Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Programming Language—Common Lisp

3. Evaluation and Compilation

Evaluation and Compilation i

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

ii Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.1 Evaluation

Ezxecution of code can be accomplished by a variety of means ranging from direct interpretation of
a form representing a program to invocation of compiled code produced by a compiler.

Evaluation is the process by which a program is executed in Common Lisp. The mechanism of
evaluation is manifested both implicitly through the effect of the Lisp read-eval-print loop, and
explicitly through the presence of the functions eval, compile, compile-file, and load. Any of
these facilities might share the same execution strategy, or each might use a different one.

The behavior of a conforming program processed by eval and by compile-file might differ; see
Section 3.2.2.3 (Semantic Constraints).

FEvaluation can be understood in terms of a model in which an interpreter recursively traverses
a form performing each step of the computation as it goes. This model, which describes the
semantics of Common Lisp programs, is described in Section 3.1.2 (The Evaluation Model).

3.1.1 Introduction to Environments

3.1.1.1

A binding is an association between a name and that which the name denotes. Bindings are
established in a lexical environment or a dynamic environment by particular special operators.

An environment is a set of bindings and other information used during evaluation (e.g., to
associate meanings with names).

Bindings in an environment are partitioned into namespaces. A single name can simultaneously
have more than one associated binding per environment, but can have only one associated binding
per namespace.

The Global Environment

The global environment is that part of an environment that contains bindings with both
indefinite scope and indefinite extent. The global environment contains, among other things, the
following:

e bindings of dynamic variables and constant variables.
e bindings of functions, macros, and special operators.
e bindings of compiler macros.

e bindings of type and class names

e information about proclamations.

Evaluation and Compilation 3-1

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.1.1.2

3.1.1.3

Dynamic Environments

A dynamic environment for evaluation is that part of an environment that contains bindings
whose duration is bounded by points of establishment and disestablishment within the execution
of the form that established the binding. A dynamic environment contains, among other things,
the following:

e bindings for dynamic variables.
e information about active catch tags.
e information about exit points established by unwind-protect.

e information about active handlers and restarts.

The dynamic environment that is active at any given point in the execution of a program is
referred to by definite reference as “the current dynamic environment,” or sometimes as just “the
dynamic environment.”

Within a given namespace, a name is said to be bound in a dynamic environment if there is
a binding associated with its name in the dynamic environment or, if not, there is a binding
associated with its name in the global environment.

Lexical Environments

A lexical environment for evaluation at some position in a program is that part of the environ-
ment that contains information having lexical scope within the forms containing that position. A
lezical environment contains, among other things, the following:

e bindings of lexical variables and symbol macros.

e bindings of functions and macros. (Implicit in this is information about those compiler
macros that are locally disabled.)

e bindings of block tags.
e bindings of go tags.

e information about declarations.

The lezical environment that is active at any given position in a program being semantically
processed is referred to by definite reference as “the current lexical environment,” or sometimes as
just “the lexical environment.”

Within a given namespace, a name is said to be bound in a lexical environment if there is a bind-
ing associated with its name in the lexical environment or, if not, there is a binding associated
with its name in the global environment.

3—2 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.1.1.3.1 The Null Lexical Environment

3.1.1.4

The null lexical environment is equivalent to the global environment.

Although in general the representation of an environment object is implementation-dependent, nil
can be used in any situation where an environment object is called for in order to denote the null
lezical environment.

Environment Objects

Some operators make use of an object, called an environment object, that represents the set

of lexical bindings needed to perform semantic analysis on a form in a given lexical environment.
The set of bindings in an environment object may be a subset of the bindings that would be
needed to actually perform an evaluation; for example, values associated with variable names and
function names in the corresponding lexical environment might not be available in an environ-
ment object.

The type and nature of an environment object is implementation-dependent. The values of
environment parameters to macro functions are examples of environment objects.

The object nil when used as an environment object denotes the null lexical environment; see
Section 3.1.1.3.1 (The Null Lexical Environment).

3.1.2 The Evaluation Model

3.1.2.1

A Common Lisp system evaluates forms with respect to lexical, dynamic, and global environ-
ments. The following sections describe the components of the Common Lisp evaluation model.

Form Evaluation

Forms fall into three categories: symbols, conses, and self-evaluating objects. The following
sections explain these categories.

3.1.2.1.1 Symbols as Forms

If a form is a symbol, then it is either a symbol macro or a variable.

The symbol names a symbol macro if there is a binding of the symbol as a symbol macro in the
current lexical environment (see define-symbol-macro and symbol-macrolet). If the symbol is
a symbol macro, its expansion function is obtained. The expansion function is a function of two
arguments, and is invoked by calling the macroexpand hook with the expansion function as its
first argument, the symbol as its second argument, and an environment object (corresponding
to the current lexical environment) as its third argument. The macroezpand hook, in turn, calls
the expansion function with the form as its first argument and the environment as its second
argument. The value of the expansion function, which is passed through by the macroezpand
hook, is a form. This resulting form is processed in place of the original symbol.

Evaluation and Compilation 3-3

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

If a form is a symbol that is not a symbol macro, then it is the name of a variable, and the
value of that variable is returned. There are three kinds of variables: lexical variables, dynamic
variables, and constant variables. A wvariable can store one object. The main operations on a
variable are to read; and to write; its value.

An error of type unbound-variable should be signaled if an unbound variable is referenced.

Non-constant variables can be assigned by using setq or bounds by using let. Figure 3—1 lists
some defined names that are applicable to assigning, binding, and defining variables.

boundp let progv
defconstant let* psetq
defparameter makunbound set

defvar multiple-value-bind setq

lambda multiple-value-setq symbol-value

Figure 3—1. Some Defined Names Applicable to Variables

The following is a description of each kind of variable.

3.1.2.1.1.1 Lexical Variables

A lexical variable is a variable that can be referenced only within the lexical scope of the form
that establishes that variable; lexical variables have lexical scope. Each time a form creates a
lezical binding of a variable, a fresh binding is established.

Within the scope of a binding for a lexical variable name, uses of that name as a variable are
considered to be references to that binding except where the variable is shadoweds by a form that
establishes a fresh binding for that variable name, or by a form that locally declares the name
special.

A lexical variable always has a value. There is no operator that introduces a binding for a lexical
variable without giving it an initial value, nor is there any operator that can make a lexical
variable be unbound.

Bindings of lezical variables are found in the lexical environment.

3.1.2.1.1.2 Dynamic Variables

34

A wvariable is a dynamic variable if one of the following conditions hold:
e It is locally declared or globally proclaimed special.

e It occurs textually within a form that creates a dynamic binding for a variable of the same
name, and the binding is not shadoweds by a form that creates a lexical binding of the same
variable name.

Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

A dynamic variable can be referenced at any time in any program; there is no textual limitation
on references to dynamic variables. At any given time, all dynamic variables with a given name
refer to exactly one binding, either in the dynamic environment or in the global environment.

The value part of the binding for a dynamic variable might be empty; in this case, the dynamic
variable is said to have no value, or to be unbound. A dynamic variable can be made unbound by
using makunbound.

The effect of binding a dynamic variable is to create a new binding to which all references to that
dynamic variable in any program refer for the duration of the evaluation of the form that creates
the dynamic binding.

A dynamic variable can be referenced outside the dynamic extent of a form that binds it. Such
a variable is sometimes called a “global variable” but is still in all respects just a dynamic vari-
able whose binding happens to exist in the global environment rather than in some dynamic
environment.

A dynamic variable is unbound unless and until explicitly assigned a value, except for those
variables whose initial value is defined in this specification or by an implementation.

3.1.2.1.1.3 Constant Variables

Certain variables, called constant variables, are reserved as “named constants.” The consequences
are undefined if an attempt is made to assign a value to, or create a binding for a constant
variable, except that a ‘compatible’ redefinition of a constant variable using defconstant is
permitted; see the macro defconstant.

Keywords, symbols defined by Common Lisp or the implementation as constant (such as nil, t,
and pi), and symbols declared as constant using defconstant are constant variables.

3.1.2.1.1.4 Symbols Naming Both Lexical and Dynamic Variables

The same symbol can name both a lexical variable and a dynamic variable, but never in the same
lexical environment.

In the following example, the symbol x is used, at different times, as the name of a lexical variable
and as the name of a dynamic variable.

(et ((x 1)) ;Binds a special variable X
(declare (special x))
(let ((x 2)) ;Binds a lexical variable X
(+ x ;Reads a lexical variable X
(locally (declare (special x))
x)))) ;Reads a special variable X
— 3

Evaluation and Compilation 3-5

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.1.2.1.2 Conses as Forms
A cons that is used as a form is called a compound form.

If the car of that compound form is a symbol, that symbol is the name of an operator, and the
form is either a special form, a macro form, or a function form, depending on the function
binding of the operator in the current lexical environment. If the operator is neither a special
operator nor a macro name, it is assumed to be a function name (even if there is no definition for
such a function).

If the car of the compound form is not a symbol, then that car must be a lambda expression, in
which case the compound form is a lambda form.

How a compound form is processed depends on whether it is classified as a special form, a macro
form, a function form, or a lambda form.

3.1.2.1.2.1 Special Forms

A special form is a form with special syntax, special evaluation rules, or both, possibly manip-
ulating the evaluation environment, control flow, or both. A special operator has access to the
current lexical environment and the current dynamic environment. Each special operator defines
the manner in which its subexpressions are treated—which are forms, which are special syntax,
etc.

Some special operators create new lexical or dynamic environments for use during the evaluation
of subforms of the special form. For example, block creates a new lexical environment that is
the same as the one in force at the point of evaluation of the block form with the addition of a
binding of the block name to an exit point from the block.

The set of special operator names is fixed in Common Lisp; no way is provided for the user to
define a special operator. Figure 3-2 lists all of the Common Lisp symbols that have definitions as
special operators.

block let* return-from
catch load-time-value setq

eval-when locally symbol-macrolet
flet macrolet tagbody
function multiple-value-call the

go multiple-value-progl throw

if progn unwind-protect
labels progv

let quote

Figure 3—2. Common Lisp Special Operators

3—6 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.1.2.1.2.2 Macro Forms

If the operator names a macro, its associated macro function is applied to the entire form and
the result of that application is used in place of the original form.

Specifically, a symbol names a macro in a given lexical environment if macro-function is true

of the symbol and that environment. The function returned by macro-function is a function of
two arguments, called the expansion function. The expansion function is invoked by calling the
macroexpand hook with the expansion function as its first argument, the entire macro form as its
second argument, and an environment object (corresponding to the current lexical environment)
as its third argument. The macroexpand hook, in turn, calls the expansion function with the form
as its first argument and the environment as its second argument. The value of the expansion
function, which is passed through by the macroexpand hook, is a form. The returned form is
evaluated in place of the original form.

The consequences are undefined if a macro function destructively modifies any part of its form
argument.

A macro name is not a function designator, and cannot be used as the function argument to
functions such as apply, funcall, or map.

An implementation is free to implement a Common Lisp special operator as a macro. An imple-
mentation is free to implement any macro operator as a special operator, but only if an equivalent
definition of the macro is also provided.

Figure 3-3 lists some defined names that are applicable to macros.

macroexpand-hook macro-function macroexpand-1
defmacro macroexpand macrolet

Figure 3—3. Defined names applicable to macros

3.1.2.1.2.3 Function Forms

If the operator is a symbol naming a function, the form represents a function form, and the cdr
of the list contains the forms which when evaluated will supply the arguments passed to the
function.

When a function name is not defined, an error of type undefined-function should be signaled at
run time; see Section 3.2.2.3 (Semantic Constraints).

A function form is evaluated as follows:

The subforms in the cdr of the original form are evaluated in left-to-right order in the current
lexical and dynamic environments. The primary value of each such evaluation becomes an
argument to the named function; any additional values returned by the subforms are discarded.

Evaluation and Compilation 3-7

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

The functional value of the operator is retrieved from the lezical environment, and that function
is invoked with the indicated arguments.

Although the order of evaluation of the argument subforms themselves is strictly left-to-right, it
is not specified whether the definition of the operator in a function form is looked up before the
evaluation of the argument subforms, after the evaluation of the argument subforms, or between
the evaluation of any two argument subforms if there is more than one such argument subform.

For example, the following might return 23 or 24.

(defun foo (x) (+ x 3))
(defun bar () (setf (symbol-function ’foo) #’(lambda (x) (+ x 4))))
(foo (progn (bar) 20))

A binding for a function name can be established in one of several ways. A binding for a
function name in the global environment can be established by defun, setf of fdefinition,
setf of symbol-function, ensure-generic-function, defmethod (implicitly, due to
ensure-generic-function), or defgeneric. A binding for a function name in the lexical envi-
ronment can be established by flet or labels.

Figure 34 lists some defined names that are applicable to functions.

apply fdefinition mapcan
call-arguments-limit flet mapcar
complement fmakunbound mapcon
constantly funcall mapl

defgeneric function maplist
defmethod functionp multiple-value-call
defun labels reduce

fboundp map symbol-function

Figure 3—4. Some function-related defined names

3.1.2.1.2.4 Lambda Forms

A lambda form is similar to a function form, except that the function name is replaced by a
lambda expression.

A lambda form is equivalent to using funcall of a lexical closure of the lambda expression on

the given arguments. (In practice, some compilers are more likely to produce inline code for a
lambda form than for an arbitrary named function that has been declared inline; however, such a
difference is not semantic.)

For further information, see Section 3.1.3 (Lambda Expressions).

3-8 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.1.2.1.3 Self-Evaluating Objects

A form that is neither a symbol nor a cons is defined to be a self-evaluating object. Evaluating
such an object yields the same object as a result.

Certain specific symbols and conses might also happen to be “self-evaluating” but only as a
special case of a more general set of rules for the evaluation of symbols and conses; such objects
are not considered to be self-evaluating objects.

The consequences are undefined if literal objects (including self-evaluating objects) are destruc-
tively modified.

3.1.2.1.3.1 Examples of Self-Evaluating Objects

Numbers, pathnames, and arrays are examples of self-evaluating objects.

3 — 3

#c(2/3 5/8) — #C(2/3 5/8)

#p"S: [BILL]OTHELLO.TXT" — #P"S:[BILL]OTHELLO.TXT"
#(abc) — #(A B C)

"fred smith" — "fred smith"

3.1.3 Lambda Expressions

In a lambda expression, the body is evaluated in a lexical environment that is formed by adding
the binding of each parameter in the lambda list with the corresponding value from the arguments
to the current lexical environment.

For further discussion of how bindings are established based on the lambda list, see Section 3.4
(Lambda Lists).

The body of a lambda expression is an implicit progn; the values it returns are returned by the
lambda expression.

3.1.4 Closures and Lexical Binding

A lexical closure is a function that can refer to and alter the values of lexical bindings established
by binding forms that textually include the function definition.

Consider this code, where x is not declared special:

(defun two-funs (x)
(list (function (lambda () x))
(function (lambda (y) (setq x y)))))
(setq funs (two-funs 6))
(funcall (car fumns)) — 6
(funcall (cadr funs) 43) — 43
(funcall (car fumns)) — 43

Evaluation and Compilation 3-9

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

The function special form coerces a lambda expression into a closure in which the lexical environ-
ment in effect when the special form is evaluated is captured along with the lambda expression.

The function two-funs returns a list of two functions, each of which refers to the binding of the
variable x created on entry to the function two-funs when it was called. This variable has the
value 6 initially, but setq can alter this binding. The lexical closure created for the first lambda
expression does not “snapshot” the value 6 for x when the closure is created; rather it captures
the binding of x. The second function can be used to alter the value in the same (captured)
binding (to 43, in the example), and this altered variable binding then affects the value returned
by the first function.

In situations where a closure of a lambda expression over the same set of bindings may be pro-
duced more than once, the various resulting closures may or may not be identical, at the discre-
tion of the implementation. That is, two functions that are behaviorally indistinguishable might
or might not be identical. Two functions that are behaviorally distinguishable are distinct. For
example:

(let ((x 8) (funs >()))
(dotimes (j 10)
(push #’(lambda (z)
(if (null z) (setq x 0) (+ x 2z)))
funs))
funs)

The result of the above form is a list of ten closures. Each requires only the binding of x. It is
the same binding in each case, but the ten closure objects might or might not be identical. On
the other hand, the result of the form

(let ((funs > ()))
(dotimes (j 10)
(let ((x 5))
(push (function (lambda (z)
(if (null z) (setq x 0) (+ x z))))
funs)))
funs)

is also a list of ten closures. However, in this case no two of the closure objects can be identical
because each closure is closed over a distinct binding of x, and these bindings can be behaviorally
distinguished because of the use of setq.

The result of the form

(let ((funs ’*(0)))
(dotimes (j 10)
(let ((x 5))
(push (function (lambda (z) (+ x z)))
funs)))
funs)

3-10 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.1.5

is a list of ten closure objects that might or might not be identical. A different binding of x

is involved for each closure, but the bindings cannot be distinguished because their values are
the same and immutable (there being no occurrence of setq on x). A compiler could internally
transform the form to

(let ((funs ’()))
(dotimes (j 10)
(push (function (lambda (z) (+ 5 2z)))
funs))
funs)

where the closures may be identical.
It is possible that a closure does not close over any variable bindings. In the code fragment
(mapcar (function (lambda (x) (+ x 2))) y)

the function (lambda (x) (+ x 2)) contains no references to any outside object. In this case, the
same closure might be returned for all evaluations of the function form.

Shadowing

If two forms that establish lexical bindings with the same name N are textually nested, then
references to IV within the inner form refer to the binding established by the inner form; the
inner binding for N shadows the outer binding for N. Outside the inner form but inside the
outer one, references to N refer to the binding established by the outer form. For example:

(defun test (x z)
(let ((z (x x 2)))
(print z))
z)

The binding of the variable z by let shadows the parameter binding for the function test. The
reference to the variable z in the print form refers to the let binding. The reference to z at the
end of the function test refers to the parameter named z.

Constructs that are lexically scoped act as if new names were generated for each object on each
execution. Therefore, dynamic shadowing cannot occur. For example:

(defun contorted-example (f g x)
(if (= x 0)
(funcall f)
(block here
(+ 5 (contorted-example g
#’ (lambda () (return-from here 4))
(- x 1))

Consider the call (contorted-example nil nil 2). This produces 4. During the course of execu-
tion, there are three calls to contorted-example, interleaved with two blocks:

Evaluation and Compilation 3-11

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(contorted-example nil nil 2)
(block herej ...)
(contorted-example nil #’(lambda () (return-from here; 4)) 1)
(block heregy ...)
(contorted-example #’(lambda () (return-from here; 4))
#’(lambda () (return-from heres 4))
0)
(funcall f£)
where £ — #’(lambda () (return-from here; 4))
(return-from hereq 4)

At the time the funcall is executed there are two block exit points outstanding, each apparently
named here. The return-from form executed as a result of the funcall operation refers to

the outer outstanding ezit point (here;), not the inner one (hereq). It refers to that exit point
textually visible at the point of execution of function (here abbreviated by the #’ syntax) that
resulted in creation of the function object actually invoked by funcall.

If, in this example, one were to change the (funcall f£) to (funcall g), then the value of the
call (contorted-example nil nil 2) would be 9. The value would change because funcall

would cause the execution of (return-from heres 4), thereby causing a return from the inner
exit point (heres). When that occurs, the value 4 is returned from the middle invocation of
contorted-example, 5 is added to that to get 9, and that value is returned from the outer block
and the outermost call to contorted-example. The point is that the choice of exit point returned
from has nothing to do with its being innermost or outermost; rather, it depends on the lexical
environment that is packaged up with a lambda expression when function is executed.

3.1.6 Extent

Contorted-example works only because the function named by £ is invoked during the extent of
the ezit point. Once the flow of execution has left the block, the exit point is disestablished. For
example:

(defun invalid-example ()
(let ((y (block here #’(lambda (z) (return-from here z)))))
(if (numberp y) y (funcall y 5))))

One might expect the call (invalid-example) to produce 5 by the following incorrect reasoning:
let binds y to the value of block; this value is a function resulting from the lambda expression.
Because y is not a number, it is invoked on the value 5. The return-from should then return this
value from the exit point named here, thereby exiting from the block again and giving y the value
5 which, being a number, is then returned as the value of the call to invalid-example.

The argument fails only because exit points have dynamic extent. The argument is correct up

to the execution of return-from. The execution of return-from should signal an error of type
control-error, however, not because it cannot refer to the exit point, but because it does correctly
refer to an exit point and that exit point has been disestablished.

3-12 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

A reference by name to a dynamic ezit point binding such as a catch tag refers to the most
recently established binding of that name that has not been disestablished. For example:

(defun funl (x)

(catch ’trap (+ 3 (fun2 x))))
(defun fun2 (y)

(catch ’trap (* 5 (fun3 y))))
(defun fun3 (z)

(throw ’trap z))

Consider the call (fun1 7). The result is 10. At the time the throw is executed, there are two
outstanding catchers with the name trap: one established within procedure fun1, and the other
within procedure fun2. The latter is the more recent, and so the value 7 is returned from catch in
fun2. Viewed from within fun3, the catch in fun2 shadows the one in funi. Had fun2 been defined
as

(defun fun2 (y)
(catch ’snare (* 5 (fun3 y))))

then the two exit points would have different names, and therefore the one in fun1 would not be
shadowed. The result would then have been 7.

3.1.7 Return Values

Ordinarily the result of calling a function is a single object. Sometimes, however, it is convenient
for a function to compute several objects and return them.

In order to receive other than exactly one value from a form, one of several special forms or
macros must be used to request those values. If a form produces multiple values which were not
requested in this way, then the first value is given to the caller and all others are discarded; if the
form produces zero values, then the caller receives nil as a value.

Figure 3-5 lists some operators for receiving multiple valueso. These operators can be used to
specify one or more forms to evaluate and where to put the values returned by those forms.

multiple-value-bind multiple-value-progl return-from
multiple-value-call multiple-value-setq throw
multiple-value-list return

Figure 3-5. Some operators applicable to receiving multiple values

The function values can produce multiple valuess. (values) returns zero values; (values form)
returns the primary value returned by form; (values forml form2) returns two values, the
primary value of forml and the primary value of form2; and so on.

See multiple-values-limit and values-list.

Evaluation and Compilation 3-13

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.2 Compilation

3.2.1 Compiler Terminology
The following terminology is used in this section.

The compiler is a utility that translates code into an implementation-dependent form that might
be represented or executed efficiently. The term compiler refers to both of the functions compile
and compile-file.

The term compiled code refers to objects representing compiled programs, such as objects
constructed by compile or by load when loading a compiled file.

The term implicit compilation refers to compilation performed during evaluation.

The term literal object refers to a quoted object or a self-evaluating object or an object that is a
substructure of such an object. A constant variable is not itself a literal object.

The term coalesce is defined as follows. Suppose A and B are two literal constants in the source
code, and that A’ and B’ are the corresponding objects in the compiled code. If A’ and B’ are eql
but A and B are not eql, then it is said that A and B have been coalesced by the compiler.

The term minimal compilation refers to actions the compiler must take at compile time. These
actions are specified in Section 3.2.2 (Compilation Semantics).

The verb process refers to performing minimal compilation, determining the time of evaluation
for a form, and possibly evaluating that form (if required).

The term further compilation refers to implementation-dependent compilation beyond min-
1mal compilation. That is, processing does not imply complete compilation. Block compilation
and generation of machine-specific instructions are examples of further compilation. Further
compilation is permitted to take place at run time.

Four different environments relevant to compilation are distinguished: the startup environment,
the compilation environment, the evaluation environment, and the run-time environment.

The startup environment is the environment of the Lisp image from which the compiler was
invoked.

The compilation environment is maintained by the compiler and is used to hold definitions
and declarations to be used internally by the compiler. Only those parts of a definition needed for
correct compilation are saved. The compilation environment is used as the environment argument
to macro expanders called by the compiler. It is unspecified whether a definition available in the
compilation environment can be used in an evaluation initiated in the startup environment or
evaluation environment.

The evaluation environment is a run-time environment in which macro expanders and code
specified by eval-when to be evaluated are evaluated. All evaluations initiated by the compiler

3-14 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.2.2

3.2.2.1

take place in the evaluation environment.

The run-time environment is the environment in which the program being compiled will be
executed.

The compilation environment inherits from the evaluation environment, and the compilation
environment and evaluation environment might be identical. The evaluation environment inherits
from the startup environment, and the startup environment and evaluation environment might be
identical.

The term compile time refers to the duration of time that the compiler is processing source
code. At compile time, only the compilation environment and the evaluation environment are
available.

The term compile-time definition refers to a definition in the compilation environment. For
example, when compiling a file, the definition of a function might be retained in the compilation
environment if it is declared inline. This definition might not be available in the evaluation
environment.

The term run time refers to the duration of time that the loader is loading compiled code or
compiled code is being executed. At run time, only the run-time environment is available.

The term run-time definition refers to a definition in the run-time environment.

The term run-time compiler refers to the function compile or implicit compilation, for which
the compilation and run-time environments are maintained in the same Lisp image. Note that
when the run-time compiler is used, the run-time environment and startup environment are the
same.

Compilation Semantics

Conceptually, compilation is a process that traverses code, performs certain kinds of syntactic and
semantic analyses using information (such as proclamations and macro definitions) present in the
compilation environment, and produces equivalent, possibly more efficient code.

Compiler Macros

A compiler macro can be defined for a name that also names a function or macro. That is, it is
possible for a function name to name both a function and a compiler macro.

A function name names a compiler macro if compiler-macro-function is true of the function
name in the lexical environment in which it appears. Creating a lexical binding for the function
name not only creates a new local function or macro definition, but also shadowss the compiler
macro.

The function returned by compiler-macro-function is a function of two arguments, called the
expansion function. To expand a compiler macro, the expansion function is invoked by calling the
macroexpand hook with the expansion function as its first argument, the entire compiler macro

Evaluation and Compilation 3-15

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

form as its second argument, and the current compilation environment (or with the current
lexical environment, if the form is being processed by something other than compile-file) as its
third argument. The macroexpand hook, in turn, calls the expansion function with the form as its
first argument and the environment as its second argument. The return value from the expansion
function, which is passed through by the macroexpand hook, might either be the same form, or
else a form that can, at the discretion of the code doing the expansion, be used in place of the
original form.

| *macroexpand-hook* compiler-macro-function define-compiler-macro

Figure 3—6. Defined names applicable to compiler macros

3.2.2.1.1 Purpose of Compiler Macros

The purpose of the compiler macro facility is to permit selective source code transformations as
optimization advice to the compiler. When a compound form is being processed (as by the com-
piler), if the operator names a compiler macro then the compiler macro function may be invoked
on the form, and the resulting expansion recursively processed in preference to performing the
usual processing on the original form according to its normal interpretation as a function form or
macro form.

A compiler macro function, like a macro function, is a function of two arguments: the entire call
form and the environment. Unlike an ordinary macro function, a compiler macro function can
decline to provide an expansion merely by returning a value that is the same as the original form.
The consequences are undefined if a compiler macro function destructively modifies any part of
its form argument.

The form passed to the compiler macro function can either be a list whose car is the function
name, or a list whose car is funcall and whose cadr is a list (function name); note that this af-
fects destructuring of the form argument by the compiler macro function. define-compiler-macro
arranges for destructuring of arguments to be performed correctly for both possible formats.

When compile-file chooses to expand a top level form that is a compiler macro form, the ex-
pansion is also treated as a top level form for the purposes of eval-when processing; see Section
3.2.3.1 (Processing of Top Level Forms).

3.2.2.1.2 Naming of Compiler Macros
Compiler macros may be defined for function names that name macros as well as functions.

Compiler macro definitions are strictly global. There is no provision for defining local compiler
macros in the way that macrolet defines local macros. Lexical bindings of a function name
shadow any compiler macro definition associated with the name as well as its global function or
macro definition.

3-16 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Note that the presence of a compiler macro definition does not affect the values returned by func-
tions that access function definitions (e.g., fboundp) or macro definitions (e.g., macroexpand).
Compiler macros are global, and the function compiler-macro-function is sufficient to resolve
their interaction with other lexical and global definitions.

3.2.2.1.3 When Compiler Macros Are Used

The presence of a compiler macro definition for a function or macro indicates that it is desirable
for the compiler to use the expansion of the compiler macro instead of the original function form
or macro form. However, no language processor (compiler, evaluator, or other code walker) is ever
required to actually invoke compiler macro functions, or to make use of the resulting expansion if
it does invoke a compiler macro function.

When the compiler encounters a form during processing that represents a call to a compiler
macro name (that is not declared notinline), the compiler might expand the compiler macro, and
might use the expansion in place of the original form.

When eval encounters a form during processing that represents a call to a compiler macro name
(that is not declared notinline), eval might expand the compiler macro, and might use the
expansion in place of the original form.

There are two situations in which a compiler macro definition must not be applied by any lan-
guage processor:

e The global function name binding associated with the compiler macro is shadowed by a
lexical binding of the function name.

e The function name has been declared or proclaimed notinline and the call form appears
within the scope of the declaration.

It is unspecified whether compiler macros are expanded or used in any other situations.
3.2.2.1.3.1 Notes about the Implementation of Compiler Macros

Although it is technically permissible, as described above, for eval to treat compiler macros in the
same situations as compiler might, this is not necessarily a good idea in interpreted implementa-
tions.

Compiler macros exist for the purpose of trading compile-time speed for run-time speed. Pro-
grammers who write compiler macros tend to assume that the compiler macros can take more
time than normal functions and macros in order to produce code which is especially optimal for
use at run time. Since eval in an interpreted implementation might perform semantic analysis of
the same form multiple times, it might be inefficient in general for the implementation to choose
to call compiler macros on every such evaluation.

Nevertheless, the decision about what to do in these situations is left to each implementation.

Evaluation and Compilation 3-17

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.2.2.2 Minimal Compilation

Minimal compilation is defined as follows:

o All compiler macro calls appearing in the source code being compiled are expanded, if at
all, at compile time; they will not be expanded at run time.

e All macro and symbol macro calls appearing in the source code being compiled are
expanded at compile time in such a way that they will not be expanded again at run
time. macrolet and symbol-macrolet are effectively replaced by forms corresponding to
their bodies in which calls to macros are replaced by their expansions.

e The first argument in a load-time-value form in source code processed by compile
is evaluated at compile time; in source code processed by compile-file, the compiler
arranges for it to be evaluated at load time. In either case, the result of the evaluation is
remembered and used later as the value of the load-time-value form at ezecution time.

3.2.2.3 Semantic Constraints

All conforming programs must obey the following constraints, which are designed to minimize the
observable differences between compiled and interpreted programs:

e Definitions of any referenced macros must be present in the compilation environment.
Any form that is a list beginning with a symbol that does not name a special operator or
a macro defined in the compilation environment is treated by the compiler as a function
call.

e Special proclamations for dynamic variables must be made in the compilation envi-
ronment. Any binding for which there is no special declaration or proclamation in the
compilation environment is treated by the compiler as a lexical binding.

e The definition of a function that is defined and declared inline in the compilation envi-
ronment must be the same at run time.

e Within a function named F, the compiler may (but is not required to) assume that
an apparent recursive call to a function named F refers to the same definition of F',
unless that function has been declared notinline. The consequences of redefining such a
recursively defined function F while it is executing are undefined.

e A call within a file to a named function that is defined in the same file refers to that func-
tion, unless that function has been declared notinline. The consequences are unspecified

if functions are redefined individually at run time or multiply defined in the same file.

e The argument syntax and number of return values for all functions whose ftype is
declared at compile time must remain the same at run time.

3-18 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

e (Constant variables defined in the compilation environment must have a similar value at
run time. A reference to a constant variable in source code is equivalent to a reference to
a literal object that is the value of the constant variable.

e Type definitions made with deftype or defstruct in the compilation environment must
retain the same definition at run time. Classes defined by defclass in the compilation
environment must be defined at run time to have the same superclasses and same meta-
class.

This implies that subtype/supertype relationships of type specifiers must not change
between compile time and run time.

e Type declarations present in the compilation environment must accurately describe
the corresponding values at run time; otherwise, the consequences are undefined. It is
permissible for an unknown type to appear in a declaration at compile time, though a
warning might be signaled in such a case.

e Except in the situations explicitly listed above, a function defined in the evaluation
environment is permitted to have a different definition or a different signature at run
time, and the run-time definition prevails.

Conforming programs should not be written using any additional assumptions about consistency
between the run-time environment and the startup, evaluation, and compilation environments.

Except where noted, when a compile-time and a run-time definition are different, one of the
following occurs at run time:

e an error of type error is signaled
e the compile-time definition prevails

e the run-time definition prevails

If the compiler processes a function form whose operator is not defined at compile time, no error
is signaled at compile time.

3.2.3 File Compilation

The function compile-file performs compilation of forms in a file following the rules specified in
Section 3.2.2 (Compilation Semantics), and produces an output file that can be loaded by using
load.

Normally, the top level forms appearing in a file compiled with compile-file are evaluated only
when the resulting compiled file is loaded, and not when the file is compiled. However, it is typi-
cally the case that some forms in the file need to be evaluated at compile time so the remainder of
the file can be read and compiled correctly.

Evaluation and Compilation 3-19

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.2.3.1

The eval-when special form can be used to control whether a top level form is evaluated at com-
pile time, load time, or both. It is possible to specify any of three situations with eval-when, de-
noted by the symbols :compile-toplevel, :load-toplevel, and :execute. For top level eval-when
forms, :compile-toplevel specifies that the compiler must evaluate the body at compile time, and
:load-toplevel specifies that the compiler must arrange to evaluate the body at load time. For
non-top level eval-when forms, :execute specifies that the body must be executed in the run-time
environment.

The behavior of this form can be more precisely understood in terms of a model of how
compile-file processes forms in a file to be compiled. There are two processing modes, called
“not-compile-time” and “compile-time-too”.

Successive forms are read from the file by compile-file and processed in not-compile-time mode;
in this mode, compile-file arranges for forms to be evaluated only at load time and not at com-
pile time. When compile-file is in compile-time-too mode, forms are evaluated both at compile
time and load time.

Processing of Top Level Forms

Processing of top level forms in the file compiler is defined as follows:

1. If the form is a compiler macro form (not disabled by a notinline declaration), the
implementation might or might not choose to compute the compiler macro expansion of
the form and, having performed the expansion, might or might not choose to process the
result as a top level form in the same processing mode (compile-time-too or not-compile-
time). If it declines to obtain or use the expansion, it must process the original form.

2. If the form is a macro form, its macro expansion is computed and processed as a top level
form in the same processing mode (compile-time-too or not-compile-time).

3. If the form is a progn form, each of its body forms is sequentially processed as a top level
form in the same processing mode.

4. If the form is a locally, macrolet, or symbol-macrolet, compile-file establishes the ap-
propriate bindings and processes the body forms as top level forms with those bindings in
effect in the same processing mode. (Note that this implies that the lexical environment
in which top level forms are processed is not necessarily the null lezical environment.)

5. If the form is an eval-when form, it is handled according to Figure 3-7.

3—20 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

CT LT E Mode Action New Mode
Yes Yes — — Process compile-time-too
No Yes Yes CTT Process compile-time-too
No Yes Yes NCT Process not-compile-time
No Yes No — Process not-compile-time
Yes No — — Evaluate —

No No Yes CTT Evaluate —

No No Yes NCT Discard —

No No No — Discard —

Figure 3—-7. EVAL-WHEN processing

Column CT indicates whether :compile-toplevel is specified. Column LT indicates
whether :1load-toplevel is specified. Column E indicates whether :execute is specified.
Column Mode indicates the processing mode; a dash (—) indicates that the processing
mode is not relevant.

The Action column specifies one of three actions:
Process: process the body as top level forms in the specified mode.

Evaluate: evaluate the body in the dynamic execution context of the compiler, using
the evaluation environment as the global environment and the lexical environment in
which the eval-when appears.

Discard: ignore the form.

The New Mode column indicates the new processing mode. A dash (—) indicates the
compiler remains in its current mode.

6. Otherwise, the form is a top level form that is not one of the special cases. In compile-
time-too mode, the compiler first evaluates the form in the evaluation environment and
then minimally compiles it. In not-compile-time mode, the form is simply minimally
compiled. All subforms are treated as non-top-level forms.

Note that top level forms are processed in the order in which they textually appear in

the file and that each top level form read by the compiler is processed before the next is
read. However, the order of processing (including macro expansion) of subforms that are
not top level forms and the order of further compilation is unspecified as long as Common
Lisp semantics are preserved.

eval-when forms cause compile-time evaluation only at top level. Both :compile-toplevel and
:load-toplevel situation specifications are ignored for non-top-level forms. For non-top-level

Evaluation and Compilation 3—-21

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

forms, an eval-when specifying the :execute situation is treated as an implicit progn including
the forms in the body of the eval-when form; otherwise, the forms in the body are ignored.

3.2.3.1.1 Processing of Defining Macros

Defining macros (such as defmacro or defvar) appearing within a file being processed by
compile-file normally have compile-time side effects which affect how subsequent forms
in the same file are compiled. A convenient model for explaining how these side effects
happen is that the defining macro expands into one or more eval-when forms, and that
the calls which cause the compile-time side effects to happen appear in the body of an
(eval-when (:compile-toplevel) ...) form.

The compile-time side effects may cause information about the definition to be stored differently
than if the defining macro had been processed in the ‘normal’ way (either interpretively or by
loading the compiled file).

In particular, the information stored by the defining macros at compile time might or might not
be available to the interpreter (either during or after compilation), or during subsequent calls

to the compiler. For example, the following code is nonportable because it assumes that the
compiler stores the macro definition of foo where it is available to the interpreter:

(defmacro foo (x) ‘(car ,x))
(eval-when (:execute :compile-toplevel :load-toplevel)
(print (foo ’(a b ¢))))

A portable way to do the same thing would be to include the macro definition inside the
eval-when form, as in:

(eval-when (:execute :compile-toplevel :load-toplevel)
(defmacro foo (x) ‘(car ,x))
(print (foo ’(a b ¢))))

Figure 3-8 lists macros that make definitions available both in the compilation and run-time
environments. It is not specified whether definitions made available in the compilation environ-
ment are available in the evaluation environment, nor is it specified whether they are available in
subsequent compilation units or subsequent invocations of the compiler. As with eval-when, these
compile-time side effects happen only when the defining macros appear at top level.

declaim define-modify-macro defsetf
defclass define-setf-expander defstruct
defconstant defmacro deftype
define-compiler-macro defpackage defvar
define-condition defparameter

Figure 3—-8. Defining Macros That Affect the Compile-Time Environment

3—22 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.2.3.1.2 Constraints on Macros and Compiler Macros

Except where explicitly stated otherwise, no macro defined in the Common Lisp standard pro-
duces an expansion that could cause any of the subforms of the macro form to be treated as top
level forms. If an implementation also provides a special operator definition of a Common Lisp
macro, the special operator definition must be semantically equivalent in this respect.

Compiler macro expansions must also have the same top level evaluation semantics as the form
which they replace. This is of concern both to conforming implementations and to conforming
programs.

3.2.4 Literal Objects in Compiled Files

3.2.4.1

The functions eval and compile are required to ensure that literal objects referenced within the
resulting interpreted or compiled code objects are the same as the corresponding objects in the
source code. compile-file, on the other hand, must produce a compiled file that, when loaded with
load, constructs the objects defined by the source code and produces references to them.

In the case of compile-file, objects constructed by load of the compiled file cannot be spoken of
as being the same as the objects constructed at compile time, because the compiled file may be
loaded into a different Lisp image than the one in which it was compiled. This section defines the
concept of similarity which relates objects in the evaluation environment to the corresponding
objects in the run-time environment.

The constraints on literal objects described in this section apply only to compile-file; eval and
compile do not copy or coalesce constants.

Externalizable Objects

The fact that the file compiler represents literal objects externally in a compiled file and must
later reconstruct suitable equivalents of those objects when that file is loaded imposes a need for
constraints on the nature of the objects that can be used as literal objects in code to be processed
by the file compiler.

An object that can be used as a literal object in code to be processed by the file compiler is called
an externalizable object.

We define that two objects are similar if they satisfy a two-place conceptual equivalence predi-

cate (defined below), which is independent of the Lisp image so that the two objects in different
Lisp images can be understood to be equivalent under this predicate. Further, by inspecting the
definition of this conceptual predicate, the programmer can anticipate what aspects of an object
are reliably preserved by file compilation.

The file compiler must cooperate with the loader in order to assure that in each case where an
externalizable object is processed as a literal object, the loader will construct a similar object.

The set of objects that are externalizable objects are those for which the new conceptual term
“stmilar” is defined, such that when a compiled file is loaded, an object can be constructed which

Evaluation and Compilation 3-23

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

can be shown to be similar to the original object which existed at the time the file compiler was
operating.

3.2.4.2 Similarity of Literal Objects

3.2.4.2.1 Similarity of Aggregate Objects

Of the types over which similarity is defined, some are treated as aggregate objects. For these

types, similarity is defined recursively. We say that an object of these types has certain “basic

qualities” and to satisfy the similarity relationship, the values of the corresponding qualities of
the two objects must also be similar.

3.2.4.2.2 Definition of Similarity

Two objects S (in source code) and C (in compiled code) are defined to be similar if and only if
they are both of one of the types listed here (or defined by the implementation) and they both
satisfy all additional requirements of similarity indicated for that type.

number

Two numbers S and C are similar if they are of the same type and represent the same
mathematical value.

character
Two simple characters S and C' are similar if they have similar code attributes.

Implementations providing additional, implementation-defined attributes must define
whether and how non-simple characters can be regarded as similar.

symbol
Two apparently uninterned symbols S and C are similar if their names are similar.

Two interned symbols S and C' are similar if their names are similar, and if either S
is accessible in the current package at compile time and C' is accessible in the current
package at load time, or C' is accessible in the package that is similar to the home
package of S.

(Note that similarity of symbols is dependent on neither the current readtable nor how
the function read would parse the characters in the name of the symbol.)

package

Two packages S and C are similar if their names are similar.

3—24 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Note that although a package object is an externalizable object, the programmer is
responsible for ensuring that the corresponding package is already in existence when code
referencing it as a literal object is loaded. The loader finds the corresponding package
object as if by calling find-package with that name as an argument. An error is signaled
by the loader if no package exists at load time.

random-state

Two random states S and C are similar if S would always produce the same sequence of
pseudo-random numbers as a copys of C' when given as the random-state argument to the
function random, assuming equivalent limit arguments in each case.

(Note that since C' has been processed by the file compiler, it cannot be used directly as
an argument to random because random would perform a side effect.)

cons

Two conses, S and C, are similar if the cary of S is similar to the cars of C, and the
cdry of S is similar to the cdry of C.

array

Two one-dimensional arrays, S and C, are similar if the length of S is similar to the
length of C, the actual array element type of S is similar to the actual array element type
of C', and each active element of S is similar to the corresponding element of C.

Two arrays of rank other than one, S and C, are similar if the rank of S is similar to
the rank of C, each dimensiony of S is similar to the corresponding dimensiony of C, the
actual array element type of S is similar to the actual array element type of C, and each
element of S is similar to the corresponding element of C.

In addition, if S is a simple array, then C must also be a simple array. If S is a displaced
array, has a fill pointer, or is actually adjustable, C is permitted to lack any or all of
these qualities.

hash-table
Two hash tables S and C are similar if they meet the following three requirements:

1. They both have the same test (e.g., they are both eql hash tables).

2. There is a unique one-to-one correspondence between the keys of the two hash tables,
such that the corresponding keys are similar.

3. For all keys, the values associated with two corresponding keys are similar.

If there is more than one possible one-to-one correspondence between the keys of S and
C, the consequences are unspecified. A conforming program cannot use a table such as S
as an externalizable constant.

Evaluation and Compilation 3—25

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.2.4.3

3.2.4.4

pathname

Two pathnames S and C are similar if all corresponding pathname components are
simalar.

function

Functions are not externalizable objects.

structure-object and standard-object

A general-purpose concept of similarity does not exist for structures and standard objects.
However, a conforming program is permitted to define a make-load-form method for

any class K defined by that program that is a subclass of either structure-object or
standard-object. The effect of such a method is to define that an object S of type K in
source code is similar to an object C of type K in compiled code if C was constructed
from code produced by calling make-load-form on S.

Extensions to Similarity Rules

Some objects, such as streams, readtables, and methods are not externalizable objects under
the definition of similarity given above. That is, such objects may not portably appear as literal
objects in code to be processed by the file compiler.

An implementation is permitted to extend the rules of similarity, so that other kinds of objects
are externalizable objects for that implementation.

If for some kind of object, similarity is neither defined by this specification nor by the implemen-
tation, then the file compiler must signal an error upon encountering such an object as a literal
constant.

Additional Constraints on Externalizable Objects

If two literal objects appearing in the source code for a single file processed with the file compiler
are the identical, the corresponding objects in the compiled code must also be the identical. With
the exception of symbols and packages, any two literal objects in code being processed by the file
compiler may be coalesced if and only if they are similar; if they are either both symbols or both
packages, they may only be coalesced if and only if they are identical.

Objects containing circular references can be externalizable objects. The file compiler is required
to preserve eqlness of substructures within a file. Preserving eqlness means that subobjects that
are the same in the source code must be the same in the corresponding compiled code.

In addition, the following are constraints on the handling of literal objects by the file compiler:

3—26 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

array: If an array in the source code is a simple array, then the corresponding array in the
compiled code will also be a simple array. If an array in the source code is displaced, has

a fill pointer, or is actually adjustable, the corresponding array in the compiled code might
lack any or all of these qualities. If an array in the source code has a fill pointer, then the
corresponding array in the compiled code might be only the size implied by the fill pointer.

packages: The loader is required to find the corresponding package object as if by calling
find-package with the package name as an argument. An error of type package-error is
signaled if no package of that name exists at load time.

random-state: A constant random state object cannot be used as the state argument to the
function random because random modifies this data structure.

structure, standard-object: Objects of type structure-object and standard-object may
appear in compiled constants if there is an appropriate make-load-form method defined for
that type.

The file compiler calls make-load-form on any object that is referenced as a literal object if
the object is a generalized instance of standard-object, structure-object, condition, or any
of a (possibly empty) implementation-dependent set of other classes. The file compiler only
calls make-load-form once for any given object within a single file.

symbol: In order to guarantee that compiled files can be loaded correctly, users must ensure
that the packages referenced in those files are defined consistently at compile time and load
time. Conforming programs must satisfy the following requirements:

1. The current package when a top level form in the file is processed by compile-file
must be the same as the current package when the code corresponding to that top
level form in the compiled file is executed by load. In particular:

a. Any top level form in a file that alters the current package must change it to
a package of the same name both at compile time and at load time.

b. If the first non-atomic top level form in the file is not an in-package form,
then the current package at the time load is called must be a package with
the same name as the package that was the current package at the time
compile-file was called.

2. For all symbols appearing lexically within a top level form that were accessible in
the package that was the current package during processing of that top level form
at compile time, but whose home package was another package, at load time there
must be a symbol with the same name that is accessible in both the load-time current
package and in the package with the same name as the compile-time home package.

Evaluation and Compilation 3-27

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3. For all symbols represented in the compiled file that were external symbols in their
home package at compile time, there must be a symbol with the same name that is
an external symbol in the package with the same name at load time.

If any of these conditions do not hold, the package in which the loader looks for the affected
symbols is unspecified. Implementations are permitted to signal an error or to define this
behavior.

3.2.5 Exceptional Situations in the Compiler

compile and compile-file are permitted to signal errors and warnings, including errors due to
compile-time processing of (eval-when (:compile-toplevel) ...) forms, macro expansion, and
conditions signaled by the compiler itself.

Conditions of type error might be signaled by the compiler in situations where the compilation
cannot proceed without intervention.

In addition to situations for which the standard specifies that conditions of type warning must
or might be signaled, warnings might be signaled in situations where the compiler can determine
that the consequences are undefined or that a run-time error will be signaled. Examples of this
situation are as follows: violating type declarations, altering or assigning the value of a constant
defined with defconstant, calling built-in Lisp functions with a wrong number of arguments or
malformed keyword argument lists, and using unrecognized declaration specifiers.

The compiler is permitted to issue warnings about matters of programming style as conditions
of type style-warning. Examples of this situation are as follows: redefining a function using

a different argument list, calling a function with a wrong number of arguments, not declaring
ignore of a local variable that is not referenced, and referencing a variable declared ignore.

Both compile and compile-file are permitted (but not required) to establish a handler for
conditions of type error. For example, they might signal a warning, and restart compilation from
some implementation-dependent point in order to let the compilation proceed without manual
intervention.

Both compile and compile-file return three values, the second two indicating whether the source
code being compiled contained errors and whether style warnings were issued.

Some warnings might be deferred until the end of compilation. See with-compilation-unit.

3—28 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.3 Declarations

Declarations provide a way of specifying information for use by program processors, such as the
evaluator or the compiler.

Local declarations can be embedded in executable code using declare. Global declarations,
or proclamations, are established by proclaim or declaim.

The the special form provides a shorthand notation for making a local declaration about the type
of the value of a given form.

The consequences are undefined if a program violates a declaration or a proclamation.

3.3.1 Minimal Declaration Processing Requirements

In general, an implementation is free to ignore declaration specifiers except for the declaration,
notinline, safety, and special declaration specifiers.

A declaration declaration must suppress warnings about unrecognized declarations of the kind
that it declares. If an implementation does not produce warnings about unrecognized declara-
tions, it may safely ignore this declaration.

A notinline declaration must be recognized by any implementation that supports inline functions
or compiler macros in order to disable those facilities. An implementation that does not use inline
functions or compiler macros may safely ignore this declaration.

A safety declaration that increases the current safety level must always be recognized. An imple-
mentation that always processes code as if safety were high may safely ignore this declaration.

A special declaration must be processed by all implementations.

3.3.2 Declaration Specifiers

A declaration specifier is an expression that can appear at top level of a declare expression or
a declaim form, or as the argument to proclaim. It is a list whose car is a declaration identifier,
and whose cdr is data interpreted according to rules specific to the declaration identifier.

3.3.3 Declaration Identifiers
Figure 3-9 shows a list of all declaration identifiers defined by this standard.

declaration ignore special
dynamic-extent inline type
ftype notinline

ignorable optimize

Figure 3—9. Common Lisp Declaration Identifiers

Evaluation and Compilation 3—-29

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

An implementation is free to support other (implementation-defined) declaration identifiers as
well. A warning might be issued if a declaration identifier is not among those defined above,
is not defined by the implementation, is not a type name, and has not been declared in a
declaration proclamation.

3.3.3.1 Shorthand notation for Type Declarations

A type specifier can be used as a declaration identifier. (type-specifier {var}*) is taken as short-
hand for (type type-specifier {var}*).

3.3.4 Declaration Scope

Declarations can be divided into two kinds: those that apply to the bindings of variables or
functions; and those that do not apply to bindings.

A declaration that appears at the head of a binding form and applies to a variable or function
binding made by that form is called a bound declaration; such a declaration affects both the
binding and any references within the scope of the declaration.

Declarations that are not bound declarations are called free declarations.

A free declaration in a form F1 that applies to a binding for a name N established by some form
F2 of which F'1 is a subform affects only references to N within F'1; it does not to apply to other
references to IV outside of F'1, nor does it affect the manner in which the binding of N by F2 is
established.

Declarations that do not apply to bindings can only appear as free declarations.

The scope of a bound declaration is the same as the lexical scope of the binding to which it
applies; for special variables, this means the scope that the binding would have had had it been a
lexical binding.

Unless explicitly stated otherwise, the scope of a free declaration includes only the body subforms
of the form at whose head it appears, and no other subforms. The scope of free declarations
specifically does not include initialization forms for bindings established by the form containing
the declarations.

Some iteration forms include step, end-test, or result subforms that are also included in the scope
of declarations that appear in the iteration form. Specifically, the iteration forms and subforms
involved are:

e do, do*: step-forms, end-test-form, and result-forms.
e dolist, dotimes: result-form

e do-all-symbols, do-external-symbols, do-symbols: result-form

3-30 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.3.4.1 Examples of Declaration Scope

Here is an example illustrating the scope of bound declarations.

(let ((x 1)) ; [1] 1st occurrence of x
(declare (special x)) ; [2] 2nd occurrence of x
(let ((x 2)) ; [3] 3rd occurrence of x

(let ((old-x x) ; [4] 4th occurrence of x
(x 3)) ; [5] 5th occurrence of x
(declare (special x)) ;[6] 6th occurrence of x
(list old-x x)))) ; [7] 7th occurrence of x
— (2 3)

The first occurrence of x establishes a dynamic binding of x because of the special declaration for
x in the second line. The third occurrence of x establishes a lexical binding of x (because there is
no special declaration in the corresponding let form). The fourth occurrence of x z is a reference
to the lexical binding of x established in the third line. The fifth occurrence of x establishes a
dynamic binding of x for the body of the let form that begins on that line because of the special
declaration for x in the sixth line. The reference to x in the fourth line is not affected by the
special declaration in the sixth line because that reference is not within the “would-be lezical
scope” of the variable x in the fifth line. The reference to x in the seventh line is a reference to
the dynamic binding of x established in the fifth line.

Here is another example, to illustrate the scope of a free declaration. In the following:

(lambda (&optional (x (foo 1))) ;[1]
(declare (notinline foo0)) ; [2]
(foo x)) ; [3]

the call to foo in the first line might be compiled inline even though the call to foo in the third
line must not be. This is because the notinline declaration for foo in the second line applies only
to the body on the third line. In order to suppress inlining for both calls, one might write:

(locally (declare (notinline foo)) ;[1]
(lambda (&optional (x (foo 1))) ;[2]
(foo x))) ; [3]

or, alternatively:

(lambda (&optional ; [1]
(x (locally (declare (motinline foo)) ;[2]

(foo 1)))) ; 3]

(declare (notinline foo)) ; [4]
(foo x)) ; [5]

Finally, here is an example that shows the scope of declarations in an iteration form.

(et ((x 1)) ; (1]
(declare (special x)) ;2]

Evaluation and Compilation 3-31

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(et ((x 2)) ; [3]
(dotimes (i x x) ; [4]
(declare (special x))))) ;I[5]

— 1

In this example, the first reference to x on the fourth line is to the lexical binding of x established
on the third line. However, the second occurrence of x on the fourth line lies within the scope of
the free declaration on the fifth line (because this is the result-form of the dotimes) and therefore
refers to the dynamic binding of x.

3—-32 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.4 Lambda Lists

A lambda list is a list that specifies a set of parameters (sometimes called lambda variables) and

a protocol for receiving values for those parameters.

There are several kinds of lambda lists.

Context

Kind of Lambda List

defun form

defmacro form

lambda expression

flet local function definition
labels local function definition
handler-case clause specification
restart-case clause specification
macrolet local macro definition
define-method-combination
define-method-combination :arguments option
defstruct :constructor option
defgeneric form

defgeneric method clause
defmethod form

defsetf form
define-setf-expander form
deftype form
destructuring-bind form
define-compiler-macro form
define-modify-macro form

ordinary lambda list

macro lambda list

ordinary lambda list

ordinary lambda list

ordinary lambda list

ordinary lambda list

ordinary lambda list

macro lambda list

ordinary lambda list
define-method-combination arguments lambda
boa lambda list

generic function lambda list
specialized lambda list
specialized lambda list

defsetf lambda list

macro lambda list

deftype lambda list
destructuring lambda list

macro lambda list
define-modify-macro lambda list

Figure 3—10. What Kind of Lambda Lists to Use

Figure 3-11 lists some defined names that are applicable to lambda lists.

lambda-list-keywords lambda-parameters-limit

Figure 3—-11. Defined names applicable to lambda lists

3.4.1 Ordinary Lambda Lists

An ordinary lambda list is used to describe how a set of arguments is received by an ordinary
function. The defined names in Figure 3-12 are those which use ordinary lambda lists:

Evaluation and Compilation 3-33

list

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

define-method-combination handler-case restart-case
defun labels
flet lambda

Figure 3—12. Standardized Operators that use Ordinary Lambda Lists

An ordinary lambda list can contain the lambda list keywords shown in Figure 3-13.

&allow-other-keys &key &rest
&aux &optional

Figure 3—13. Lambda List Keywords used by Ordinary Lambda Lists

Each element of a lambda list is either a parameter specifier or a lambda list keyword. Implemen-
tations are free to provide additional lambda list keywords. For a list of all lambda list keywords
used by the implementation, see lambda-list-keywords.

The syntax for ordinary lambda lists is as follows:
lambda-list ::=({var}*
[&optional {var | (var [init-form [supplied-p-parameter]])}*]
[&rest var]

[ekey {var | ({var | (keyword-name var)} [init-form [supplied-p-parameter]])}*
[¢allow-other-keys]]

[&aux {var | (var [init-form])}*])

A var or supplied-p-parameter must be a symbol that is not the name of a constant variable.

An init-form can be any form. Whenever any init-form is evaluated for any parameter specifier,
that form may refer to any parameter variable to the left of the specifier in which the init-form
appears, including any supplied-p-parameter variables, and may rely on the fact that no other
parameter variable has yet been bound (including its own parameter variable).

A keyword-name can be any symbol, but by convention is normally a keyword; all standardized
functions follow that convention.

An ordinary lambda list has five parts, any or all of which may be empty. For information about
the treatment of argument mismatches, see Section 3.5 (Error Checking in Function Calls).

3—-34 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.4.1.1

3.4.1.2

3.4.1.3

3.4.1.4

Specifiers for the required parameters

These are all the parameter specifiers up to the first lambda list keyword; if there are no lambda
list keywords, then all the specifiers are for required parameters. Each required parameter is
specified by a parameter variable var. var is bound as a lexical variable unless it is declared
special.

If there are n required parameters (n may be zero), there must be at least n passed arguments,
and the required parameters are bound to the first n passed arguments; see Section 3.5 (Error
Checking in Function Calls). The other parameters are then processed using any remaining
arguments.

Specifiers for optional parameters

If &optional is present, the optional parameter specifiers are those following &optional up to the
next lambda list keyword or the end of the list. If optional parameters are specified, then each one
is processed as follows. If any unprocessed arguments remain, then the parameter variable var is
bound to the next remaining argument, just as for a required parameter. If no arguments remain,
however, then init-form is evaluated, and the parameter variable is bound to the resulting value
(or to nil if no init-form appears in the parameter specifier). If another variable name supplied-p-
parameter appears in the specifier, it is bound to true if an argument had been available, and to
false if no argument remained (and therefore init-form had to be evaluated). Supplied-p-parameter
is bound not to an argument but to a value indicating whether or not an argument had been
supplied for the corresponding var.

A specifier for a rest parameter

&rest, if present, must be followed by a single rest parameter specifier, which in turn must be fol-
lowed by another lambda list keyword or the end of the lambda list. After all optional parameter
specifiers have been processed, then there may or may not be a rest parameter. If there is a rest
parameter, it is bound to a list of all as-yet-unprocessed arguments. If no unprocessed arguments
remain, the rest parameter is bound to the empty list. If there is no rest parameter and there are
no keyword parameters, then an error should be signaled if any unprocessed arguments remain;
see Section 3.5 (Error Checking in Function Calls). The value of a rest parameter is permitted,
but not required, to share structure with the last argument to apply.

Specifiers for keyword parameters

If &key is present, all specifiers up to the next lambda list keyword or the end of the list are
keyword parameter specifiers. When keyword parameters are processed, the same arguments are
processed that would be made into a list for a rest parameter. It is permitted to specify both
&rest and &key. In this case the remaining arguments are used for both purposes; that is, all
remaining arguments are made into a [list for the rest parameter, and are also processed for the
&key parameters. If &key is specified, there must remain an even number of arguments; see
Section 3.5.1.6 (Odd Number of Keyword Arguments). These arguments are considered as pairs,
the first argument in each pair being interpreted as a name and the second as the corresponding

Evaluation and Compilation 3-35

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

value. The first object of each pair must be a symbol; see Section 3.5.1.5 (Invalid Keyword
Arguments). The keyword parameter specifiers may optionally be followed by the lambda list
keyword &allow-other-keys.

In each keyword parameter specifier must be a name var for the parameter variable. If the

var appears alone or in a (var init-form) combination, the keyword name used when matching
arguments to parameters is a symbol in the KEYWORD package whose name is the same (under
string=) as var’s. If the notation ((keyword-name var) init-form) is used, then the keyword name
used to match arguments to parameters is keyword-name, which may be a symbol in any package.
(Of course, if it is not a symbol in the KEYWORD package, it does not necessarily self-evaluate, so
care must be taken when calling the function to make sure that normal evaluation still yields the
keyword name.) Thus

(defun foo (&key radix (type ’integer)) ...)
means exactly the same as
(defun foo (&key ((:radix radix)) ((:type type) ’integer)) ...)

The keyword parameter specifiers are, like all parameter specifiers, effectively processed from left
to right. For each keyword parameter specifier, if there is an argument pair whose name matches
that specifier’s name (that is, the names are eq), then the parameter variable for that specifier is
bound to the second item (the value) of that argument pair. If more than one such argument pair
matches, the leftmost argument pair is used. If no such argument pair exists, then the init-form
for that specifier is evaluated and the parameter variable is bound to that value (or to nil if no
init-form was specified). supplied-p-parameter is treated as for &optional parameters: it is bound
to true if there was a matching argument pair, and to false otherwise.

Unless keyword argument checking is suppressed, an argument pair must a name matched by a
parameter specifier; see Section 3.5.1.4 (Unrecognized Keyword Arguments).

If keyword argument checking is suppressed, then it is permitted for an argument pair to match
no parameter specifier, and the argument pair is ignored, but such an argument pair is accessible
through the rest parameter if one was supplied. The purpose of these mechanisms is to allow
sharing of argument lists among several lambda expressions and to allow either the caller or the
called lambda expression to specify that such sharing may be taking place.

Note that if &key is present, a keyword argument of :allow-other-keys is always permitted—
regardless of whether the associated value is true or false. However, if the value is false, other
non-matching keywords are not tolerated (unless &allow-other-keys was used).

Furthermore, if the receiving argument list specifies a regular argument which would be flagged
by :allow-other-keys, then :allow-other-keys has both its special-cased meaning (identifying
whether additional keywords are permitted) and its normal meaning (data flow into the function
in question).

3-36 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.4.1.4.1 Suppressing Keyword Argument Checking

If &allow-other-keys was specified in the lambda list of a function, keywords argument checking
is suppressed in calls to that function.

If the :allow-other-keys argument is true in a call to a function, keywords argument checking is
suppressed in that call.

The :allow-other-keys argument is permissible in all situations involving keywords arguments,
even when its associated value is false.

3.4.1.4.1.1 Examples of Suppressing Keyword Argument Checking

;55 The caller can supply :ALLOW-OTHER-KEYS T to suppress checking.
((lambda (&key x) x) :x 1 :y 2 :allow-other-keys t) — 1
;535 The callee can use &ALLOW-OTHER-KEYS to suppress checking.
((lambda (&key x &allow-other-keys) x) :x 1 :y 2) — 1
;33 :ALLOW-OTHER-KEYS NIL is always permitted.
((lambda (&key) t) :allow-other-keys nil) — T
;53 As with other keyword arguments, only the left-most pair
;33 named :ALLOW-OTHER-KEYS has any effect.
((lambda (&key x) x)
:x 1 :y 2 :allow-other-keys t :allow-other-keys nil)
— 1
;55 Only the left-most pair named :ALLOW-OTHER-KEYS has any effect,
;5; so in safe code this signals a PROGRAM-ERROR (and might enter the
;;; debugger). In unsafe code, the consequences are undefined.
((lambda (&key x) x) ;This call is not valid
:x 1 :y 2 :allow-other-keys nil :allow-other-keys t)

3.4.1.5 Specifiers for &aux variables

These are not really parameters. If the lambda list keyword &aux is present, all specifiers after it
are auxiliary variable specifiers. After all parameter specifiers have been processed, the auxiliary
variable specifiers (those following &aux) are processed from left to right. For each one, init-form
is evaluated and var is bound to that value (or to nil if no init-form was specified). &aux variable
processing is analogous to let* processing.

(lambda (x y &aux (a (car x)) (b 2) ¢) (list x y a b ¢))
= (lambda (x y) (let* ((a (car x)) (b 2) c) (list x y a b ¢)))

Evaluation and Compilation 3-37

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.4.1.6 Examples of Ordinary Lambda Lists

Here are some examples involving optional parameters and rest parameters:

((lambda (a b) (+ a (x b 3))) 4 5) — 19

((lambda (a &optiomal (b 2)) (+ a (x b 3))) 4 5) — 19

((lambda (a &optional (b 2)) (+ a (*x b 3))) 4) — 10

((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b c d x)))
— (2 NIL 3 NIL NIL)

((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b c d x)) 6)
— (6 T 3 NIL NIL)

((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b ¢ d x)) 6 3)
— (6 T 3 T NIL)

((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b c d x)) 6 3 8)
— (6 T3T (8)

((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b ¢ d x))

6 389 10 11)
— (6t 3t (89 10 11))

Here are some examples involving keyword parameters:

((lambda (a b &key ¢ d) (list a b c d)) 1 2) — (1 2 NIL NIL)

((lambda (a b &key c d) (list a b c d)) 1 2 :c 6) — (1 2 6 NIL)

((lambda (a b &key c d) (list abc d)) 12 :d 8) — (1 2 NIL 8)

((lambda (a b &key c d) (list abc d)) 12 :c 6 :4d8) — (126 8)
((lambda (a b &key c d) (list abc d)) 12 :d8 :c6) — (126 8)
((lambda (a b &key c d) (list abc d)) :al :d 8 :c 6) — (:a 1l 6 8)
((lambda (a b &key c d) (list a b c d)) :a :b :c :d) — (:a :b :d NIL)
((lambda (a b &key ((:sea c)) d) (list a b c d)) 1 2 :sea 6) — (1 2 6 NIL)
((lambda (a b &key ((c ¢)) d) (list abcd)) 1 2 ’c 6) — (1 2 6 NIL)

Here are some examples involving optional parameters, rest parameters, and keyword parameters
together:

((lambda (a &optional (b 3) &rest x &key c (d a))
(list a b c d x)) 1)
— (1 3NIL 1 ()
((lambda (a &optional (b 3) &rest x &key c (d a))
(list abcdx)) 12)
— (1 2 NIL 1 ()
((lambda (a &optional (b 3) &rest x &key c (d a))
(list abcdx)) :c 7
— (¢ 7 NIL :c)
((lambda (a &optional (b 3) &rest x &key c (d a))
(list abcdx)) 16 :cT7)
— (1671 (:c 7))
((lambda (a &optional (b 3) &rest x &key c (d a))

3—-38 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.4.2

(list abcdx)) 16 :4d8)
— (1 6 NIL 8 (:d 8))
((lambda (a &optional (b 3) &rest x &key c (d a))
(list abcdx)) 16 :d8 :c9 :4d 10)
— (1698 (:d8 :c9 :d 10))

As an example of the use of &allow-other-keys and :allow-other-keys, consider a function that
takes two named arguments of its own and also accepts additional named arguments to be passed
to make-array:

(defun array-of-strings (str dims &rest named-pairs
&key (start 0) end &allow-other-keys)
(apply #’make-array dims
:initial-element (subseq str start end)
:allow-other-keys t
named-pairs))

This function takes a string and dimensioning information and returns an array of the specified
dimensions, each of whose elements is the specified string. However, :start and :end named argu-
ments may be used to specify that a substring of the given string should be used. In addition, the
presence of &allow-other-keys in the lambda list indicates that the caller may supply additional
named arguments; the rest parameter provides access to them. These additional named argu-
ments are passed to make-array. The function make-array normally does not allow the named
arguments :start and :end to be used, and an error should be signaled if such named arguments
are supplied to make-array. However, the presence in the call to make-array of the named ar-
gument :allow-other-keys with a true value causes any extraneous named arguments, including
:start and :end, to be acceptable and ignored.

Generic Function Lambda Lists

A generic function lambda list is used to describe the overall shape of the argument list to be
accepted by a generic function. Individual method signatures might contribute additional keyword
parameters to the lambda list of the effective method.

A generic function lambda list is used by defgeneric.
A generic function lambda list has the following syntax:
lambda-list::=({var}*

[&optional {var | (var)}*]

[&rest var]
[&key {var | ({var | (keyword-name var)})}*

[¢allow-other-keys|])

Evaluation and Compilation 3-39

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

A generic function lambda list can contain the lambda list keywords shown in Figure 3-14.

&allow-other-keys &optional
&key &rest

Figure 3—14. Lambda List Keywords used by Generic Function Lambda Lists

A generic function lambda list differs from an ordinary lambda list in the following ways:

Required arguments

Zero or more required parameters must be specified.

Optional and keyword arguments

Optional parameters and keyword parameters may not have default initial value forms nor
use supplied-p parameters.

Use of &aux

The use of &aux is not allowed.

3.4.3 Specialized Lambda Lists

A specialized lambda list is used to specialize a method for a particular signature and to
describe how arguments matching that signature are received by the method. The defined names
in Figure 3—15 use specialized lambda lists in some way; see the dictionary entry for each for
information about how.

defmethod defgeneric

Figure 3—-15. Standardized Operators that use Specialized Lambda Lists

A specialized lambda list can contain the lambda list keywords shown in Figure 3-16.

&allow-other-keys &key &rest
&aux &optional

Figure 3-16. Lambda List Keywords used by Specialized Lambda Lists

3-40 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

A specialized lambda list is syntactically the same as an ordinary lambda list except that each
required parameter may optionally be associated with a class or object for which that parameter
is specialized.
lambda-list::=({var | (var [specializer])}*
[&optional {var | (var [init-form [supplied-p-parameter]])}*]
[&rest var]

ekey {var | ({var | (keyword-name var)} [init-form [supplied-p-parameter]])}* [¢allow-other-l
[&aux {var | (var [init-form])}*1)

3.4.4 Macro Lambda Lists

A macro lambda list is used in describing macros defined by the operators in Figure 3-17.

define-compiler-macro defmacro macrolet
define-setf-expander

Figure 3—-17. Operators that use Macro Lambda Lists

With the additional restriction that an environment parameter may appear only once (at any of
the positions indicated), a macro lambda list has the following syntax:

reqvars::={var | | pattern}*
optvars::=[&optional {var | ({var | | pattern} [init-form [supplied-p-parameter]])}*]
restvar::=[{&rest | &body} {var | | pattern}]

keyvars::=[ukey {var | ({var | (keyword-name {var | |pattern})} [init-form [supplied-p-parameter]])}*
[allow-other-keys]]

auxvars::=[&aux {var | (var [init-form])}*]
envvar ;= [&environment var]
wholevar ::= [&whole var]

lambda-list::=(| wholevar |envvar |reqvars |envvar |optvars |envvar
lrestvar |envvar |keyvars |envvar |auxvars |envvar) |

(lwholevar |envvar |reqvars |envvar |optvars |envvar . var)

Evaluation and Compilation 3-41

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

pattern::=(|wholevar |reqvars |optvars |restvar |keyvars |auxvars) |
(lwholevar |reqvars |optvars . var)

A macro lambda list can contain the lambda list keywords shown in Figure 3-18.

&allow-other-keys &environment &rest
&aux &key &whole
&body &optional

Figure 3—18. Lambda List Keywords used by Macro Lambda Lists

Optional parameters (introduced by &optional) and keyword parameters (introduced by &key)
can be supplied in a macro lambda list, just as in an ordinary lambda list. Both may contain
default initialization forms and supplied-p parameters.

&body is identical in function to &rest, but it can be used to inform certain output-formatting
and editing functions that the remainder of the form is treated as a body, and should be indented
accordingly. Only one of &body or &rest can be used at any particular level; see Section 3.4.4.1
(Destructuring by Lambda Lists). &body can appear at any level of a macro lambda list; for
details, see Section 3.4.4.1 (Destructuring by Lambda Lists).

&whole is followed by a single variable that is bound to the entire macro-call form; this is the
value that the macro function receives as its first argument. If &whole and a following variable
appear, they must appear first in lambda-Iist, before any other parameter or lambda list keyword.
&whole can appear at any level of a macro lambda list. At inner levels, the &whole variable is
bound to the corresponding part of the argument, as with &rest, but unlike &rest, other argu-
ments are also allowed. The use of &whole does not affect the pattern of arguments specified.

&environment is followed by a single variable that is bound to an environment representing the
lexical environment in which the macro call is to be interpreted. This environment should be
used with macro-function, get-setf-expansion, compiler-macro-function, and macroexpand
(for example) in computing the expansion of the macro, to ensure that any lexical bindings or
definitions established in the compilation environment are taken into account. &environment can
only appear at the top level of a macro lambda list, and can only appear once, but can appear
anywhere in that list; the &environment parameter is bound along with &whole before any other
variables in the lambda list, regardless of where &environment appears in the lambda list. The
object that is bound to the environment parameter has dynamic extent.

Destructuring allows a macro lambda list to express the structure of a macro call syntax. If no
lambda list keywords appear, then the macro lambda list is a tree containing parameter names at
the leaves. The pattern and the macro form must have compatible tree structure; that is, their
tree structure must be equivalent, or it must differ only in that some leaves of the pattern match
non-atomic objects of the macro form. For information about error detection in this situation, see
Section 3.5.1.7 (Destructuring Mismatch).

3-42 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.4.4.1

A destructuring lambda list (whether at top level or embedded) can be dotted, ending in a
parameter name. This situation is treated exactly as if the parameter name that ends the list had
appeared preceded by &rest.

Tt is permissible for a macro form (or a subexpression of a macro form) to be a dotted list only
when (... &rest var) or (... . var) is used to match it. It is the responsibility of the macro
to recognize and deal with such situations.

Destructuring by Lambda Lists

Anywhere in a macro lambda list where a parameter name can appear, and where ordinary
lambda list syntax (as described in Section 3.4.1 (Ordinary Lambda Lists)) does not otherwise
allow a list, a destructuring lambda list can appear in place of the parameter name. When this is
done, then the argument that would match the parameter is treated as a (possibly dotted) list,
to be used as an argument list for satisfying the parameters in the embedded lambda list. This is
known as destructuring.

Destructuring is the process of decomposing a compound object into its component parts, us-
ing an abbreviated, declarative syntax, rather than writing it out by hand using the primitive
component-accessing functions. Each component part is bound to a variable.

A destructuring operation requires an object to be decomposed, a pattern that specifies what
components are to be extracted, and the names of the variables whose values are to be the
components.

3.4.4.1.1 Data-directed Destructuring by Lambda Lists

In data-directed destructuring, the pattern is a sample object of the type to be decomposed.
Wherever a component is to be extracted, a symbol appears in the pattern; this symbol is the
name of the variable whose value will be that component.

3.4.4.1.1.1 Examples of Data-directed Destructuring by Lambda Lists

An example pattern is
(a b o)

which destructures a list of three elements. The variable a is assigned to the first element, b to the
second, etc. A more complex example is

((first . rest) . more)

The important features of data-directed destructuring are its syntactic simplicity and the ability
to extend it to lambda-list-directed destructuring.

Evaluation and Compilation 3-43

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.4.4.1.2 Lambda-list-directed Destructuring by Lambda Lists

An extension of data-directed destructuring of trees is lambda-list-directed destructuring. This
derives from the analogy between the three-element destructuring pattern

(first second third)
and the three-argument lambda list
(first second third)

Lambdar-list-directed destructuring is identical to data-directed destructuring if no lambda list
keywords appear in the pattern. Any list in the pattern (whether a sub-list or the whole pattern
itself) that contains a lambda list keyword is interpreted specially. Elements of the list to the left
of the first lambda list keyword are treated as destructuring patterns, as usual, but the remaining
elements of the list are treated like a function’s lambda list except that where a variable would
normally be required, an arbitrary destructuring pattern is allowed. Note that in case of ambi-
guity, lambda list syntax is preferred over destructuring syntax. Thus, after &optional a list of
elements is a list of a destructuring pattern and a default value form.

The detailed behavior of each lambda list keyword in a lambda-list-directed destructuring pattern
is as follows:

&optional

Each following element is a variable or a list of a destructuring pattern, a default value
form, and a supplied-p variable. The default value and the supplied-p variable can be
omitted. If the list being destructured ends early, so that it does not have an element

to match against this destructuring (sub)-pattern, the default form is evaluated and
destructured instead. The supplied-p variable receives the value nil if the default form is
used, t otherwise.

&rest, &body

The next element is a destructuring pattern that matches the rest of the list. &body
is identical to &rest but declares that what is being matched is a list of forms that
constitutes the body of form. This next element must be the last unless a lambda list
keyword follows it.

&aux

The remaining elements are not destructuring patterns at all, but are auxiliary variable
bindings.

& whole

The next element is a destructuring pattern that matches the entire form in a macro, or
the entire subexpression at inner levels.

3—44 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

&key

Each following element is one of
a variable,

or a list of a variable, an optional initialization form, and an optional supplied-p
variable.

or a list of a list of a keyword and a destructuring pattern, an optional initialization
form, and an optional supplied-p variable.

The rest of the list being destructured is taken to be alternating keywords and values and
is taken apart appropriately.

&allow-other-keys

Stands by itself.

3.4.5 Destructuring Lambda Lists
A destructuring lambda list is used by destructuring-bind.
Destructuring lambda lists are closely related to macro lambda lists; see Section 3.4.4 (Macro
Lambda Lists). A destructuring lambda list can contain all of the lambda list keywords listed for

macro lambda lists except for &environment, and supports destructuring in the same way. Inner
lambda lists nested within a macro lambda list have the syntax of destructuring lambda lists.

A destructuring lambda list has the following syntax:
reqvars::={var | |lambda-list}*
optvars::=[&optional {var | ({var | |lambda-list} [init-form [supplied-p-parameter]])}*]
restvar::=[{&rest | &body} {var | |lambda-list}]

keyvars::=[tkey {var | ({var | (keyword-name {var | |lambda-list})} [init-form [supplied-p-parameter]])}*
[#allow-other-keys]]

auxvars::=[&aux {var | (var [init-form])}*]
envvar::=[&environment var]
wholevar ::= [&whole var]

lambda-list::=(| wholevar |reqvars |optvars |restvar | keyvars |auxvars) |

(lwholevar |reqvars |optvars . var)

Evaluation and Compilation 3-45

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.4.6 Boa Lambda Lists

A boa lambda list is a lambda list that is syntactically like an ordinary lambda list, but that is
processed in “by order of argument” style.

A boa lambda list is used only in a defstruct form, when explicitly specifying the lambda list of a
constructor function (sometimes called a “boa constructor”).

The &optional, &rest, &aux, &key, and &allow-other-keys lambda list keywords are recognized
in a boa lambda list. The way these lambda list keywords differ from their use in an ordinary
lambda list follows.

Consider this example, which describes how destruct processes its :constructor option.

(:constructor create-foo
(a &optional b (c ’sea) &rest d &aux e (f ’eff)))

This defines create-foo to be a constructor of one or more arguments. The first argument is

used to initialize the a slot. The second argument is used to initialize the b slot. If there isn’t

any second argument, then the default value given in the body of the defstruct (if given) is used
instead. The third argument is used to initialize the c slot. If there isn’t any third argument, then
the symbol sea is used instead. Any arguments following the third argument are collected into a
list and used to initialize the d slot. If there are three or fewer arguments, then nil is placed in
the d slot. The e slot is not initialized; its initial value is implementation-defined. Finally, the £
slot is initialized to contain the symbol eff. &key and &allow-other-keys arguments default in a
manner similar to that of &optional arguments: if no default is supplied in the lambda list then
the default value given in the body of the defstruct (if given) is used instead. For example:

(defstruct (foo (:constructor CREATE-FOO (a &optional b (c ’sea)
&key (d 2)
&aux e (f ’eff))))
(@a1) (2 (c3) (d4) (e B (f6))

(create-foo 10) — #S(FO0 A 10 B 2 C SEA D 2 E implemention-dependent F EFF)
(create-foo 10 ’bee ’see :d ’dee)
— #S(FOO A 10 B BEE C SEE D DEE E implemention-dependent F EFF)

If keyword arguments of the form ((key var) [default [svar]]) are specified, the slot name is
matched with var (not key).

The actions taken in the b and e cases were carefully chosen to allow the user to specify all possi-
ble behaviors. The &aux variables can be used to completely override the default initializations
given in the body.

If no default value is supplied for an auz variable variable, the consequences are undefined if an
attempt is later made to read the corresponding slot’s value before a value is explicitly assigned.
If such a slot has a :type option specified, this suppressed initialization does not imply a type

mismatch situation; the declared type is only required to apply when the slot is finally assigned.

3-46 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

With this definition, the following can be written:
(create-foo 1 2)
instead of
(make-foo :a 1 :b 2)
and create-foo provides defaulting different from that of make-foo.

Additional arguments that do not correspond to slot names but are merely present to supply
values used in subsequent initialization computations are allowed. For example, in the definition

(defstruct (frob (:constructor create-frob
(a &key (b 3 have-b) (c-token ’c)
(c (1ist c-token (if have-b 7 2))))))
abc)

the c-token argument is used merely to supply a value used in the initialization of the c slot. The
supplied-p parameters associated with optional parameters and keyword parameters might also be
used this way.

3.4.7 Defsetf Lambda Lists
A defsetf lambda list is used by defsetf.
A defsetf lambda list has the following syntax:
lambda-list::=({var}*
[&optional {var | (var [init-form [supplied-p-parameter]])}*]
[&rest var]

ekey {var | ({var | (keyword-name var)} [init-form [supplied-p-parameter]])}*
[£allow-other-keys]]

[&environment var]
A defsetf lambda list can contain the lambda list keywords shown in Figure 3-19.

&allow-other-keys &key &rest
&environment &optional

Figure 3-19. Lambda List Keywords used by Defsetf Lambda Lists

A defsetf lambda list differs from an ordinary lambda list only in that it does not permit the use
of &aux, and that it permits use of &environment, which introduces an environment parameter.

Evaluation and Compilation 3-47

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.4.8 Deftype Lambda Lists

A deftype lambda list is used by deftype.

A deftype lambda list has the same syntax as a macro lambda list, and can therefore contain the
lambda list keywords as a macro lambda list.

A deftype lambda list differs from a macro lambda list only in that if no init-form is supplied
for an optional parameter or keyword parameter in the lambda-list, the default value for that
parameter is the symbol * (rather than nil).

3.4.9 Define-modify-macro Lambda Lists

3.4.10

A define-modify-macro lambda list is used by define-modify-macro.

A define-modify-macro lambda list can contain the lambda list keywords shown in Figure 3-20.

| &optional &rest

Figure 3—20. Lambda List Keywords used by Define-modify-macro Lambda Lists

Define-modify-macro lambda lists are similar to ordinary lambda lists, but do not support key-
word arguments. define-modify-macro has no need match keyword arguments, and a rest param-
eter is sufficient. Auz variables are also not supported, since define-modify-macro has no body
forms which could refer to such bindings. See the macro define-modify-macro.

Define-method-combination Arguments Lambda Lists

A define-method-combination arguments lambda list is used by the :arguments option to
define-method-combination.

A define-method-combination arguments lambda list can contain the lambda list keywords shown
in Figure 3-21.

&allow-other-keys &key &rest
&aux &optional &whole

Figure 3—21. Lambda List Keywords used by Define-method-combination arguments Lambda Lists

Define-method-combination arguments lambda lists are similar to ordinary lambda lists, but also
permit the use of &whole.

3-48 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.4.11 Syntactic Interaction of Documentation Strings and
Declarations

In a number of situations, a documentation string can appear amidst a series of declare ezpres-
stons prior to a series of forms.

In that case, if a string S appears where a documentation string is permissible and is not followed
by either a declare ezpression or a form then S is taken to be a form; otherwise, S is taken as

a documentation string. The consequences are unspecified if more than one such documentation
string is present.

Evaluation and Compilation 3-49

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.5 Error Checking in Function Calls

3.5.1 Argument Mismatch Detection

3.5.1.1 Safe and Unsafe Calls

A call is a safe call if each of the following is either safe code or system code (other than system
code that results from macro expansion of programmer code):

the call.
the definition of the function being called.

the point of functional evaluation

The following special cases require some elaboration:

If the function being called is a generic function, it is considered safe if all of the follow-
ing are safe code or system code:

— its definition (if it was defined explicitly).
— the method definitions for all applicable methods.

— the definition of its method combination.

For the form (coerce x ’function), where x is a lambda expression, the value of the
optimize quality safety in the global environment at the time the coerce is executed
applies to the resulting function.

For a call to the function ensure-generic-function, the value of the optimize quality
safety in the environment object passed as the :environment argument applies to the
resulting generic function.

For a call to compile with a lambda expression as the argument, the value of the optimize
quality safety in the global environment at the time compile is called applies to the

resulting compiled function.

For a call to compile with only one argument, if the original definition of the function
was safe, then the resulting compiled function must also be safe.

A call to a method by call-next-method must be considered safe if each of the following
is safe code or system code:

— the definition of the generic function (if it was defined explicitly).

3-50 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

— the method definitions for all applicable methods.
— the definition of the method combination.

— the point of entry into the body of the method defining form, where the binding
of call-next-method is established.

— the point of functional evaluation of the name call-next-method.

An unsafe call is a call that is not a safe call.

The informal intent is that the programmer can rely on a call to be safe, even when system code

is involved, if all reasonable steps have been taken to ensure that the call is safe. For example, if
a programmer calls mapcar from safe code and supplies a function that was compiled as safe, the
implementation is required to ensure that mapcar makes a safe call as well.

3.5.1.1.1 Error Detection Time in Safe Calls

3.5.1.2

3.5.1.3

3.5.1.4

If an error is signaled in a safe call, the exact point of the signal is implementation-dependent.
In particular, it might be signaled at compile time or at run time, and if signaled at run time, it
might be prior to, during, or after executing the call. However, it is always prior to the execution
of the body of the function being called.

Too Few Arguments

It is not permitted to supply too few arguments to a function. Too few arguments means fewer
arguments than the number of required parameters for the function.

If this situation occurs in a safe call, an error of type program-error must be signaled; and in an
unsafe call the situation has undefined consequences.
Too Many Arguments

It is not permitted to supply too many arguments to a function. Too many arguments means
more arguments than the number of required parameters plus the number of optional parame-
ters; however, if the function uses &rest or &key, it is not possible for it to receive too many
arguments.

If this situation occurs in a safe call, an error of type program-error must be signaled; and in an
unsafe call the situation has undefined consequences.

Unrecognized Keyword Arguments

It is not permitted to supply a keyword argument to a function using a name that is not recog-
nized by that function unless keyword argument checking is suppressed as described in Section
3.4.1.4.1 (Suppressing Keyword Argument Checking).

If this situation occurs in a safe call, an error of type program-error must be signaled; and in an
unsafe call the situation has undefined consequences.

Evaluation and Compilation 3-51

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.5.1.5

3.5.1.6

3.5.1.7

3.5.1.8

Invalid Keyword Arguments

It is not permitted to supply a keyword argument to a function using a name that is not a
symbol.

If this situation occurs in a safe call, an error of type program-error must be signaled unless
keyword argument checking is suppressed as described in Section 3.4.1.4.1 (Suppressing Keyword
Argument Checking); and in an unsafe call the situation has undefined consequences.

Odd Number of Keyword Arguments

An odd number of arguments must not be supplied for the keyword parameters.

If this situation occurs in a safe call, an error of type program-error must be signaled unless
keyword argument checking is suppressed as described in Section 3.4.1.4.1 (Suppressing Keyword
Argument Checking); and in an unsafe call the situation has undefined consequences.

Destructuring Mismatch

When matching a destructuring lambda list against a form, the pattern and the form must have
compatible tree structure, as described in Section 3.4.4 (Macro Lambda Lists).

Otherwise, in a safe call, an error of type program-error must be signaled; and in an unsafe call
the situation has undefined consequences.

Errors When Calling a Next Method

If call-next-method is called with arguments, the ordered set of applicable methods for the
changed set of arguments for call-next-method must be the same as the ordered set of applicable
methods for the original arguments to the generic function, or else an error should be signaled.

The comparison between the set of methods applicable to the new arguments and the set appli-
cable to the original arguments is insensitive to order differences among methods with the same
specializers.

If call-next-method is called with arguments that specify a different ordered set of applicable
methods and there is no next method available, the test for different methods and the associated
error signaling (when present) takes precedence over calling no-next-method.

3-52 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.6 Traversal Rules and Side Effects

The consequences are undefined when code executed during an object-traversing operation de-
structively modifies the object in a way that might affect the ongoing traversal operation. In
particular, the following rules apply.

List traversal

For list traversal operations, the cdr chain of the list is not allowed to be destructively
modified.

Array traversal

For array traversal operations, the array is not allowed to be adjusted and its fill pointer,
if any, is not allowed to be changed.

Hash-table traversal

For hash table traversal operations, new elements may not be added or deleted except
that the element corresponding to the current hash key may be changed or removed.

Package traversal

For package traversal operations (e.g., do-symbols), new symbols may not be interned in
or uninterned from the package being traversed or any package that it uses except that
the current symbol may be uninterned from the package being traversed.

Evaluation and Compilation 3-53

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.7 Destructive Operations

3.7.1 Modification of Literal Objects

The consequences are undefined if literal objects are destructively modified. For this purpose, the
following operations are considered destructive:

random-state
Using it as an argument to the function random.
cons

Changing the cary or cdry of the cons, or performing a destructive operation on an object
which is either the cars or the cdry of the cons.

array

Storing a new value into some element of the array, or performing a destructive operation
on an object that is already such an element.

Changing the fill pointer, dimensions, or displacement of the array (regardless of whether
the array is actually adjustable).

Performing a destructive operation on another array that is displaced to the array or
that otherwise shares its contents with the array.

hash-table
Performing a destructive operation on any key.

Storing a new waluey for any key, or performing a destructive operation on any object
that is such a value.

Adding or removing entries from the hash table.

structure-object

Storing a new value into any slot, or performing a destructive operation on an object that
is the value of some slot.

standard-object

Storing a new value into any slot, or performing a destructive operation on an object that
is the value of some slot.

Changing the class of the object (e.g., using the function change-class).

3-54 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

readtable
Altering the readtable case.
Altering the syntax type of any character in this readtable.

Altering the reader macro function associated with any character in the readtable, or
altering the reader macro functions associated with characters defined as dispatching
macro characters in the readtable.

stream

Performing I/O operations on the stream, or closing the stream.

All other standardized types

[This category includes, for example, character, condition, function,
method-combination, method, number, package, pathname, restart, and symbol.]

There are no standardized destructive operations defined on objects of these types.

3.7.2 Transfer of Control during a Destructive Operation

Should a transfer of control out of a destructive operation occur (e.g., due to an error) the state
of the object being modified is implementation-dependent.

3.7.2.1 Examples of Transfer of Control during a Destructive Operation

The following examples illustrate some of the many ways in which the implementation-dependent
nature of the modification can manifest itself.

(let ((a (1ist 21 4 37 6 ’five)))
(ignore-errors (sort a #°<))
a)

— (12346 7 FIVE)

2% (21437 6 FIVE)

Z @

(prog foo ((a (list 1 234567 89 10)))
(sort a #’(lambda (x y) (if (zerop (random 5)) (return-from foo a) (> x y)))))
— (123456789 10)
2 (345627809101)
%L 1243

Evaluation and Compilation 3-55

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

lambda Symbol

Syntax:
lambda lambda-list [{declaration}* | documentation] {form}*

Arguments:
lambda-list—an ordinary lambda list.

declaration—a declare expression; not evaluated.
documentation—a string; not evaluated.

form—a form.

Description:

A lambda expression is a list that can be used in place of a function name in certain contexts to
denote a function by directly describing its behavior rather than indirectly by referring to the
name of an established function.

Documentation is attached to the denoted function (if any is actually created) as a documentation
string.

See Also:

function, documentation, Section 3.1.3 (Lambda Expressions), Section 3.1.2.1.2.4 (Lambda
Forms), Section 3.4.11 (Syntactic Interaction of Documentation Strings and Declarations)

Notes:
The lambda form
((lambda lambda-list . body) . arguments)
is semantically equivalent to the function form
(funcall #’(lambda lambda-list . body) . arguments)
lambda Macro
Syntax:

lambda lambda-list | {declaration}* | documentation] {form}* — function

Arguments and Values:
lambda-list—an ordinary lambda list.

3-56 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

declaration—a declare ezpression; not evaluated.
documentation—a string; not evaluated.

form—a form.

function—a function.

Description:

Provides a shorthand notation for a function special form involving a lambda expression such
that:

(lambda lambda-list [{declaration}* | documentation] {form}*)
= (function (lambda lambda-list [{declaration}* | documentation] {form}*))
= # (lambda lambda-list [{declaration}* | documentation] {form}*)

Examples:

(funcall (lambda (x) (+ x 3)) 4) — 7

See Also:
lambda (symbol)

Notes:
This macro could be implemented by:
(defmacro lambda (&whole form &rest bvl-decls-and-body)
(declare (ignore bvl-decls-and-body))
‘#’,form)
compile Function
Syntax:

compile name &optional definition — function, warnings-p, failure-p

Arguments and Values:
name—a function name, or nil.

definition—a lambda expression or a function. The default is the function definition of name if
it names a function, or the macro function of name if it names a macro. The consequences are
undefined if no definition is supplied when the name is nil.

function—the function-name, or a compiled function.

Evaluation and Compilation 3-57

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

compile

warnings-p—a generalized boolean.
failure-p—a generalized boolean.

Description:
Compiles an interpreted function.

compile produces a compiled function from definition. If the definition is a lambda expression, it
is coerced to a function. If the definition is already a compiled function, compile either produces
that function itself (i.e., is an identity operation) or an equivalent function.

If the name is nil, the resulting compiled function is returned directly as the primary value.

If a non-nil name is given, then the resulting compiled function replaces the existing function
definition of name and the name is returned as the primary value; if name is a symbol that names
a macro, its macro function is updated and the name is returned as the primary value.

Literal objects appearing in code processed by the compile function are neither copied nor
coalesced. The code resulting from the execution of compile references objects that are eql to the
corresponding objects in the source code.

compile is permitted, but not required, to establish a handler for conditions of type error. For
example, the handler might issue a warning and restart compilation from some implementation-
dependent point in order to let the compilation proceed without manual intervention.

The secondary value, warnings-p, is false if no conditions of type error or warning were detected
by the compiler, and true otherwise.

The tertiary value, failure-p, is false if no conditions of type error or warning (other than
style-warning) were detected by the compiler, and true otherwise.

Examples:

(defun foo () "bar") — FOO
(compiled-function-p #’foo) — implementation-dependent
(compile ’foo) — F00
(compiled-function-p #’foo) — true
(setf (symbol-function ’foo)
(compile nil ’(lambda () "replaced"))) — #<Compiled-Function>
(foo) — "replaced"

Affected By:

error-output, *macroexpand-hook*.
The presence of macro definitions and proclamations.

Exceptional Situations:

The consequences are undefined if the lexical environment surrounding the function to be com-
piled contains any bindings other than those for macros, symbol macros, or declarations.

3—-58 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

For information about errors detected during the compilation process, see Section 3.2.5 (Excep-
tional Situations in the Compiler).

See Also:

compile-file

eval Function

Syntax:

eval form — {result}*
Arguments and Values:
form—a form.
results—the values yielded by the evaluation of form.

Description:
Evaluates form in the current dynamic environment and the null lexical environment.

eval is a user interface to the evaluator.
The evaluator expands macro calls as if through the use of macroexpand-1.

Constants appearing in code processed by eval are not copied nor coalesced. The code resulting
from the execution of eval references objects that are eql to the corresponding objects in the
source code.

Examples:

(setq form ’(1+ a) a 999) — 999

(eval form) — 1000

(eval ’form) — (1+ A)

(let ((a ’(this would break if eval used local value))) (eval form))
— 1000

See Also:
macroexpand-1, Section 3.1.2 (The Evaluation Model)

Notes:

To obtain the current dynamic value of a symbol, use of symbol-value is equivalent (and usually
preferable) to use of eval.

Note that an eval form involves two levels of evaluation for its argument. First, form is evaluated
by the normal argument evaluation mechanism as would occur with any call. The object that

Evaluation and Compilation 3-59

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

results from this normal argument evaluation becomes the value of the form parameter, and is
then evaluated as part of the eval form. For example:

(eval (list ’cdr (car ’((quote (a . b)) ¢)))) — b

The argument form (list ’cdr (car ’((quote (a . b)) c))) is evaluated in the usual

way to produce the argument (cdr (quote (a . b))); eval then evaluates its argument,

(cdr (quote (a . b))), to produce b. Since a single evaluation already occurs for any argu-
ment form in any function form, eval is sometimes said to perform “an extra level of evaluation.”

eval-when Special Operator

Syntax:

eval-when ({situation}*) {form}* — {result}*

Arguments and Values:

situation—One of the symbols :compile-toplevel, :load-toplevel, :execute, compile, load, or
eval.

The use of eval, compile, and load is deprecated.
forms—an implicit progn.
results—the values of the forms if they are executed, or nil if they are not.

Description:
The body of an eval-when form is processed as an implicit progn, but only in the situations listed.

The use of the situations :compile-toplevel (or compile) and :load-toplevel (or load) controls
whether and when evaluation occurs when eval-when appears as a top level form in code pro-
cessed by compile-file. See Section 3.2.3 (File Compilation).

The use of the situation :execute (or eval) controls whether evaluation occurs for other eval-when
forms; that is, those that are not top level forms, or those in code processed by eval or compile.
If the :execute situation is specified in such a form, then the body forms are processed as an
implicit progn; otherwise, the eval-when form returns nil.

eval-when normally appears as a top level form, but it is meaningful for it to appear as a non-
top-level form. However, the compile-time side effects described in Section 3.2 (Compilation) only
take place when eval-when appears as a top level form.

Examples:

One example of the use of eval-when is that for the compiler to be able to read a file properly
when it uses user-defined reader macros, it is necessary to write

3-60 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

eval-when

(eval-when (:compile-toplevel :load-toplevel :execute)
(set-macro-character #\$ #’(lambda (stream char)
(declare (ignore char))
(list ’dollar (read stream))))) — T

This causes the call to set-macro-character to be executed in the compiler’s execution environ-
ment, thereby modifying its reader syntax table.

HHH The EVAL-WHEN in this case is not at toplevel, so only the :EXECUTE
N keyword is considered. At compile time, this has no effect.
HH At load time (if the LET is at toplevel), or at execution time
HHH (if the LET is embedded in some other form which does not execute
HHH until later) this sets (SYMBOL-FUNCTION ’F001) to a function which
HHH returns 1.
(et ((x 1))

(eval-when (:execute :load-toplevel :compile-toplevel)

(setf (symbol-function ’fool) #’(lambda () x))))

HHH If this expression occurs at the toplevel of a file to be compiled,
HHH it has BOTH a compile time AND a load-time effect of setting
HHH (SYMBOL-FUNCTION ’F002) to a function which returns 2.
(eval-when (:execute :load-toplevel :compile-toplevel)
(Qet ((x 2))
(eval-when (:execute :load-toplevel :compile-toplevel)
(setf (symbol-function ’foo02) #’(lambda () x)))))

HHH If this expression occurs at the toplevel of a file to be compiled,
HHH it has BOTH a compile time AND a load-time effect of setting the
HHH function cell of FO0O3 to a function which returns 3.
(eval-when (:execute :load-toplevel :compile-toplevel)

(setf (symbol-function ’foo3) #’(lambda () 3)))

;35 #4: This always does nothing. It simply returns NIL.
(eval-when (:compile-toplevel)
(eval-when (:compile-toplevel)
(print ’foo4)))

HHN If this form occurs at toplevel of a file to be compiled, FO05 is
HHH printed at compile time. If this form occurs in a non-top-level
HH position, nothing is printed at compile time. Regardless of context,
HHH nothing is ever printed at load time or execution time.
(eval-when (:compile-toplevel)
(eval-when (:execute)
(print ’fo05)))

HHNH If this form occurs at toplevel of a file to be compiled, FO06 is

Evaluation and Compilation 3—-61

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

eval-when

N printed at compile time. If this form occurs in a non-top-level
HHH position, nothing is printed at compile time. Regardless of context,
HHH nothing is ever printed at load time or execution time.
(eval-when (:execute :load-toplevel)
(eval-when (:compile-toplevel)
(print ’fo06)))

See Also:
compile-file, Section 3.2 (Compilation)

Notes:

The following effects are logical consequences of the definition of eval-when:
e Execution of a single eval-when expression executes the body code at most once.

e Macros intended for use in top level forms should be written so that side-effects are
done by the forms in the macro expansion. The macro-expander itself should not do the
side-effects.

For example:
Wrong:

(defmacro foo ()
(really-foo)
‘(really-foo))

Right:

(defmacro foo ()
‘(eval-when (:compile-toplevel :execute :load-toplevel) (really-foo)))

Adherence to this convention means that such macros behave intuitively when appearing
as non-top-level forms.

e Placing a variable binding around an eval-when reliably captures the binding because the
compile-time-too mode cannot occur (i.e., introducing a variable binding means that the
eval-when is not a top level form). For example,

(let ((x 3))
(eval-when (:execute :load-toplevel :compile-toplevel) (print x)))

prints 3 at execution (i.e., load) time, and does not print anything at compile time.
This is important so that expansions of defun and defmacro can be done in terms of
eval-when and can correctly capture the lexical environment.

(defun bar (x) (defun foo () (+ x 3)))

3-62 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

might expand into

(defun bar (x)
(progn (eval-when (:compile-toplevel)
(compiler: :notice-function-definition ’foo ’(x)))
(eval-when (:execute :load-toplevel)
(setf (symbol-function ’foo) #’(lambda () (+ x 3))))))

which would be treated by the above rules the same as

(defun bar (x)
(setf (symbol-function ’foo) #’(lambda () (+ x 3))))

when the definition of bar is not a top level form.

load-time-value Special Operator

Syntax:

load-time-value form &optional read-only-p — object

Arguments and Values:
form—a form; evaluated as described below.

read-only-p—a boolean; not evaluated.

object—the primary value resulting from evaluating form.

Description:

load-time-value provides a mechanism for delaying evaluation of form until the expression is in
the run-time environment; see Section 3.2 (Compilation).

Read-only-p designates whether the result can be considered a constant object. If t, the result is a

read-only quantity that can, if appropriate to the implementation, be copied into read-only space

and/or coalesced with similar constant objects from other programs. If nil (the default), the result
must be neither copied nor coalesced; it must be considered to be potentially modifiable data.

If a load-time-value expression is processed by compile-file, the compiler performs its normal
semantic processing (such as macro expansion and translation into machine code) on form, but
arranges for the execution of form to occur at load time in a null lezical environment, with the
result of this evaluation then being treated as a literal object at run time. It is guaranteed that
the evaluation of form will take place only once when the file is loaded, but the order of evaluation
with respect to the evaluation of top level forms in the file is implementation-dependent.

Evaluation and Compilation 3-63

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

load-time-value

If a load-time-value expression appears within a function compiled with compile, the form is
evaluated at compile time in a null lexical environment. The result of this compile-time evalua-
tion is treated as a literal object in the compiled code.

If a load-time-value expression is processed by eval, form is evaluated in a null lexical environ-
ment, and one value is returned. Implementations that implicitly compile (or partially compile)
expressions processed by eval might evaluate form only once, at the time this compilation is
performed.

If the same list (load-time-value form) is evaluated or compiled more than once, it is
implementation-dependent whether form is evaluated only once or is evaluated more than once.
This can happen both when an expression being evaluated or compiled shares substructure, and
when the same form is processed by eval or compile multiple times. Since a load-time-value
expression can be referenced in more than one place and can be evaluated multiple times by
eval, it is implementation-dependent whether each execution returns a fresh object or returns the
same object as some other execution. Users must use caution when destructively modifying the
resulting object.

If two lists (load-time-value form) that are the same under equal but are not identical are
evaluated or compiled, their values always come from distinct evaluations of form. Their values
may not be coalesced unless read-only-p is t.

Examples:

;5; The function INCR1 always returns the same value, even in different images.
;5; The function INCR2 always returns the same value in a given image,

;55 but the value it returns might vary from image to image.

(defun incrl (x) (+ x #.(random 17)))

(defun incr2 (x) (+ x (load-time-value (random 17))))

;55 The function FOO1-REF references the nth element of the first of
;55 the *FOO-ARRAYS* that is available at load time. It is permissible for
;5;; that array to be modified (e.g., by SET-FOO1-REF); FOO1-REF will see the
;5> updated values.
(defvar *foo-arrays* (list (make-array 7) (make-array 8)))
(defun fool-ref (n) (aref (load-time-value (first *my-arrays*) nil) n))
(defun set-fool-ref (n val)

(setf (aref (load-time-value (first *my-arrays*) nil) n) val))

;55 The function BAR1-REF references the nth element of the first of

;55 the *BAR-ARRAYS* that is available at load time. The programmer has
;35 promised that the array will be treated as read-only, so the system
;53 can copy or coalesce the array.

(defvar *bar-arrays* (list (make-array 7) (make-array 8)))

(defun baril-ref (n) (aref (load-time-value (first *my-arrays*) t) n))

3-64 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

;35 This use of LOAD-TIME-VALUE permits the indicated vector to be coalesced
;55 even though NIL was specified, because the object was already read-only
;55 when it was written as a literal vector rather than created by a constructor.
;53 User programs must treat the vector v as read-only.
(defun baz-ref (n)
(let ((v (load-time-value #(A B C) nil)))
(values (svref v n) v)))

;55 This use of LOAD-TIME-VALUE permits the indicated vector to be coalesced
;55 even though NIL was specified in the outer situation because T was specified
;33 in the inner situation. User programs must treat the vector v as read-only.
(defun baz-ref (n)
(let ((v (load-time-value (load-time-value (vector 1 2 3) t) nil)))
(values (svref v n) v)))

See Also:

compile-file, compile, eval, Section 3.2.2.2 (Minimal Compilation), Section 3.2 (Compilation)

Notes:

load-time-value must appear outside of quoted structure in a “for evaluation” position. In
situations which would appear to call for use of load-time-value within a quoted structure, the
backquote reader macro is probably called for; see Section 2.4.6 (Backquote).

Specifying nil for read-only-p is not a way to force an object to become modifiable if it has already
been made read-only. It is only a way to say that, for an object that is modifiable, this operation
is not intended to make that object read-only.

quote Special Operator

Syntax:

quote object — object

Arguments and Values:
object—an object; not evaluated.

Description:
The quote special operator just returns object.

The consequences are undefined if literal objects (including quoted objects) are destructively
modified.

Evaluation and Compilation 3—-65

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:

(setga 1) — 1

(quote (setq a 3)) — (SETQ A 3)

a — 1

’a — A

’’a — (QUOTE A)

’22a — (QUOTE (QUOTE A))

(setq a 43) — 43

(list a (cons a 3)) — (43 (43 . 3))
(1ist (quote a) (quote (cons a 3))) — (A (CONS A 3))
1 —1

1T — 1

"foo" — "foo"

’"foo" — "foo"

(car ’(a b)) — A

>(car ’(a b)) — (CAR (QUOTE (A B)))
#(car ’(a b)) — #(CAR (QUOTE (A B)))
>#(car ’(a b)) — #(CAR (QUOTE (A B)))

See Also:
Section 3.1 (Evaluation), Section 2.4.3 (Single-Quote), Section 3.2.1 (Compiler Terminology)

Notes:
The textual notation ’object is equivalent to (quote object); see Section 3.2.1 (Compiler Termi-
nology).
Some objects, called self-evaluating objects, do not require quotation by quote. However, symbols
and lists are used to represent parts of programs, and so would not be useable as constant data
in a program without quote. Since quote suppresses the evaluation of these objects, they become
data rather than program.
compller-macro-functlon Accessor
Syntax:

compiler-macro-function name &optional environment — function

(setf (compiler-macro-function name &optional environment) new-function)

Arguments and Values:
name—a function name.

3-66 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

environment—an environment object.

function, new-function—a compiler macro function, or nil.

Description:
Accesses the compiler macro function named name, if any, in the environment.

A value of nil denotes the absence of a compiler macro function named name.

Exceptional Situations:

The consequences are undefined if environment is non-nil in a use of setf of
compiler-macro-function.

See Also:

define-compiler-macro, Section 3.2.2.1 (Compiler Macros)

define-compiler-macro Macro

Syntax:

define-compiler-macro name lambda-list [{declaration}* | documentation] {form}*
— name

Arguments and Values:
name—a, function name.

lambda-list—a macro lambda list.

declaration—a declare expression; not evaluated.
documentation—a string; not evaluated.

form—a form.

Description:
This is the normal mechanism for defining a compiler macro function. Its manner of definition is
the same as for defmacro; the only differences are:

e The name can be a function name naming any function or macro.

e The expander function is installed as a compiler macro function for the name, rather than
as a macro function.

Evaluation and Compilation 3—-67

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

define-compiler-macro

e The &whole argument is bound to the form argument that is passed to the compiler
macro function. The remaining lambda-list parameters are specified as if this form
contained the function name in the car and the actual arguments in the cdr, but if the
car of the actual form is the symbol funcall, then the destructuring of the arguments is
actually performed using its cddr instead.

e Documentation is attached as a documentation string to name (as kind compiler-macro)
and to the compiler macro function.

e Unlike an ordinary macro, a compiler macro can decline to provide an expansion merely
by returning a form that is the same as the original (which can be obtained by using
&whole).

Examples:

(defun square (x) (expt x 2)) — SQUARE
(define-compiler-macro square (&whole form arg)
(if (atom arg)
‘(expt ,arg 2)
(case (car arg)
(square (if (= (length arg) 2)
‘(expt ,(nth 1 arg) 4)
form))
(expt (if (= (length arg) 3)
(if (numberp (nth 2 arg))
‘(expt ,(nth 1 arg) ,(x 2 (nth 2 arg)))
‘(expt ,(nth 1 arg) (x 2 ,(nth 2 arg))))
form))
(otherwise ‘(expt ,arg 2))))) — SQUARE
(square (square 3)) — 81
(macroexpand ’ (square x)) — (SQUARE X), false
(funcall (compiler-macro-function ’square) ’(square x) nil)
— (EXPT X 2)
(funcall (compiler-macro-function ’square) ’(square (square x)) nil)
— (EXPT X 4)
(funcall (compiler-macro-function ’square) ’(funcall #’square x) nil)
— (EXPT X 2)

(defun distance-positional (x1 y1 x2 y2)
(sqrt (+ (expt (- x2 x1) 2) (expt (- y2 y1) 2))))
— DISTANCE-POSITIONAL
(defun distance (&key (x1 0) (y1 0) (x2 x1) (y2 y1))
(distance-positional x1 yl1 x2 y2))
— DISTANCE
(define-compiler-macro distance (&whole form
&rest key-value-pairs

3-68 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

define-compiler-macro

&key (x1 0 x1-p)
(y1 0 yi-p)
(x2 x1 x2-p)
(y2 y1 y2-p)
&allow-other-keys
&environment env)
(flet ((key (n) (nth (* n 2) key-value-pairs))
(arg (n) (nth (1+ (* n 2)) key-value-pairs))
(simplep (x)
(let ((expanded-x (macroexpand x env)))
(or (constantp expanded-x env)
(symbolp expanded-x)))))
(let ((n (/ (length key-value-pairs) 2)))
(multiple-value-bind (x1s yls x2s y2s others)
(loop for (key) on key-value-pairs by #’cddr
count (eq key ’:x1) into xls
count (eq key ’:yl) into yls
count (eq key ’:x2) into x2s
count (eq key ’:yl1) into y2s
count (not (member key ’(:x1 :x2 :yl :y2)))
into others
finally (return (values x1s yls x2s y2s others)))
(cond ((and (= n 4)
(eq (key 0) :x1)
(eq (key 1) :y1)
(eq (key 2) :x2)
(eq (key 3) :y2))
‘(distance-positional ,x1 ,yl ,x2 ,y2))
((and (if x1-p (and (= x1s 1) (simplep x1)) t)
(if y1-p (and (= y1s 1) (simplep y1)) t)
(if x2-p (and (= x2s 1) (simplep x2)) t)
(if y2-p (and (= y2s 1) (simplep y2)) t)
(zerop others))
‘(distance-positional ,x1 ,yl ,x2 ,y2))
((and (< x1s 2) (< y1ls 2) (< x2s 2) (< y2s 2)
(zerop others))
(let ((temps (loop repeat n collect (gensym))))
‘(let ,(loop for i below n
collect (list (nth i temps) (arg i)))
(distance
,@(loop for i below n
append (list (key i) (nth i temps)))))))
(t form))))))
— DISTANCE
(dolist (form

Evaluation and Compilation 3—-69

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

>((distance :x1 (setq x 7) :x2 (decf x) :yl (decf x) :y2 (decf x))
(distance :x1 (setq x 7) :yl (decf x) :x2 (decf x) :y2 (decf x))
(distance :x1 (setq x 7) :yl (incf x))
(distance :x1 (setq x 7) :yl (incf x) :x1 (incf x))
(distance :x1 al :y1 bl :x2 a2 :y2 b2)
(distance :x1 al :x2 a2 :yl bl :y2 b2)
(distance :x1 al :yl bl :zl cl :x2 a2 :y2 b2 :22 c2)))
(print (funcall (compiler-macro-function ’distance) form nil)))
> (LET ((#:G6558 (SETQ X 7))
> (#:G6559 (DECF X))
> (#:G6560 (DECF X))
> (#:G6561 (DECF X)))
> (DISTANCE :X1 #:G6558 :X2 #:G6559 :Y1 #:G6560 :Y2 #:G6561))
> (DISTANCE-POSITIONAL (SETQ X 7) (DECF X) (DECF X) (DECF X))
> (LET ((#:G6567 (SETQ X 7))
> (#:G6568 (INCF X)))
> (DISTANCE :X1 #:G6567 :Y1 #:G6568))
> (DISTANCE :X1 (SETQ X 7) :Y1 (INCF X) :X1 (INCF X))
> (DISTANCE-POSITIONAL A1 B1 A2 B2)
> (DISTANCE-POSITIONAL A1 B1 A2 B2)
> (DISTANCE :X1 A1 :Y1 B1 :Z1 C1 :X2 A2 :Y2 B2 :Z2 C2)
— NIL

See Also:

Notes:

compiler-macro-function, defmacro, documentation, Section 3.4.11 (Syntactic Interaction of
Documentation Strings and Declarations)

The consequences of writing a compiler macro definition for a function in the COMMON-LISP package
are undefined; it is quite possible that in some implementations such an attempt would override
an equivalent or equally important definition. In general, it is recommended that a programmer
only write compiler macro definitions for functions he or she personally maintains—writing a
compiler macro definition for a function maintained elsewhere is normally considered a violation
of traditional rules of modularity and data abstraction.

defmacro Macro

Syntax:

defmacro name lambda-list [{declaration}* | documentation] {form}*
— name

Arguments and Values:

name—a symbol.

3-70 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

defmacro

lambda-list—a macro lambda list.

declaration—a declare expression; not evaluated.
documentation—a string; not evaluated.

form—a form.

Description:
Defines name as a macro by associating a macro function with that name in the global environ-
ment. The macro function is defined in the same lexical environment in which the defmacro form
appears.

The parameter variables in lambda-list are bound to destructured portions of the macro call.

The expansion function accepts two arguments, a form and an environment. The expansion
function returns a form. The body of the expansion function is specified by forms. Forms are
executed in order. The value of the last form executed is returned as the expansion of the macro.
The body forms of the expansion function (but not the lambda-list) are implicitly enclosed in a
block whose name is name.

The lambda-list conforms to the requirements described in Section 3.4.4 (Macro Lambda Lists).

Documentation is attached as a documentation string to name (as kind function) and to the
macro function.

defmacro can be used to redefine a macro or to replace a function definition with a macro
definition.

Recursive expansion of the form returned must terminate, including the expansion of other
macros which are subforms of other forms returned.

The consequences are undefined if the result of fully macroexpanding a form contains any circular
list structure except in literal objects.

If a defmacro form appears as a top level form, the compiler must store the macro definition

at compile time, so that occurrences of the macro later on in the file can be expanded correctly.
Users must ensure that the body of the macro can be evaluated at compile time if it is referenced
within the file being compiled.

Examples:

(defmacro macl (a b) "Macl multiplies and adds"
‘(+ ,a (x ,b 3))) — MAC1
(mac1l 4 5) — 19
(documentation ’macl ’function) — "Macl multiplies and adds"
(defmacro mac2 (&optional (a 2 b) (¢ 3 d) &rest x) ‘’(,a ,b ,c ,d ,x)) — MAC2
(mac2 6) — (6 T 3 NIL NIL)

Evaluation and Compilation 3-71

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

defmacro

(mac2 6 38) — (6 T3 T (8))
(defmacro mac3 (&whole r a &optional (b 3) &rest x &key c (d a))
“(r ,a ,b ,c ,d ,x)) — MAC3
(mac3 16 :d 8 :c 9 :d 10) — ((MAC3 16 :D8 :C9 :D10) 1698 (:D8 :C9 :D 10))

The stipulation that an embedded destructuring lambda list is permitted only where ordinary
lambda list syntax would permit a parameter name but not a list is made to prevent ambiguity.
For example, the following is not valid:

(defmacro loser (x &optiomnal (a b &rest c) &rest z)

L)

because ordinary lambda list syntax does permit a list following &optional; the list (a b &rest c)
would be interpreted as describing an optional parameter named a whose default value is that of
the form b, with a supplied-p parameter named &rest (not valid), and an extraneous symbol ¢ in
the list (also not valid). An almost correct way to express this is

(defmacro loser (x &optional ((a b &rest c)) &rest z)

L)

The extra set of parentheses removes the ambiguity. However, the definition is now incorrect
because a macro call such as (loser (car pool)) would not provide any argument form for the
lambda list (a b &rest c), and so the default value against which to match the lambda list would
be nil because no explicit default value was specified. The consequences of this are unspecified
since the empty list, nil, does not have forms to satisfy the parameters a and b. The fully correct
definition would be either

(defmacro loser (x &optional ((a b &rest c) ’(nil nil)) &rest z)
.2

or

(defmacro loser (x &optional ((&optional a b &rest c)) &rest z)
.2

These differ slightly: the first requires that if the macro call specifies a explicitly then it must also
specify b explicitly, whereas the second does not have this requirement. For example,

(loser (car pool) ((+ x 1)))
would be a valid call for the second definition but not for the first.

(defmacro dmla (&whole x) ‘’,x)
(macroexpand ’(dmla)) — (QUOTE (DM1A))
(macroexpand ’(dmla a)) is an error.

(defmacro dmlb (&whole x a &optional b) ‘’(,x ,a ,b))

(macroexpand ’(dmlb)) is an error.
(macroexpand ’(dmlb q)) — (QUOTE ((DM1B Q) Q NIL))

3-72 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(macroexpand ’(dmib q r)) — (QUOTE ((DM1B Q R) Q R))
(macroexpand ’(dmlb q r s)) is an error.

(defmacro dm2a (&whole form a b) ‘’(form ,form a ,a b ,b))
(macroexpand ’(dm2a x y)) — (QUOTE (FORM (DM2A X Y) A X B Y))
(dm2a x y) — (FORM (DM2A X Y) A X B Y)

(defmacro dm2b (&whole form a (&whole b (c . d) &optional (e 5))
&body f &environment env)
‘“(,’,form ,,a ,’,b ,’,(macroexpand c env) ,’,d ,’,e ,’,f))
;Note that because backquote is involved, implementations may differ
;slightly in the nature (though not the functionality) of the expansion.
(macroexpand ’(dm2b x1 (((incf x2) x3 x4)) x5 x6))
— (LIST* ’(DM2B X1 (((INCF X2) X3 X4))
X5 X6)
X1
> ((((INCF X2) X3 X4)) (SETQ X2 (+ X2 1)) (X3 X4) 5 (X5 X6))),
T
(let ((x1 5))
(macrolet ((segundo (x) ‘(cadr ,x)))
(dm2b x1 (((segundo x2) x3 x4)) x5 x6)))
— ((DM2B X1 (((SEGUNDO X2) X3 X4)) X5 X6)
5 (((SEGUNDO X2) X3 X4)) (CADR X2) (X3 X4) 5 (X5 X6))

See Also:
define-compiler-macro, destructuring-bind, documentation, macroexpand,
macroexpand-hook, macrolet, macro-function, Section 3.1 (Evaluation), Section 3.2 (Compi-
lation), Section 3.4.11 (Syntactic Interaction of Documentation Strings and Declarations)

macro-function Accessor

Syntax:

macro-function symbol &optional environment — function

(setf (macro-function symbol &optional environment) new-function)

Arguments and Values:
symbol—a symbol.

environment—an environment object.

Evaluation and Compilation 3-73

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

macro-function

function—a macro function or nil.
new-function—a macro function.

Description:
Determines whether symbol has a function definition as a macro in the specified environment.

If so, the macro expansion function, a function of two arguments, is returned. If symbol has
no function definition in the lexical environment environment, or its definition is not a macro,
macro-function returns nil.

It is possible for both macro-function and special-operator-p to return true of symbol. The
macro definition must be available for use by programs that understand only the standard
Common Lisp special forms.

Examples:

(defmacro macfun (x) ’(macro-function ’macfun)) — MACFUN
(not (macro-function ’macfun)) — false

(macrolet ((foo (&environment env)
(if (macro-function ’bar env)
77yes
’’no)))
(1ist (foo)
(macrolet ((bar () :beep))
(f00))))

— (NO YES)

Affected By:

(setf macro-function), defmacro, and macrolet.

Exceptional Situations:
The consequences are undefined if environment is non-nil in a use of setf of macro-function.

See Also:

defmacro, Section 3.1 (Evaluation)

Notes:

setf can be used with macro-function to install a macro as a symbol’s global function definition:
(setf (macro-function symbol) fn)

The value installed must be a function that accepts two arguments, the entire macro call and

3—-74 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

an environment, and computes the expansion for that call. Performing this operation causes
symbol to have only that macro definition as its global function definition; any previous definition,
whether as a macro or as a function, is lost.

macroexpand, macroexpand-1 Function

Syntax:

macroexpand form &optional env — expansion, expanded-p
macroexpand-1 form &optional env — expansion, expanded-p

Arguments and Values:
form—a form.

env—an environment object. The default is nil.
expansion—a form.
expanded-p—a generalized boolean.

Description:
macroexpand and macroexpand-1 expand macros.

If form is a macro form, then macroexpand-1 expands the macro form call once.

macroexpand repeatedly expands form until it is no longer a macro form. In effect,
macroexpand calls macroexpand-1 repeatedly until the secondary value it returns is nil.

If form is a macro form, then the expansion is a macro expansion and expanded-p is true. Other-
wise, the expansion is the given form and expanded-p is false.

Macro expansion is carried out as follows. Once macroexpand-1 has determined that the form

is a macro form, it obtains an appropriate expansion function for the macro or symbol macro.
The value of *macroexpand-hook* is coerced to a function and then called as a function of three
arguments: the expansion function, the form, and the env. The value returned from this call is
taken to be the expansion of the form.

In addition to macro definitions in the global environment, any local macro definitions established
within env by macrolet or symbol-macrolet are considered. If only form is supplied as an argu-
ment, then the environment is effectively null, and only global macro definitions as established by
defmacro are considered. Macro definitions are shadowed by local function definitions.

Examples:

(defmacro alpha (x y) ‘(beta ,x ,y)) — ALPHA

Evaluation and Compilation 3-75

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

macroexpand, macroexpand-1

(defmacro beta (x y) ‘(gamma ,x ,y)) — BETA
(defmacro delta (x y) ‘(gamma ,x ,y)) — EPSILON
(defmacro expand (form &environment env)
(multiple-value-bind (expansion expanded-p)
(macroexpand form env)
‘(values ’,expansion ’,expanded-p))) — EXPAND
(defmacro expand-1 (form &environment env)
(multiple-value-bind (expansion expanded-p)
(macroexpand-1 form env)
‘(values ’,expansion ’,expanded-p))) — EXPAND-1

;; Simple examples involving just the global environment
(macroexpand-1 ’(alpha a b)) — (BETA A B), frue

(expand-1 (alpha a b)) — (BETA A B), true

(macroexpand ’(alpha a b)) — (GAMMA A B), true

(expand (alpha a b)) — (GAMMA A B), true

(macroexpand-1 ’not-a-macro) — NOT-A-MACRO, false

(expand-1 not-a-macro) — NOT-A-MACRO, false

(macroexpand ’(not-a-macro a b)) — (NOT-A-MACRO A B), false
(expand (not-a-macro a b)) — (NOT-A-MACRO A B), fake

;; Examples involving lexical environments
(macrolet ((alpha (x y) ‘(delta ,x ,y)))

(macroexpand-1 ’(alpha a b))) — (BETA A B), {rue
(macrolet ((alpha (x y) ‘(delta ,x ,y)))

(expand-1 (alpha a b))) — (DELTA A B), true
(macrolet ((alpha (x y) ‘(delta ,x ,y)))

(macroexpand ’(alpha a b))) — (GAMMA A B), true
(macrolet ((alpha (x y) ‘(delta ,x ,y)))

(expand (alpha a b))) — (GAMMA A B), frue
(macrolet ((beta (x y) ‘(epsilon ,x ,y)))

(expand (alpha a b))) — (EPSILON A B), true
(let ((x (list 1 2 3)))

(symbol-macrolet ((a (first x)))

(expand a))) — (FIRST X), true

(let ((x (1ist 1 2 3)))

(symbol-macrolet ((a (first x)))

(macroexpand ’a))) — A, false

(symbol-macrolet ((b (alpha x y)))

(expand-1 b)) — (ALPHA X Y), true
(symbol-macrolet ((b (alpha x y)))

(expand b)) — (GAMMA X Y), true
(symbol-macrolet ((b (alpha x y))

3-76 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(a b))
(expand-1 a)) — B, true
(symbol-macrolet ((b (alpha x y))
(a b))
(expand a)) — (GAMMA X Y), true

;; Examples of shadowing behavior
(flet ((beta (x y) (+ x y)))
(expand (alpha a b))) — (BETA A B), true
(macrolet ((alpha (x y) ‘(delta ,x ,y)))
(flet ((alpha (x y) (+ x y)))
(expand (alpha a b)))) — (ALPHA A B), false
(let ((x (list 1 2 3)))
(symbol-macrolet ((a (first x)))
(let ((a x))
(expand a)))) — A, false

Affected By:

defmacro, setf of macro-function, macrolet, symbol-macrolet

See Also:

macroexpand-hook, defmacro, setf of macro-function, macrolet, symbol-macrolet, Section
3.1 (Evaluation)

Notes:
Neither macroexpand nor macroexpand-1 makes any explicit attempt to expand macro forms
that are either subforms of the form or subforms of the expansion. Such expansion might occur
implicitly, however, due to the semantics or implementation of the macro function.
define-symbol-macro Macro
Syntax:
define-symbol-macro symbol expansion
— symbol

Arguments and Values:
symbol—a symbol.

expansion—a. form.

Evaluation and Compilation 3-77

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

define-symbol-macro

Description:
Provides a mechanism for globally affecting the macro expansion of the indicated symbol.

Globally establishes an expansion function for the symbol macro named by symbol. The only
guaranteed property of an expansion function for a symbol macro is that when it is applied to the
form and the environment it returns the correct expansion. (In particular, it is implementation-
dependent whether the expansion is conceptually stored in the expansion function, the environ-
ment, or both.)

Each global reference to symbol (i.e., not shadoweds by a binding for a variable or symbol macro
named by the same symbol) is expanded by the normal macro expansion process; see Section
3.1.2.1.1 (Symbols as Forms). The expansion of a symbol macro is subject to further macro
expansion in the same lexical environment as the symbol macro reference, exactly analogous to
normal macros.

The consequences are unspecified if a special declaration is made for symbol while in the scope of
this definition (i.e., when it is not shadoweds by a binding for a variable or symbol macro named
by the same symbol).

Any use of setq to set the value of the symbol while in the scope of this definition is treated as if
it were a setf. psetq of symbol is treated as if it were a psetf, and multiple-value-setq is treated
as if it were a setf of values.

A binding for a symbol macro can be shadoweds by let or symbol-macrolet.
Examples:

(defvar *things* (list ’alpha ’beta ’gamma)) — *THINGS*

(define-symbol-macro thingl (first *things*)) — THING1
(define-symbol-macro thing2 (second *things*)) — THING2
(define-symbol-macro thing3 (third *things#*)) — THING3

thingl — ALPHA

(setq thingl ’ONE) — ONE

things — (ONE BETA GAMMA)

(multiple-value-setq (thing2 thing3) (values ’two ’three)) — TWO
thing3 — THREE

things — (ONE TWO THREE)

(1ist thing2 (let ((thing2 2)) thing2)) — (TWO 2)

Exceptional Situations:
If symbol is already defined as a global variable, an error of type program-error is signaled.

See Also:

symbol-macrolet, macroexpand

3-78 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

symbol- macrolet Special Operator

Syntax:

symbol-macrolet ({(symbol expansion)}*) {declaration}* {form}*
— {result}*

Arguments and Values:
symbol—a symbol.

expansion—a, form.

declaration—a declare expression; not evaluated.
forms—an implicit progn.

results—the values returned by the forms.

Description:

symbol-macrolet provides a mechanism for affecting the macro expansion environment for
symbols.

symbol-macrolet lexically establishes expansion functions for each of the symbol macros named
by symbols. The only guaranteed property of an expansion function for a symbol macro is that
when it is applied to the form and the environment it returns the correct expansion. (In particu-
lar, it is implementation-dependent whether the expansion is conceptually stored in the expansion
function, the environment, or both.)

Each reference to symbol as a variable within the lexical scope of symbol-macrolet is expanded
by the normal macro expansion process; see Section 3.1.2.1.1 (Symbols as Forms). The expansion
of a symbol macro is subject to further macro expansion in the same lexical environment as the
symbol macro invocation, exactly analogous to normal macros.

Exactly the same declarations are allowed as for let with one exception: symbol-macrolet signals
an error if a special declaration names one of the symbols being defined by symbol-macrolet.

When the forms of the symbol-macrolet form are expanded, any use of setq to set the value of
one of the specified variables is treated as if it were a setf. psetq of a symbol defined as a symbol
macro is treated as if it were a psetf, and multiple-value-setq is treated as if it were a setf of
values.

The use of symbol-macrolet can be shadowed by let. In other words, symbol-macrolet only
substitutes for occurrences of symbol that would be in the scope of a lexical binding of symbol
surrounding the forms.

Evaluation and Compilation 3-79

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:

;53 The following is equivalent to
5 (list ’foo (let ((x ’bar)) x)),
;55 not
5 (list ’foo (let ((’foo ’bar)) ’foo))
(symbol-macrolet ((x ’foo))
(list x (let ((x ’bar)) x)))
— (foo bar)

t
e (foo foo)

(symbol-macrolet ((x ’(foo x)))
(list x))
— ((FOO X))

Exceptional Situations:
If an attempt is made to bind a symbol that is defined as a global variable, an error of type
program-error is signaled.

If declaration contains a special declaration that names one of the symbols being bound by
symbol-macrolet, an error of type program-error is signaled.

See Also:

with-slots, macroexpand

Notes:

The special form symbol-macrolet is the basic mechanism that is used to implement with-slots.

If a symbol-macrolet form is a top level form, the forms are also processed as top level forms.
See Section 3.2.3 (File Compilation).

xmacroexpand-hook: Variable

Value Type:
a designator for a function of three arguments: a macro function, a macro form, and an environ-
ment object.

Initial Value:

a designator for a function that is equivalent to the function funcall, but that might have addi-
tional implementation-dependent side-effects.

3—-80 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Description:

Used as the expansion interface hook by macroexpand-1 to control the macro expansion process.
When a macro form is to be expanded, this function is called with three arguments: the macro
function, the macro form, and the environment in which the macro form is to be expanded. The
environment object has dynamic extent; the consequences are undefined if the environment object
is referred to outside the dynamic extent of the macro expansion function.

Examples:

(defun hook (expander form env)
(format t "Now expanding: “S~%" form)
(funcall expander form env)) — HOOK
(defmacro machook (x y) ‘(/ (+ ,x ,y) 2)) — MACHOOK
(macroexpand ’(machook 1 2)) — (/ (+ 1 2) 2), true
(let ((*macroexpand-hook* #’hook)) (macroexpand ’(machook 1 2)))
> Now expanding (MACHOOK 1 2)
— (/ (+12)2), true

See Also:
macroexpand, macroexpand-1, funcall, Section 3.1 (Evaluation)
Notes:
The net effect of the chosen initial value is to just invoke the macro function, giving it the macro
form and environment as its two arguments.
Users or user programs can assign this variable to customize or trace the macro expansion
mechanism. Note, however, that this variable is a global resource, potentially shared by multiple
programs; as such, if any two programs depend for their correctness on the setting of this variable,
those programs may not be able to run in the same Lisp image. For this reason, it is frequently
best to confine its uses to debugging situations.
Users who put their own function into *macroexpand-hook* should consider saving the previous
value of the hook, and calling that value from their own.
proclaim Function
Syntax:

proclaim declaration-specifier — implementation-dependent

Arguments and Values:

declaration-specifier—a declaration specifier.

Evaluation and Compilation 3—-81

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

proclaim

Description:

Establishes the declaration specified by declaration-specifier in the global environment.

Such a declaration, sometimes called a global declaration or a proclamation, is always in force
unless locally shadowed.

Names of variables and functions within declaration-specifier refer to dynamic variables and global
function definitions, respectively.

Figure 3-22 shows a list of declaration identifiers that can be used with proclaim.

declaration inline optimize type
ftype notinline special

Figure 3—22. Global Declaration Specifiers

An implementation is free to support other (implementation-defined) declaration identifiers as
well.

Examples:

(defun declare-variable-types-globally (type vars)
(proclaim ‘(type ,type ,@vars))
type)

;; Once this form is executed, the dynamic variable *TOLERANCEx*
;; must always contain a float.
(declare-variable-types-globally ’float ’(*tolerancex*))
— FLOAT

See Also:

Notes:

declaim, declare, Section 3.2 (Compilation)

Although the ezxecution of a proclaim form has effects that might affect compilation, the compiler
does not make any attempt to recognize and specially process proclaim forms. A proclamation
such as the following, even if a top level form, does not have any effect until it is executed:

(proclaim ’ (special *x*))
If compile time side effects are desired, eval-when may be useful. For example:

(eval-when (:execute :compile-toplevel :load-toplevel)
(proclaim ’(special *x*)))

In most such cases, however, it is preferrable to use declaim for this purpose.

3—-82 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Since proclaim forms are ordinary function forms, macro forms can expand into them.

declaim Macro

Syntax:

declaim {declaration-specifier}* — implementation-dependent

Arguments and Values:
declaration-specifier—a declaration specifier; not evaluated.

Description:
Establishes the declarations specified by the declaration-specifiers.

If a use of this macro appears as a top level form in a file being processed by the file compiler,
the proclamations are also made at compile-time. As with other defining macros, it is unspecified
whether or not the compile-time side-effects of a declaim persist after the file has been compiled.

Examples:

See Also:

declare, proclaim

declare Symbol

Syntax:

declare {declaration-specifier}*

Arguments:
declaration-specifier—a declaration specifier; not evaluated.

Description:

A declare expression, sometimes called a declaration, can occur only at the beginning of the
bodies of certain forms; that is, it may be preceded only by other declare expressions, or by a
documentation string if the context permits.

A declare expression can occur in a lambda expression or in any of the forms listed in Figure
3-23.

Evaluation and Compilation 3-83

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

declare

defgeneric
define-compiler-macro
define-method-combination
define-setf-expander
defmacro

defmethod

defsetf

deftype

defun
destructuring-bind

do

do*

do-all-symbols

do-external-symbols
do-symbols

dolist

dotimes

flet

handler-case

labels

let

let*

locally

macrolet
multiple-value-bind
pprint-logical-block

prog
prog*

restart-case
symbol-macrolet
with-accessors
with-hash-table-iterator
with-input-from-string
with-open-file
with-open-stream
with-output-to-string
with-package-iterator
with-slots

Figure 3-23. Standardized Forms In Which Declarations Can Occur

A declare expression can only occur where specified by the syntax of these forms. The conse-
quences of attempting to evaluate a declare ezpression are undefined. In situations where such
expressions can appear, explicit checks are made for their presence and they are never actually
evaluated; it is for this reason that they are called “declare expressions” rather than “declare
forms.”

Macro forms cannot expand into declarations; declare expressions must appear as actual subex-
pressions of the form to which they refer.

Figure 3-24 shows a list of declaration identifiers that can be used with declare.

dynamic-extent

ftype
ignorable

ignore
inline
notinline

optimize
special
type

Figure 3—24. Local Declaration Specifiers

An implementation is free to support other (implementation-defined) declaration identifiers as
well.

Examples:

(defun nonsense (k x z)

(foo z x)
(let ((j (foo k x))
(x (x k¥ k)))

;First call to foo
;Second call to foo

(declare (inline foo) (special x z))

(foo x j 2)))

Programming Language—Common Lisp

;Third call to foo

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

In this example, the inline declaration applies only to the third call to foo, but not to the first

or second ones. The special declaration of x causes let to make a dynamic binding for x, and
causes the reference to x in the body of let to be a dynamic reference. The reference to x in the
second call to foo is a local reference to the second parameter of nonsense. The reference to x in
the first call to foo is a local reference, not a special one. The special declaration of z causes the
reference to z in the third call to foo to be a dynamic reference; it does not refer to the parameter
to nonsense named z, because that parameter binding has not been declared to be special. (The
special declaration of z does not appear in the body of defun, but in an inner form, and therefore
does not affect the binding of the parameter.)

Exceptional Situations:
The consequences of trying to use a declare expression as a form to be evaluated are undefined.

See Also:

proclaim, Section 4.2.3 (Type Specifiers), declaration, dynamic-extent, ftype, ignorable,
ignore, inline, notinline, optimize, type

ignore, ignorable Declaration

Syntax:

(ignore {var | (function fn)}*)
(ignorable {var | (function fn)}*)

Arguments:
var—a variable name.

fn-—a function name.

Valid Context:

declaration

Binding Types Affected:

variable, function

Description:

The ignore and ignorable declarations refer to for-value references to variable bindings for the
vars and to function bindings for the fns.

An ignore declaration specifies that for-value references to the indicated bindings will not occur
within the scope of the declaration. Within the scope of such a declaration, it is desirable for a
compiler to issue a warning about the presence of either a for-value reference to any var or fn, or
a special declaration for any var.

Evaluation and Compilation 3—-85

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

An ignorable declaration specifies that for-value references to the indicated bindings might or
might not occur within the scope of the declaration. Within the scope of such a declaration, it is
not desirable for a compiler to issue a warning about the presence or absence of either a for-value
reference to any var or fn, or a special declaration for any var.

When not within the scope of a ignore or ignorable declaration, it is desirable for a compiler
to issue a warning about any var for which there is neither a for-value reference nor a special
declaration, or about any fn for which there is no for-value reference.

Any warning about a “used” or “unused” binding must be of type style-warning, and may not
affect program semantics.

The stream variables established by with-open-file, with-open-stream, with-input-from-string,
and with-output-to-string, and all iteration variables are, by definition, always “used”. Using
(declare (ignore v)), for such a wariable v has unspecified consequences.

See Also:

declare

dynamic-extent Declaration

Syntax:

(dynamic-extent [{var}* | (function fn)*])

Arguments:
var—a variable name.

fn-—a function name.

Valid Context:

declaration

Binding Types Affected:

variable, function

Description:

In some containing form, F, this declaration asserts for each var; (which need not be bound by
F), and for each value v;; that var; takes on, and for each object x;;; that is an otherwise inacces-
sible part of v;; at any time when v;; becomes the value of var;, that just after the execution of

F terminates, x;;1 is either inaccessible (if F established a binding for var;) or still an otherwise
inaccessible part of the current value of var; (if F did not establish a binding for var;). The same
relation holds for each fn;, except that the bindings are in the function namespace.

3-86 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

dynamic-extent

The compiler is permitted to use this information in any way that is appropriate to the imple-
mentation and that does not conflict with the semantics of Common Lisp.

dynamic-extent declarations can be free declarations or bound declarations.

The vars and fns named in a dynamic-extent declaration must not refer to symbol macro or
macro bindings.

Examples:
Since stack allocation of the initial value entails knowing at the object’s creation time that the
object can be stack-allocated, it is not generally useful to make a dynamic-extent declaration
for wariables which have no lexically apparent initial value. For example, it is probably useful to
write:

(defun £ ()
(let ((x (1ist 1 2 3)))
(declare (dynamic-extent x))

o))

This would permit those compilers that wish to do so to stack allocate the list held by the local
variable x. It is permissible, but in practice probably not as useful, to write:

(defun g (x) (declare (dynamic-extent x)) ...)
(defun £ (O (g (list 1 2 3)))

Most compilers would probably not stack allocate the argument to g in £ because it would be
a modularity violation for the compiler to assume facts about g from within £. Only an im-
plementation that was willing to be responsible for recompiling £ if the definition of g changed
incompatibly could legitimately stack allocate the list argument to g in f.

Here is another example:

(declaim (inline g))
(defun g (x) (declare (dynamic-extent x)) ...)
(defun £ (O (g (Qist 1 2 3)))

(defun £ O
(flet ((g (x) (declare (dynamic-extent x)) ...))
(g (list 1 2 3))))

In the previous example, some compilers might determine that optimization was possible and
others might not.

A variant of this is the so-called “stack allocated rest list” that can be achieved (in implementa-
tions supporting the optimization) by:

(defun f (&rest x)

Evaluation and Compilation 3-87

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

dynamic-extent

(declare (dynamic-extent x))

L)

Note that although the initial value of x is not explicit, the £ function is responsible for assem-
bling the list x from the passed arguments, so the £ function can be optimized by the compiler to
construct a stack-allocated list instead of a heap-allocated list in implementations that support
such.

In the following example,

(let ((x (1list ’al ’bl ’cl))
(y (cons ’a2 (cons ’b2 (cons ’c2 nil)))))
(declare (dynamic-extent x y))

L)

The otherwise inaccessible parts of x are three conses, and the otherwise inaccessible parts of y
are three other conses. None of the symbols a1, b1, c1, a2, b2, c¢2, or nil is an otherwise inacces-
sible part of x or y because each is interned and hence accessible by the package (or packages) in
which it is interned. However, if a freshly allocated uninterned symbol had been used, it would
have been an otherwise inaccessible part of the list which contained it.

;; In this example, the implementation is permitted to stack allocate
;; the list that is bound to X.
(let ((x (list 1 2 3)))

(declare (dynamic-extent x))

(print x)
:done)
> (12 3)
— :DONE

;; In this example, the list to be bound to L can be stack-allocated.
(defun zap (x y 2z)
(do ((1 (1list x y z) (cdr 1)))
((null 1))
(declare (dynamic-extent 1))
(prinl (car 1)))) — ZAP
(zap 1 2 3)
> 123
— NIL

;; Some implementations might open-code LIST-ALL-PACKAGES in a way
;; that permits using stack allocation of the list to be bound to L.
(do ((1 (list-all-packages) (cdr 1)))
((null 1))
(declare (dynamic-extent 1))
(let ((name (package-name (car 1))))
(when (string-search "COMMON-LISP" name) (print name))))

3—-88 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

> "COMMON-LISP"
> "COMMON-LISP-USER"
— NIL

;; Some implementations might have the ability to stack allocate
;; rest lists. A declaration such as the following should be a cue
;3 to such implementations that stack-allocation of the rest list
;; would be desirable.
(defun add (&rest x)

(declare (dynamic-extent x))

(apply #’+ x)) — ADD
(add 1 23) — 6

(defun zap (n m)
;; Computes (RANDOM (+ M 1)) at relative speed of roughly O(N).
;; It may be slow, but with a good compiler at least it
;; doesn’t waste much heap storage. :-}
(let ((a (make-array n)))
(declare (dynamic-extent a))
(dotimes (i n)
(declare (dynamic-extent i))
(setf (aref a i) (random (+ i 1))))
(aref a m))) — ZAP
(< (zap 5 3) 3) — true

The following are in error, since the value of x is used outside of its extent:

(length (list (let ((x (list 1 2 3))) ; Imnvalid
(declare (dynamic-extent x))

x)))

(progn (let ((x (list 1 2 3))) ; Invalid
(declare (dynamic-extent x))

x)
nil)
See Also:
declare
Notes:
The most common optimization is to stack allocate the initial value of the objects named by the
vars.

It is permissible for an implementation to simply ignore this declaration.

Evaluation and Compilation 3-89

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

type

type Declaration

Syntax:
(type typespec {var}*)

(typespec {var}*)

Arguments:
typespec—a type specifier.

var—a variable name.

Valid Context:

declaration or proclamation

Binding Types Affected:

variable

Description:
Affects only variable bindings and specifies that the vars take on values only of the specified
typespec. In particular, values assigned to the variables by setq, as well as the initial values of the
vars must be of the specified typespec. type declarations never apply to function bindings (see

ftype).

A type declaration of a symbol defined by symbol-macrolet is equivalent to wrapping a the
expression around the expansion of that symbol, although the symbol’s macro expansion is not
actually affected.

The meaning of a type declaration is equivalent to changing each reference to a variable (var)
within the scope of the declaration to (the typespec var), changing each expression assigned to
the variable (new-value) within the scope of the declaration to (the typespec new-value), and
executing (the typespec var) at the moment the scope of the declaration is entered.

A type declaration is valid in all declarations. The interpretation of a type declaration is as
follows:

1. During the execution of any reference to the declared variable within the scope of the
declaration, the consequences are undefined if the value of the declared variable is not of
the declared type.

2. During the execution of any setq of the declared variable within the scope of the declara-
tion, the consequences are undefined if the newly assigned value of the declared variable is

not of the declared type.

3. At the moment the scope of the declaration is entered, the consequences are undefined if

3-90 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

type

the value of the declared variable is not of the declared type.
A type declaration affects only variable references within its scope.

If nested type declarations refer to the same variable, then the value of the variable must be a
member of the intersection of the declared types.

If there is a local type declaration for a dynamic variable, and there is also a global type procla-
mation for that same variable, then the value of the variable within the scope of the local declara-
tion must be a member of the intersection of the two declared types.

type declarations can be free declarations or bound declarations.

A symbol cannot be both the name of a type and the name of a declaration. Defining a symbol
as the name of a class, structure, condition, or type, when the symbol has been declared as a
declaration name, or vice versa, signals an error.

Within the lexical scope of an array type declaration, all references to array elements are as-
sumed to satisfy the expressed array element type (as opposed to the upgraded array element
type). A compiler can treat the code within the scope of the array type declaration as if each
access of an array element were surrounded by an appropriate the form.

Examples:

(defun f (x y)
(declare (type fixnum x y))
(et ((z (+ x)
(declare (type fixnum z))
z)) — F
(£f12) — 3
;3 The previous definition of F is equivalent to
(defun £ (x y)
;3 This declaration is a shorthand form of the TYPE declaration
(declare (fixnum x y))
;3 To declare the type of a return value, it’s not necessary to
;; create a named variable. A THE special form can be used instead.
(the fixnum (+ x y))) — F
(f12) — 3

(defvar *one-array* (make-array 10 :element-type ’(signed-byte 5)))
(defvar *another-array* (make-array 10 :element-type ’(signed-byte 8)))

(defun frob (an-array)
(declare (type (array (signed-byte 5) 1) an-array))
(setf (aref an-array 1) 31)
(setf (aref an-array 2) 127)

Evaluation and Compilation 3-91

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

type

(setf (aref an-array 3) (x 2 (aref an-array 3)))
(let ((foo 0))

(declare (type (signed-byte 5) foo))

(setf foo (aref an-array 0))))

(frob *one-array*)
(frob *another-array*)

The above definition of frob is equivalent to:

(defun frob (an-array)
(setf (the (signed-byte 5) (aref an-array 1)) 31)
(setf (the (signed-byte 5) (aref an-array 2)) 127)
(setf (the (signed-byte 5) (aref an-array 3))
(* 2 (the (signed-byte 5) (aref an-array 3))))

(let ((foo 0))

(declare (type (signed-byte 5) foo))

(setf foo (the (signed-byte 5) (aref an-array 0)))))

Given an implementation in which fiznums are 29 bits but fixnum arrays are upgraded to signed
32-bit arrays, the following could be compiled with all fiznum arithmetic:

(defun bump-counters (counters)
(declare (type (array fixnum *) bump-counters))
(dotimes (i (length counters))
(incf (aref counters i))))

See Also:

declare, declaim, proclaim

Notes:
(typespec {var}*) is an abbreviation for (type typespec {var}*).

A type declaration for the arguments to a function does not necessarily imply anything about the
type of the result. The following function is not permitted to be compiled using implementation-
dependent fixnum-only arithmetic:

(defun f (x y) (declare (fixnum x y)) (+ x y))

To see why, consider (f most-positive-fixnum 1). Common Lisp defines that F must return a
bignum here, rather than signal an error or produce a mathematically incorrect result. If you have
special knowledge such “fiznum overflow” cases will not come up, you can declare the result value
to be in the fiznum range, enabling some compilers to use more efficient arithmetic:

(defun £ (x y)
(declare (fixnum x y))
(the fixnum (+ x y)))

3-92 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Note, however, that in the three-argument case, because of the possibility of an implicit interme-
diate value growing too large, the following will not cause implementation-dependent fixnum-only
arithmetic to be used:

(defun f (x y)
(declare (fixnum x y z))
(the fixnum (+ x y 2)))

To see why, consider (f most-positive-fixnum 1 -1). Although the arguments and the result

are all fiznums, an intermediate value is not a fiznum. If it is important that implementation-
dependent fixnum-only arithmetic be selected in implementations that provide it, consider writing
something like this instead:

(defun f (x y)
(declare (fixnum x y z))
(the fixnum (+ (the fixnum (+ x y)) 2)))

inline, notinline Declaration

Syntax:

(inline {function-name}*)
(notinline {function-name}*)

Arguments:
function-name—a, function name.

Valid Context:

declaration or proclamation

Binding Types Affected:

function

Description:
inline specifies that it is desirable for the compiler to produce inline calls to the functions named
by function-names; that is, the code for a specified function-name should be integrated into the
calling routine, appearing “in line” in place of a procedure call. A compiler is free to ignore this
declaration. inline declarations never apply to variable bindings.

If one of the functions mentioned has a lexically apparent local definition (as made by flet
or labels), then the declaration applies to that local definition and not to the global function
definition.

Evaluation and Compilation 3-93

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

inline, notinline

While no conforming implementation is required to perform inline expansion of user-defined
functions, those implementations that do attempt to recognize the following paradigm:

To define a function £ that is not inline by default but for which (declare (inline £)) will make
f be locally inlined, the proper definition sequence is:

(declaim (inline f))
(defun f ...)
(declaim (notinline f))

The inline proclamation preceding the defun form ensures that the compiler has the opportunity
save the information necessary for inline expansion, and the notinline proclamation following the
defun form prevents £ from being expanded inline everywhere.

notinline specifies that it is undesirable to compile the functions named by function-names in-
line. A compiler is not free to ignore this declaration; calls to the specified functions must be
implemented as out-of-line subroutine calls.

If one of the functions mentioned has a lexically apparent local definition (as made by flet
or labels), then the declaration applies to that local definition and not to the global function
definition.

In the presence of a compiler macro definition for function-name, a notinline declaration prevents
that compiler macro from being used. An inline declaration may be used to encourage use of
compiler macro definitions. inline and notinline declarations otherwise have no effect when the
lexically visible definition of function-name is a macro definition.

inline and notinline declarations can be free declarations or bound declarations. inline and
notinline declarations of functions that appear before the body of a flet or labels form that
defines that function are bound declarations. Such declarations in other contexts are free declara-
tions.

Examples:

;; The globally defined function DISPATCH should be open-coded,
;; if the implementation supports inlining, unless a NOTINLINE
;3 declaration overrides this effect.
(declaim (inline dispatch))
(defun dispatch (x) (funcall (get (car x) ’dispatch) x))
;; Here is an example where inlining would be encouraged.
(defun top-level-1 () (dispatch (read-command)))
;; Here is an example where inlining would be prohibited.
(defun top-level-2 ()

(declare (notinline dispatch))

(dispatch (read-command)))
;; Here is an example where inlining would be prohibited.
(declaim (notinline dispatch))
(defun top-level-3 () (dispatch (read-command)))

3-94 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

;; Here is an example where inlining would be encouraged.
(defun top-level-4 ()

(declare (inline dispatch))

(dispatch (read-command)))

See Also:

declare, declaim, proclaim

ftype Declaration

Syntax:
(ftype type {function-name}*)

Arguments:
function-name—a function name.

type—a type specifier.
Valid Context:

declaration or proclamation

Binding Types Affected:

Sfunction

Description:

Specifies that the functions named by function-names are of the functional type type. For exam-
ple:

(declare (ftype (function (integer list) t) ith)
(ftype (function (number) float) sine cosine))

If one of the functions mentioned has a lexically apparent local definition (as made by flet
or labels), then the declaration applies to that local definition and not to the global function
definition. ftype declarations never apply to variable bindings (see type).

The lexically apparent bindings of function-names must not be macro definitions. (This is because
ftype declares the functional definition of each function name to be of a particular subtype of
function, and macros do not denote functions.)

ftype declarations can be free declarations or bound declarations. ftype declarations of func-
tions that appear before the body of a flet or labels form that defines that function are bound
declarations. Such declarations in other contexts are free declarations.

Evaluation and Compilation 3-95

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

See Also:

declare, declaim, proclaim

declaration

Declaration

Syntax:

(declaration {name}*)

Arguments:
name—a, symbol.

Valid Context:

proclamation only

Description:

Advises the compiler that each name is a valid but potentially non-standard declaration name.
The purpose of this is to tell one compiler not to issue warnings for declarations meant for

another compiler or other program processor.

Examples:

(declaim (declaration author target-language target-machine))
(declaim (target-language ada))
(declaim (target-machine IBM-650))

(defun strangep (x)

(declare (author "Harry Tweeker"))
(member x ’(strange weird odd peculiar)))

See Also:

declaim, proclaim

3-96 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

optimize

optimize

Declaration

Syntax:
(optimize {quality | (quality value)}*)

Arguments:
quality—an optimize quality.

value—one of the integers 0, 1, 2, or 3.

Valid Context:

declaration or proclamation

Description:

Advises the compiler that each quality should be given attention according to the specified
corresponding value. Each quality must be a symbol naming an optimize quality; the names and
meanings of the standard optimize qualities are shown in Figure 3-25.

Name

Meaning

compilation-speed
debug

safety

space

speed

speed of the compilation process
ease of debugging

run-time error checking

both code size and run-time space
speed of the object code

Figure 3—25. Optimize qualities

There may be other, implementation-defined optimize qualities.

A value 0 means that the corresponding quality is totally unimportant, and 3 that the quality is
extremely important; 1 and 2 are intermediate values, with 1 the neutral value. (quality 3) can be

abbreviated to quality.

Note that code which has the optimization (safety 3), or just safety, is called safe code.

The consequences are unspecified if a quality appears more than once with different values.

Examples:

(defun often-used-subroutine (x y)
(declare (optimize (safety 2)))
(error-check x y)

(hairy-setup x)
(do ((4 0 (+1i 1))
(z x (cdr 2)))

Evaluation and Compilation 3-97

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

((aull z))
;3 This inner loop really needs to burn.
(declare (optimize speed))
(declare (fixnum i))

)
See Also:
declare, declaim, proclaim, Section 3.3.4 (Declaration Scope)
Notes:
An optimize declaration never applies to either a variable or a function binding. An optimize
declaration can only be a free declaration. For more information, see Section 3.3.4 (Declaration
Scope).
spec1a1 Declaration
Syntax:
(special {var}™)
Arguments:

var—a symbol.

Valid Context:

declaration or proclamation

Binding Types Affected:

variable

Description:
Specifies that all of the vars named are dynamic. This specifier affects variable bindings and
affects references. All variable bindings affected are made to be dynamic bindings, and affected
variable references refer to the current dynamic binding. For example:

(defun hack (thing *mod*) ;The binding of the parameter
(declare (special *mod*)) ; *mod* is visible to hackl,
(hackl (car thing))) ; but not that of thing.

(defun hackl (arg)
(declare (special *mod*)) ;Declare references to *mod*
;within hackl to be special.
(if (atom arg) *mod*
(cons (hackl (car arg)) (hackl (cdr arg)))))

3-98 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

special

A special declaration does not affect inner bindings of a var; the inner bindings implicitly shadow
a special declaration and must be explicitly re-declared to be special. special declarations never
apply to function bindings.

special declarations can be either bound declarations, affecting both a binding and references, or
free declarations, affecting only references, depending on whether the declaration is attached to a
variable binding.

When used in a proclamation, a special declaration specifier applies to all bindings as well as to
all references of the mentioned variables. For example, after

(declaim (special x))
then in a function definition such as
(defun example (x) ...)

the parameter x is bound as a dynamic variable rather than as a lexical variable.

Examples:
(defun declare-eg (y) ;this y is special
(declare (special y))
(et ((y t)) ;this y is lexical

(1list y
(locally (declare (special y)) y)))) ;this y refers to the
;special binding of y
— DECLARE-EG
(declare-eg nil) — (T NIL)

(setf (symbol-value ’x) 6)

(defun foo (x) ;a lexical binding of x

(print x)

(let ((x (1+ x))) ;a special binding of x
(declare (special x)) ;and a lexical reference
(bar))

1+ x))

(defun bar ()
(print (locally (declare (special x))
x)))
(foo 10)
> 10
> 11
— 11

(setf (symbol-value ’x) 6)
(defun bar (x y) ; [1] 1st occurrence of x
(let ((old-x x) ;[2] 2nd occurrence of x -- same as 1st occurrence

Evaluation and Compilation 3-99

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(x y)) ; [3] 3rd occurrence of x
(declare (special x))
(list old-x x)))
(bar ’first ’second) — (FIRST SECOND)

(defun few (x &optional (y *foo*))
(declare (special *foo*))

L)

The reference to *foo* in the first line of this example is not special even though there is a

special declaration in the second line.

(declaim (special prosp)) — implementation-dependent
(setq prosp 1 reg 1) — 1

(let ((prosp 2) (reg 2)) ;the binding of prosp is special
(set ’prosp 3) (set ’reg 3) ;due to the preceding proclamation,
(list prosp reg)) ;whereas the variable reg is lexical

— (3 2)

(list prosp reg) — (1 3)

(declaim (special x)) ;x is always special.
(defun example (x y)
(declare (special y))
(let ((y 3) (x (*x x 2)))
(print (+ y (locally (declare (special y)) y)))

(let ((y 4)) (declare (special y)) (foo x)))) — EXAMPLE

In the contorted code above, the outermost and innermost bindings of y are dynamic, but the
middle binding is lexical. The two arguments to + are different, one being the value, which is 3, of
the lexical variable y, and the other being the value of the dynamic variable named y (a binding
of which happens, coincidentally, to lexically surround it at an outer level). All the bindings of x
and references to x are dynamic, however, because of the proclamation that x is always special.

See Also:

defparameter, defvar

locally

Special Operator

Syntax:

locally {declaration}* {form}* — {result}*

Arguments and Values:
Declaration—a declare expression; not evaluated.

3-100 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

locally

forms—an implicit progn.
results—the values of the forms.

Description:

Sequentially evaluates a body of forms in a lexical environment where the given declarations have

effect.
Examples:

(defun sample-function (y) ;this y is regarded as special
(declare (special y))
(let ((y t)) ;this y is regarded as lexical
(list y
(locally (declare (special y))
;; this next y is regarded as special
¥))))
— SAMPLE-FUNCTION
(sample-function nil) — (T NIL)
(setq x ’(1 23) y ’(4 . 5)) — (4.5)

;55 The following declarations are not notably useful in specific.

;55 They just offer a sample of valid declaration syntax using LOCALLY.

(locally (declare (inline floor) (notinline car cdr))
(declare (optimize space))
(floor (car x) (cdr y))) — 0, 1

;35 This example shows a definition of a function that has a particular set

;53 of OPTIMIZE settings made locally to that definitionm.
(locally (declare (optimize (safety 3) (space 3) (speed 0)))
(defun frob (w x y &optional (z (foo x y)))
(mumble x y z w)))
— FROB

;55 This is like the previous example, except that the optimize settings
;35 remain in effect for subsequent definitions in the same compilation unit.

(declaim (optimize (safety 3) (space 3) (speed 0)))
(defun frob (w x y &optional (z (foo x y)))
(mumble x y z w))
— FROB

See Also:

declare

Evaluation and Compilation 3-101

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Notes:

The special declaration may be used with locally to affect references to, rather than bindings of,
variables.

If a locally form is a top level form, the body forms are also processed as top level forms. See
Section 3.2.3 (File Compilation).

the Special Operator

Syntax:

the value-type form — {result}*

Arguments and Values:
value-type—a type specifier; not evaluated.

form—a form; evaluated.

results—the values resulting from the evaluation of form. These values must conform to the type
supplied by value-type; see below.

Description:

the specifies that the valuesi, returned by form are of the types specified by value-type. The
consequences are undefined if any result is not of the declared type.

It is permissible for form to yield a different number of values than are specified by value-type,
provided that the values for which types are declared are indeed of those types. Missing values are
treated as nil for the purposes of checking their types.

Regardless of number of values declared by value-type, the number of values returned by the the
special form is the same as the number of values returned by form.

Examples:

(the symbol (car (list (gensym)))) — #:G9876
(the fixnum (+ 5 7)) — 12
(the (values) (truncate 3.2 2)) — 1, 1.2
(the integer (truncate 3.2 2)) — 1, 1.2
(the (values integer) (truncate 3.2 2)) — 1, 1.2
(the (values integer float) (truncate 3.2 2)) — 1, 1.2
(the (values integer float symbol) (truncate 3.2 2)) — 1, 1.2
(the (values integer float symbol t null list)
(truncate 3.2 2)) — 1, 1.2

(let ((1 100))

(declare (fixnum i))

3-102 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(the fixnum (1+ i))) — 101
(let* ((x (1ist ’a ’b ’c))
(y 5)
(setf (the fixnum (car x)) y)
x) — (56 B C)

Exceptional Situations:

The consequences are undefined if the values yielded by the form are not of the type specified by
value-type.

See Also:

values

Notes:

The values type specifier can be used to indicate the types of multiple values:

(the (values integer integer) (floor x y))
(the (values string t)
(gethash the-key the-string-table))

setf can be used with the type declarations. In this case the declaration is transferred to the form
that specifies the new value. The resulting setf form is then analyzed.

special-operator-p Function

Syntax:

special-operator-p symbol — generalized-boolean

Arguments and Values:
symbol—a symbol.

generalized-boolean—a generalized boolean.

Description:
Returns true if symbol is a special operator; otherwise, returns false.

Examples:
(special-operator-p ’if) — f{rue

(special-operator-p ’car) — false
(special-operator-p ’one) — false

Evaluation and Compilation 3-103

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Exceptional Situations:
Should signal type-error if its argument is not a symbol.

Notes:
Historically, this function was called special-form-p. The name was finally declared a misnomer
and changed, since it returned true for special operators, not special forms.
constantp Function
Syntax:

constantp form &optional environment — generalized-boolean

Arguments and Values:
form—a form.

environment—an environment object. The default is nil.

generalized-boolean—a generalized boolean.

Description:
Returns true if form can be determined by the implementation to be a constant form in the
indicated environment; otherwise, it returns false indicating either that the form is not a constant
form or that it cannot be determined whether or not form is a constant form.

The following kinds of forms are considered constant forms:

o Self-evaluating objects (such as numbers, characters, and the various kinds of arrays) are
always considered constant forms and must be recognized as such by constantp.

e (Constant variables, such as keywords, symbols defined by Common Lisp as constant (such
as nil, t, and pi), and symbols declared as constant by the user in the indicated environ-
ment using defconstant are always considered constant forms and must be recognized as
such by constantp.

e quote forms are always considered constant forms and must be recognized as such by
constantp.

e An implementation is permitted, but not required, to detect additional constant forms. If
it does, it is also permitted, but not required, to make use of information in the environ-
ment. Examples of constant forms for which constantp might or might not return true
are: (sqrt pi), (+ 3 2), (length ’(a b ¢)), and (let ((x 7)) (zerop x)).

3-104 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

constantp

If an implementation chooses to make use of the environment information, such actions as expand-
ing macros or performing function inlining are permitted to be used, but not required; however,
expanding compiler macros is not permitted.

Examples:

(constantp 1) — ftrue

(constantp ’temp) — false

(constantp ’’temp)) — true

(defconstant this-is-a-constant ’never-changing) — THIS-IS-A-CONSTANT
(constantp ’this-is-a-constant) — {rue

(constantp "temp") — frue

(setq a 6) — 6

(constantp a) — {true

(constantp ’(sin pi)) — implementation-dependent

(constantp ’(car ’(x))) — implementation-dependent

(constantp ’(eql x x)) — implementation-dependent

(constantp ’(typep x ’nil)) — implementation-dependent

(constantp ’(typep x ’t)) — implementation-dependent

(constantp ’(values this-is-a-constant)) — implementation-dependent
(constantp ’(values ’x ’y)) — implementation-dependent

(constantp ’(let ((a ’(a b ¢))) (+ (length a) 6))) — implementation-dependent

Affected By:

The state of the global environment (e.g., which symbols have been declared to be the names of
constant variables).

See Also:

defconstant

Evaluation and Compilation 3-105

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3-106 Programming Language—Common Lisp

