
Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Programming Language—Common Lisp

14. Conses

Conses i



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

ii Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

14.1 Cons Concepts
A cons is a compound data object having two components called the car and the cdr .

car cons rplacd
cdr rplaca

Figure 14–1. Some defined names relating to conses.

Depending on context, a group of connected conses can be viewed in a variety of different ways.
A variety of operations is provided to support each of these various views.

14.1.1 Conses as Trees
A tree is a binary recursive data structure made up of conses and atoms: the conses are them-
selves also trees (sometimes called “subtrees” or “branches”), and the atoms are terminal nodes
(sometimes called leaves). Typically, the leaves represent data while the branches establish some
relationship among that data.

caaaar caddar cdar nsubst
caaadr cadddr cddaar nsubst-if
caaar caddr cddadr nsubst-if-not
caadar cadr cddar nthcdr
caaddr cdaaar cdddar sublis
caadr cdaadr cddddr subst
caar cdaar cdddr subst-if
cadaar cdadar cddr subst-if-not
cadadr cdaddr copy-tree tree-equal
cadar cdadr nsublis

Figure 14–2. Some defined names relating to trees.

14.1.1.1 General Restrictions on Parameters that must be Trees

Except as explicitly stated otherwise, for any standardized function that takes a parameter that is
required to be a tree, the consequences are undefined if that tree is circular.

Conses 14–1



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

14.1.2 Conses as Lists
A list is a chain of conses in which the car of each cons is an element of the list , and the cdr of
each cons is either the next link in the chain or a terminating atom.

A proper list is a list terminated by the empty list . The empty list is a proper list , but is not a
cons.

An improper list is a list that is not a proper list ; that is, it is a circular list or a dotted list .

A dotted list is a list that has a terminating atom that is not the empty list . A non-nil atom by
itself is not considered to be a list of any kind—not even a dotted list .

A circular list is a chain of conses that has no termination because some cons in the chain is the
cdr of a later cons.

append last nbutlast rest
butlast ldiff nconc revappend
copy-alist list ninth second
copy-list list* nreconc seventh
eighth list-length nth sixth
endp make-list nthcdr tailp
fifth member pop tenth
first member-if push third
fourth member-if-not pushnew

Figure 14–3. Some defined names relating to lists.

14.1.2.1 Lists as Association Lists

An association list is a list of conses representing an association of keys with values, where the
car of each cons is the key and the cdr is the value associated with that key .

acons assoc-if pairlis rassoc-if
assoc assoc-if-not rassoc rassoc-if-not

Figure 14–4. Some defined names related to assocation lists.

14–2 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

14.1.2.2 Lists as Sets

Lists are sometimes viewed as sets by considering their elements unordered and by assuming
there is no duplication of elements.

adjoin nset-difference set-difference union
intersection nset-exclusive-or set-exclusive-or
nintersection nunion subsetp

Figure 14–5. Some defined names related to sets.

14.1.2.3 General Restrictions on Parameters that must be Lists

Except as explicitly specified otherwise, any standardized function that takes a parameter that is
required to be a list should be prepared to signal an error of type type-error if the value received
is a dotted list .

Except as explicitly specified otherwise, for any standardized function that takes a parameter that
is required to be a list , the consequences are undefined if that list is circular .

Conses 14–3



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

list System Class

Class Precedence List:
list, sequence, t

Description:
A list is a chain of conses in which the car of each cons is an element of the list , and the cdr of
each cons is either the next link in the chain or a terminating atom.

A proper list is a chain of conses terminated by the empty list, (), which is itself a proper list .
A dotted list is a list which has a terminating atom that is not the empty list . A circular list
is a chain of conses that has no termination because some cons in the chain is the cdr of a later
cons.

Dotted lists and circular lists are also lists, but usually the unqualified term “list” within this
specification means proper list . Nevertheless, the type list unambiguously includes dotted lists and
circular lists.

For each element of a list there is a cons. The empty list has no elements and is not a cons.

The types cons and null form an exhaustive partition of the type list.

See Also:
Section 2.4.1 (Left-Parenthesis), Section 22.1.3.5 (Printing Lists and Conses)

null System Class

Class Precedence List:
null, symbol, list, sequence, t

Description:
The only object of type null is nil, which represents the empty list and can also be notated ().

See Also:
Section 2.3.4 (Symbols as Tokens), Section 2.4.1 (Left-Parenthesis), Section 22.1.3.3 (Printing
Symbols)

14–4 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

cons System Class

Class Precedence List:
cons, list, sequence, t

Description:
A cons is a compound object having two components, called the car and cdr . These form a dotted
pair . Each component can be any object .

Compound Type Specifier Kind:
Specializing.

Compound Type Specifier Syntax:
(cons [car-typespec [cdr-typespec ]])

Compound Type Specifier Arguments:
car-typespec—a type specifier , or the symbol *. The default is the symbol *.

cdr-typespec—a type specifier , or the symbol *. The default is the symbol *.

Compound Type Specifier Description:
This denotes the set of conses whose car is constrained to be of type car-typespec and whose cdr
is constrained to be of type cdr-typespec . (If either car-typespec or cdr-typespec is *, it is as if the
type t had been denoted.)

See Also:
Section 2.4.1 (Left-Parenthesis), Section 22.1.3.5 (Printing Lists and Conses)

atom Type

Supertypes:
atom, t

Description:
It is equivalent to (not cons).

Conses 14–5



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

cons Function

Syntax:
cons object-1 object-2 → cons

Arguments and Values:
object-1—an object .

object-2—an object .

cons—a cons.

Description:
Creates a fresh cons, the car of which is object-1 and the cdr of which is object-2 .

Examples:

(cons 1 2) → (1 . 2)

(cons 1 nil) → (1)

(cons nil 2) → (NIL . 2)

(cons nil nil) → (NIL)

(cons 1 (cons 2 (cons 3 (cons 4 nil)))) → (1 2 3 4)

(cons ’a ’b) → (A . B)

(cons ’a (cons ’b (cons ’c ’()))) → (A B C)

(cons ’a ’(b c d)) → (A B C D)

See Also:
list

Notes:
If object-2 is a list , cons can be thought of as producing a new list which is like it but has object-
1 prepended.

consp Function

Syntax:
consp object → generalized-boolean

Arguments and Values:
object—an object .

generalized-boolean—a generalized boolean.

14–6 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Description:
Returns true if object is of type cons; otherwise, returns false.

Examples:

(consp nil) → false
(consp (cons 1 2)) → true

The empty list is not a cons, so

(consp ’()) ≡ (consp ’nil) → false

See Also:
listp

Notes:

(consp object) ≡ (typep object ’cons) ≡ (not (typep object ’atom)) ≡ (typep object ’(not

atom))

atom Function

Syntax:
atom object → generalized-boolean

Arguments and Values:
object—an object .

generalized-boolean—a generalized boolean.

Description:
Returns true if object is of type atom; otherwise, returns false.

Examples:

(atom ’sss) → true
(atom (cons 1 2)) → false
(atom nil) → true
(atom ’()) → true
(atom 3) → true

Conses 14–7



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Notes:

(atom object) ≡ (typep object ’atom) ≡ (not (consp object))
≡ (not (typep object ’cons)) ≡ (typep object ’(not cons))

rplaca, rplacd Function

Syntax:
rplaca cons object → cons
rplacd cons object → cons

Pronunciation:
rplaca: [ rē plakε ] or [ rε plakε ]

rplacd: [ rē plakdε ] or [ rε plakdε ] or [ rē plakdē ] or [ rε plakdē ]

Arguments and Values:
cons—a cons.

object—an object .

Description:
rplaca replaces the car of the cons with object.

rplacd replaces the cdr of the cons with object.

Examples:

(defparameter *some-list* (list* ’one ’two ’three ’four)) → *some-list*

*some-list* → (ONE TWO THREE . FOUR)

(rplaca *some-list* ’uno) → (UNO TWO THREE . FOUR)

*some-list* → (UNO TWO THREE . FOUR)

(rplacd (last *some-list*) (list ’IV)) → (THREE IV)

*some-list* → (UNO TWO THREE IV)

Side Effects:
The cons is modified.

Should signal an error of type type-error if cons is not a cons.

14–8 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

car, cdr, caar, cadr, cdar, cddr, caaar, caadr, cadar, . . .

car, cdr, caar, cadr, cdar, cddr, caaar, caadr, cadar,
caddr, cdaar, cdadr, cddar, cdddr, caaaar, caaadr,
caadar, caaddr, cadaar, cadadr, caddar, cadddr,
cdaaar, cdaadr, cdadar, cdaddr, cddaar, cddadr,
cdddar, cddddr Accessor

Syntax:
car x → object
cdr x → object

caar x → object
cadr x → object
cdar x → object
cddr x → object

caaar x → object
caadr x → object
cadar x → object
caddr x → object
cdaar x → object
cdadr x → object
cddar x → object
cdddr x → object

caaaar x → object
caaadr x → object
caadar x → object
caaddr x → object
cadaar x → object
cadadr x → object
caddar x → object
cadddr x → object
cdaaar x → object
cdaadr x → object
cdadar x → object
cdaddr x → object
cddaar x → object
cddadr x → object
cdddar x → object
cddddr x → object

(setf (car x) new-object)
(setf (cdr x) new-object)

(setf (caar x) new-object)
(setf (cadr x) new-object)
(setf (cdar x) new-object)
(setf (cddr x) new-object)

(setf (caaar x) new-object)
(setf (caadr x) new-object)
(setf (cadar x) new-object)
(setf (caddr x) new-object)
(setf (cdaar x) new-object)
(setf (cdadr x) new-object)
(setf (cddar x) new-object)
(setf (cdddr x) new-object)

(setf (caaaar x) new-object)
(setf (caaadr x) new-object)
(setf (caadar x) new-object)
(setf (caaddr x) new-object)
(setf (cadaar x) new-object)
(setf (cadadr x) new-object)
(setf (caddar x) new-object)
(setf (cadddr x) new-object)
(setf (cdaaar x) new-object)
(setf (cdaadr x) new-object)
(setf (cdadar x) new-object)
(setf (cdaddr x) new-object)
(setf (cddaar x) new-object)
(setf (cddadr x) new-object)
(setf (cdddar x) new-object)
(setf (cddddr x) new-object)

Pronunciation:
cadr: [ ka dεr ]

Conses 14–9



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

car, cdr, caar, cadr, cdar, cddr, caaar, caadr, cadar, . . .

caddr: [ kadε dεr ] or [ ka du̇dεr ]

cdr: [ ku̇ dεr ]

cddr: [ ku̇dε dεr ] or [ kε du̇dεr ]

Arguments and Values:
x—a list .

object—an object .

new-object—an object .

Description:
If x is a cons, car returns the car of that cons. If x is nil, car returns nil.

If x is a cons, cdr returns the cdr of that cons. If x is nil, cdr returns nil.

Functions are provided which perform compositions of up to four car and cdr operations. Their
names consist of a C, followed by two, three, or four occurrences of A or D, and finally an R.
The series of A’s and D’s in each function’s name is chosen to identify the series of car and cdr
operations that is performed by the function. The order in which the A’s and D’s appear is the
inverse of the order in which the corresponding operations are performed. Figure 14–6 defines the
relationships precisely.

14–10 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

car, cdr, caar, cadr, cdar, cddr, caaar, caadr, cadar, . . .

This place . . . Is equivalent to this place . . .

(caar x) (car (car x))
(cadr x) (car (cdr x))
(cdar x) (cdr (car x))
(cddr x) (cdr (cdr x))
(caaar x) (car (car (car x)))
(caadr x) (car (car (cdr x)))
(cadar x) (car (cdr (car x)))
(caddr x) (car (cdr (cdr x)))
(cdaar x) (cdr (car (car x)))
(cdadr x) (cdr (car (cdr x)))
(cddar x) (cdr (cdr (car x)))
(cdddr x) (cdr (cdr (cdr x)))
(caaaar x) (car (car (car (car x))))
(caaadr x) (car (car (car (cdr x))))
(caadar x) (car (car (cdr (car x))))
(caaddr x) (car (car (cdr (cdr x))))
(cadaar x) (car (cdr (car (car x))))
(cadadr x) (car (cdr (car (cdr x))))
(caddar x) (car (cdr (cdr (car x))))
(cadddr x) (car (cdr (cdr (cdr x))))
(cdaaar x) (cdr (car (car (car x))))
(cdaadr x) (cdr (car (car (cdr x))))
(cdadar x) (cdr (car (cdr (car x))))
(cdaddr x) (cdr (car (cdr (cdr x))))
(cddaar x) (cdr (cdr (car (car x))))
(cddadr x) (cdr (cdr (car (cdr x))))
(cdddar x) (cdr (cdr (cdr (car x))))
(cddddr x) (cdr (cdr (cdr (cdr x))))

Figure 14–6. CAR and CDR variants

setf can also be used with any of these functions to change an existing component of x , but setf
will not make new components. So, for example, the car of a cons can be assigned with setf of
car, but the car of nil cannot be assigned with setf of car. Similarly, the car of the car of a cons
whose car is a cons can be assigned with setf of caar, but neither nilnor a cons whose car is nil
can be assigned with setf of caar.

The argument x is permitted to be a dotted list or a circular list .

Examples:

(car nil) → NIL

(cdr ’(1 . 2)) → 2

(cdr ’(1 2)) → (2)

Conses 14–11



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(cadr ’(1 2)) → 2

(car ’(a b c)) → A

(cdr ’(a b c)) → (B C)

Exceptional Situations:
The functions car and cdr should signal type-error if they receive an argument which is not a
list . The other functions (caar, cadr, . . . cddddr) should behave for the purpose of error checking
as if defined by appropriate calls to car and cdr.

See Also:
rplaca, first, rest

Notes:
The car of a cons can also be altered by using rplaca, and the cdr of a cons can be altered by
using rplacd.

(car x) ≡ (first x)
(cadr x) ≡ (second x) ≡ (car (cdr x))
(caddr x) ≡ (third x) ≡ (car (cdr (cdr x)))
(cadddr x) ≡ (fourth x) ≡ (car (cdr (cdr (cdr x))))

copy-tree Function

Syntax:
copy-tree tree → new-tree

Arguments and Values:
tree—a tree.

new-tree—a tree.

Description:
Creates a copy of a tree of conses.

If tree is not a cons, it is returned; otherwise, the result is a new cons of the results of calling
copy-tree on the car and cdr of tree. In other words, all conses in the tree represented by tree
are copied recursively, stopping only when non-conses are encountered.

copy-tree does not preserve circularities and the sharing of substructure.

Examples:

(setq object (list (cons 1 "one")

14–12 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(cons 2 (list ’a ’b ’c))))

→ ((1 . "one") (2 A B C))

(setq object-too object) → ((1 . "one") (2 A B C))

(setq copy-as-list (copy-list object))

(setq copy-as-alist (copy-alist object))

(setq copy-as-tree (copy-tree object))

(eq object object-too) → true
(eq copy-as-tree object) → false
(eql copy-as-tree object) → false
(equal copy-as-tree object) → true
(setf (first (cdr (second object))) "a"

(car (second object)) "two"

(car object) ’(one . 1)) → (ONE . 1)

object → ((ONE . 1) ("two" "a" B C))

object-too → ((ONE . 1) ("two" "a" B C))

copy-as-list → ((1 . "one") ("two" "a" B C))

copy-as-alist → ((1 . "one") (2 "a" B C))

copy-as-tree → ((1 . "one") (2 A B C))

See Also:
tree-equal

sublis, nsublis Function

Syntax:
sublis alist tree &key key test test-not → new-tree

nsublis alist tree &key key test test-not → new-tree

Arguments and Values:
alist—an association list .

tree—a tree.

test—a designator for a function of two arguments that returns a generalized boolean.

test-not—a designator for a function of two arguments that returns a generalized boolean.

key—a designator for a function of one argument, or nil.

new-tree—a tree.

Conses 14–13



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

sublis, nsublis

Description:
sublis makes substitutions for objects in tree (a structure of conses). nsublis is like sublis but
destructively modifies the relevant parts of the tree.

sublis looks at all subtrees and leaves of tree; if a subtree or leaf appears as a key in alist (that
is, the key and the subtree or leaf satisfy the test), it is replaced by the object with which that
key is associated. This operation is non-destructive. In effect, sublis can perform several subst
operations simultaneously.

If sublis succeeds, a new copy of tree is returned in which each occurrence of such a subtree or
leaf is replaced by the object with which it is associated. If no changes are made, the original tree
is returned. The original tree is left unchanged, but the result tree may share cells with it.

nsublis is permitted to modify tree but otherwise returns the same values as sublis.

Examples:

(sublis ’((x . 100) (z . zprime))

’(plus x (minus g z x p) 4 . x))

→ (PLUS 100 (MINUS G ZPRIME 100 P) 4 . 100)

(sublis ’(((+ x y) . (- x y)) ((- x y) . (+ x y)))

’(* (/ (+ x y) (+ x p)) (- x y))

:test #’equal)

→ (* (/ (- X Y) (+ X P)) (+ X Y))

(setq tree1 ’(1 (1 2) ((1 2 3)) (((1 2 3 4)))))

→ (1 (1 2) ((1 2 3)) (((1 2 3 4))))

(sublis ’((3 . "three")) tree1)

→ (1 (1 2) ((1 2 "three")) (((1 2 "three" 4))))

(sublis ’((t . "string"))

(sublis ’((1 . "") (4 . 44)) tree1)

:key #’stringp)

→ ("string" ("string" 2) (("string" 2 3)) ((("string" 2 3 44))))

tree1 → (1 (1 2) ((1 2 3)) (((1 2 3 4))))

(setq tree2 ’("one" ("one" "two") (("one" "Two" "three"))))

→ ("one" ("one" "two") (("one" "Two" "three")))

(sublis ’(("two" . 2)) tree2)

→ ("one" ("one" "two") (("one" "Two" "three")))

tree2 → ("one" ("one" "two") (("one" "Two" "three")))

(sublis ’(("two" . 2)) tree2 :test ’equal)

→ ("one" ("one" 2) (("one" "Two" "three")))

(nsublis ’((t . ’temp))

tree1

:key #’(lambda (x) (or (atom x) (< (list-length x) 3))))

→ ((QUOTE TEMP) (QUOTE TEMP) QUOTE TEMP)

14–14 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Side Effects:
nsublis modifies tree.

See Also:
subst, Section 3.2.1 (Compiler Terminology), Section 3.6 (Traversal Rules and Side Effects)

Notes:
The :test-not parameter is deprecated.

Because the side-effecting variants (e.g., nsublis) potentially change the path that is being
traversed, their effects in the presence of shared or circular structure structure may vary in
surprising ways when compared to their non-side-effecting alternatives. To see this, consider the
following side-effect behavior, which might be exhibited by some implementations:

(defun test-it (fn)

(let* ((shared-piece (list ’a ’b))

(data (list shared-piece shared-piece)))

(funcall fn ’((a . b) (b . a)) data)))

(test-it #’sublis) → ((B A) (B A))

(test-it #’nsublis) → ((A B) (A B))

subst, subst-if, subst-if-not, nsubst, nsubst-if,
nsubst-if-not Function

Syntax:
subst new old tree &key key test test-not → new-tree

subst-if new predicate tree &key key → new-tree

subst-if-not new predicate tree &key key → new-tree

nsubst new old tree &key key test test-not → new-tree

nsubst-if new predicate tree &key key → new-tree

nsubst-if-not new predicate tree &key key → new-tree

Arguments and Values:
new—an object .

old—an object .

Conses 14–15



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

subst, subst-if, subst-if-not, nsubst, nsubst-if, . . .

predicate—a symbol that names a function, or a function of one argument that returns a general-
ized boolean value.

tree—a tree.

test—a designator for a function of two arguments that returns a generalized boolean.

test-not—a designator for a function of two arguments that returns a generalized boolean.

key—a designator for a function of one argument, or nil.

new-tree—a tree.

Description:
subst, subst-if , and subst-if-not perform substitution operations on tree. Each function searches
tree for occurrences of a particular old item of an element or subexpression that satisfies the test .

nsubst, nsubst-if , and nsubst-if-not are like subst, subst-if , and subst-if-not respectively,
except that the original tree is modified.

subst makes a copy of tree, substituting new for every subtree or leaf of tree (whether the subtree
or leaf is a car or a cdr of its parent) such that old and the subtree or leaf satisfy the test .

nsubst is a destructive version of subst. The list structure of tree is altered by destructively
replacing with new each leaf of the tree such that old and the leaf satisfy the test .

For subst, subst-if , and subst-if-not, if the functions succeed, a new copy of the tree is returned
in which each occurrence of such an element is replaced by the new element or subexpression. If
no changes are made, the original tree may be returned. The original tree is left unchanged, but
the result tree may share storage with it.

For nsubst, nsubst-if , and nsubst-if-not the original tree is modified and returned as the func-
tion result, but the result may not be eq to tree.

Examples:

(setq tree1 ’(1 (1 2) (1 2 3) (1 2 3 4))) → (1 (1 2) (1 2 3) (1 2 3 4))

(subst "two" 2 tree1) → (1 (1 "two") (1 "two" 3) (1 "two" 3 4))

(subst "five" 5 tree1) → (1 (1 2) (1 2 3) (1 2 3 4))

(eq tree1 (subst "five" 5 tree1)) → implementation-dependent
(subst ’tempest ’hurricane

’(shakespeare wrote (the hurricane)))

→ (SHAKESPEARE WROTE (THE TEMPEST))

(subst ’foo ’nil ’(shakespeare wrote (twelfth night)))

→ (SHAKESPEARE WROTE (TWELFTH NIGHT . FOO) . FOO)

(subst ’(a . cons) ’(old . pair)

’((old . spice) ((old . shoes) old . pair) (old . pair))

14–16 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

:test #’equal)

→ ((OLD . SPICE) ((OLD . SHOES) A . CONS) (A . CONS))

(subst-if 5 #’listp tree1) → 5

(subst-if-not ’(x) #’consp tree1)

→ (1 X)

tree1 → (1 (1 2) (1 2 3) (1 2 3 4))

(nsubst ’x 3 tree1 :key #’(lambda (y) (and (listp y) (third y))))

→ (1 (1 2) X X)

tree1 → (1 (1 2) X X)

Side Effects:
nsubst, nsubst-if , and nsubst-if-not might alter the tree structure of tree.

See Also:
substitute, nsubstitute, Section 3.2.1 (Compiler Terminology), Section 3.6 (Traversal Rules and
Side Effects)

Notes:
The :test-not parameter is deprecated.

The functions subst-if-not and nsubst-if-not are deprecated.

One possible definition of subst:

(defun subst (old new tree &rest x &key test test-not key)

(cond ((satisfies-the-test old tree :test test

:test-not test-not :key key)

new)

((atom tree) tree)

(t (let ((a (apply #’subst old new (car tree) x))

(d (apply #’subst old new (cdr tree) x)))

(if (and (eql a (car tree))

(eql d (cdr tree)))

tree

(cons a d))))))

Conses 14–17



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

tree-equal

tree-equal Function

Syntax:
tree-equal tree-1 tree-2 &key test test-not → generalized-boolean

Arguments and Values:
tree-1—a tree.

tree-2—a tree.

test—a designator for a function of two arguments that returns a generalized boolean.

test-not—a designator for a function of two arguments that returns a generalized boolean.

generalized-boolean—a generalized boolean.

Description:
tree-equal tests whether two trees are of the same shape and have the same leaves. tree-equal
returns true if tree-1 and tree-2 are both atoms and satisfy the test , or if they are both conses
and the car of tree-1 is tree-equal to the car of tree-2 and the cdr of tree-1 is tree-equal to the
cdr of tree-2 . Otherwise, tree-equal returns false.

tree-equal recursively compares conses but not any other objects that have components.

The first argument to the :test or :test-not function is tree-1 or a car or cdr of tree-1 ; the
second argument is tree-2 or a car or cdr of tree-2 .

Examples:

(setq tree1 ’(1 (1 2))

tree2 ’(1 (1 2))) → (1 (1 2))

(tree-equal tree1 tree2) → true
(eql tree1 tree2) → false
(setq tree1 ’(’a (’b ’c))

tree2 ’(’a (’b ’c))) → (’a (’b ’c))

→ ((QUOTE A) ((QUOTE B) (QUOTE C)))

(tree-equal tree1 tree2 :test ’eq) → true

Exceptional Situations:
The consequences are undefined if both tree-1 and tree-2 are circular.

See Also:
equal, Section 3.6 (Traversal Rules and Side Effects)

Notes:
The :test-not parameter is deprecated.

14–18 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

copy-list Function

Syntax:
copy-list list → copy

Arguments and Values:
list—a proper list or a dotted list .

copy—a list .

Description:
Returns a copy of list. If list is a dotted list , the resulting list will also be a dotted list .

Only the list structure of list is copied; the elements of the resulting list are the same as the
corresponding elements of the given list.

Examples:

(setq lst (list 1 (list 2 3))) → (1 (2 3))

(setq slst lst) → (1 (2 3))

(setq clst (copy-list lst)) → (1 (2 3))

(eq slst lst) → true
(eq clst lst) → false
(equal clst lst) → true
(rplaca lst "one") → ("one" (2 3))

slst → ("one" (2 3))

clst → (1 (2 3))

(setf (caadr lst) "two") → "two"

lst → ("one" ("two" 3))

slst → ("one" ("two" 3))

clst → (1 ("two" 3))

Exceptional Situations:
The consequences are undefined if list is a circular list .

See Also:
copy-alist, copy-seq, copy-tree

Notes:
The copy created is equal to list, but not eq.

Conses 14–19



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

list, list∗
list, list∗ Function

Syntax:
list &rest objects → list

list* &rest objects+ → result

Arguments and Values:
object—an object .

list—a list .

result—an object .

Description:
list returns a list containing the supplied objects.

list* is like list except that the last argument to list becomes the car of the last cons constructed,
while the last argument to list* becomes the cdr of the last cons constructed. Hence, any given
call to list* always produces one fewer conses than a call to list with the same number of argu-
ments.

If the last argument to list* is a list , the effect is to construct a new list which is similar, but
which has additional elements added to the front corresponding to the preceding arguments of
list*.

If list* receives only one object, that object is returned, regardless of whether or not it is a list .

Examples:

(list 1) → (1)

(list* 1) → 1

(setq a 1) → 1

(list a 2) → (1 2)

’(a 2) → (A 2)

(list ’a 2) → (A 2)

(list* a 2) → (1 . 2)

(list) → NIL ;i.e., ()

(setq a ’(1 2)) → (1 2)

(eq a (list* a)) → true
(list 3 4 ’a (car ’(b . c)) (+ 6 -2)) → (3 4 A B 4)

(list* ’a ’b ’c ’d) ≡ (cons ’a (cons ’b (cons ’c ’d))) → (A B C . D)

(list* ’a ’b ’c ’(d e f)) → (A B C D E F)

See Also:
cons

14–20 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Notes:

(list* x) ≡ x

list-length Function

Syntax:
list-length list → length

Arguments and Values:
list—a proper list or a circular list .

length—a non-negative integer , or nil.

Description:
Returns the length of list if list is a proper list . Returns nil if list is a circular list .

Examples:

(list-length ’(a b c d)) → 4

(list-length ’(a (b c) d)) → 3

(list-length ’()) → 0

(list-length nil) → 0

(defun circular-list (&rest elements)

(let ((cycle (copy-list elements)))

(nconc cycle cycle)))

(list-length (circular-list ’a ’b)) → NIL

(list-length (circular-list ’a)) → NIL

(list-length (circular-list)) → 0

Exceptional Situations:
Should signal an error of type type-error if list is not a proper list or a circular list .

See Also:
length

Notes:
list-length could be implemented as follows:

(defun list-length (x)

(do ((n 0 (+ n 2)) ;Counter.

(fast x (cddr fast)) ;Fast pointer: leaps by 2.

Conses 14–21



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(slow x (cdr slow))) ;Slow pointer: leaps by 1.

(nil)

;; If fast pointer hits the end, return the count.

(when (endp fast) (return n))

(when (endp (cdr fast)) (return (+ n 1)))

;; If fast pointer eventually equals slow pointer,

;; then we must be stuck in a circular list.

;; (A deeper property is the converse: if we are

;; stuck in a circular list, then eventually the

;; fast pointer will equal the slow pointer.

;; That fact justifies this implementation.)

(when (and (eq fast slow) (> n 0)) (return nil))))

listp Function

Syntax:
listp object → generalized-boolean

Arguments and Values:
object—an object .

generalized-boolean—a generalized boolean.

Description:
Returns true if object is of type list; otherwise, returns false.

Examples:

(listp nil) → true
(listp (cons 1 2)) → true
(listp (make-array 6)) → false
(listp t) → false

See Also:
consp

Notes:
If object is a cons, listp does not check whether object is a proper list ; it returns true for any kind
of list .

(listp object) ≡ (typep object ’list) ≡ (typep object ’(or cons null))

14–22 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

make-list Function

Syntax:
make-list size &key initial-element → list

Arguments and Values:
size—a non-negative integer .

initial-element—an object . The default is nil.

list—a list .

Description:
Returns a list of length given by size, each of the elements of which is initial-element.

Examples:

(make-list 5) → (NIL NIL NIL NIL NIL)

(make-list 3 :initial-element ’rah) → (RAH RAH RAH)

(make-list 2 :initial-element ’(1 2 3)) → ((1 2 3) (1 2 3))

(make-list 0) → NIL ;i.e., ()

(make-list 0 :initial-element ’new-element) → NIL

Exceptional Situations:
Should signal an error of type type-error if size is not a non-negative integer .

See Also:
cons, list

push Macro

Syntax:
push item place → new-place-value

Arguments and Values:
item—an object .

place—a place, the value of which may be any object .

new-place-value—a list (the new value of place).

Conses 14–23



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Description:
push prepends item to the list that is stored in place, stores the resulting list in place, and
returns the list .

For information about the evaluation of subforms of place, see Section 5.1.1.1 (Evaluation of
Subforms to Places).

Examples:

(setq llst ’(nil)) → (NIL)

(push 1 (car llst)) → (1)

llst → ((1))

(push 1 (car llst)) → (1 1)

llst → ((1 1))

(setq x ’(a (b c) d)) → (A (B C) D)

(push 5 (cadr x)) → (5 B C)

x → (A (5 B C) D)

Side Effects:
The contents of place are modified.

See Also:
pop, pushnew, Section 5.1 (Generalized Reference)

Notes:
The effect of (push item place) is equivalent to

(setf place (cons item place))

except that the subforms of place are evaluated only once, and item is evaluated before place.

pop Macro

Syntax:
pop place → element

Arguments and Values:
place—a place, the value of which is a list (possibly, but necessarily, a dotted list or circular list).

element—an object (the car of the contents of place).

Description:
pop reads the value of place, remembers the car of the list which was retrieved, writes the cdr of
the list back into the place, and finally yields the car of the originally retrieved list .

14–24 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

For information about the evaluation of subforms of place, see Section 5.1.1.1 (Evaluation of
Subforms to Places).

Examples:

(setq stack ’(a b c)) → (A B C)

(pop stack) → A

stack → (B C)

(setq llst ’((1 2 3 4))) → ((1 2 3 4))

(pop (car llst)) → 1

llst → ((2 3 4))

Side Effects:
The contents of place are modified.

See Also:
push, pushnew, Section 5.1 (Generalized Reference)

Notes:
The effect of (pop place) is roughly equivalent to

(prog1 (car place) (setf place (cdr place)))

except that the latter would evaluate any subforms of place three times, while pop evaluates them
only once.

first, second, third, fourth, fifth, sixth, seventh,
eighth, ninth, tenth Accessor

Syntax:
first list → object
second list → object
third list → object
fourth list → object
fifth list → object
sixth list → object
seventh list → object
eighth list → object
ninth list → object
tenth list → object

(setf (first list) new-object)
(setf (second list) new-object)
(setf (third list) new-object)
(setf (fourth list) new-object)
(setf (fifth list) new-object)
(setf (sixth list) new-object)
(setf (seventh list) new-object)
(setf (eighth list) new-object)
(setf (ninth list) new-object)
(setf (tenth list) new-object)

Arguments and Values:
list—a list , which might be a dotted list or a circular list .

Conses 14–25



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

first, second, third, fourth, fifth, sixth, seventh, . . .

object, new-object—an object.

Description:
The functions first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, and tenth access
the first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, and tenth elements of list,
respectively. Specifically,

(first list) ≡ (car list)
(second list) ≡ (car (cdr list))
(third list) ≡ (car (cddr list))
(fourth list) ≡ (car (cdddr list))
(fifth list) ≡ (car (cddddr list))
(sixth list) ≡ (car (cdr (cddddr list)))
(seventh list) ≡ (car (cddr (cddddr list)))
(eighth list) ≡ (car (cdddr (cddddr list)))
(ninth list) ≡ (car (cddddr (cddddr list)))
(tenth list) ≡ (car (cdr (cddddr (cddddr list))))

setf can also be used with any of these functions to change an existing component. The same
equivalences apply. For example:

(setf (fifth list) new-object) ≡ (setf (car (cddddr list)) new-object)

Examples:

(setq lst ’(1 2 3 (4 5 6) ((V)) vi 7 8 9 10))

→ (1 2 3 (4 5 6) ((V)) VI 7 8 9 10)

(first lst) → 1

(tenth lst) → 10

(fifth lst) → ((V))

(second (fourth lst)) → 5

(sixth ’(1 2 3)) → NIL

(setf (fourth lst) "four") → "four"

lst → (1 2 3 "four" ((V)) VI 7 8 9 10)

See Also:
car, nth

Notes:
first is functionally equivalent to car, second is functionally equivalent to cadr, third is function-
ally equivalent to caddr, and fourth is functionally equivalent to cadddr.

The ordinal numbering used here is one-origin, as opposed to the zero-origin numbering used by
nth:

(fifth x) ≡ (nth 4 x)

14–26 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

nth Accessor

Syntax:
nth n list → object

(setf (nth n list) new-object)

Arguments and Values:
n—a non-negative integer .

list—a list , which might be a dotted list or a circular list .

object—an object .

new-object—an object .

Description:
nth locates the nth element of list, where the car of the list is the “zeroth” element. Specifically,

(nth n list) ≡ (car (nthcdr n list))

nth may be used to specify a place to setf . Specifically,

(setf (nth n list) new-object) ≡ (setf (car (nthcdr n list)) new-object)

Examples:

(nth 0 ’(foo bar baz)) → FOO

(nth 1 ’(foo bar baz)) → BAR

(nth 3 ’(foo bar baz)) → NIL

(setq 0-to-3 (list 0 1 2 3)) → (0 1 2 3)

(setf (nth 2 0-to-3) "two") → "two"

0-to-3 → (0 1 "two" 3)

See Also:
elt, first, nthcdr

Conses 14–27



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

endp Function

Syntax:
endp list → generalized-boolean

Arguments and Values:
list—a list , which might be a dotted list or a circular list .

generalized-boolean—a generalized boolean.

Description:
Returns true if list is the empty list . Returns false if list is a cons.

Examples:

(endp nil) → true
(endp ’(1 2)) → false
(endp (cddr ’(1 2))) → true

Exceptional Situations:
Should signal an error of type type-error if list is not a list .

Notes:
The purpose of endp is to test for the end of proper list. Since endp does not descend into a
cons, it is well-defined to pass it a dotted list . However, if shorter “lists” are iteratively produced
by calling cdr on such a dotted list and those “lists” are tested with endp, a situation that has
undefined consequences will eventually result when the non-nil atom (which is not in fact a list)
finally becomes the argument to endp. Since this is the usual way in which endp is used, it is
conservative programming style and consistent with the intent of endp to treat endp as simply
a function on proper lists which happens not to enforce an argument type of proper list except
when the argument is atomic.

null Function

Syntax:
null object → boolean

Arguments and Values:
object—an object .

boolean—a boolean.

14–28 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Description:
Returns t if object is the empty list ; otherwise, returns nil.

Examples:

(null ’()) → T

(null nil) → T

(null t) → NIL

(null 1) → NIL

See Also:
not

Notes:
null is intended to be used to test for the empty list whereas not is intended to be used to invert
a boolean (or generalized boolean). Operationally, null and not compute the same result; which to
use is a matter of style.

(null object) ≡ (typep object ’null) ≡ (eq object ’())

nconc Function

Syntax:
nconc &rest lists → concatenated-list

Arguments and Values:
list—each but the last must be a list (which might be a dotted list but must not be a circular
list); the last list may be any object .

concatenated-list—a list .

Description:
Returns a list that is the concatenation of lists. If no lists are supplied, (nconc) returns nil. nconc
is defined using the following recursive relationship:

(nconc) → ()

(nconc nil . lists) ≡ (nconc . lists)
(nconc list) → list
(nconc list-1 list-2) ≡ (progn (rplacd (last list-1) list-2) list-1)
(nconc list-1 list-2 . lists) ≡ (nconc (nconc list-1 list-2) . lists)

Conses 14–29



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:

(nconc) → NIL

(setq x ’(a b c)) → (A B C)

(setq y ’(d e f)) → (D E F)

(nconc x y) → (A B C D E F)

x → (A B C D E F)

Note, in the example, that the value of x is now different, since its last cons has been rplacd’d
to the value of y. If (nconc x y) were evaluated again, it would yield a piece of a circular list ,
whose printed representation would be (A B C D E F D E F D E F ...), repeating forever; if the
*print-circle* switch were non-nil , it would be printed as (A B C . #1=(D E F . #1#)).

(setq foo (list ’a ’b ’c ’d ’e)

bar (list ’f ’g ’h ’i ’j)

baz (list ’k ’l ’m)) → (K L M)

(setq foo (nconc foo bar baz)) → (A B C D E F G H I J K L M)

foo → (A B C D E F G H I J K L M)

bar → (F G H I J K L M)

baz → (K L M)

(setq foo (list ’a ’b ’c ’d ’e)

bar (list ’f ’g ’h ’i ’j)

baz (list ’k ’l ’m)) → (K L M)

(setq foo (nconc nil foo bar nil baz)) → (A B C D E F G H I J K L M)

foo → (A B C D E F G H I J K L M)

bar → (F G H I J K L M)

baz → (K L M)

Side Effects:
The lists are modified rather than copied.

See Also:
append, concatenate

append Function

Syntax:
append &rest lists → result

Arguments and Values:
list—each must be a proper list except the last, which may be any object .

14–30 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

result—an object . This will be a list unless the last list was not a list and all preceding lists were
null .

Description:
append returns a new list that is the concatenation of the copies. lists are left unchanged; the list
structure of each of lists except the last is copied. The last argument is not copied; it becomes the
cdr of the final dotted pair of the concatenation of the preceding lists, or is returned directly if
there are no preceding non-empty lists.

Examples:

(append ’(a b c) ’(d e f) ’() ’(g)) → (A B C D E F G)

(append ’(a b c) ’d) → (A B C . D)

(setq lst ’(a b c)) → (A B C)

(append lst ’(d)) → (A B C D)

lst → (A B C)

(append) → NIL

(append ’a) → A

See Also:
nconc, concatenate

revappend, nreconc Function

Syntax:
revappend list tail → result-list

nreconc list tail → result-list

Arguments and Values:
list—a proper list .

tail—an object .

result-list—an object .

Description:
revappend constructs a copy2 of list, but with the elements in reverse order. It then appends (as
if by nconc) the tail to that reversed list and returns the result.

nreconc reverses the order of elements in list (as if by nreverse). It then appends (as if by
nconc) the tail to that reversed list and returns the result.

The resulting list shares list structure with tail .

Conses 14–31



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

revappend, nreconc

Examples:

(let ((list-1 (list 1 2 3))

(list-2 (list ’a ’b ’c)))

(print (revappend list-1 list-2))

(print (equal list-1 ’(1 2 3)))

(print (equal list-2 ’(a b c))))

. (3 2 1 A B C)

. T

. T

→ T

(revappend ’(1 2 3) ’()) → (3 2 1)

(revappend ’(1 2 3) ’(a . b)) → (3 2 1 A . B)

(revappend ’() ’(a b c)) → (A B C)

(revappend ’(1 2 3) ’a) → (3 2 1 . A)

(revappend ’() ’a) → A ;degenerate case

(let ((list-1 ’(1 2 3))

(list-2 ’(a b c)))

(print (nreconc list-1 list-2))

(print (equal list-1 ’(1 2 3)))

(print (equal list-2 ’(a b c))))

. (3 2 1 A B C)

. NIL

. T

→ T

Side Effects:
revappend does not modify either of its arguments. nreconc is permitted to modify list but not
tail .

Although it might be implemented differently, nreconc is constrained to have side-effect behavior
equivalent to:

(nconc (nreverse list) tail)

See Also:
reverse, nreverse, nconc

Notes:
The following functional equivalences are true, although good implementations will typically use a
faster algorithm for achieving the same effect:

14–32 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(revappend list tail) ≡ (nconc (reverse list) tail)
(nreconc list tail) ≡ (nconc (nreverse list) tail)

butlast, nbutlast Function

Syntax:
butlast list &optional n → result-list

nbutlast list &optional n → result-list

Arguments and Values:
list—a list , which might be a dotted list but must not be a circular list .

n—a non-negative integer .

result-list—a list .

Description:
butlast returns a copy of list from which the last n conses have been omitted. If n is not supplied,
its value is 1. If there are fewer than n conses in list, nil is returned and, in the case of nbutlast,
list is not modified.

nbutlast is like butlast, but nbutlast may modify list. It changes the cdr of the cons n+1 from
the end of the list to nil.

Examples:

(setq lst ’(1 2 3 4 5 6 7 8 9)) → (1 2 3 4 5 6 7 8 9)

(butlast lst) → (1 2 3 4 5 6 7 8)

(butlast lst 5) → (1 2 3 4)

(butlast lst (+ 5 5)) → NIL

lst → (1 2 3 4 5 6 7 8 9)

(nbutlast lst 3) → (1 2 3 4 5 6)

lst → (1 2 3 4 5 6)

(nbutlast lst 99) → NIL

lst → (1 2 3 4 5 6)

(butlast ’(a b c d)) → (A B C)

(butlast ’((a b) (c d))) → ((A B))

(butlast ’(a)) → NIL

(butlast nil) → NIL

(setq foo (list ’a ’b ’c ’d)) → (A B C D)

(nbutlast foo) → (A B C)

foo → (A B C)

Conses 14–33



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(nbutlast (list ’a)) → NIL

(nbutlast ’()) → NIL

Exceptional Situations:
Should signal an error of type type-error if list is not a proper list or a dotted list . Should signal
an error of type type-error if n is not a non-negative integer .

Notes:

(butlast list n) ≡ (ldiff list (last list n))

last Function

Syntax:
last list &optional n → tail

Arguments and Values:
list—a list , which might be a dotted list but must not be a circular list .

n—a non-negative integer . The default is 1.

tail—an object .

Description:
last returns the last n conses (not the last n elements) of list). If list is (), last returns ().

If n is zero, the atom that terminates list is returned. If n is greater than or equal to the number
of cons cells in list, the result is list.

Examples:

(last nil) → NIL

(last ’(1 2 3)) → (3)

(last ’(1 2 . 3)) → (2 . 3)

(setq x (list ’a ’b ’c ’d)) → (A B C D)

(last x) → (D)

(rplacd (last x) (list ’e ’f)) x → (A B C D E F)

(last x) → (F)

(last ’(a b c)) → (C)

(last ’(a b c) 0) → ()

(last ’(a b c) 1) → (C)

14–34 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(last ’(a b c) 2) → (B C)

(last ’(a b c) 3) → (A B C)

(last ’(a b c) 4) → (A B C)

(last ’(a . b) 0) → B

(last ’(a . b) 1) → (A . B)

(last ’(a . b) 2) → (A . B)

Exceptional Situations:
The consequences are undefined if list is a circular list . Should signal an error of type type-error
if n is not a non-negative integer .

See Also:
butlast, nth

Notes:
The following code could be used to define last.

(defun last (list &optional (n 1))

(check-type n (integer 0))

(do ((l list (cdr l))

(r list)

(i 0 (+ i 1)))

((atom l) r)

(if (>= i n) (pop r))))

ldiff, tailp Function

Syntax:
ldiff list object → result-list

tailp object list → generalized-boolean

Arguments and Values:
list—a list , which might be a dotted list .

object—an object .

result-list—a list .

generalized-boolean—a generalized boolean.

Conses 14–35



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

ldiff, tailp

Description:
If object is the same as some tail of list, tailp returns true; otherwise, it returns false.

If object is the same as some tail of list, ldiff returns a fresh list of the elements of list that
precede object in the list structure of list; otherwise, it returns a copy2 of list.

Examples:

(let ((lists ’#((a b c) (a b c . d))))

(dotimes (i (length lists)) ()

(let ((list (aref lists i)))

(format t "~2&list=~S ~21T(tailp object list)~

~44T(ldiff list object)~%" list)

(let ((objects (vector list (cddr list) (copy-list (cddr list))

’(f g h) ’() ’d ’x)))

(dotimes (j (length objects)) ()

(let ((object (aref objects j)))

(format t "~& object=~S ~21T~S ~44T~S"

object (tailp object list) (ldiff list object))))))))

.

. list=(A B C) (tailp object list) (ldiff list object)

. object=(A B C) T NIL

. object=(C) T (A B)

. object=(C) NIL (A B C)

. object=(F G H) NIL (A B C)

. object=NIL T (A B C)

. object=D NIL (A B C)

. object=X NIL (A B C)

.

. list=(A B C . D) (tailp object list) (ldiff list object)

. object=(A B C . D) T NIL

. object=(C . D) T (A B)

. object=(C . D) NIL (A B C . D)

. object=(F G H) NIL (A B C . D)

. object=NIL NIL (A B C . D)

. object=D T (A B C)

. object=X NIL (A B C . D)

→ NIL

Side Effects:
Neither ldiff nor tailp modifies either of its arguments.

Exceptional Situations:
Should be prepared to signal an error of type type-error if list is not a proper list or a dotted list .

14–36 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

See Also:
set-difference

Notes:
If the list is a circular list , tailp will reliably yield a value only if the given object is in fact a
tail of list. Otherwise, the consequences are unspecified: a given implementation which detects
the circularity must return false, but since an implementation is not obliged to detect such a
situation, tailp might just loop indefinitely without returning in that case.

tailp could be defined as follows:

(defun tailp (object list)

(do ((list list (cdr list)))

((atom list) (eql list object))

(if (eql object list)

(return t))))

and ldiff could be defined by:

(defun ldiff (list object)

(do ((list list (cdr list))

(r ’() (cons (car list) r)))

((atom list)

(if (eql list object) (nreverse r) (nreconc r list)))

(when (eql object list)

(return (nreverse r)))))

nthcdr Function

Syntax:
nthcdr n list → tail

Arguments and Values:
n—a non-negative integer .

list—a list , which might be a dotted list or a circular list .

tail—an object .

Description:
Returns the tail of list that would be obtained by calling cdr n times in succession.

Conses 14–37



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:

(nthcdr 0 ’()) → NIL

(nthcdr 3 ’()) → NIL

(nthcdr 0 ’(a b c)) → (A B C)

(nthcdr 2 ’(a b c)) → (C)

(nthcdr 4 ’(a b c)) → ()

(nthcdr 1 ’(0 . 1)) → 1

(locally (declare (optimize (safety 3)))

(nthcdr 3 ’(0 . 1)))

Error: Attempted to take CDR of 1.

Exceptional Situations:
Should signal an error of type type-error if n is not a non-negative integer .

For n being an integer greater than 1, the error checking done by (nthcdr n list) is the same as
for (nthcdr (- n 1) (cdr list)); see the function cdr.

See Also:
cdr, nth, rest

rest Accessor

Syntax:
rest list → tail

(setf (rest list) new-tail)

Arguments and Values:
list—a list , which might be a dotted list or a circular list .

tail—an object .

Description:
rest performs the same operation as cdr, but mnemonically complements first. Specifically,

(rest list) ≡ (cdr list)
(setf (rest list) new-tail) ≡ (setf (cdr list) new-tail)

Examples:

(rest ’(1 2)) → (2)

14–38 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(rest ’(1 . 2)) → 2

(rest ’(1)) → NIL

(setq *cons* ’(1 . 2)) → (1 . 2)

(setf (rest *cons*) "two") → "two"

*cons* → (1 . "two")

See Also:
cdr, nthcdr

Notes:
rest is often preferred stylistically over cdr when the argument is to being subjectively viewed as
a list rather than as a cons.

member, member-if, member-if-not Function

Syntax:
member item list &key key test test-not → tail

member-if predicate list &key key → tail

member-if-not predicate list &key key → tail

Arguments and Values:
item—an object .

list—a proper list .

predicate—a designator for a function of one argument that returns a generalized boolean.

test—a designator for a function of two arguments that returns a generalized boolean.

test-not—a designator for a function of two arguments that returns a generalized boolean.

key—a designator for a function of one argument, or nil.

tail—a list .

Description:
member, member-if , and member-if-not each search list for item or for a top-level element that
satisfies the test . The argument to the predicate function is an element of list.

If some element satisfies the test , the tail of list beginning with this element is returned; otherwise
nil is returned.

list is searched on the top level only.

Conses 14–39



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:

(member 2 ’(1 2 3)) → (2 3)

(member 2 ’((1 . 2) (3 . 4)) :test-not #’= :key #’cdr) → ((3 . 4))

(member ’e ’(a b c d)) → NIL

(member-if #’listp ’(a b nil c d)) → (NIL C D)

(member-if #’numberp ’(a #\Space 5/3 foo)) → (5/3 FOO)

(member-if-not #’zerop

’(3 6 9 11 . 12)

:key #’(lambda (x) (mod x 3))) → (11 . 12)

Exceptional Situations:
Should be prepared to signal an error of type type-error if list is not a proper list .

See Also:
find, position, Section 3.6 (Traversal Rules and Side Effects)

Notes:
The :test-not parameter is deprecated.

The function member-if-not is deprecated.

In the following

(member ’a ’(g (a y) c a d e a f)) → (A D E A F)

the value returned by member is identical to the portion of the list beginning with a. Thus
rplaca on the result of member can be used to alter the part of the list where a was found
(assuming a check has been made that member did not return nil).

mapc, mapcar, mapcan, mapl, maplist, mapcon
Function

Syntax:
mapc function &rest lists+ → list-1

mapcar function &rest lists+ → result-list

mapcan function &rest lists+ → concatenated-results

mapl function &rest lists+ → list-1

maplist function &rest lists+ → result-list

14–40 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

mapc, mapcar, mapcan, mapl, maplist, mapcon

mapcon function &rest lists+ → concatenated-results

Arguments and Values:
function—a designator for a function that must take as many arguments as there are lists.

list—a proper list .

list-1—the first list (which must be a proper list).

result-list—a list .

concatenated-results—a list .

Description:
The mapping operation involves applying function to successive sets of arguments in which one
argument is obtained from each sequence. Except for mapc and mapl, the result contains the
results returned by function. In the cases of mapc and mapl, the resulting sequence is list.

function is called first on all the elements with index 0, then on all those with index 1, and so on.
result-type specifies the type of the resulting sequence. If function is a symbol , it is coerced to a
function as if by symbol-function.

mapcar operates on successive elements of the lists. function is applied to the first element of
each list, then to the second element of each list, and so on. The iteration terminates when
the shortest list runs out, and excess elements in other lists are ignored. The value returned by
mapcar is a list of the results of successive calls to function.

mapc is like mapcar except that the results of applying function are not accumulated. The list
argument is returned.

maplist is like mapcar except that function is applied to successive sublists of the lists. function
is first applied to the lists themselves, and then to the cdr of each list, and then to the cdr of the
cdr of each list, and so on.

mapl is like maplist except that the results of applying function are not accumulated; list-1 is
returned.

mapcan and mapcon are like mapcar and maplist respectively, except that the results of apply-
ing function are combined into a list by the use of nconc rather than list. That is,

(mapcon f x1 ... xn)

≡ (apply #’nconc (maplist f x1 ... xn))

and similarly for the relationship between mapcan and mapcar.

Examples:

(mapcar #’car ’((1 a) (2 b) (3 c))) → (1 2 3)

(mapcar #’abs ’(3 -4 2 -5 -6)) → (3 4 2 5 6)

Conses 14–41



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(mapcar #’cons ’(a b c) ’(1 2 3)) → ((A . 1) (B . 2) (C . 3))

(maplist #’append ’(1 2 3 4) ’(1 2) ’(1 2 3))

→ ((1 2 3 4 1 2 1 2 3) (2 3 4 2 2 3))

(maplist #’(lambda (x) (cons ’foo x)) ’(a b c d))

→ ((FOO A B C D) (FOO B C D) (FOO C D) (FOO D))

(maplist #’(lambda (x) (if (member (car x) (cdr x)) 0 1)) ’(a b a c d b c))

→ (0 0 1 0 1 1 1)

;An entry is 1 if the corresponding element of the input

; list was the last instance of that element in the input list.

(setq dummy nil) → NIL

(mapc #’(lambda (&rest x) (setq dummy (append dummy x)))

’(1 2 3 4)

’(a b c d e)

’(x y z)) → (1 2 3 4)

dummy → (1 A X 2 B Y 3 C Z)

(setq dummy nil) → NIL

(mapl #’(lambda (x) (push x dummy)) ’(1 2 3 4)) → (1 2 3 4)

dummy → ((4) (3 4) (2 3 4) (1 2 3 4))

(mapcan #’(lambda (x y) (if (null x) nil (list x y)))

’(nil nil nil d e)

’(1 2 3 4 5 6)) → (D 4 E 5)

(mapcan #’(lambda (x) (and (numberp x) (list x)))

’(a 1 b c 3 4 d 5))

→ (1 3 4 5)

In this case the function serves as a filter; this is a standard Lisp idiom using mapcan.

(mapcon #’list ’(1 2 3 4)) → ((1 2 3 4) (2 3 4) (3 4) (4))

Exceptional Situations:
Should be prepared to signal an error of type type-error if any list is not a proper list .

See Also:
dolist, map, Section 3.6 (Traversal Rules and Side Effects)

14–42 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

acons Function

Syntax:
acons key datum alist → new-alist

Arguments and Values:
key—an object .

datum—an object .

alist—an association list .

new-alist—an association list .

Description:
Creates a fresh cons, the cdr of which is alist and the car of which is another fresh cons, the car
of which is key and the cdr of which is datum.

Examples:

(setq alist ’()) → NIL

(acons 1 "one" alist) → ((1 . "one"))

alist → NIL

(setq alist (acons 1 "one" (acons 2 "two" alist))) → ((1 . "one") (2 . "two"))

(assoc 1 alist) → (1 . "one")

(setq alist (acons 1 "uno" alist)) → ((1 . "uno") (1 . "one") (2 . "two"))

(assoc 1 alist) → (1 . "uno")

See Also:
assoc, pairlis

Notes:

(acons key datum alist) ≡ (cons (cons key datum) alist)

assoc, assoc-if, assoc-if-not Function

Syntax:
assoc item alist &key key test test-not → entry

assoc-if predicate alist &key key → entry

Conses 14–43



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

assoc, assoc-if, assoc-if-not

assoc-if-not predicate alist &key key → entry

Arguments and Values:
item—an object .

alist—an association list .

predicate—a designator for a function of one argument that returns a generalized boolean.

test—a designator for a function of two arguments that returns a generalized boolean.

test-not—a designator for a function of two arguments that returns a generalized boolean.

key—a designator for a function of one argument, or nil.

entry—a cons that is an element of alist, or nil.

Description:
assoc, assoc-if , and assoc-if-not return the first cons in alist whose car satisfies the test , or nil if
no such cons is found.

For assoc, assoc-if , and assoc-if-not, if nil appears in alist in place of a pair, it is ignored.

Examples:

(setq values ’((x . 100) (y . 200) (z . 50))) → ((X . 100) (Y . 200) (Z . 50))

(assoc ’y values) → (Y . 200)

(rplacd (assoc ’y values) 201) → (Y . 201)

(assoc ’y values) → (Y . 201)

(setq alist ’((1 . "one")(2 . "two")(3 . "three")))

→ ((1 . "one") (2 . "two") (3 . "three"))

(assoc 2 alist) → (2 . "two")

(assoc-if #’evenp alist) → (2 . "two")

(assoc-if-not #’(lambda(x) (< x 3)) alist) → (3 . "three")

(setq alist ’(("one" . 1)("two" . 2))) → (("one" . 1) ("two" . 2))

(assoc "one" alist) → NIL

(assoc "one" alist :test #’equalp) → ("one" . 1)

(assoc "two" alist :key #’(lambda(x) (char x 2))) → NIL

(assoc #\o alist :key #’(lambda(x) (char x 2))) → ("two" . 2)

(assoc ’r ’((a . b) (c . d) (r . x) (s . y) (r . z))) → (R . X)

(assoc ’goo ’((foo . bar) (zoo . goo))) → NIL

(assoc ’2 ’((1 a b c) (2 b c d) (-7 x y z))) → (2 B C D)

(setq alist ’(("one" . 1) ("2" . 2) ("three" . 3)))

→ (("one" . 1) ("2" . 2) ("three" . 3))

(assoc-if-not #’alpha-char-p alist

:key #’(lambda (x) (char x 0))) → ("2" . 2)

14–44 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Exceptional Situations:
Should be prepared to signal an error of type type-error if alist is not an association list .

See Also:
rassoc, find, member, position, Section 3.6 (Traversal Rules and Side Effects)

Notes:
The :test-not parameter is deprecated.

The function assoc-if-not is deprecated.

It is possible to rplacd the result of assoc, provided that it is not nil, in order to “update” alist.

The two expressions

(assoc item list :test fn)

and

(find item list :test fn :key #’car)

are equivalent in meaning with one exception: if nil appears in alist in place of a pair, and item
is nil, find will compute the car of the nil in alist, find that it is equal to item, and return nil,
whereas assoc will ignore the nil in alist and continue to search for an actual cons whose car is
nil.

copy-alist Function

Syntax:
copy-alist alist → new-alist

Arguments and Values:
alist—an association list .

new-alist—an association list .

Description:
copy-alist returns a copy of alist.

The list structure of alist is copied, and the elements of alist which are conses are also copied (as
conses only). Any other objects which are referred to, whether directly or indirectly, by the alist
continue to be shared.

Conses 14–45



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:

(defparameter *alist* (acons 1 "one" (acons 2 "two" ’())))

*alist* → ((1 . "one") (2 . "two"))

(defparameter *list-copy* (copy-list *alist*))

*list-copy* → ((1 . "one") (2 . "two"))

(defparameter *alist-copy* (copy-alist *alist*))

*alist-copy* → ((1 . "one") (2 . "two"))

(setf (cdr (assoc 2 *alist-copy*)) "deux") → "deux"

*alist-copy* → ((1 . "one") (2 . "deux"))

*alist* → ((1 . "one") (2 . "two"))

(setf (cdr (assoc 1 *list-copy*)) "uno") → "uno"

*list-copy* → ((1 . "uno") (2 . "two"))

*alist* → ((1 . "uno") (2 . "two"))

See Also:
copy-list

pairlis Function

Syntax:
pairlis keys data &optional alist → new-alist

Arguments and Values:
keys—a proper list .

data—a proper list .

alist—an association list . The default is the empty list .

new-alist—an association list .

Description:
Returns an association list that associates elements of keys to corresponding elements of data.
The consequences are undefined if keys and data are not of the same length.

If alist is supplied, pairlis returns a modified alist with the new pairs prepended to it. The new
pairs may appear in the resulting association list in either forward or backward order. The result
of

(pairlis ’(one two) ’(1 2) ’((three . 3) (four . 19)))

might be

((one . 1) (two . 2) (three . 3) (four . 19))

14–46 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

or

((two . 2) (one . 1) (three . 3) (four . 19))

Examples:

(setq keys ’(1 2 3)

data ’("one" "two" "three")

alist ’((4 . "four"))) → ((4 . "four"))

(pairlis keys data) → ((3 . "three") (2 . "two") (1 . "one"))

(pairlis keys data alist)

→ ((3 . "three") (2 . "two") (1 . "one") (4 . "four"))

alist → ((4 . "four"))

Exceptional Situations:
Should be prepared to signal an error of type type-error if keys and data are not proper lists.

See Also:
acons

rassoc, rassoc-if, rassoc-if-not Function

Syntax:
rassoc item alist &key key test test-not → entry

rassoc-if predicate alist &key key → entry

rassoc-if-not predicate alist &key key → entry

Arguments and Values:
item—an object .

alist—an association list .

predicate—a designator for a function of one argument that returns a generalized boolean.

test—a designator for a function of two arguments that returns a generalized boolean.

test-not—a designator for a function of two arguments that returns a generalized boolean.

key—a designator for a function of one argument, or nil.

entry—a cons that is an element of the alist, or nil.

Conses 14–47



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Description:
rassoc, rassoc-if , and rassoc-if-not return the first cons whose cdr satisfies the test . If no such
cons is found, nil is returned.

If nil appears in alist in place of a pair, it is ignored.

Examples:

(setq alist ’((1 . "one") (2 . "two") (3 . 3)))

→ ((1 . "one") (2 . "two") (3 . 3))

(rassoc 3 alist) → (3 . 3)

(rassoc "two" alist) → NIL

(rassoc "two" alist :test ’equal) → (2 . "two")

(rassoc 1 alist :key #’(lambda (x) (if (numberp x) (/ x 3)))) → (3 . 3)

(rassoc ’a ’((a . b) (b . c) (c . a) (z . a))) → (C . A)

(rassoc-if #’stringp alist) → (1 . "one")

(rassoc-if-not #’vectorp alist) → (3 . 3)

See Also:
assoc, Section 3.6 (Traversal Rules and Side Effects)

Notes:
The :test-not parameter is deprecated.

The function rassoc-if-not is deprecated.

It is possible to rplaca the result of rassoc, provided that it is not nil, in order to “update” alist.

The expressions

(rassoc item list :test fn)

and

(find item list :test fn :key #’cdr)

are equivalent in meaning, except when the item is nil and nil appears in place of a pair in the
alist. See the function assoc.

get-properties Function

Syntax:
get-properties plist indicator-list → indicator, value, tail

Arguments and Values:

14–48 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

plist—a property list .

indicator-list—a proper list (of indicators).

indicator—an object that is an element of indicator-list.

value—an object .

tail—a list .

Description:
get-properties is used to look up any of several property list entries all at once.

It searches the plist for the first entry whose indicator is identical to one of the objects in
indicator-list. If such an entry is found, the indicator and value returned are the property indi-
cator and its associated property value, and the tail returned is the tail of the plist that begins
with the found entry (i.e., whose car is the indicator). If no such entry is found, the indicator ,
value, and tail are all nil.

Examples:

(setq x ’()) → NIL

(setq *indicator-list* ’(prop1 prop2)) → (PROP1 PROP2)

(getf x ’prop1) → NIL

(setf (getf x ’prop1) ’val1) → VAL1

(eq (getf x ’prop1) ’val1) → true
(get-properties x *indicator-list*) → PROP1, VAL1, (PROP1 VAL1)

x → (PROP1 VAL1)

See Also:
get, getf

getf Accessor

Syntax:
getf plist indicator &optional default → value

(setf (getf place indicator &optional default) new-value)

Arguments and Values:
plist—a property list .

place—a place, the value of which is a property list .

Conses 14–49



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

getf

indicator—an object .

default—an object . The default is nil.

value—an object .

new-value—an object .

Description:
getf finds a property on the plist whose property indicator is identical to indicator , and returns
its corresponding property value. If there are multiple properties1 with that property indicator ,
getf uses the first such property . If there is no property with that property indicator , default is
returned.

setf of getf may be used to associate a new object with an existing indicator in the property list
held by place, or to create a new assocation if none exists. If there are multiple properties1 with
that property indicator , setf of getf associates the new-value with the first such property . When
a getf form is used as a setf place, any default which is supplied is evaluated according to normal
left-to-right evaluation rules, but its value is ignored.

setf of getf is permitted to either write the value of place itself, or modify of any part, car or
cdr , of the list structure held by place.

Examples:

(setq x ’()) → NIL

(getf x ’prop1) → NIL

(getf x ’prop1 7) → 7

(getf x ’prop1) → NIL

(setf (getf x ’prop1) ’val1) → VAL1

(eq (getf x ’prop1) ’val1) → true
(getf x ’prop1) → VAL1

(getf x ’prop1 7) → VAL1

x → (PROP1 VAL1)

;; Examples of implementation variation permitted.

(setq foo (list ’a ’b ’c ’d ’e ’f)) → (A B C D E F)

(setq bar (cddr foo)) → (C D E F)

(remf foo ’c) → true
foo → (A B E F)

bar

→ (C D E F)
or→ (C)
or→ (NIL)
or→ (C NIL)
or→ (C D)

14–50 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

See Also:
get, get-properties, setf , Section 5.1.2.2 (Function Call Forms as Places)

Notes:
There is no way (using getf) to distinguish an absent property from one whose value is default;
but see get-properties.

Note that while supplying a default argument to getf in a setf situation is sometimes not very
interesting, it is still important because some macros, such as push and incf , require a place
argument which data is both read from and written to. In such a context, if a default argument is
to be supplied for the read situation, it must be syntactically valid for the write situation as well.
For example,

(let ((plist ’()))

(incf (getf plist ’count 0))

plist) → (COUNT 1)

remf Macro

Syntax:
remf place indicator → generalized-boolean

Arguments and Values:
place—a place.

indicator—an object .

generalized-boolean—a generalized boolean.

Description:
remf removes from the property list stored in place a property1 with a property indicator identical
to indicator . If there are multiple properties1 with the identical key, remf only removes the first
such property . remf returns false if no such property was found, or true if a property was found.

The property indicator and the corresponding property value are removed in an undefined order
by destructively splicing the property list. remf is permitted to either setf place or to setf any
part, car or cdr, of the list structure held by that place.

For information about the evaluation of subforms of place, see Section 5.1.1.1 (Evaluation of
Subforms to Places).

Conses 14–51



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:

(setq x (cons () ())) → (NIL)

(setf (getf (car x) ’prop1) ’val1) → VAL1

(remf (car x) ’prop1) → true
(remf (car x) ’prop1) → false

Side Effects:
The property list stored in place is modified.

See Also:
remprop, getf

intersection, nintersection Function

Syntax:
intersection list-1 list-2 &key key test test-not → result-list

nintersection list-1 list-2 &key key test test-not → result-list

Arguments and Values:
list-1—a proper list .

list-2—a proper list .

test—a designator for a function of two arguments that returns a generalized boolean.

test-not—a designator for a function of two arguments that returns a generalized boolean.

key—a designator for a function of one argument, or nil.

result-list—a list .

Description:
intersection and nintersection return a list that contains every element that occurs in both list-1
and list-2 .

nintersection is the destructive version of intersection. It performs the same operation, but may
destroy list-1 using its cells to construct the result. list-2 is not destroyed.

The intersection operation is described as follows. For all possible ordered pairs consisting of one
element from list-1 and one element from list-2 , :test or :test-not are used to determine whether
they satisfy the test . The first argument to the :test or :test-not function is an element of list-1 ;
the second argument is an element of list-2 . If :test or :test-not is not supplied, eql is used. It is
an error if :test and :test-not are supplied in the same function call.

14–52 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

intersection, nintersection

If :key is supplied (and not nil), it is used to extract the part to be tested from the list element.
The argument to the :key function is an element of either list-1 or list-2 ; the :key function
typically returns part of the supplied element. If :key is not supplied or nil, the list-1 and list-2
elements are used.

For every pair that satifies the test , exactly one of the two elements of the pair will be put in
the result. No element from either list appears in the result that does not satisfy the test for
an element from the other list . If one of the lists contains duplicate elements, there may be
duplication in the result.

There is no guarantee that the order of elements in the result will reflect the ordering of the
arguments in any particular way. The result list may share cells with, or be eq to, either list-1 or
list-2 if appropriate.

Examples:

(setq list1 (list 1 1 2 3 4 a b c "A" "B" "C" "d")

list2 (list 1 4 5 b c d "a" "B" "c" "D"))

→ (1 4 5 B C D "a" "B" "c" "D")

(intersection list1 list2) → (C B 4 1 1)

(intersection list1 list2 :test ’equal) → ("B" C B 4 1 1)

(intersection list1 list2 :test #’equalp) → ("d" "C" "B" "A" C B 4 1 1)

(nintersection list1 list2) → (1 1 4 B C)

list1 → implementation-dependent ;e.g., (1 1 4 B C)

list2 → implementation-dependent ;e.g., (1 4 5 B C D "a" "B" "c" "D")

(setq list1 (copy-list ’((1 . 2) (2 . 3) (3 . 4) (4 . 5))))

→ ((1 . 2) (2 . 3) (3 . 4) (4 . 5))

(setq list2 (copy-list ’((1 . 3) (2 . 4) (3 . 6) (4 . 8))))

→ ((1 . 3) (2 . 4) (3 . 6) (4 . 8))

(nintersection list1 list2 :key #’cdr) → ((2 . 3) (3 . 4))

list1 → implementation-dependent ;e.g., ((1 . 2) (2 . 3) (3 . 4))

list2 → implementation-dependent ;e.g., ((1 . 3) (2 . 4) (3 . 6) (4 . 8))

Side Effects:
nintersection can modify list-1 , but not list-2 .

Exceptional Situations:
Should be prepared to signal an error of type type-error if list-1 and list-2 are not proper lists.

See Also:
union, Section 3.2.1 (Compiler Terminology), Section 3.6 (Traversal Rules and Side Effects)

Notes:
The :test-not parameter is deprecated.

Since the nintersection side effect is not required, it should not be used in for-effect-only posi-

Conses 14–53



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

tions in portable code.

adjoin Function

Syntax:
adjoin item list &key key test test-not → new-list

Arguments and Values:
item—an object .

list—a proper list .

test—a designator for a function of two arguments that returns a generalized boolean.

test-not—a designator for a function of two arguments that returns a generalized boolean.

key—a designator for a function of one argument, or nil.

new-list—a list .

Description:
Tests whether item is the same as an existing element of list. If the item is not an existing ele-
ment, adjoin adds it to list (as if by cons) and returns the resulting list ; otherwise, nothing is
added and the original list is returned.

The test, test-not, and key affect how it is determined whether item is the same as an element of
list. For details, see Section 17.2.1 (Satisfying a Two-Argument Test).

Examples:

(setq slist ’()) → NIL

(adjoin ’a slist) → (A)

slist → NIL

(setq slist (adjoin ’(test-item 1) slist)) → ((TEST-ITEM 1))

(adjoin ’(test-item 1) slist) → ((TEST-ITEM 1) (TEST-ITEM 1))

(adjoin ’(test-item 1) slist :test ’equal) → ((TEST-ITEM 1))

(adjoin ’(new-test-item 1) slist :key #’cadr) → ((TEST-ITEM 1))

(adjoin ’(new-test-item 1) slist) → ((NEW-TEST-ITEM 1) (TEST-ITEM 1))

Exceptional Situations:
Should be prepared to signal an error of type type-error if list is not a proper list .

See Also:
pushnew, Section 3.6 (Traversal Rules and Side Effects)

14–54 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Notes:
The :test-not parameter is deprecated.

(adjoin item list :key fn)

≡ (if (member (fn item) list :key fn) list (cons item list))

pushnew Macro

Syntax:
pushnew item place &key key test test-not
→ new-place-value

Arguments and Values:
item—an object .

place—a place, the value of which is a proper list .

test—a designator for a function of two arguments that returns a generalized boolean.

test-not—a designator for a function of two arguments that returns a generalized boolean.

key—a designator for a function of one argument, or nil.

new-place-value—a list (the new value of place).

Description:
pushnew tests whether item is the same as any existing element of the list stored in place. If item
is not, it is prepended to the list , and the new list is stored in place.

pushnew returns the new list that is stored in place.

Whether or not item is already a member of the list that is in place is determined by comparisons
using :test or :test-not. The first argument to the :test or :test-not function is item; the
second argument is an element of the list in place as returned by the :key function (if supplied).

If :key is supplied, it is used to extract the part to be tested from both item and the list element,
as for adjoin.

The argument to the :key function is an element of the list stored in place. The :key function
typically returns part part of the element of the list . If :key is not supplied or nil, the list ele-
ment is used.

For information about the evaluation of subforms of place, see Section 5.1.1.1 (Evaluation of
Subforms to Places).

Conses 14–55



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

It is implementation-dependent whether or not pushnew actually executes the storing form for its
place in the situation where the item is already a member of the list held by place.

Examples:

(setq x ’(a (b c) d)) → (A (B C) D)

(pushnew 5 (cadr x)) → (5 B C)

x → (A (5 B C) D)

(pushnew ’b (cadr x)) → (5 B C)

x → (A (5 B C) D)

(setq lst ’((1) (1 2) (1 2 3))) → ((1) (1 2) (1 2 3))

(pushnew ’(2) lst) → ((2) (1) (1 2) (1 2 3))

(pushnew ’(1) lst) → ((1) (2) (1) (1 2) (1 2 3))

(pushnew ’(1) lst :test ’equal) → ((1) (2) (1) (1 2) (1 2 3))

(pushnew ’(1) lst :key #’car) → ((1) (2) (1) (1 2) (1 2 3))

Side Effects:
The contents of place may be modified.

See Also:
push, adjoin, Section 5.1 (Generalized Reference)

Notes:
The effect of (pushnew item place :test p)

is roughly equivalent to (setf place (adjoin item place :test p))

except that the subforms of place are evaluated only once, and item is evaluated before place.

set-difference, nset-difference Function

Syntax:
set-difference list-1 list-2 &key key test test-not → result-list

nset-difference list-1 list-2 &key key test test-not → result-list

Arguments and Values:
list-1—a proper list .

list-2—a proper list .

test—a designator for a function of two arguments that returns a generalized boolean.

test-not—a designator for a function of two arguments that returns a generalized boolean.

14–56 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

set-difference, nset-difference

key—a designator for a function of one argument, or nil.

result-list—a list .

Description:
set-difference returns a list of elements of list-1 that do not appear in list-2 .

nset-difference is the destructive version of set-difference. It may destroy list-1 .

For all possible ordered pairs consisting of one element from list-1 and one element from list-2 , the
:test or :test-not function is used to determine whether they satisfy the test . The first argument
to the :test or :test-not function is the part of an element of list-1 that is returned by the :key

function (if supplied); the second argument is the part of an element of list-2 that is returned by
the :key function (if supplied).

If :key is supplied, its argument is a list-1 or list-2 element. The :key function typically returns
part of the supplied element. If :key is not supplied, the list-1 or list-2 element is used.

An element of list-1 appears in the result if and only if it does not match any element of list-2 .

There is no guarantee that the order of elements in the result will reflect the ordering of the
arguments in any particular way. The result list may share cells with, or be eq to, either of list-1
or list-2 , if appropriate.

Examples:

(setq lst1 (list "A" "b" "C" "d")

lst2 (list "a" "B" "C" "d")) → ("a" "B" "C" "d")

(set-difference lst1 lst2) → ("d" "C" "b" "A")

(set-difference lst1 lst2 :test ’equal) → ("b" "A")

(set-difference lst1 lst2 :test #’equalp) → NIL

(nset-difference lst1 lst2 :test #’string=) → ("A" "b")

(setq lst1 ’(("a" . "b") ("c" . "d") ("e" . "f")))

→ (("a" . "b") ("c" . "d") ("e" . "f"))

(setq lst2 ’(("c" . "a") ("e" . "b") ("d" . "a")))

→ (("c" . "a") ("e" . "b") ("d" . "a"))

(nset-difference lst1 lst2 :test #’string= :key #’cdr)

→ (("c" . "d") ("e" . "f"))

lst1 → (("a" . "b") ("c" . "d") ("e" . "f"))

lst2 → (("c" . "a") ("e" . "b") ("d" . "a"))

;; Remove all flavor names that contain "c" or "w".

(set-difference ’("strawberry" "chocolate" "banana"

"lemon" "pistachio" "rhubarb")

’(#\c #\w)

:test #’(lambda (s c) (find c s)))

→ ("banana" "rhubarb" "lemon") ;One possible ordering.

Conses 14–57



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Side Effects:
nset-difference may destroy list-1 .

Exceptional Situations:
Should be prepared to signal an error of type type-error if list-1 and list-2 are not proper lists.

See Also:
Section 3.2.1 (Compiler Terminology), Section 3.6 (Traversal Rules and Side Effects)

Notes:
The :test-not parameter is deprecated.

set-exclusive-or, nset-exclusive-or Function

Syntax:
set-exclusive-or list-1 list-2 &key key test test-not → result-list

nset-exclusive-or list-1 list-2 &key key test test-not → result-list

Arguments and Values:
list-1—a proper list .

list-2—a proper list .

test—a designator for a function of two arguments that returns a generalized boolean.

test-not—a designator for a function of two arguments that returns a generalized boolean.

key—a designator for a function of one argument, or nil.

result-list—a list .

Description:
set-exclusive-or returns a list of elements that appear in exactly one of list-1 and list-2 .

nset-exclusive-or is the destructive version of set-exclusive-or.

For all possible ordered pairs consisting of one element from list-1 and one element from list-2 , the
:test or :test-not function is used to determine whether they satisfy the test .

If :key is supplied, it is used to extract the part to be tested from the list-1 or list-2 element. The
first argument to the :test or :test-not function is the part of an element of list-1 extracted by
the :key function (if supplied); the second argument is the part of an element of list-2 extracted
by the :key function (if supplied). If :key is not supplied or nil, the list-1 or list-2 element is used.

14–58 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

The result contains precisely those elements of list-1 and list-2 that appear in no matching pair.

The result list of set-exclusive-or might share storage with one of list-1 or list-2 .

Examples:

(setq lst1 (list 1 "a" "b")

lst2 (list 1 "A" "b")) → (1 "A" "b")

(set-exclusive-or lst1 lst2) → ("b" "A" "b" "a")

(set-exclusive-or lst1 lst2 :test #’equal) → ("A" "a")

(set-exclusive-or lst1 lst2 :test ’equalp) → NIL

(nset-exclusive-or lst1 lst2) → ("a" "b" "A" "b")

(setq lst1 (list (("a" . "b") ("c" . "d") ("e" . "f"))))

→ (("a" . "b") ("c" . "d") ("e" . "f"))

(setq lst2 (list (("c" . "a") ("e" . "b") ("d" . "a"))))

→ (("c" . "a") ("e" . "b") ("d" . "a"))

(nset-exclusive-or lst1 lst2 :test #’string= :key #’cdr)

→ (("c" . "d") ("e" . "f") ("c" . "a") ("d" . "a"))

lst1 → (("a" . "b") ("c" . "d") ("e" . "f"))

lst2 → (("c" . "a") ("d" . "a"))

Side Effects:
nset-exclusive-or is permitted to modify any part, car or cdr , of the list structure of list-1 or
list-2 .

Exceptional Situations:
Should be prepared to signal an error of type type-error if list-1 and list-2 are not proper lists.

See Also:
Section 3.2.1 (Compiler Terminology), Section 3.6 (Traversal Rules and Side Effects)

Notes:
The :test-not parameter is deprecated.

Since the nset-exclusive-or side effect is not required, it should not be used in for-effect-only
positions in portable code.

subsetp Function

Syntax:
subsetp list-1 list-2 &key key test test-not → generalized-boolean

Conses 14–59



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Arguments and Values:
list-1—a proper list .

list-2—a proper list .

test—a designator for a function of two arguments that returns a generalized boolean.

test-not—a designator for a function of two arguments that returns a generalized boolean.

key—a designator for a function of one argument, or nil.

generalized-boolean—a generalized boolean.

Description:
subsetp returns true if every element of list-1 matches some element of list-2 , and false otherwise.

Whether a list element is the same as another list element is determined by the functions specified
by the keyword arguments. The first argument to the :test or :test-not function is typically
part of an element of list-1 extracted by the :key function; the second argument is typically part
of an element of list-2 extracted by the :key function.

The argument to the :key function is an element of either list-1 or list-2 ; the return value is
part of the element of the supplied list element. If :key is not supplied or nil, the list-1 or list-2
element itself is supplied to the :test or :test-not function.

Examples:

(setq cosmos ’(1 "a" (1 2))) → (1 "a" (1 2))

(subsetp ’(1) cosmos) → true
(subsetp ’((1 2)) cosmos) → false
(subsetp ’((1 2)) cosmos :test ’equal) → true
(subsetp ’(1 "A") cosmos :test #’equalp) → true
(subsetp ’((1) (2)) ’((1) (2))) → false
(subsetp ’((1) (2)) ’((1) (2)) :key #’car) → true

Exceptional Situations:
Should be prepared to signal an error of type type-error if list-1 and list-2 are not proper lists.

See Also:
Section 3.6 (Traversal Rules and Side Effects)

Notes:
The :test-not parameter is deprecated.

14–60 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

union, nunion

union, nunion Function

Syntax:
union list-1 list-2 &key key test test-not → result-list

nunion list-1 list-2 &key key test test-not → result-list

Arguments and Values:
list-1—a proper list .

list-2—a proper list .

test—a designator for a function of two arguments that returns a generalized boolean.

test-not—a designator for a function of two arguments that returns a generalized boolean.

key—a designator for a function of one argument, or nil.

result-list—a list .

Description:
union and nunion return a list that contains every element that occurs in either list-1 or list-2 .

For all possible ordered pairs consisting of one element from list-1 and one element from list-2 ,
:test or :test-not is used to determine whether they satisfy the test . The first argument to the
:test or :test-not function is the part of the element of list-1 extracted by the :key function (if
supplied); the second argument is the part of the element of list-2 extracted by the :key function
(if supplied).

The argument to the :key function is an element of list-1 or list-2 ; the return value is part of the
supplied element. If :key is not supplied or nil, the element of list-1 or list-2 itself is supplied to
the :test or :test-not function.

For every matching pair, one of the two elements of the pair will be in the result. Any element
from either list-1 or list-2 that matches no element of the other will appear in the result.

If there is a duplication between list-1 and list-2 , only one of the duplicate instances will be in
the result. If either list-1 or list-2 has duplicate entries within it, the redundant entries might or
might not appear in the result.

The order of elements in the result do not have to reflect the ordering of list-1 or list-2 in any
way. The result list may be eq to either list-1 or list-2 if appropriate.

Conses 14–61



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

union, nunion

Examples:

(union ’(a b c) ’(f a d))

→ (A B C F D)
or→ (B C F A D)
or→ (D F A B C)

(union ’((x 5) (y 6)) ’((z 2) (x 4)) :key #’car)

→ ((X 5) (Y 6) (Z 2))
or→ ((X 4) (Y 6) (Z 2))

(setq lst1 (list 1 2 ’(1 2) "a" "b")

lst2 (list 2 3 ’(2 3) "B" "C"))

→ (2 3 (2 3) "B" "C")

(nunion lst1 lst2)

→ (1 (1 2) "a" "b" 2 3 (2 3) "B" "C")
or→ (1 2 (1 2) "a" "b" "C" "B" (2 3) 3)

Side Effects:
nunion is permitted to modify any part, car or cdr , of the list structure of list-1 or list-2 .

Exceptional Situations:
Should be prepared to signal an error of type type-error if list-1 and list-2 are not proper lists.

See Also:
intersection, Section 3.2.1 (Compiler Terminology), Section 3.6 (Traversal Rules and Side Effects)

Notes:
The :test-not parameter is deprecated.

Since the nunion side effect is not required, it should not be used in for-effect-only positions in
portable code.

14–62 Programming Language—Common Lisp


