stream; otherwise, returns false.

Examples:

(input-stream-p *standard-input*) → true
(input-stream-p *terminal-io*) → true
(input-stream-p (make-string-output-stream)) → false

(output-stream-p *standard-output*) → true
(output-stream-p *terminal-io*) → true
(output-stream-p (make-string-input-stream "jr")) → false

Exceptional Situations:
Should signal an error of type type-error if stream is not a stream.

Streams 21–11

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

interactive-stream-p Function

Syntax:
interactive-stream-p stream → generalized-boolean

Arguments and Values:
stream—a stream.

generalized-boolean—a generalized boolean.

Description:
Returns true if stream is an interactive stream; otherwise, returns false.

Examples:

(when (> measured limit)

(let ((error (round (* (- measured limit) 100)

limit)))

(unless (if (interactive-stream-p *query-io*)

(yes-or-no-p "The frammis is out of tolerance by ~D%.~@

Is it safe to proceed? " error)

(< error 15)) ;15% is acceptable

(error "The frammis is out of tolerance by ~D%." error))))

Exceptional Situations:
Should signal an error of type type-error if stream is not a stream.

See Also:
Section 21.1 (Stream Concepts)

open-stream-p Function

Syntax:
open-stream-p stream → generalized-boolean

Arguments and Values:
stream—a stream.

generalized-boolean—a generalized boolean.

Description:
Returns true if stream is an open stream; otherwise, returns false.

21–12 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Streams are open until they have been explicitly closed with close, or until they are implicitly
closed due to exit from a with-output-to-string, with-open-file, with-input-from-string, or
with-open-stream form.

Examples:

(open-stream-p *standard-input*) → true

Affected By:
close.

Exceptional Situations:
Should signal an error of type type-error if stream is not a stream.

stream-element-type Function

Syntax:
stream-element-type stream → typespec

Arguments and Values:
stream—a stream.

typespec—a type specifier .

Description:
stream-element-type returns a type specifier that indicates the types of objects that may be read
from or written to stream.

Streams created by open have an element type restricted to integer or a subtype of type
character.

Examples:

;; Note that the stream must accomodate at least the specified type,

;; but might accomodate other types. Further note that even if it does

;; accomodate exactly the specified type, the type might be specified in

;; any of several ways.

(with-open-file (s "test" :element-type ’(integer 0 1)

:if-exists :error

:direction :output)

Streams 21–13

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(stream-element-type s))

→ INTEGER
or→ (UNSIGNED-BYTE 16)
or→ (UNSIGNED-BYTE 8)
or→ BIT
or→ (UNSIGNED-BYTE 1)
or→ (INTEGER 0 1)
or→ (INTEGER 0 (2))

Exceptional Situations:
Should signal an error of type type-error if stream is not a stream.

streamp Function

Syntax:
streamp object → generalized-boolean

Arguments and Values:
object—an object .

generalized-boolean—a generalized boolean.

Description:
Returns true if object is of type stream; otherwise, returns false.

streamp is unaffected by whether object, if it is a stream, is open or closed.

Examples:

(streamp *terminal-io*) → true
(streamp 1) → false

Notes:

(streamp object) ≡ (typep object ’stream)

21–14 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

read-byte Function

Syntax:
read-byte stream &optional eof-error-p eof-value → byte

Arguments and Values:
stream—a binary input stream.

eof-error-p—a generalized boolean. The default is true.

eof-value—an object . The default is nil.

byte—an integer , or the eof-value.

Description:
read-byte reads and returns one byte from stream.

If an end of file2 occurs and eof-error-p is false, the eof-value is returned.

Examples:

(with-open-file (s "temp-bytes"

:direction :output

:element-type ’unsigned-byte)

(write-byte 101 s)) → 101

(with-open-file (s "temp-bytes" :element-type ’unsigned-byte)

(format t "~S ~S" (read-byte s) (read-byte s nil ’eof)))

. 101 EOF

→ NIL

Side Effects:
Modifies stream.

Exceptional Situations:
Should signal an error of type type-error if stream is not a stream.

Should signal an error of type error if stream is not a binary input stream.

If there are no bytes remaining in the stream and eof-error-p is true, an error of type end-of-file is
signaled.

See Also:
read-char, read-sequence, write-byte

Streams 21–15

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

write-byte Function

Syntax:
write-byte byte stream → byte

Arguments and Values:
byte—an integer of the stream element type of stream.

stream—a binary output stream.

Description:
write-byte writes one byte, byte, to stream.

Examples:

(with-open-file (s "temp-bytes"

:direction :output

:element-type ’unsigned-byte)

(write-byte 101 s)) → 101

Side Effects:
stream is modified.

Affected By:
The element type of the stream.

Exceptional Situations:
Should signal an error of type type-error if stream is not a stream. Should signal an error of type
error if stream is not a binary output stream.

Might signal an error of type type-error if byte is not an integer of the stream element type of
stream.

See Also:
read-byte, write-char, write-sequence

21–16 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

peek-char

peek-char Function

Syntax:
peek-char &optional peek-type input-stream eof-error-p

eof-value recursive-p
→ char

Arguments and Values:
peek-type—a character or t or nil.

input-stream—input stream designator . The default is standard input .

eof-error-p—a generalized boolean. The default is true.

eof-value—an object . The default is nil.

recursive-p—a generalized boolean. The default is false.

char—a character or the eof-value.

Description:
peek-char obtains the next character in input-stream without actually reading it, thus leaving
the character to be read at a later time. It can also be used to skip over and discard intervening
characters in the input-stream until a particular character is found.

If peek-type is not supplied or nil, peek-char returns the next character to be read from input-
stream, without actually removing it from input-stream. The next time input is done from input-
stream, the character will still be there. If peek-type is t, then peek-char skips over whitespace2

characters, but not comments, and then performs the peeking operation on the next character.
The last character examined, the one that starts an object , is not removed from input-stream.
If peek-type is a character , then peek-char skips over input characters until a character that is
char= to that character is found; that character is left in input-stream.

If an end of file2 occurs and eof-error-p is false, eof-value is returned.

If recursive-p is true, this call is expected to be embedded in a higher-level call to read or a
similar function used by the Lisp reader .

When input-stream is an echo stream, characters that are only peeked at are not echoed. In the
case that peek-type is not nil, the characters that are passed by peek-char are treated as if by
read-char, and so are echoed unless they have been marked otherwise by unread-char.

Examples:

(with-input-from-string (input-stream " 1 2 3 4 5")

(format t "~S ~S ~S"

(peek-char t input-stream)

Streams 21–17

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(peek-char #\4 input-stream)

(peek-char nil input-stream)))

. #\1 #\4 #\4

→ NIL

Affected By:
readtable, *standard-input*, *terminal-io*.

Exceptional Situations:
If eof-error-p is true and an end of file2 occurs an error of type end-of-file is signaled.

If peek-type is a character , an end of file2 occurs, and eof-error-p is true, an error of type
end-of-file is signaled.

If recursive-p is true and an end of file2 occurs, an error of type end-of-file is signaled.

read-char Function

Syntax:
read-char &optional input-stream eof-error-p eof-value recursive-p → char

Arguments and Values:
input-stream—an input stream designator . The default is standard input .

eof-error-p—a generalized boolean. The default is true.

eof-value—an object . The default is nil.

recursive-p—a generalized boolean. The default is false.

char—a character or the eof-value.

Description:
read-char returns the next character from input-stream.

When input-stream is an echo stream, the character is echoed on input-stream the first time the
character is seen. Characters that are not echoed by read-char are those that were put there by
unread-char and hence are assumed to have been echoed already by a previous call to read-char.

If recursive-p is true, this call is expected to be embedded in a higher-level call to read or a
similar function used by the Lisp reader .

If an end of file2 occurs and eof-error-p is false, eof-value is returned.

21–18 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:

(with-input-from-string (is "0123")

(do ((c (read-char is) (read-char is nil ’the-end)))

((not (characterp c)))

(format t "~S " c)))

. #\0 #\1 #\2 #\3

→ NIL

Affected By:
standard-input, *terminal-io*.

Exceptional Situations:
If an end of file2 occurs before a character can be read, and eof-error-p is true, an error of type
end-of-file is signaled.

See Also:
read-byte, read-sequence, write-char, read

Notes:
The corresponding output function is write-char.

read-char-no-hang Function

Syntax:
read-char-no-hang &optional input-stream eof-error-p

eof-value recursive-p
→ char

Arguments and Values:
input-stream – an input stream designator . The default is standard input .

eof-error-p—a generalized boolean. The default is true.

eof-value—an object . The default is nil.

recursive-p—a generalized boolean. The default is false.

char—a character or nil or the eof-value.

Description:
read-char-no-hang returns a character from input-stream if such a character is available. If no
character is available, read-char-no-hang returns nil.

Streams 21–19

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

If recursive-p is true, this call is expected to be embedded in a higher-level call to read or a
similar function used by the Lisp reader .

If an end of file2 occurs and eof-error-p is false, eof-value is returned.

Examples:

;; This code assumes an implementation in which a newline is not

;; required to terminate input from the console.

(defun test-it ()

(unread-char (read-char))

(list (read-char-no-hang)

(read-char-no-hang)

(read-char-no-hang)))

→ TEST-IT

;; Implementation A, where a Newline is not required to terminate

;; interactive input on the console.

(test-it)

. a

→ (#\a NIL NIL)

;; Implementation B, where a Newline is required to terminate

;; interactive input on the console, and where that Newline remains

;; on the input stream.

(test-it)

. a←↩
→ (#\a #\Newline NIL)

Affected By:
standard-input, *terminal-io*.

Exceptional Situations:
If an end of file2 occurs when eof-error-p is true, an error of type end-of-file is signaled .

See Also:
listen

Notes:
read-char-no-hang is exactly like read-char, except that if it would be necessary to wait in order
to get a character (as from a keyboard), nil is immediately returned without waiting.

21–20 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

terpri, fresh-line

terpri, fresh-line Function

Syntax:
terpri &optional output-stream → nil

fresh-line &optional output-stream → generalized-boolean

Arguments and Values:
output-stream – an output stream designator . The default is standard output .

generalized-boolean—a generalized boolean.

Description:
terpri outputs a newline to output-stream.

fresh-line is similar to terpri but outputs a newline only if the output-stream is not already at
the start of a line. If for some reason this cannot be determined, then a newline is output anyway.
fresh-line returns true if it outputs a newline; otherwise it returns false.

Examples:

(with-output-to-string (s)

(write-string "some text" s)

(terpri s)

(terpri s)

(write-string "more text" s))

→ "some text

more text"

(with-output-to-string (s)

(write-string "some text" s)

(fresh-line s)

(fresh-line s)

(write-string "more text" s))

→ "some text

more text"

Side Effects:
The output-stream is modified.

Affected By:
standard-output, *terminal-io*.

Exceptional Situations:
None.

Streams 21–21

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Notes:
terpri is identical in effect to

(write-char #\Newline output-stream)

unread-char Function

Syntax:
unread-char character &optional input-stream → nil

Arguments and Values:
character—a character ; must be the last character that was read from input-stream.

input-stream—an input stream designator . The default is standard input .

Description:
unread-char places character back onto the front of input-stream so that it will again be the next
character in input-stream.

When input-stream is an echo stream, no attempt is made to undo any echoing of the character
that might already have been done on input-stream. However, characters placed on input-stream
by unread-char are marked in such a way as to inhibit later re-echo by read-char.

It is an error to invoke unread-char twice consecutively on the same stream without an interven-
ing call to read-char (or some other input operation which implicitly reads characters) on that
stream.

Invoking peek-char or read-char commits all previous characters. The consequences of invok-
ing unread-char on any character preceding that which is returned by peek-char (including
those passed over by peek-char that has a non-nil peek-type) are unspecified. In particular, the
consequences of invoking unread-char after peek-char are unspecified.

Examples:

(with-input-from-string (is "0123")

(dotimes (i 6)

(let ((c (read-char is)))

(if (evenp i) (format t "~&~S ~S~%" i c) (unread-char c is)))))

. 0 #\0

. 2 #\1

. 4 #\2

→ NIL

21–22 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Affected By:
standard-input, *terminal-io*.

See Also:
peek-char, read-char, Section 21.1 (Stream Concepts)

Notes:
unread-char is intended to be an efficient mechanism for allowing the Lisp reader and other
parsers to perform one-character lookahead in input-stream.

write-char Function

Syntax:
write-char character &optional output-stream → character

Arguments and Values:
character—a character .

output-stream – an output stream designator . The default is standard output .

Description:
write-char outputs character to output-stream.

Examples:

(write-char #\a)

. a

→ #\a

(with-output-to-string (s)

(write-char #\a s)

(write-char #\Space s)

(write-char #\b s))

→ "a b"

Side Effects:
The output-stream is modified.

Affected By:
standard-output, *terminal-io*.

See Also:
read-char, write-byte, write-sequence

Streams 21–23

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

read-line

read-line Function

Syntax:
read-line &optional input-stream eof-error-p eof-value recursive-p
→ line, missing-newline-p

Arguments and Values:
input-stream—an input stream designator . The default is standard input .

eof-error-p—a generalized boolean. The default is true.

eof-value—an object . The default is nil.

recursive-p—a generalized boolean. The default is false.

line—a string or the eof-value.

missing-newline-p—a generalized boolean.

Description:
Reads from input-stream a line of text that is terminated by a newline or end of file.

If recursive-p is true, this call is expected to be embedded in a higher-level call to read or a
similar function used by the Lisp reader .

The primary value, line, is the line that is read, represented as a string (without the trailing
newline, if any). If eof-error-p is false and the end of file for input-stream is reached before any
characters are read, eof-value is returned as the line.

The secondary value, missing-newline-p, is a generalized boolean that is false if the line was termi-
nated by a newline, or true if the line was terminated by the end of file for input-stream (or if the
line is the eof-value).

Examples:

(setq a "line 1

line2")

→ "line 1

line2"

(read-line (setq input-stream (make-string-input-stream a)))

→ "line 1", false
(read-line input-stream)

→ "line2", true
(read-line input-stream nil nil)

→ NIL, true

21–24 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Affected By:
standard-input, *terminal-io*.

Exceptional Situations:
If an end of file2 occurs before any characters are read in the line, an error is signaled if eof-error-
p is true.

See Also:
read

Notes:
The corresponding output function is write-line.

write-string, write-line Function

Syntax:
write-string string &optional output-stream &key start end → string

write-line string &optional output-stream &key start end → string

Arguments and Values:
string—a string .

output-stream – an output stream designator . The default is standard output .

start, end—bounding index designators of string . The defaults for start and end are 0 and nil,
respectively.

Description:
write-string writes the characters of the subsequence of string bounded by start and end to
output-stream. write-line does the same thing, but then outputs a newline afterwards.

Examples:

(prog1 (write-string "books" nil :end 4) (write-string "worms"))

. bookworms

→ "books"

(progn (write-char #*)

(write-line "test12" *standard-output* :end 5)

(write-line "*test2")

(write-char #*)

nil)

. *test1

Streams 21–25

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

. *test2

. *

→ NIL

Affected By:
standard-output, *terminal-io*.

See Also:
read-line, write-char

Notes:
write-line and write-string return string , not the substring bounded by start and end .

(write-string string)

≡ (dotimes (i (length string)

(write-char (char string i)))

(write-line string)

≡ (prog1 (write-string string) (terpri))

read-sequence Function

Syntax:
read-sequence sequence stream &key start end → position

sequence—a sequence.

stream—an input stream.

start, end—bounding index designators of sequence. The defaults for start and end are 0 and nil,
respectively.

position—an integer greater than or equal to zero, and less than or equal to the length of the
sequence.

Description:
Destructively modifies sequence by replacing the elements of sequence bounded by start and end
with elements read from stream.

Sequence is destructively modified by copying successive elements into it from stream. If the
end of file for stream is reached before copying all elements of the subsequence, then the extra
elements near the end of sequence are not updated.

21–26 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Position is the index of the first element of sequence that was not updated, which might be less
than end because the end of file was reached.

Examples:

(defvar *data* (make-array 15 :initial-element nil))

(values (read-sequence *data* (make-string-input-stream "test string")) *data*)

→ 11, #(#\t #\e #\s #\t #\Space #\s #\t #\r #\i #\n #\g NIL NIL NIL NIL)

Side Effects:
Modifies stream and sequence.

Exceptional Situations:
Should be prepared to signal an error of type type-error if sequence is not a proper sequence.
Should signal an error of type type-error if start is not a non-negative integer . Should signal an
error of type type-error if end is not a non-negative integer or nil.

Might signal an error of type type-error if an element read from the stream is not a member of
the element type of the sequence.

See Also:
Section 3.2.1 (Compiler Terminology), write-sequence, read-line

Notes:
read-sequence is identical in effect to iterating over the indicated subsequence and reading
one element at a time from stream and storing it into sequence, but may be more efficient than
the equivalent loop. An efficient implementation is more likely to exist for the case where the
sequence is a vector with the same element type as the stream.

write-sequence Function

Syntax:
write-sequence sequence stream &key start end → sequence

sequence—a sequence.

stream—an output stream.

start, end—bounding index designators of sequence. The defaults for start and end are 0 and nil,
respectively.

Description:
write-sequence writes the elements of the subsequence of sequence bounded by start and end to
stream.

Streams 21–27

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:

(write-sequence "bookworms" *standard-output* :end 4)

. book

→ "bookworms"

Side Effects:
Modifies stream.

Exceptional Situations:
Should be prepared to signal an error of type type-error if sequence is not a proper sequence.
Should signal an error of type type-error if start is not a non-negative integer . Should signal an
error of type type-error if end is not a non-negative integer or nil.

Might signal an error of type type-error if an element of the bounded sequence is not a member of
the stream element type of the stream.

See Also:
Section 3.2.1 (Compiler Terminology), read-sequence, write-string, write-line

Notes:
write-sequence is identical in effect to iterating over the indicated subsequence and writing one
element at a time to stream, but may be more efficient than the equivalent loop. An efficient
implementation is more likely to exist for the case where the sequence is a vector with the same
element type as the stream.

file-length Function

Syntax:
file-length stream → length

Arguments and Values:
stream—a stream associated with a file.

length—a non-negative integer or nil.

Description:
file-length returns the length of stream, or nil if the length cannot be determined.

For a binary file, the length is measured in units of the element type of the stream.

Examples:

(with-open-file (s "decimal-digits.text"

21–28 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

:direction :output :if-exists :error)

(princ "0123456789" s)

(truename s))

→ #P"A:>Joe>decimal-digits.text.1"

(with-open-file (s "decimal-digits.text")

(file-length s))

→ 10

Exceptional Situations:
Should signal an error of type type-error if stream is not a stream associated with a file.

See Also:
open

file-position Function

Syntax:
file-position stream → position

file-position stream position-spec → success-p

Arguments and Values:
stream—a stream.

position-spec—a file position designator .

position—a file position or nil.

success-p—a generalized boolean.

Description:
Returns or changes the current position within a stream.

When position-spec is not supplied, file-position returns the current file position in the stream, or
nil if this cannot be determined.

When position-spec is supplied, the file position in stream is set to that file position (if possible).
file-position returns true if the repositioning is performed successfully, or false if it is not.

An integer returned by file-position of one argument should be acceptable as position-spec for use
with the same file.

For a character file, performing a single read-char or write-char operation may cause the file
position to be increased by more than 1 because of character-set translations (such as translating

Streams 21–29

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

file-position

between the Common Lisp #\Newline character and an external ASCII carriage-return/line-
feed sequence) and other aspects of the implementation. For a binary file, every read-byte or
write-byte operation increases the file position by 1.

Examples:

(defun tester ()

(let ((noticed ’()) file-written)

(flet ((notice (x) (push x noticed) x))

(with-open-file (s "test.bin"

:element-type ’(unsigned-byte 8)

:direction :output

:if-exists :error)

(notice (file-position s)) ;1

(write-byte 5 s)

(write-byte 6 s)

(let ((p (file-position s)))

(notice p) ;2

(notice (when p (file-position s (1- p))))) ;3

(write-byte 7 s)

(notice (file-position s)) ;4

(setq file-written (truename s)))

(with-open-file (s file-written

:element-type ’(unsigned-byte 8)

:direction :input)

(notice (file-position s)) ;5

(let ((length (file-length s)))

(notice length) ;6

(when length

(dotimes (i length)

(notice (read-byte s)))))) ;7,...

(nreverse noticed))))

→ tester

(tester)

→ (0 2 T 2 0 2 5 7)
or→ (0 2 NIL 3 0 3 5 6 7)
or→ (NIL NIL NIL NIL NIL NIL)

Side Effects:
When the position-spec argument is supplied, the file position in the stream might be moved.

Affected By:
The value returned by file-position increases monotonically as input or output operations are
performed.

21–30 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Exceptional Situations:
If position-spec is supplied, but is too large or otherwise inappropriate, an error is signaled.

See Also:
file-length, file-string-length, open

Notes:
Implementations that have character files represented as a sequence of records of bounded
size might choose to encode the file position as, for example, 〈〈record-number〉〉*〈〈max-record-
size〉〉+〈〈character-within-record〉〉. This is a valid encoding because it increases monotonically as
each character is read or written, though not necessarily by 1 at each step. An integer might then
be considered “inappropriate” as position-spec to file-position if, when decoded into record num-
ber and character number, it turned out that the supplied record was too short for the specified
character number.

file-string-length Function

Syntax:
file-string-length stream object → length

Arguments and Values:
stream—an output character file stream.

object—a string or a character .

length—a non-negative integer , or nil.

Description:
file-string-length returns the difference between what (file-position stream) would be after
writing object and its current value, or nil if this cannot be determined.

The returned value corresponds to the current state of stream at the time of the call and might
not be the same if it is called again when the state of the stream has changed.

Streams 21–31

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

open

open Function

Syntax:
open filespec &key direction element-type

if-exists if-does-not-exist external-format

→ stream

Arguments and Values:
filespec—a pathname designator .

direction—one of :input, :output, :io, or :probe. The default is :input.

element-type—a type specifier for recognizable subtype of character; or a type specifier for a finite
recognizable subtype of integer ; or one of the symbols signed-byte, unsigned-byte, or :default.
The default is character.

if-exists—one of :error, :new-version, :rename, :rename-and-delete, :overwrite, :append,
:supersede, or nil. The default is :new-version if the version component of filespec is :newest,
or :error otherwise.

if-does-not-exist—one of :error, :create, or nil. The default is :error if direction is :input or
if-exists is :overwrite or :append; :create if direction is :output or :io, and if-exists is neither
:overwrite nor :append; or nil when direction is :probe.

external-format—an external file format designator . The default is :default.

stream—a file stream or nil.

Description:
open creates, opens, and returns a file stream that is connected to the file specified by filespec.
Filespec is the name of the file to be opened. If the filespec designator is a stream, that stream is
not closed first or otherwise affected.

The keyword arguments to open specify the characteristics of the file stream that is returned, and
how to handle errors.

If direction is :input or :probe, or if if-exists is not :new-version and the version component of the
filespec is :newest, then the file opened is that file already existing in the file system that has a
version greater than that of any other file in the file system whose other pathname components
are the same as those of filespec .

An implementation is required to recognize all of the open keyword options and to do something
reasonable in the context of the host operating system. For example, if a file system does not
support distinct file versions and does not distinguish the notions of deletion and expunging,
:new-version might be treated the same as :rename or :supersede, and :rename-and-delete might
be treated the same as :supersede.

21–32 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

open

:direction

These are the possible values for direction, and how they affect the nature of the stream
that is created:

:input

Causes the creation of an input file stream.

:output

Causes the creation of an output file stream.

:io

Causes the creation of a bidirectional file stream.

:probe

Causes the creation of a “no-directional” file stream; in effect, the file stream is
created and then closed prior to being returned by open.

:element-type

The element-type specifies the unit of transaction for the file stream. If it is :default, the
unit is determined by file system, possibly based on the file.

:if-exists

if-exists specifies the action to be taken if direction is :output or :io and a file of the name
filespec already exists. If direction is :input, not supplied, or :probe, if-exists is ignored.
These are the results of open as modified by if-exists:

:error

An error of type file-error is signaled.

:new-version

A new file is created with a larger version number.

:rename

The existing file is renamed to some other name and then a new file is created.

:rename-and-delete

The existing file is renamed to some other name, then it is deleted but not
expunged, and then a new file is created.

Streams 21–33

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

open

:overwrite

Output operations on the stream destructively modify the existing file. If direc-
tion is :io the file is opened in a bidirectional mode that allows both reading
and writing. The file pointer is initially positioned at the beginning of the file;
however, the file is not truncated back to length zero when it is opened.

:append

Output operations on the stream destructively modify the existing file. The file
pointer is initially positioned at the end of the file.

If direction is :io, the file is opened in a bidirectional mode that allows both
reading and writing.

:supersede

The existing file is superseded; that is, a new file with the same name as the old
one is created. If possible, the implementation should not destroy the old file
until the new stream is closed.

nil

No file or stream is created; instead, nil is returned to indicate failure.

:if-does-not-exist

if-does-not-exist specifies the action to be taken if a file of name filespec does not already
exist. These are the results of open as modified by if-does-not-exist:

:error

An error of type file-error is signaled.

:create

An empty file is created. Processing continues as if the file had already existed
but no processing as directed by if-exists is performed.

nil

No file or stream is created; instead, nil is returned to indicate failure.

:external-format

This option selects an external file format for the file: The only standardized value
for this option is :default, although implementations are permitted to define ad-
ditional external file formats and implementation-dependent values returned by
stream-external-format can also be used by conforming programs.

21–34 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

open

The external-format is meaningful for any kind of file stream whose element type is a
subtype of character . This option is ignored for streams for which it is not meaningful;
however, implementations may define other element types for which it is meaningful. The
consequences are unspecified if a character is written that cannot be represented by the
given external file format .

When a file is opened, a file stream is constructed to serve as the file system’s ambassador to the
Lisp environment; operations on the file stream are reflected by operations on the file in the file
system.

A file can be deleted, renamed, or destructively modified by open.

For information about opening relative pathnames, see Section 19.2.3 (Merging Pathnames).

Examples:

(open filespec :direction :probe) → #<Closed Probe File Stream...>

(setq q (merge-pathnames (user-homedir-pathname) "test"))

→ #<PATHNAME :HOST NIL :DEVICE device-name :DIRECTORY directory-name
:NAME "test" :TYPE NIL :VERSION :NEWEST>

(open filespec :if-does-not-exist :create) → #<Input File Stream...>

(setq s (open filespec :direction :probe)) → #<Closed Probe File Stream...>

(truename s) → #<PATHNAME :HOST NIL :DEVICE device-name :DIRECTORY

directory-name :NAME filespec :TYPE extension :VERSION 1>

(open s :direction :output :if-exists nil) → NIL

Affected By:
The nature and state of the host computer’s file system.

Exceptional Situations:
If if-exists is :error, (subject to the constraints on the meaning of if-exists listed above), an error
of type file-error is signaled.

If if-does-not-exist is :error (subject to the constraints on the meaning of if-does-not-exist listed
above), an error of type file-error is signaled.

If it is impossible for an implementation to handle some option in a manner close to what is
specified here, an error of type error might be signaled.

An error of type file-error is signaled if (wild-pathname-p filespec) returns true.

An error of type error is signaled if the external-format is not understood by the implementation.

The various file systems in existence today have widely differing capabilities, and some aspects of
the file system are beyond the scope of this specification to define. A given implementation might
not be able to support all of these options in exactly the manner stated. An implementation is
required to recognize all of these option keywords and to try to do something “reasonable” in the
context of the host file system. Where necessary to accomodate the file system, an implementa-

Streams 21–35

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

tion deviate slightly from the semantics specified here without being disqualified for consideration
as a conforming implementation. If it is utterly impossible for an implementation to handle some
option in a manner similar to what is specified here, it may simply signal an error.

With regard to the :element-type option, if a type is requested that is not supported by the
file system, a substitution of types such as that which goes on in upgrading is permissible. As a
minimum requirement, it should be the case that opening an output stream to a file in a given
element type and later opening an input stream to the same file in the same element type should
work compatibly.

See Also:
with-open-file, close, pathname, logical-pathname, Section 19.2.3 (Merging Pathnames),
Section 19.1.2 (Pathnames as Filenames)

Notes:
open does not automatically close the file when an abnormal exit occurs.

When element-type is a subtype of character, read-char and/or write-char can be used on the
resulting file stream.

When element-type is a subtype of integer , read-byte and/or write-byte can be used on the
resulting file stream.

When element-type is :default, the type can be determined by using stream-element-type.

stream-external-format Function

Syntax:
stream-external-format stream → format

Arguments and Values:
stream—a file stream.

format—an external file format .

Description:
Returns an external file format designator for the stream.

Examples:

(with-open-file (stream "test" :direction :output)

21–36 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(stream-external-format stream))

→ :DEFAULT
or→ :ISO8859/1-1987
or→ (:ASCII :SAIL)
or→ ACME::PROPRIETARY-FILE-FORMAT-17
or→ #<FILE-FORMAT :ISO646-1983 2343673>

See Also:
the :external-format argument to the function open and the with-open-file macro.

Notes:
The format returned is not necessarily meaningful to other implementations.

with-open-file macro

Syntax:
with-open-file (stream filespec {options}*) {declaration}* {form}*
→ results

Arguments and Values:
stream – a variable.

filespec—a pathname designator .

options – forms; evaluated.

declaration—a declare expression; not evaluated.

forms—an implicit progn.

results—the values returned by the forms.

Description:
with-open-file uses open to create a file stream to file named by filespec. Filespec is the name of
the file to be opened. Options are used as keyword arguments to open.

The stream object to which the stream variable is bound has dynamic extent ; its extent ends when
the form is exited.

with-open-file evaluates the forms as an implicit progn with stream bound to the value returned
by open.

When control leaves the body, either normally or abnormally (such as by use of throw), the file is
automatically closed. If a new output file is being written, and control leaves abnormally, the file
is aborted and the file system is left, so far as possible, as if the file had never been opened.

Streams 21–37

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

with-open-file

It is possible by the use of :if-exists nil or :if-does-not-exist nil for stream to be bound to
nil. Users of :if-does-not-exist nil should check for a valid stream.

The consequences are undefined if an attempt is made to assign the stream variable. The com-
piler may choose to issue a warning if such an attempt is detected.

Examples:

(setq p (merge-pathnames "test"))

→ #<PATHNAME :HOST NIL :DEVICE device-name :DIRECTORY directory-name
:NAME "test" :TYPE NIL :VERSION :NEWEST>

(with-open-file (s p :direction :output :if-exists :supersede)

(format s "Here are a couple~%of test data lines~%")) → NIL

(with-open-file (s p)

(do ((l (read-line s) (read-line s nil ’eof)))

((eq l ’eof) "Reached end of file.")

(format t "~&*** ~A~%" l)))

. *** Here are a couple

. *** of test data lines

→ "Reached end of file."

;; Normally one would not do this intentionally because it is

;; not perspicuous, but beware when using :IF-DOES-NOT-EXIST NIL

;; that this doesn’t happen to you accidentally...

(with-open-file (foo "no-such-file" :if-does-not-exist nil)

(read foo))

. hello?

→ HELLO? ;This value was read from the terminal, not a file!

;; Here’s another bug to avoid...

(with-open-file (foo "no-such-file" :direction :output :if-does-not-exist nil)

(format foo "Hello"))

→ "Hello" ;FORMAT got an argument of NIL!

Side Effects:
Creates a stream to the file named by filename (upon entry), and closes the stream (upon exit).
In some implementations, the file might be locked in some way while it is open. If the stream is
an output stream, a file might be created.

Affected By:
The host computer’s file system.

Exceptional Situations:
See the function open.

21–38 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

See Also:
open, close, pathname, logical-pathname, Section 19.1.2 (Pathnames as Filenames)

close Function

Syntax:
close stream &key abort → result

Arguments and Values:
stream—a stream (either open or closed).

abort—a generalized boolean. The default is false.

result—t if the stream was open at the time it was received as an argument , or implementation-
dependent otherwise.

Description:
close closes stream. Closing a stream means that it may no longer be used in input or output
operations. The act of closing a file stream ends the association between the stream and its
associated file; the transaction with the file system is terminated, and input/output may no
longer be performed on the stream.

If abort is true, an attempt is made to clean up any side effects of having created stream. If
stream performs output to a file that was created when the stream was created, the file is deleted
and any previously existing file is not superseded.

It is permissible to close an already closed stream, but in that case the result is implementation-
dependent .

After stream is closed, it is still possible to perform the following query operations upon it:
streamp, pathname, truename, merge-pathnames, pathname-host, pathname-device,
pathname-directory,pathname-name, pathname-type, pathname-version, namestring,
file-namestring, directory-namestring, host-namestring, enough-namestring, open, probe-file,
and directory.

The effect of close on a constructed stream is to close the argument stream only. There is no effect
on the constituents of composite streams.

For a stream created with make-string-output-stream, the result of get-output-stream-string is
unspecified after close.

Examples:

(setq s (make-broadcast-stream)) → #<BROADCAST-STREAM>

Streams 21–39

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(close s) → T

(output-stream-p s) → true

Side Effects:
The stream is closed (if necessary). If abort is true and the stream is an output file stream, its
associated file might be deleted.

See Also:
open

with-open-stream Macro

Syntax:
with-open-stream (var stream) {declaration}* {form}*
→ {result}*

Arguments and Values:
var—a variable name.

stream—a form; evaluated to produce a stream.

declaration—a declare expression; not evaluated.

forms—an implicit progn.

results—the values returned by the forms.

Description:
with-open-stream performs a series of operations on stream, returns a value, and then closes the
stream.

Var is bound to the value of stream, and then forms are executed as an implicit progn. stream is
automatically closed on exit from with-open-stream, no matter whether the exit is normal or
abnormal. The stream has dynamic extent ; its extent ends when the form is exited.

The consequences are undefined if an attempt is made to assign the the variable var with the
forms.

Examples:

(with-open-stream (s (make-string-input-stream "1 2 3 4"))

(+ (read s) (read s) (read s))) → 6

21–40 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Side Effects:
The stream is closed (upon exit).

See Also:
close

listen Function

Syntax:
listen &optional input-stream → generalized-boolean

Arguments and Values:
input-stream—an input stream designator . The default is standard input .

generalized-boolean—a generalized boolean.

Description:
Returns true if there is a character immediately available from input-stream; otherwise, returns
false. On a non-interactive input-stream, listen returns true except when at end of file1. If an end
of file is encountered, listen returns false. listen is intended to be used when input-stream obtains
characters from an interactive device such as a keyboard.

Examples:

(progn (unread-char (read-char)) (list (listen) (read-char)))

. 1

→ (T #\1)

(progn (clear-input) (listen))

→ NIL ;Unless you’re a very fast typist!

Affected By:
standard-input

See Also:
interactive-stream-p, read-char-no-hang

Streams 21–41

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

clear-input

clear-input Function

Syntax:
clear-input &optional input-stream → nil

Arguments and Values:
input-stream—an input stream designator . The default is standard input .

Description:
Clears any available input from input-stream.

If clear-input does not make sense for input-stream, then clear-input does nothing.

Examples:

;; The exact I/O behavior of this example might vary from implementation

;; to implementation depending on the kind of interactive buffering that

;; occurs. (The call to SLEEP here is intended to help even out the

;; differences in implementations which do not do line-at-a-time buffering.)

(defun read-sleepily (&optional (clear-p nil) (zzz 0))

(list (progn (print ’>) (read))

;; Note that input typed within the first ZZZ seconds

;; will be discarded.

(progn (print ’>)

(if zzz (sleep zzz))

(print ’>>)

(if clear-p (clear-input))

(read))))

(read-sleepily)

. > 10

. >

. >> 20

→ (10 20)

(read-sleepily t)

. > 10

. >

. >> 20

→ (10 20)

(read-sleepily t 10)

. > 10

. > 20 ; Some implementations won’t echo typeahead here.

21–42 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

. >> 30

→ (10 30)

Side Effects:
The input-stream is modified.

Affected By:
standard-input

Exceptional Situations:
Should signal an error of type type-error if input-stream is not a stream designator .

See Also:
clear-output

finish-output, force-output, clear-output Function

Syntax:
finish-output &optional output-stream → nil

force-output &optional output-stream → nil

clear-output &optional output-stream → nil

Arguments and Values:
output-stream—an output stream designator . The default is standard output .

Description:
finish-output, force-output, and clear-output exercise control over the internal handling of
buffered stream output.

finish-output attempts to ensure that any buffered output sent to output-stream has reached its
destination, and then returns.

force-output initiates the emptying of any internal buffers but does not wait for completion or
acknowledgment to return.

clear-output attempts to abort any outstanding output operation in progress in order to allow as
little output as possible to continue to the destination.

If any of these operations does not make sense for output-stream, then it does nothing. The
precise actions of these functions are implementation-dependent .

Streams 21–43

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:

;; Implementation A

(progn (princ "am i seen?") (clear-output))

→ NIL

;; Implementation B

(progn (princ "am i seen?") (clear-output))

. am i seen?

→ NIL

Affected By:
standard-output

Exceptional Situations:
Should signal an error of type type-error if output-stream is not a stream designator .

See Also:
clear-input

y-or-n-p, yes-or-no-p Function

Syntax:
y-or-n-p &optional control &rest arguments → generalized-boolean

yes-or-no-p &optional control &rest arguments → generalized-boolean

Arguments and Values:
control—a format control .

arguments—format arguments for control .

generalized-boolean—a generalized boolean.

Description:
These functions ask a question and parse a response from the user. They return true if the
answer is affirmative, or false if the answer is negative.

y-or-n-p is for asking the user a question whose answer is either “yes” or “no.” It is intended that
the reply require the user to answer a yes-or-no question with a single character. yes-or-no-p is
also for asking the user a question whose answer is either “Yes” or “No.” It is intended that the
reply require the user to take more action than just a single keystroke, such as typing the full
word yes or no followed by a newline.

21–44 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

y-or-n-p types out a message (if supplied), reads an answer in some implementation-dependent
manner (intended to be short and simple, such as reading a single character such as Y or N).
yes-or-no-p types out a message (if supplied), attracts the user’s attention (for example, by
ringing the terminal’s bell), and reads an answer in some implementation-dependent manner
(intended to be multiple characters, such as YES or NO).

If format-control is supplied and not nil, then a fresh-line operation is performed; then a message
is printed as if format-control and arguments were given to format. In any case, yes-or-no-p and
y-or-n-p will provide a prompt such as “(Y or N)” or “(Yes or No)” if appropriate.

All input and output are performed using query I/O .

Examples:

(y-or-n-p "(t or nil) given by")

. (t or nil) given by (Y or N) Y

→ true
(yes-or-no-p "a ~S message" ’frightening)

. a FRIGHTENING message (Yes or No) no

→ false
(y-or-n-p "Produce listing file?")

. Produce listing file?

. Please respond with Y or N. n

→ false

Side Effects:
Output to and input from query I/O will occur.

Affected By:
query-io.

See Also:
format

Notes:
yes-or-no-p and yes-or-no-p do not add question marks to the end of the prompt string, so any
desired question mark or other punctuation should be explicitly included in the text query.

Streams 21–45

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

make-synonym-stream Function

Syntax:
make-synonym-stream symbol → synonym-stream

Arguments and Values:
symbol—a symbol that names a dynamic variable.

synonym-stream—a synonym stream.

Description:
Returns a synonym stream whose synonym stream symbol is symbol .

Examples:

(setq a-stream (make-string-input-stream "a-stream")

b-stream (make-string-input-stream "b-stream"))

→ #<String Input Stream>

(setq s-stream (make-synonym-stream ’c-stream))

→ #<SYNONYM-STREAM for C-STREAM>

(setq c-stream a-stream)

→ #<String Input Stream>

(read s-stream) → A-STREAM

(setq c-stream b-stream)

→ #<String Input Stream>

(read s-stream) → B-STREAM

Exceptional Situations:
Should signal type-error if its argument is not a symbol .

See Also:
Section 21.1 (Stream Concepts)

synonym-stream-symbol Function

Syntax:
synonym-stream-symbol synonym-stream → symbol

Arguments and Values:
synonym-stream—a synonym stream.

symbol—a symbol .

21–46 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Description:
Returns the symbol whose symbol-value the synonym-stream is using.

See Also:
make-synonym-stream

broadcast-stream-streams Function

Syntax:
broadcast-stream-streams broadcast-stream → streams

Arguments and Values:
broadcast-stream—a broadcast stream.

streams—a list of streams.

Description:
Returns a list of output streams that constitute all the streams to which the broadcast-stream is
broadcasting.

make-broadcast-stream Function

Syntax:
make-broadcast-stream &rest streams → broadcast-stream

Arguments and Values:
stream—an output stream.

broadcast-stream—a broadcast stream.

Description:
Returns a broadcast stream.

Examples:

(setq a-stream (make-string-output-stream)

b-stream (make-string-output-stream)) → #<String Output Stream>

(format (make-broadcast-stream a-stream b-stream)

"this will go to both streams") → NIL

(get-output-stream-string a-stream) → "this will go to both streams"

(get-output-stream-string b-stream) → "this will go to both streams"

Streams 21–47

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Exceptional Situations:
Should signal an error of type type-error if any stream is not an output stream.

See Also:
broadcast-stream-streams

make-two-way-stream Function

Syntax:
make-two-way-stream input-stream output-stream → two-way-stream

Arguments and Values:
input-stream—a stream.

output-stream—a stream.

two-way-stream—a two-way stream.

Description:
Returns a two-way stream that gets its input from input-stream and sends its output to output-
stream.

Examples:

(with-output-to-string (out)

(with-input-from-string (in "input...")

(let ((two (make-two-way-stream in out)))

(format two "output...")

(setq what-is-read (read two))))) → "output..."

what-is-read → INPUT...

Exceptional Situations:
Should signal an error of type type-error if input-stream is not an input stream. Should signal an
error of type type-error if output-stream is not an output stream.

21–48 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

two-way-stream-input-stream, two-way-stream-
output-stream Function

Syntax:
two-way-stream-input-stream two-way-stream → input-stream

two-way-stream-output-stream two-way-stream → output-stream

Arguments and Values:
two-way-stream—a two-way stream.

input-stream—an input stream.

output-stream—an output stream.

Description:
two-way-stream-input-stream returns the stream from which two-way-stream receives input.

two-way-stream-output-stream returns the stream to which two-way-stream sends output.

echo-stream-input-stream, echo-stream-output-
stream Function

Syntax:
echo-stream-input-stream echo-stream → input-stream

echo-stream-output-stream echo-stream → output-stream

Arguments and Values:
echo-stream—an echo stream.

input-stream—an input stream.

output-stream—an output stream.

Description:
echo-stream-input-stream returns the input stream from which echo-stream receives input.

echo-stream-output-stream returns the output stream to which echo-stream sends output.

Streams 21–49

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

make-echo-stream Function

Syntax:
make-echo-stream input-stream output-stream → echo-stream

Arguments and Values:
input-stream—an input stream.

output-stream—an output stream.

echo-stream—an echo stream.

Description:
Creates and returns an echo stream that takes input from input-stream and sends output to
output-stream.

Examples:

(let ((out (make-string-output-stream)))

(with-open-stream

(s (make-echo-stream

(make-string-input-stream "this-is-read-and-echoed")

out))

(read s)

(format s " * this-is-direct-output")

(get-output-stream-string out)))

→ "this-is-read-and-echoed * this-is-direct-output"

See Also:
echo-stream-input-stream, echo-stream-output-stream, make-two-way-stream

concatenated-stream-streams Function

Syntax:
concatenated-stream-streams concatenated-stream → streams

Arguments and Values:
concatenated-stream – a concatenated stream.

streams—a list of input streams.

21–50 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Description:
Returns a list of input streams that constitute the ordered set of streams the concatenated-stream
still has to read from, starting with the current one it is reading from. The list may be empty if
no more streams remain to be read.

The consequences are undefined if the list structure of the streams is ever modified.

make-concatenated-stream Function

Syntax:
make-concatenated-stream &rest input-streams → concatenated-stream

Arguments and Values:
input-stream—an input stream.

concatenated-stream—a concatenated stream.

Description:
Returns a concatenated stream that has the indicated input-streams initially associated with it.

Examples:

(read (make-concatenated-stream

(make-string-input-stream "1")

(make-string-input-stream "2"))) → 12

Exceptional Situations:
Should signal type-error if any argument is not an input stream.

See Also:
concatenated-stream-streams

Streams 21–51

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

get-output-stream-string Function

Syntax:
get-output-stream-string string-output-stream → string

Arguments and Values:
string-output-stream—a stream.

string—a string .

Description:
Returns a string containing, in order, all the characters that have been output to string-output-
stream. This operation clears any characters on string-output-stream, so the string contains only
those characters which have been output since the last call to get-output-stream-string or since
the creation of the string-output-stream, whichever occurred most recently.

Examples:

(setq a-stream (make-string-output-stream)

a-string "abcdefghijklm") → "abcdefghijklm"

(write-string a-string a-stream) → "abcdefghijklm"

(get-output-stream-string a-stream) → "abcdefghijklm"

(get-output-stream-string a-stream) → ""

Side Effects:
The string-output-stream is cleared.

Exceptional Situations:
The consequences are undefined if stream-output-string is closed .

The consequences are undefined if string-output-stream is a stream that was not produced by
make-string-output-stream. The consequences are undefined if string-output-stream was created
implicitly by with-output-to-string or format.

See Also:
make-string-output-stream

21–52 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

make-string-input-stream Function

Syntax:
make-string-input-stream string &optional start end → string-stream

Arguments and Values:
string—a string .

start, end—bounding index designators of string . The defaults for start and end are 0 and nil,
respectively.

string-stream—an input string stream.

Description:
Returns an input string stream. This stream will supply, in order, the characters in the substring
of string bounded by start and end . After the last character has been supplied, the string stream
will then be at end of file.

Examples:

(let ((string-stream (make-string-input-stream "1 one ")))

(list (read string-stream nil nil)

(read string-stream nil nil)

(read string-stream nil nil)))

→ (1 ONE NIL)

(read (make-string-input-stream "prefixtargetsuffix" 6 12)) → TARGET

See Also:
with-input-from-string

make-string-output-stream Function

Syntax:
make-string-output-stream &key element-type → string-stream

Arguments and Values:
element-type—a type specifier . The default is character.

string-stream—an output string stream.

Streams 21–53

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Description:
Returns an output string stream that accepts characters and makes available (via
get-output-stream-string) a string that contains the characters that were actually output.

The element-type names the type of the elements of the string ; a string is constructed of the most
specialized type that can accommodate elements of that element-type.

Examples:

(let ((s (make-string-output-stream)))

(write-string "testing... " s)

(prin1 1234 s)

(get-output-stream-string s))

→ "testing... 1234"

None..

See Also:
get-output-stream-string, with-output-to-string

with-input-from-string Macro

Syntax:
with-input-from-string (var string &key index start end) {declaration}* {form}*
→ {result}*

Arguments and Values:
var—a variable name.

string—a form; evaluated to produce a string .

index—a place.

start, end—bounding index designators of string . The defaults for start and end are 0 and nil,
respectively.

declaration—a declare expression; not evaluated.

forms—an implicit progn.

result—the values returned by the forms.

Description:
Creates an input string stream, provides an opportunity to perform operations on the stream
(returning zero or more values), and then closes the string stream.

21–54 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

String is evaluated first, and var is bound to a character input string stream that supplies charac-
ters from the subsequence of the resulting string bounded by start and end . The body is executed
as an implicit progn.

The input string stream is automatically closed on exit from with-input-from-string, no matter
whether the exit is normal or abnormal. The input string stream to which the variable var is
bound has dynamic extent ; its extent ends when the form is exited.

The index is a pointer within the string to be advanced. If with-input-from-string is exited
normally, then index will have as its value the index into the string indicating the first character
not read which is (length string) if all characters were used. The place specified by index is not
updated as reading progresses, but only at the end of the operation.

start and index may both specify the same variable, which is a pointer within the string to be
advanced, perhaps repeatedly by some containing loop.

The consequences are undefined if an attempt is made to assign the variable var .

Examples:

(with-input-from-string (s "XXX1 2 3 4xxx"

:index ind

:start 3 :end 10)

(+ (read s) (read s) (read s))) → 6

ind → 9

(with-input-from-string (s "Animal Crackers" :index j :start 6)

(read s)) → CRACKERS

The variable j is set to 15.

Side Effects:
The value of the place named by index , if any, is modified.

See Also:
make-string-input-stream, Section 3.6 (Traversal Rules and Side Effects)

with-output-to-string Macro

Syntax:
with-output-to-string (var &optional string-form &key element-type) {declaration}* {form}*
→ {result}*

Arguments and Values:
var—a variable name.

Streams 21–55

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

with-output-to-string

string-form—a form or nil; if non-nil , evaluated to produce string .

string—a string that has a fill pointer .

element-type—a type specifier ; evaluated. The default is character.

declaration—a declare expression; not evaluated.

forms—an implicit progn.

results—If a string-form is not supplied or nil, a string ; otherwise, the values returned by the
forms.

Description:
with-output-to-string creates a character output stream, performs a series of operations that
may send results to this stream, and then closes the stream.

The element-type names the type of the elements of the stream; a stream is constructed of the
most specialized type that can accommodate elements of the given type.

The body is executed as an implicit progn with var bound to an output string stream. All output
to that string stream is saved in a string .

If string is supplied, element-type is ignored, and the output is incrementally appended to string
as if by use of vector-push-extend.

The output stream is automatically closed on exit from with-output-from-string, no matter
whether the exit is normal or abnormal. The output string stream to which the variable var is
bound has dynamic extent ; its extent ends when the form is exited.

If no string is provided, then with-output-from-string produces a stream that accepts characters
and returns a string of the indicated element-type. If string is provided, with-output-to-string
returns the results of evaluating the last form.

The consequences are undefined if an attempt is made to assign the variable var .

Examples:

(setq fstr (make-array ’(0) :element-type ’base-char

:fill-pointer 0 :adjustable t)) → ""

(with-output-to-string (s fstr)

(format s "here’s some output")

(input-stream-p s)) → false
fstr → "here’s some output"

Side Effects:
The string is modified.

21–56 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Exceptional Situations:
The consequences are undefined if destructive modifications are performed directly on the string
during the dynamic extent of the call.

See Also:
make-string-output-stream, vector-push-extend, Section 3.6 (Traversal Rules and Side Effects)

∗debug-io∗, ∗error-output∗, ∗query-io∗, ∗standard-
input∗, ∗standard-output∗, ∗trace-output∗ Variable

Value Type:
For *standard-input*: an input stream

For *error-output*, *standard-output*, and *trace-output*: an output stream.

For *debug-io*, *query-io*: a bidirectional stream.

Initial Value:
implementation-dependent , but it must be an open stream that is not a generalized synonym
stream to an I/O customization variables but that might be a generalized synonym stream to the
value of some I/O customization variable. The initial value might also be a generalized synonym
stream to either the symbol *terminal-io* or to the stream that is its value.

Description:
These variables are collectively called the standardized I/O customization variables. They can
be bound or assigned in order to change the default destinations for input and/or output used by
various standardized operators and facilities.

The value of *debug-io*, called debug I/O , is a stream to be used for interactive debugging
purposes.

The value of *error-output*, called error output , is a stream to which warnings and non-
interactive error messages should be sent.

The value of *query-io*, called query I/O , is a bidirectional stream to be used when asking
questions of the user. The question should be output to this stream, and the answer read from it.

The value of *standard-input*, called standard input , is a stream that is used by many operators
as a default source of input when no specific input stream is explicitly supplied.

The value of *standard-output*, called standard output , is a stream that is used by many
operators as a default destination for output when no specific output stream is explicitly supplied.

Streams 21–57

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

∗debug-io∗, ∗error-output∗, ∗query-io∗, . . .

The value of *trace-output*, called trace output , is the stream on which traced functions (see
trace) and the time macro print their output.

Examples:

(with-output-to-string (*error-output*)

(warn "this string is sent to *error-output*"))

→ "Warning: this string is sent to *error-output*

" ;The exact format of this string is implementation-dependent.

(with-input-from-string (*standard-input* "1001")

(+ 990 (read))) → 1991

(progn (setq out (with-output-to-string (*standard-output*)

(print "print and format t send things to")

(format t "*standard-output* now going to a string")))

:done)

→ :DONE

out

→ "

\"print and format t send things to\" *standard-output* now going to a string"

(defun fact (n) (if (< n 2) 1 (* n (fact (- n 1)))))

→ FACT

(trace fact)

→ (FACT)

;; Of course, the format of traced output is implementation-dependent.

(with-output-to-string (*trace-output*)

(fact 3))

→ "

1 Enter FACT 3

| 2 Enter FACT 2

| 3 Enter FACT 1

| 3 Exit FACT 1

| 2 Exit FACT 2

1 Exit FACT 6"

See Also:
terminal-io, synonym-stream, time, trace, Chapter 9 (Conditions), Chapter 23 (Reader),
Chapter 22 (Printer)

21–58 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Notes:
The intent of the constraints on the initial value of the I/O customization variables is to ensure
that it is always safe to bind or assign such a variable to the value of another I/O customization
variable, without unduly restricting implementation flexibility.

It is common for an implementation to make the initial values of *debug-io* and *query-io* be
the same stream, and to make the initial values of *error-output* and *standard-output* be
the same stream.

The functions y-or-n-p and yes-or-no-p use query I/O for their input and output.

In the normal Lisp read-eval-print loop, input is read from standard input . Many input functions,
including read and read-char, take a stream argument that defaults to standard input .

In the normal Lisp read-eval-print loop, output is sent to standard output . Many output func-
tions, including print and write-char, take a stream argument that defaults to standard output .

A program that wants, for example, to divert output to a file should do so by binding
standard-output; that way error messages sent to *error-output* can still get to the user
by going through *terminal-io* (if *error-output* is bound to *terminal-io*), which is usually
what is desired.

∗terminal-io∗ Variable

Value Type:
a bidirectional stream.

Initial Value:
implementation-dependent , but it must be an open stream that is not a generalized synonym
stream to an I/O customization variables but that might be a generalized synonym stream to the
value of some I/O customization variable.

Description:
The value of *terminal-io*, called terminal I/O , is ordinarily a bidirectional stream that connects
to the user’s console. Typically, writing to this stream would cause the output to appear on a
display screen, for example, and reading from the stream would accept input from a keyboard.
It is intended that standard input functions such as read and read-char, when used with this
stream, cause echoing of the input into the output side of the stream. The means by which this is
accomplished are implementation-dependent .

The effect of changing the value of *terminal-io*, either by binding or assignment , is
implementation-defined .

Streams 21–59

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:

(progn (prin1 ’foo) (prin1 ’bar *terminal-io*))

. FOOBAR

→ BAR

(with-output-to-string (*standard-output*)

(prin1 ’foo)

(prin1 ’bar *terminal-io*))

. BAR

→ "FOO"

See Also:
debug-io, *error-output*, *query-io*, *standard-input*, *standard-output*,
trace-output

stream-error Condition Type

Class Precedence List:
stream-error, error, serious-condition, condition, t

Description:
The type stream-error consists of error conditions that are related to receiving input from or
sending output to a stream. The “offending stream” is initialized by the :stream initialization
argument to make-condition, and is accessed by the function stream-error-stream.

See Also:
stream-error-stream

stream-error-stream Function

Syntax:
stream-error-stream condition → stream

Arguments and Values:
condition—a condition of type stream-error.

stream—a stream.

Description:
Returns the offending stream of a condition of type stream-error.

21–60 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:

(with-input-from-string (s "(FOO")

(handler-case (read s)

(end-of-file (c)

(format nil "~&End of file on ~S." (stream-error-stream c)))))

"End of file on #<String Stream>."

See Also:
stream-error, Chapter 9 (Conditions)

end-of-file Condition Type

Class Precedence List:
end-of-file, stream-error, error, serious-condition, condition, t

Description:
The type end-of-file consists of error conditions related to read operations that are done on
streams that have no more data.

See Also:
stream-error-stream

Streams 21–61

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

21–62 Programming Language—Common Lisp

