
Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Programming Language—Common Lisp

19. Filenames

Filenames i

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

ii Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

19.1 Overview of Filenames
There are many kinds of file systems, varying widely both in their superficial syntactic details,
and in their underlying power and structure. The facilities provided by Common Lisp for referring
to and manipulating files has been chosen to be compatible with many kinds of file systems, while
at the same time minimizing the program-visible differences between kinds of file systems.

Since file systems vary in their conventions for naming files, there are two distinct ways to
represent filenames: as namestrings and as pathnames.

19.1.1 Namestrings as Filenames
A namestring is a string that represents a filename.

In general, the syntax of namestrings involves the use of implementation-defined conventions,
usually those customary for the file system in which the named file resides. The only exception
is the syntax of a logical pathname namestring , which is defined in this specification; see Section
19.3.1 (Syntax of Logical Pathname Namestrings).

A conforming program must never unconditionally use a literal namestring other than a logical
pathname namestring because Common Lisp does not define any namestring syntax other than
that for logical pathnames that would be guaranteed to be portable. However, a conforming
program can, if it is careful, successfully manipulate user-supplied data which contains or refers to
non-portable namestrings.

A namestring can be coerced to a pathname by the functions pathname or parse-namestring.

19.1.2 Pathnames as Filenames
Pathnames are structured objects that can represent, in an implementation-independent way,
the filenames that are used natively by an underlying file system.

In addition, pathnames can also represent certain partially composed filenames for which an
underlying file system might not have a specific namestring representation.

A pathname need not correspond to any file that actually exists, and more than one pathname
can refer to the same file. For example, the pathname with a version of :newest might refer to
the same file as a pathname with the same components except a certain number as the version.
Indeed, a pathname with version :newest might refer to different files as time passes, because the
meaning of such a pathname depends on the state of the file system.

Some file systems naturally use a structural model for their filenames, while others do not.
Within the Common Lisp pathname model, all filenames are seen as having a particular struc-
ture, even if that structure is not reflected in the underlying file system. The nature of the
mapping between structure imposed by pathnames and the structure, if any, that is used by the
underlying file system is implementation-defined .

Filenames 19–1

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Every pathname has six components: a host, a device, a directory, a name, a type, and a version.
By naming files with pathnames, Common Lisp programs can work in essentially the same way
even in file systems that seem superficially quite different. For a detailed description of these
components, see Section 19.2.1 (Pathname Components).

The mapping of the pathname components into the concepts peculiar to each file system is
implementation-defined . There exist conceivable pathnames for which there is no mapping to a
syntactically valid filename in a particular implementation. An implementation may use various
strategies in an attempt to find a mapping; for example, an implementation may quietly truncate
filenames that exceed length limitations imposed by the underlying file system, or ignore certain
pathname components for which the file system provides no support. If such a mapping cannot be
found, an error of type file-error is signaled.

The time at which this mapping and associated error signaling occurs is implementation-
dependent . Specifically, it may occur at the time the pathname is constructed, when coercing
a pathname to a namestring , or when an attempt is made to open or otherwise access the file
designated by the pathname.

Figure 19–1 lists some defined names that are applicable to pathnames.

default-pathname-defaults namestring pathname-name
directory-namestring open pathname-type
enough-namestring parse-namestring pathname-version
file-namestring pathname pathnamep
file-string-length pathname-device translate-pathname
host-namestring pathname-directory truename
make-pathname pathname-host user-homedir-pathname
merge-pathnames pathname-match-p wild-pathname-p

Figure 19–1. Pathname Operations

19.1.3 Parsing Namestrings Into Pathnames
Parsing is the operation used to convert a namestring into a pathname. Except in the case of
parsing logical pathname namestrings, this operation is implementation-dependent , because the
format of namestrings is implementation-dependent .

A conforming implementation is free to accommodate other file system features in its pathname
representation and provides a parser that can process such specifications in namestrings. Con-
forming programs must not depend on any such features, since those features will not be portable.

19–2 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

19.2 Pathnames

19.2.1 Pathname Components
A pathname has six components: a host, a device, a directory, a name, a type, and a version.

19.2.1.1 The Pathname Host Component

The name of the file system on which the file resides, or the name of a logical host .

19.2.1.2 The Pathname Device Component

Corresponds to the “device” or “file structure” concept in many host file systems: the name of a
logical or physical device containing files.

19.2.1.3 The Pathname Directory Component

Corresponds to the “directory” concept in many host file systems: the name of a group of related
files.

19.2.1.4 The Pathname Name Component

The “name” part of a group of files that can be thought of as conceptually related.

19.2.1.5 The Pathname Type Component

Corresponds to the “filetype” or “extension” concept in many host file systems. This says what
kind of file this is. This component is always a string , nil, :wild, or :unspecific.

19.2.1.6 The Pathname Version Component

Corresponds to the “version number” concept in many host file systems.

The version is either a positive integer or a symbol from the following list: nil, :wild,
:unspecific, or :newest (refers to the largest version number that already exists in the file system
when reading a file, or to a version number greater than any already existing in the file system
when writing a new file). Implementations can define other special version symbols.

19.2.2 Interpreting Pathname Component Values

Filenames 19–3

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

19.2.2.1 Strings in Component Values

19.2.2.1.1 Special Characters in Pathname Components

Strings in pathname component values never contain special characters that represent separation
between pathname fields, such as slash in Unix filenames. Whether separator characters are
permitted as part of a string in a pathname component is implementation-defined ; however, if
the implementation does permit it, it must arrange to properly “quote” the character for the file
system when constructing a namestring . For example,

;; In a TOPS-20 implementation, which uses ∧V to quote

(NAMESTRING (MAKE-PATHNAME :HOST "OZ" :NAME "<TEST>"))

→ #P"OZ:PS:∧V<TEST∧V>"
not→ #P"OZ:PS:<TEST>"

19.2.2.1.2 Case in Pathname Components

Namestrings always use local file system case conventions, but Common Lisp functions that ma-
nipulate pathname components allow the caller to select either of two conventions for representing
case in component values by supplying a value for the :case keyword argument. Figure 19–2 lists
the functions relating to pathnames that permit a :case argument:

make-pathname pathname-directory pathname-name
pathname-device pathname-host pathname-type

Figure 19–2. Pathname functions using a :CASE argument

19.2.2.1.2.1 Local Case in Pathname Components

For the functions in Figure 19–2, a value of :local for the :case argument (the default for these
functions) indicates that the functions should receive and yield strings in component values as if
they were already represented according to the host file system’s convention for case.

If the file system supports both cases, strings given or received as pathname component values
under this protocol are to be used exactly as written. If the file system only supports one case,
the strings will be translated to that case.

19–4 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

19.2.2.1.2.2 Common Case in Pathname Components

For the functions in Figure 19–2, a value of :common for the :case argument that these functions
should receive and yield strings in component values according to the following conventions:

• All uppercase means to use a file system’s customary case.
• All lowercase means to use the opposite of the customary case.
• Mixed case represents itself.

Note that these conventions have been chosen in such a way that translation from :local to
:common and back to :local is information-preserving.

19.2.2.2 Special Pathname Component Values

19.2.2.2.1 NIL as a Component Value

As a pathname component value, nilrepresents that the component is “unfilled”; see Section
19.2.3 (Merging Pathnames).

The value of any pathname component can be nil.

When constructing a pathname, nil in the host component might mean a default host rather than
an actual nil in some implementations.

19.2.2.2.2 :WILD as a Component Value

If :wild is the value of a pathname component, that component is considered to be a wildcard,
which matches anything.

A conforming program must be prepared to encounter a value of :wild as the value of any path-
name component, or as an element of a list that is the value of the directory component.

When constructing a pathname, a conforming program may use :wild as the value of any or all of
the directory, name, type, or version component, but must not use :wild as the value of the host,
or device component.

If :wild is used as the value of the directory component in the construction of a pathname,
the effect is equivalent to specifying the list (:absolute :wild-inferiors), or the same as
(:absolute :wild) in a file system that does not support :wild-inferiors.

Filenames 19–5

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

19.2.2.2.3 :UNSPECIFIC as a Component Value

If :unspecific is the value of a pathname component, the component is considered to be “absent”
or to “have no meaning” in the filename being represented by the pathname.

Whether a value of :unspecific is permitted for any component on any given file system ac-
cessible to the implementation is implementation-defined . A conforming program must never
unconditionally use a :unspecific as the value of a pathname component because such a value is
not guaranteed to be permissible in all implementations. However, a conforming program can, if
it is careful, successfully manipulate user-supplied data which contains or refers to non-portable
pathname components. And certainly a conforming program should be prepared for the possibility
that any components of a pathname could be :unspecific.

When reading1 the value of any pathname component, conforming programs should be prepared
for the value to be :unspecific.

When writing1 the value of any pathname component, the consequences are undefined if
:unspecific is given for a pathname in a file system for which it does not make sense.

19.2.2.2.3.1 Relation between component values NIL and :UNSPECIFIC

If a pathname is converted to a namestring , the symbols nil and :unspecific cause the field to be
treated as if it were empty. That is, both nil and :unspecific cause the component not to appear
in the namestring .

However, when merging a pathname with a set of defaults, only a nil value for a component will
be replaced with the default for that component, while a value of :unspecific will be left alone
as if the field were “filled”; see the function merge-pathnames and Section 19.2.3 (Merging
Pathnames).

19.2.2.3 Restrictions on Wildcard Pathnames

Wildcard pathnames can be used with directory but not with open, and return true from
wild-pathname-p. When examining wildcard components of a wildcard pathname, conforming
programs must be prepared to encounter any of the following additional values in any component
or any element of a list that is the directory component:

• The symbol :wild, which matches anything.

• A string containing implementation-dependent special wildcard characters.

• Any object , representing an implementation-dependent wildcard pattern.

19–6 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

19.2.2.4 Restrictions on Examining Pathname Components

The space of possible objects that a conforming program must be prepared to read1 as the
value of a pathname component is substantially larger than the space of possible objects that a
conforming program is permitted to write1 into such a component.

While the values discussed in the subsections of this section, in Section 19.2.2.2 (Special Path-
name Component Values), and in Section 19.2.2.3 (Restrictions on Wildcard Pathnames) apply to
values that might be seen when reading the component values, substantially more restrictive rules
apply to constructing pathnames; see Section 19.2.2.5 (Restrictions on Constructing Pathnames).

When examining pathname components, conforming programs should be aware of the following
restrictions.

19.2.2.4.1 Restrictions on Examining a Pathname Host Component

It is implementation-dependent what object is used to represent the host.

19.2.2.4.2 Restrictions on Examining a Pathname Device Component

The device might be a string , :wild, :unspecific, or nil.

Note that :wild might result from an attempt to read1 the pathname component, even though
portable programs are restricted from writing1 such a component value; see Section 19.2.2.3
(Restrictions on Wildcard Pathnames) and Section 19.2.2.5 (Restrictions on Constructing Path-
names).

19.2.2.4.3 Restrictions on Examining a Pathname Directory Component

The directory might be a string , :wild, :unspecific, or nil.

The directory can be a list of strings and symbols. The car of the list is one of the symbols
:absolute or :relative, meaning:

:absolute

A list whose car is the symbol :absolute represents a directory path starting from
the root directory. The list (:absolute) represents the root directory. The list
(:absolute "foo" "bar" "baz") represents the directory called "/foo/bar/baz" in Unix (except
possibly for case).

:relative

A list whose car is the symbol :relative represents a directory path starting from a default
directory. The list (:relative) has the same meaning as nil and hence is not used. The list
(:relative "foo" "bar") represents the directory named "bar" in the directory named "foo"

in the default directory.

Each remaining element of the list is a string or a symbol .

Filenames 19–7

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Each string names a single level of directory structure. The strings should contain only the
directory names themselves—no punctuation characters.

In place of a string , at any point in the list , symbols can occur to indicate special file notations.
Figure 19–3 lists the symbols that have standard meanings. Implementations are permitted to add
additional objects of any type that is disjoint from string if necessary to represent features of their
file systems that cannot be represented with the standard strings and symbols.

Supplying any non-string , including any of the symbols listed below, to a file system for which
it does not make sense signals an error of type file-error. For example, Unix does not support
:wild-inferiors in most implementations.

Symbol Meaning
:wild Wildcard match of one level of directory structure
:wild-inferiors Wildcard match of any number of directory levels
:up Go upward in directory structure (semantic)
:back Go upward in directory structure (syntactic)

Figure 19–3. Special Markers In Directory Component

The following notes apply to the previous figure:

Invalid Combinations

Using :absolute or :wild-inferiors immediately followed by :up or :back signals an error of
type file-error.

Syntactic vs Semantic

“Syntactic” means that the action of :back depends only on the pathname and not on the
contents of the file system.

“Semantic” means that the action of :up depends on the contents of the file system; to resolve
a pathname containing :up to a pathname whose directory component contains only :absolute

and strings requires probing the file system.

:up differs from :back only in file systems that support multiple names for directories, perhaps
via symbolic links. For example, suppose that there is a directory (:absolute "X" "Y" "Z")

linked to (:absolute "A" "B" "C") and there also exist directories (:absolute "A" "B" "Q")

and (:absolute "X" "Y" "Q"). Then (:absolute "X" "Y" "Z" :up "Q") designates
(:absolute "A" "B" "Q") while (:absolute "X" "Y" "Z" :back "Q") designates
(:absolute "X" "Y" "Q")

19–8 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

19.2.2.4.3.1 Directory Components in Non-Hierarchical File Systems

In non-hierarchical file systems, the only valid list values for the directory component of a path-
name are (:absolute string) and (:absolute :wild). :relative directories and the keywords
:wild-inferiors, :up, and :back are not used in non-hierarchical file systems.

19.2.2.4.4 Restrictions on Examining a Pathname Name Component

The name might be a string , :wild, :unspecific, or nil.

19.2.2.4.5 Restrictions on Examining a Pathname Type Component

The type might be a string , :wild, :unspecific, or nil.

19.2.2.4.6 Restrictions on Examining a Pathname Version Component

The version can be any symbol or any integer .

The symbol :newest refers to the largest version number that already exists in the file system
when reading, overwriting, appending, superseding, or directory listing an existing file. The
symbol :newest refers to the smallest version number greater than any existing version number
when creating a new file.

The symbols nil, :unspecific, and :wild have special meanings and restrictions; see Section
19.2.2.2 (Special Pathname Component Values) and Section 19.2.2.5 (Restrictions on Construct-
ing Pathnames).

Other symbols and integers have implementation-defined meaning.

19.2.2.4.7 Notes about the Pathname Version Component

It is suggested, but not required, that implementations do the following:

• Use positive integers starting at 1 as version numbers.

• Recognize the symbol :oldest to designate the smallest existing version number.

• Use keywords for other special versions.

Filenames 19–9

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

19.2.2.5 Restrictions on Constructing Pathnames

When constructing a pathname from components, conforming programs must follow these rules:

• Any component can be nil. nil in the host might mean a default host rather than an
actual nil in some implementations.

• The host, device, directory, name, and type can be strings. There are implementation-
dependent limits on the number and type of characters in these strings.

• The directory can be a list of strings and symbols. There are implementation-dependent
limits on the list ’s length and contents.

• The version can be :newest.

• Any component can be taken from the corresponding component of another pathname.
When the two pathnames are for different file systems (in implementations that support
multiple file systems), an appropriate translation occurs. If no meaningful translation
is possible, an error is signaled. The definitions of “appropriate” and “meaningful” are
implementation-dependent .

• An implementation might support other values for some components, but a portable pro-
gram cannot use those values. A conforming program can use implementation-dependent
values but this can make it non-portable; for example, it might work only with Unix file
systems.

19.2.3 Merging Pathnames
Merging takes a pathname with unfilled components and supplies values for those components
from a source of defaults.

If a component’s value is nil, that component is considered to be unfilled. If a component’s value
is any non-nil object , including :unspecific, that component is considered to be filled.

Except as explicitly specified otherwise, for functions that manipulate or inquire about
files in the file system, the pathname argument to such a function is merged with
default-pathname-defaults before accessing the file system (as if by merge-pathnames).

19–10 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

19.2.3.1 Examples of Merging Pathnames

Although the following examples are possible to execute only in implementations which permit
:unspecific in the indicated position andwhich permit four-letter type components, they serve to
illustrate the basic concept of pathname merging.

(pathname-type

(merge-pathnames (make-pathname :type "LISP")

(make-pathname :type "TEXT")))

→ "LISP"

(pathname-type

(merge-pathnames (make-pathname :type nil)

(make-pathname :type "LISP")))

→ "LISP"

(pathname-type

(merge-pathnames (make-pathname :type :unspecific)

(make-pathname :type "LISP")))

→ :UNSPECIFIC

Filenames 19–11

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

19.3 Logical Pathnames

19.3.1 Syntax of Logical Pathname Namestrings
The syntax of a logical pathname namestring is as follows. (Note that unlike many notational de-
scriptions in this document, this is a syntactic description of character sequences, not a structural
description of objects.)

logical-pathname::=[↓host host-marker]
[↓relative-directory-marker] {↓directory directory-marker}*
[↓name] [type-marker ↓type [version-marker ↓version]]

host::=↓word

directory ::=↓word | ↓wildcard-word | ↓wild-inferiors-word

name::=↓word | ↓wildcard-word

type::=↓word | ↓wildcard-word

version::=↓pos-int | newest-word | wildcard-version

host-marker—a colon.

relative-directory-marker—a semicolon.

directory-marker—a semicolon.

type-marker—a dot .

version-marker—a dot .

wild-inferiors-word—The two character sequence “**” (two asterisks).

newest-word—The six character sequence “newest” or the six character sequence “NEWEST”.

wildcard-version—an asterisk .

wildcard-word—one or more asterisks, uppercase letters, digits, and hyphens, including at least
one asterisk , with no two asterisks adjacent.

word—one or more uppercase letters, digits, and hyphens.

pos-int—a positive integer .

19–12 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

19.3.1.1 Additional Information about Parsing Logical Pathname Namestrings

19.3.1.1.1 The Host part of a Logical Pathname Namestring

The host must have been defined as a logical pathname host; this can be done by using setf of
logical-pathname-translations.

The logical pathname host name "SYS" is reserved for the implementation. The existence and
meaning of SYS: logical pathnames is implementation-defined .

19.3.1.1.2 The Device part of a Logical Pathname Namestring

There is no syntax for a logical pathname device since the device component of a logical pathname
is always :unspecific; see Section 19.3.2.1 (Unspecific Components of a Logical Pathname).

19.3.1.1.3 The Directory part of a Logical Pathname Namestring

If a relative-directory-marker precedes the directories, the directory component parsed is as relative;
otherwise, the directory component is parsed as absolute.

If a wild-inferiors-marker is specified, it parses into :wild-inferiors.

19.3.1.1.4 The Type part of a Logical Pathname Namestring

The type of a logical pathname for a source file is "LISP". This should be translated into whatever
type is appropriate in a physical pathname.

19.3.1.1.5 The Version part of a Logical Pathname Namestring

Some file systems do not have versions. Logical pathname translation to such a file system ignores
the version. This implies that a program cannot rely on being able to store more than one version
of a file named by a logical pathname.

If a wildcard-version is specified, it parses into :wild.

19.3.1.1.6 Wildcard Words in a Logical Pathname Namestring

Each asterisk in a wildcard-word matches a sequence of zero or more characters. The wildcard-
word “*” parses into :wild; other wildcard-words parse into strings.

19.3.1.1.7 Lowercase Letters in a Logical Pathname Namestring

When parsing words and wildcard-words, lowercase letters are translated to uppercase.

Filenames 19–13

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

19.3.1.1.8 Other Syntax in a Logical Pathname Namestring

The consequences of using characters other than those specified here in a logical pathname
namestring are unspecified.

The consequences of using any value not specified here as a logical pathname component are
unspecified.

19.3.2 Logical Pathname Components

19.3.2.1 Unspecific Components of a Logical Pathname

The device component of a logical pathname is always :unspecific; no other component of a
logical pathname can be :unspecific.

19.3.2.2 Null Strings as Components of a Logical Pathname

The null string, "", is not a valid value for any component of a logical pathname.

19–14 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

pathname System Class

Class Precedence List:
pathname, t

Description:
A pathname is a structured object which represents a filename.

There are two kinds of pathnames—physical pathnames and logical pathnames.

logical-pathname System Class

Class Precedence List:
logical-pathname, pathname, t

Description:
A pathname that uses a namestring syntax that is implementation-independent , and that has
component values that are implementation-independent . Logical pathnames do not refer directly
to filenames

See Also:
Section 20.1 (File System Concepts), Section 2.4.8.14 (Sharpsign P), Section 22.1.3.11 (Printing
Pathnames)

pathname Function

Syntax:
pathname pathspec → pathname

Arguments and Values:
pathspec—a pathname designator .

pathname—a pathname.

Description:
Returns the pathname denoted by pathspec.

Filenames 19–15

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

pathname

If the pathspec designator is a stream, the stream can be either open or closed; in both cases,
the pathname returned corresponds to the filename used to open the file. pathname returns the
same pathname for a file stream after it is closed as it did when it was open.

If the pathspec designator is a file stream created by opening a logical pathname, a logical path-
name is returned.

Examples:

;; There is a great degree of variability permitted here. The next

;; several examples are intended to illustrate just a few of the many

;; possibilities. Whether the name is canonicalized to a particular

;; case (either upper or lower) depends on both the file system and the

;; implementation since two different implementations using the same

;; file system might differ on many issues. How information is stored

;; internally (and possibly presented in #S notation) might vary,

;; possibly requiring ‘accessors’ such as PATHNAME-NAME to perform case

;; conversion upon access. The format of a namestring is dependent both

;; on the file system and the implementation since, for example, one

;; implementation might include the host name in a namestring, and

;; another might not. #S notation would generally only be used in a

;; situation where no appropriate namestring could be constructed for use

;; with #P.

(setq p1 (pathname "test"))

→ #P"CHOCOLATE:TEST" ; with case canonicalization (e.g., VMS)
or→ #P"VANILLA:test" ; without case canonicalization (e.g., Unix)
or→ #P"test"
or→ #S(PATHNAME :HOST "STRAWBERRY" :NAME "TEST")
or→ #S(PATHNAME :HOST "BELGIAN-CHOCOLATE" :NAME "test")

(setq p2 (pathname "test"))

→ #P"CHOCOLATE:TEST"
or→ #P"VANILLA:test"
or→ #P"test"
or→ #S(PATHNAME :HOST "STRAWBERRY" :NAME "TEST")
or→ #S(PATHNAME :HOST "BELGIAN-CHOCOLATE" :NAME "test")

(pathnamep p1) → true
(eq p1 (pathname p1)) → true
(eq p1 p2)

→ true
or→ false
(with-open-file (stream "test" :direction :output)

(pathname stream))

→ #P"ORANGE-CHOCOLATE:>Gus>test.lisp.newest"

See Also:
pathname, logical-pathname, Section 20.1 (File System Concepts), Section 19.1.2 (Pathnames as

19–16 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Filenames)

make-pathname Function

Syntax:
make-pathname &key host device directory name type version defaults case
→ pathname

Arguments and Values:
host—a valid physical pathname host . Complicated defaulting behavior; see below.

device—a valid pathname device. Complicated defaulting behavior; see below.

directory—a valid pathname directory . Complicated defaulting behavior; see below.

name—a valid pathname name. Complicated defaulting behavior; see below.

type—a valid pathname type. Complicated defaulting behavior; see below.

version—a valid pathname version. Complicated defaulting behavior; see below.

defaults—a pathname designator . The default is a pathname whose host component is the same as
the host component of the value of *default-pathname-defaults*, and whose other components
are all nil.

case—one of :common or :local. The default is :local.

pathname—a pathname.

Description:
Constructs and returns a pathname from the supplied keyword arguments.

After the components supplied explicitly by host, device, directory , name, type, and version
are filled in, the merging rules used by merge-pathnames are used to fill in any unsupplied
components from the defaults supplied by defaults.

Whenever a pathname is constructed the components may be canonicalized if appropriate. For
the explanation of the arguments that can be supplied for each component, see Section 19.2.1
(Pathname Components).

If case is supplied, it is treated as described in Section 19.2.2.1.2 (Case in Pathname Compo-
nents).

The resulting pathname is a logical pathname if and only its host component is a logical host or a
string that names a defined logical host .

Filenames 19–17

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

make-pathname

If the directory is a string , it should be the name of a top level directory, and should not con-
tain any punctuation characters; that is, specifying a string , str, is equivalent to specify-
ing the list (:absolute str). Specifying the symbol :wild is equivalent to specifying the list
(:absolute :wild-inferiors), or (:absolute :wild) in a file system that does not support
:wild-inferiors.

Examples:

;; Implementation A -- an implementation with access to a single

;; Unix file system. This implementation happens to never display

;; the ‘host’ information in a namestring, since there is only one host.

(make-pathname :directory ’(:absolute "public" "games")

:name "chess" :type "db")

→ #P"/public/games/chess.db"

;; Implementation B -- an implementation with access to one or more

;; VMS file systems. This implementation displays ‘host’ information

;; in the namestring only when the host is not the local host.

;; It uses a double colon to separate a host name from the host’s local

;; file name.

(make-pathname :directory ’(:absolute "PUBLIC" "GAMES")

:name "CHESS" :type "DB")

→ #P"SYS$DISK:[PUBLIC.GAMES]CHESS.DB"

(make-pathname :host "BOBBY"

:directory ’(:absolute "PUBLIC" "GAMES")

:name "CHESS" :type "DB")

→ #P"BOBBY::SYS$DISK:[PUBLIC.GAMES]CHESS.DB"

;; Implementation C -- an implementation with simultaneous access to

;; multiple file systems from the same Lisp image. In this

;; implementation, there is a convention that any text preceding the

;; first colon in a pathname namestring is a host name.

(dolist (case ’(:common :local))

(dolist (host ’("MY-LISPM" "MY-VAX" "MY-UNIX"))

(print (make-pathname :host host :case case

:directory ’(:absolute "PUBLIC" "GAMES")

:name "CHESS" :type "DB"))))

. #P"MY-LISPM:>public>games>chess.db"

. #P"MY-VAX:SYS$DISK:[PUBLIC.GAMES]CHESS.DB"

. #P"MY-UNIX:/public/games/chess.db"

. #P"MY-LISPM:>public>games>chess.db"

. #P"MY-VAX:SYS$DISK:[PUBLIC.GAMES]CHESS.DB"

19–18 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

. #P"MY-UNIX:/PUBLIC/GAMES/CHESS.DB"

→ NIL

Affected By:
The file system.

See Also:
merge-pathnames, pathname, logical-pathname, Section 20.1 (File System Concepts), Section
19.1.2 (Pathnames as Filenames)

Notes:
Portable programs should not supply :unspecific for any component. See Section 19.2.2.2.3
(:UNSPECIFIC as a Component Value).

pathnamep Function

Syntax:
pathnamep object → generalized-boolean

Arguments and Values:
object—an object .

generalized-boolean—a generalized boolean.

Description:
Returns true if object is of type pathname; otherwise, returns false.

Examples:

(setq q "test") → "test"

(pathnamep q) → false
(setq q (pathname "test"))

→ #S(PATHNAME :HOST NIL :DEVICE NIL :DIRECTORY NIL :NAME "test" :TYPE NIL

:VERSION NIL)

(pathnamep q) → true
(setq q (logical-pathname "SYS:SITE;FOO.SYSTEM"))

→ #P"SYS:SITE;FOO.SYSTEM"

(pathnamep q) → true

Notes:

(pathnamep object) ≡ (typep object ’pathname)

Filenames 19–19

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

pathname-host, pathname-device, pathname-
directory, pathname-name, pathname-type,
pathname-version Function

Syntax:
pathname-host pathname &key case → host

pathname-device pathname &key case → device

pathname-directory pathname &key case → directory

pathname-name pathname &key case → name

pathname-type pathname &key case → type

pathname-version pathname → version

Arguments and Values:
pathname—a pathname designator .

case—one of :local or :common. The default is :local.

host—a valid pathname host .

device—a valid pathname device.

directory—a valid pathname directory .

name—a valid pathname name.

type—a valid pathname type.

version—a valid pathname version.

Description:
These functions return the components of pathname.

If the pathname designator is a pathname, it represents the name used to open the file. This may
be, but is not required to be, the actual name of the file.

If case is supplied, it is treated as described in Section 19.2.2.1.2 (Case in Pathname Compo-
nents).

Examples:

19–20 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

pathname-host, pathname-device, . . .

(setq q (make-pathname :host "KATHY"

:directory "CHAPMAN"

:name "LOGIN" :type "COM"))

→ #P"KATHY::[CHAPMAN]LOGIN.COM"

(pathname-host q) → "KATHY"

(pathname-name q) → "LOGIN"

(pathname-type q) → "COM"

;; Because namestrings are used, the results shown in the remaining

;; examples are not necessarily the only possible results. Mappings

;; from namestring representation to pathname representation are

;; dependent both on the file system involved and on the implementation

;; (since there may be several implementations which can manipulate the

;; the same file system, and those implementations are not constrained

;; to agree on all details). Consult the documentation for each

;; implementation for specific information on how namestrings are treated

;; that implementation.

;; VMS

(pathname-directory (parse-namestring "[FOO.*.BAR]BAZ.LSP"))

→ (:ABSOLUTE "FOO" "BAR")

(pathname-directory (parse-namestring "[FOO.*.BAR]BAZ.LSP") :case :common)

→ (:ABSOLUTE "FOO" "BAR")

;; Unix

(pathname-directory "foo.l") → NIL

(pathname-device "foo.l") → :UNSPECIFIC

(pathname-name "foo.l") → "foo"

(pathname-name "foo.l" :case :local) → "foo"

(pathname-name "foo.l" :case :common) → "FOO"

(pathname-type "foo.l") → "l"

(pathname-type "foo.l" :case :local) → "l"

(pathname-type "foo.l" :case :common) → "L"

(pathname-type "foo") → :UNSPECIFIC

(pathname-type "foo" :case :common) → :UNSPECIFIC

(pathname-type "foo.") → ""

(pathname-type "foo." :case :common) → ""

(pathname-directory (parse-namestring "/foo/bar/baz.lisp") :case :local)

→ (:ABSOLUTE "foo" "bar")

(pathname-directory (parse-namestring "/foo/bar/baz.lisp") :case :local)

→ (:ABSOLUTE "FOO" "BAR")

(pathname-directory (parse-namestring "../baz.lisp"))

→ (:RELATIVE :UP)

(PATHNAME-DIRECTORY (PARSE-NAMESTRING "/foo/BAR/../Mum/baz"))

→ (:ABSOLUTE "foo" "BAR" :UP "Mum")

Filenames 19–21

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(PATHNAME-DIRECTORY (PARSE-NAMESTRING "/foo/BAR/../Mum/baz") :case :common)

→ (:ABSOLUTE "FOO" "bar" :UP "Mum")

(PATHNAME-DIRECTORY (PARSE-NAMESTRING "/foo/*/bar/baz.l"))

→ (:ABSOLUTE "foo" :WILD "bar")

(PATHNAME-DIRECTORY (PARSE-NAMESTRING "/foo/*/bar/baz.l") :case :common)

→ (:ABSOLUTE "FOO" :WILD "BAR")

;; Symbolics LMFS

(pathname-directory (parse-namestring ">foo>**>bar>baz.lisp"))

→ (:ABSOLUTE "foo" :WILD-INFERIORS "bar")

(pathname-directory (parse-namestring ">foo>*>bar>baz.lisp"))

→ (:ABSOLUTE "foo" :WILD "bar")

(pathname-directory (parse-namestring ">foo>*>bar>baz.lisp") :case :common)

→ (:ABSOLUTE "FOO" :WILD "BAR")

(pathname-device (parse-namestring ">foo>baz.lisp")) → :UNSPECIFIC

Affected By:
The implementation and the host file system.

Exceptional Situations:
Should signal an error of type type-error if its first argument is not a pathname.

See Also:
pathname, logical-pathname, Section 20.1 (File System Concepts), Section 19.1.2 (Pathnames as
Filenames)

load-logical-pathname-translations Function

Syntax:
load-logical-pathname-translations host → just-loaded

Arguments and Values:
host—a string .

just-loaded—a generalized boolean.

Description:
Searches for and loads the definition of a logical host named host, if it is not already defined. The
specific nature of the search is implementation-defined .

19–22 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

If the host is already defined, no attempt to find or load a definition is attempted, and false is
returned. If the host is not already defined, but a definition is successfully found and loaded, true
is returned. Otherwise, an error is signaled.

Examples:

(translate-logical-pathname "hacks:weather;barometer.lisp.newest")

. Error: The logical host HACKS is not defined.

(load-logical-pathname-translations "HACKS")

. ;; Loading SYS:SITE;HACKS.TRANSLATIONS

. ;; Loading done.

→ true
(translate-logical-pathname "hacks:weather;barometer.lisp.newest")

→ #P"HELIUM:[SHARED.HACKS.WEATHER]BAROMETER.LSP;0"

(load-logical-pathname-translations "HACKS")

→ false

Exceptional Situations:
If no definition is found, an error of type error is signaled.

See Also:
logical-pathname

Notes:
Logical pathname definitions will be created not just by implementors but also by programmers.
As such, it is important that the search strategy be documented. For example, an implementation
might define that the definition of a host is to be found in a file called “host.translations” in some
specifically named directory.

logical-pathname-translations Accessor

Syntax:
logical-pathname-translations host → translations

(setf (logical-pathname-translations host) new-translations)

Arguments and Values:
host–a logical host designator .

translations, new-translations—a list .

Filenames 19–23

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

logical-pathname-translations

Description:
Returns the host’s list of translations. Each translation is a list of at least two elements: from-
wildcard and to-wildcard. Any additional elements are implementation-defined . From-wildcard is a
logical pathname whose host is host. To-wildcard is a pathname.

(setf (logical-pathname-translations host) translations) sets a logical pathname host’s list of
translations. If host is a string that has not been previously used as a logical pathname host, a
new logical pathname host is defined; otherwise an existing host’s translations are replaced. logical
pathname host names are compared with string-equal.

When setting the translations list, each from-wildcard can be a logical pathname whose host
is host or a logical pathname namestring parseable by (parse-namestring string host), where
host represents the appropriate object as defined by parse-namestring. Each to-wildcard can be
anything coercible to a pathname by (pathname to-wildcard). If to-wildcard coerces to a logical
pathname, translate-logical-pathname will perform repeated translation steps when it uses it.

host is either the host component of a logical pathname or a string that has been defined as a
logical pathname host name by setf of logical-pathname-translations.

Examples:

;;;A very simple example of setting up a logical pathname host. No

;;;translations are necessary to get around file system restrictions, so

;;;all that is necessary is to specify the root of the physical directory

;;;tree that contains the logical file system.

;;;The namestring syntax on the right-hand side is implementation-dependent.

(setf (logical-pathname-translations "foo")

’(("**;*.*.*" "MY-LISPM:>library>foo>**>")))

;;;Sample use of that logical pathname. The return value

;;;is implementation-dependent.

(translate-logical-pathname "foo:bar;baz;mum.quux.3")

→ #P"MY-LISPM:>library>foo>bar>baz>mum.quux.3"

;;;A more complex example, dividing the files among two file servers

;;;and several different directories. This Unix doesn’t support

;;;:WILD-INFERIORS in the directory, so each directory level must

;;;be translated individually. No file name or type translations

;;;are required except for .MAIL to .MBX.

;;;The namestring syntax on the right-hand side is implementation-dependent.

(setf (logical-pathname-translations "prog")

’(("RELEASED;*.*.*" "MY-UNIX:/sys/bin/my-prog/")

("RELEASED;*;*.*.*" "MY-UNIX:/sys/bin/my-prog/*/")

("EXPERIMENTAL;*.*.*" "MY-UNIX:/usr/Joe/development/prog/")

19–24 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

logical-pathname-translations

("EXPERIMENTAL;DOCUMENTATION;*.*.*"

"MY-VAX:SYS$DISK:[JOE.DOC]")

("EXPERIMENTAL;*;*.*.*" "MY-UNIX:/usr/Joe/development/prog/*/")

("MAIL;**;*.MAIL" "MY-VAX:SYS$DISK:[JOE.MAIL.PROG...]*.MBX")))

;;;Sample use of that logical pathname. The return value

;;;is implementation-dependent.

(translate-logical-pathname "prog:mail;save;ideas.mail.3")

→ #P"MY-VAX:SYS$DISK:[JOE.MAIL.PROG.SAVE]IDEAS.MBX.3"

;;;Example translations for a program that uses three files main.lisp,

;;;auxiliary.lisp, and documentation.lisp. These translations might be

;;;supplied by a software supplier as examples.

;;;For Unix with long file names

(setf (logical-pathname-translations "prog")

’(("CODE;*.*.*" "/lib/prog/")))

;;;Sample use of that logical pathname. The return value

;;;is implementation-dependent.

(translate-logical-pathname "prog:code;documentation.lisp")

→ #P"/lib/prog/documentation.lisp"

;;;For Unix with 14-character file names, using .lisp as the type

(setf (logical-pathname-translations "prog")

’(("CODE;DOCUMENTATION.*.*" "/lib/prog/docum.*")

("CODE;*.*.*" "/lib/prog/")))

;;;Sample use of that logical pathname. The return value

;;;is implementation-dependent.

(translate-logical-pathname "prog:code;documentation.lisp")

→ #P"/lib/prog/docum.lisp"

;;;For Unix with 14-character file names, using .l as the type

;;;The second translation shortens the compiled file type to .b

(setf (logical-pathname-translations "prog")

‘(("**;*.LISP.*" ,(logical-pathname "PROG:**;*.L.*"))

(,(compile-file-pathname (logical-pathname "PROG:**;*.LISP.*"))

Filenames 19–25

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

logical-pathname-translations

,(logical-pathname "PROG:**;*.B.*"))

("CODE;DOCUMENTATION.*.*" "/lib/prog/documentatio.*")

("CODE;*.*.*" "/lib/prog/")))

;;;Sample use of that logical pathname. The return value

;;;is implementation-dependent.

(translate-logical-pathname "prog:code;documentation.lisp")

→ #P"/lib/prog/documentatio.l"

;;;For a Cray with 6 character names and no directories, types, or versions.

(setf (logical-pathname-translations "prog")

(let ((l ’(("MAIN" "PGMN")

("AUXILIARY" "PGAUX")

("DOCUMENTATION" "PGDOC")))

(logpath (logical-pathname "prog:code;"))

(phypath (pathname "XXX")))

(append

;; Translations for source files

(mapcar #’(lambda (x)

(let ((log (first x))

(phy (second x)))

(list (make-pathname :name log

:type "LISP"

:version :wild

:defaults logpath)

(make-pathname :name phy

:defaults phypath))))

l)

;; Translations for compiled files

(mapcar #’(lambda (x)

(let* ((log (first x))

(phy (second x))

(com (compile-file-pathname

(make-pathname :name log

:type "LISP"

:version :wild

:defaults logpath))))

(setq phy (concatenate ’string phy "B"))

(list com

(make-pathname :name phy

:defaults phypath))))

l))))

19–26 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

;;;Sample use of that logical pathname. The return value

;;;is implementation-dependent.

(translate-logical-pathname "prog:code;documentation.lisp")

→ #P"PGDOC"

Exceptional Situations:
If host is incorrectly supplied, an error of type type-error is signaled.

See Also:
logical-pathname, Section 19.1.2 (Pathnames as Filenames)

Notes:
Implementations can define additional functions that operate on logical pathname hosts, for
example to specify additional translation rules or options.

logical-pathname Function

Syntax:
logical-pathname pathspec → logical-pathname

Arguments and Values:
pathspec—a logical pathname, a logical pathname namestring , or a stream.

logical-pathname—a logical pathname.

Description:
logical-pathname converts pathspec to a logical pathname and returns the new logical pathname.
If pathspec is a logical pathname namestring , it should contain a host component and its following
colon. If pathspec is a stream, it should be one for which pathname returns a logical pathname.

If pathspec is a stream, the stream can be either open or closed. logical-pathname returns
the same logical pathname after a file is closed as it did when the file was open. It is an er-
ror if pathspec is a stream that is created with make-two-way-stream, make-echo-stream,
make-broadcast-stream, make-concatenated-stream, make-string-input-stream, or
make-string-output-stream.

Exceptional Situations:
Signals an error of type type-error if pathspec isn’t supplied correctly.

See Also:
logical-pathname, translate-logical-pathname, Section 19.3 (Logical Pathnames)

Filenames 19–27

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

∗default-pathname-defaults∗ Variable

Value Type:
a pathname object .

Initial Value:
An implementation-dependent pathname, typically in the working directory that was current when
Common Lisp was started up.

Description:
a pathname, used as the default whenever a function needs a default pathname and one is not
supplied.

Examples:

;; This example illustrates a possible usage for a hypothetical Lisp running on a

;; DEC TOPS-20 file system. Since pathname conventions vary between Lisp

;; implementations and host file system types, it is not possible to provide a

;; general-purpose, conforming example.

default-pathname-defaults → #P"PS:<FRED>"

(merge-pathnames (make-pathname :name "CALENDAR"))

→ #P"PS:<FRED>CALENDAR"

(let ((*default-pathname-defaults* (pathname "<MARY>")))

(merge-pathnames (make-pathname :name "CALENDAR")))

→ #P"<MARY>CALENDAR"

Affected By:
The implementation.

namestring, file-namestring, directory-namestring,
host-namestring, enough-namestring Function

Syntax:
namestring pathname → namestring

file-namestring pathname → namestring

directory-namestring pathname → namestring

host-namestring pathname → namestring

enough-namestring pathname &optional defaults → namestring

19–28 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

namestring, file-namestring, directory-namestring, . . .

Arguments and Values:
pathname—a pathname designator .

defaults—a pathname designator . The default is the value of *default-pathname-defaults*.

namestring—a string or nil.

Description:
These functions convert pathname into a namestring. The name represented by pathname is
returned as a namestring in an implementation-dependent canonical form.

namestring returns the full form of pathname.

file-namestring returns just the name, type, and version components of pathname.

directory-namestring returns the directory name portion.

host-namestring returns the host name.

enough-namestring returns an abbreviated namestring that is just sufficient to identify the file
named by pathname when considered relative to the defaults. It is required that

(merge-pathnames (enough-namestring pathname defaults) defaults)

≡ (merge-pathnames (parse-namestring pathname nil defaults) defaults)

in all cases, and the result of enough-namestring is the shortest reasonable string that will
satisfy this criterion.

It is not necessarily possible to construct a valid namestring by concatenating some of the three
shorter namestrings in some order.

Examples:

(namestring "getty")

→ "getty"

(setq q (make-pathname :host "kathy"

:directory

(pathname-directory *default-pathname-defaults*)

:name "getty"))

→ #S(PATHNAME :HOST "kathy" :DEVICE NIL :DIRECTORY directory-name
:NAME "getty" :TYPE NIL :VERSION NIL)

(file-namestring q) → "getty"

(directory-namestring q) → directory-name
(host-namestring q) → "kathy"

;;;Using Unix syntax and the wildcard conventions used by the

;;;particular version of Unix on which this example was created:

Filenames 19–29

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(namestring

(translate-pathname "/usr/dmr/hacks/frob.l"

"/usr/d*/hacks/*.l"

"/usr/d*/backup/hacks/backup-*.*"))

→ "/usr/dmr/backup/hacks/backup-frob.l"

(namestring

(translate-pathname "/usr/dmr/hacks/frob.l"

"/usr/d*/hacks/fr*.l"

"/usr/d*/backup/hacks/backup-*.*"))

→ "/usr/dmr/backup/hacks/backup-ob.l"

;;;This is similar to the above example but uses two different hosts,

;;;U: which is a Unix and V: which is a VMS. Note the translation

;;;of file type and alphabetic case conventions.

(namestring

(translate-pathname "U:/usr/dmr/hacks/frob.l"

"U:/usr/d*/hacks/*.l"

"V:SYS$DISK:[D*.BACKUP.HACKS]BACKUP-*.*"))

→ "V:SYS$DISK:[DMR.BACKUP.HACKS]BACKUP-FROB.LSP"

(namestring

(translate-pathname "U:/usr/dmr/hacks/frob.l"

"U:/usr/d*/hacks/fr*.l"

"V:SYS$DISK:[D*.BACKUP.HACKS]BACKUP-*.*"))

→ "V:SYS$DISK:[DMR.BACKUP.HACKS]BACKUP-OB.LSP"

See Also:
truename, merge-pathnames, pathname, logical-pathname, Section 20.1 (File System Con-
cepts), Section 19.1.2 (Pathnames as Filenames)

parse-namestring Function

Syntax:
parse-namestring thing &optional host default-pathname &key start end junk-allowed
→ pathname, position

Arguments and Values:
thing—a string , a pathname, or a stream associated with a file.

host—a valid pathname host , a logical host , or nil.

default-pathname—a pathname designator . The default is the value of *default-pathname-defaults*.

19–30 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

parse-namestring

start, end—bounding index designators of thing . The defaults for start and end are 0 and nil,
respectively.

junk-allowed—a generalized boolean. The default is false.

pathname—a pathname, or nil.

position—a bounding index designator for thing .

Description:
Converts thing into a pathname.

The host supplies a host name with respect to which the parsing occurs.

If thing is a stream associated with a file, processing proceeds as if the pathname used to open
that file had been supplied instead.

If thing is a pathname, the host and the host component of thing are compared. If they match,
two values are immediately returned: thing and start; otherwise (if they do not match), an error is
signaled.

Otherwise (if thing is a string), parse-namestring parses the name of a file within the substring
of thing bounded by start and end .

If thing is a string then the substring of thing bounded by start and end is parsed into a pathname
as follows:

• If host is a logical host then thing is parsed as a logical pathname namestring on the host.

• If host is nil and thing is a syntactically valid logical pathname namestring containing an
explicit host, then it is parsed as a logical pathname namestring .

• If host is nil, default-pathname is a logical pathname, and thing is a syntactically valid
logical pathname namestring without an explicit host, then it is parsed as a logical
pathname namestring on the host that is the host component of default-pathname.

• Otherwise, the parsing of thing is implementation-defined .

In the first of these cases, the host portion of the logical pathname namestring and its following
colon are optional.

If the host portion of the namestring and host are both present and do not match, an error is
signaled.

If junk-allowed is true, then the primary value is the pathname parsed or, if no syntactically
correct pathname was seen, nil. If junk-allowed is false, then the entire substring is scanned, and
the primary value is the pathname parsed.

In either case, the secondary value is the index into thing of the delimiter that terminated the

Filenames 19–31

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

parse, or the index beyond the substring if the parse terminated at the end of the substring (as
will always be the case if junk-allowed is false).

Parsing a null string always succeeds, producing a pathname with all components (except the
host) equal to nil.

If thing contains an explicit host name and no explicit device name, then it is implementation-
defined whether parse-namestring will supply the standard default device for that host as the
device component of the resulting pathname.

Examples:

(setq q (parse-namestring "test"))

→ #S(PATHNAME :HOST NIL :DEVICE NIL :DIRECTORY NIL :NAME "test"

:TYPE NIL :VERSION NIL)

(pathnamep q) → true
(parse-namestring "test")

→ #S(PATHNAME :HOST NIL :DEVICE NIL :DIRECTORY NIL :NAME "test"

:TYPE NIL :VERSION NIL), 4

(setq s (open xxx)) → #<Input File Stream...>

(parse-namestring s)

→ #S(PATHNAME :HOST NIL :DEVICE NIL :DIRECTORY NIL :NAME xxx
:TYPE NIL :VERSION NIL), 0

(parse-namestring "test" nil nil :start 2 :end 4)

→ #S(PATHNAME ...), 15

(parse-namestring "foo.lisp")

→ #P"foo.lisp"

Exceptional Situations:
If junk-allowed is false, an error of type parse-error is signaled if thing does not consist entirely of
the representation of a pathname, possibly surrounded on either side by whitespace1 characters if
that is appropriate to the cultural conventions of the implementation.

If host is supplied and not nil, and thing contains a manifest host name, an error of type error is
signaled if the hosts do not match.

If thing is a logical pathname namestring and if the host portion of the namestring and host are
both present and do not match, an error of type error is signaled.

See Also:
pathname, logical-pathname, Section 20.1 (File System Concepts), Section 19.2.2.2.3 (:UNSPE-
CIFIC as a Component Value), Section 19.1.2 (Pathnames as Filenames)

19–32 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

wild-pathname-p

wild-pathname-p Function

Syntax:
wild-pathname-p pathname &optional field-key → generalized-boolean

Arguments and Values:
pathname—a pathname designator .

Field-key—one of :host, :device :directory, :name, :type, :version, or nil.

generalized-boolean—a generalized boolean.

Description:
wild-pathname-p tests pathname for the presence of wildcard components.

If pathname is a pathname (as returned by pathname) it represents the name used to open the
file. This may be, but is not required to be, the actual name of the file.

If field-key is not supplied or nil, wild-pathname-p returns true if pathname has any wildcard
components, nil if pathname has none. If field-key is non-nil , wild-pathname-p returns true if the
indicated component of pathname is a wildcard, nil if the component is not a wildcard.

Examples:

;;;The following examples are not portable. They are written to run

;;;with particular file systems and particular wildcard conventions.

;;;Other implementations will behave differently. These examples are

;;;intended to be illustrative, not to be prescriptive.

(wild-pathname-p (make-pathname :name :wild)) → true
(wild-pathname-p (make-pathname :name :wild) :name) → true
(wild-pathname-p (make-pathname :name :wild) :type) → false
(wild-pathname-p (pathname "s:>foo>**>")) → true ;Lispm

(wild-pathname-p (pathname :name "F*O")) → true ;Most places

Exceptional Situations:
If pathname is not a pathname, a string , or a stream associated with a file an error of type
type-error is signaled.

See Also:
pathname, logical-pathname, Section 20.1 (File System Concepts), Section 19.1.2 (Pathnames as
Filenames)

Notes:
Not all implementations support wildcards in all fields. See Section 19.2.2.2.2 (:WILD as a

Filenames 19–33

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Component Value) and Section 19.2.2.3 (Restrictions on Wildcard Pathnames).

pathname-match-p Function

Syntax:
pathname-match-p pathname wildcard → generalized-boolean

Arguments and Values:
pathname—a pathname designator .

wildcard—a designator for a wild pathname.

generalized-boolean—a generalized boolean.

Description:
pathname-match-p returns true if pathname matches wildcard , otherwise nil. The matching
rules are implementation-defined but should be consistent with directory. Missing components of
wildcard default to :wild.

It is valid for pathname to be a wild pathname; a wildcard field in pathname only matches a
wildcard field in wildcard (i.e., pathname-match-p is not commutative). It is valid for wildcard to
be a non-wild pathname.

Exceptional Situations:
If pathname or wildcard is not a pathname, string , or stream associated with a file an error of type
type-error is signaled.

See Also:
directory, pathname, logical-pathname, Section 20.1 (File System Concepts), Section 19.1.2
(Pathnames as Filenames)

19–34 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

translate-logical-pathname

translate-logical-pathname Function

Syntax:
translate-logical-pathname pathname &key → physical-pathname

Arguments and Values:
pathname—a pathname designator , or a logical pathname namestring .

physical-pathname—a physical pathname.

Description:
Translates pathname to a physical pathname, which it returns.

If pathname is a stream, the stream can be either open or closed. translate-logical-pathname
returns the same physical pathname after a file is closed as it did when the file was open. It is an
error if pathname is a stream that is created with make-two-way-stream, make-echo-stream,
make-broadcast-stream, make-concatenated-stream, make-string-input-stream,
make-string-output-stream.

If pathname is a logical pathname namestring, the host portion of the logical pathname namestring
and its following colon are required.

Pathname is first coerced to a pathname. If the coerced pathname is a physical pathname, it is re-
turned. If the coerced pathname is a logical pathname, the first matching translation (according to
pathname-match-p) of the logical pathname host is applied, as if by calling translate-pathname.
If the result is a logical pathname, this process is repeated. When the result is finally a physical
pathname, it is returned. If no translation matches, an error is signaled.

translate-logical-pathname might perform additional translations, typically to provide transla-
tion of file types to local naming conventions, to accomodate physical file systems with limited
length names, or to deal with special character requirements such as translating hyphens to un-
derscores or uppercase letters to lowercase. Any such additional translations are implementation-
defined . Some implementations do no additional translations.

There are no specified keyword arguments for translate-logical-pathname, but implementations
are permitted to extend it by adding keyword arguments.

Examples:
See logical-pathname-translations.

Exceptional Situations:
If pathname is incorrectly supplied, an error of type type-error is signaled.

If no translation matches, an error of type file-error is signaled.

Filenames 19–35

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

See Also:
logical-pathname, logical-pathname-translations, logical-pathname, Section 20.1 (File System
Concepts), Section 19.1.2 (Pathnames as Filenames)

translate-pathname Function

Syntax:
translate-pathname source from-wildcard to-wildcard &key

→ translated-pathname

Arguments and Values:
source—a pathname designator .

from-wildcard—a pathname designator .

to-wildcard—a pathname designator .

translated-pathname—a pathname.

Description:
translate-pathname translates source (that matches from-wildcard) into a corresponding path-
name that matches to-wildcard , and returns the corresponding pathname.

The resulting pathname is to-wildcard with each wildcard or missing field replaced by a portion
of source. A “wildcard field” is a pathname component with a value of :wild, a :wild element of
a list-valued directory component, or an implementation-defined portion of a component, such
as the "*" in the complex wildcard string "foo*bar" that some implementations support. An
implementation that adds other wildcard features, such as regular expressions, must define how
translate-pathname extends to those features. A “missing field” is a pathname component with a
value of nil.

The portion of source that is copied into the resulting pathname is implementation-defined .
Typically it is determined by the user interface conventions of the file systems involved. Usually it
is the portion of source that matches a wildcard field of from-wildcard that is in the same position
as the wildcard or missing field of to-wildcard . If there is no wildcard field in from-wildcard at that
position, then usually it is the entire corresponding pathname component of source, or in the case
of a list-valued directory component, the entire corresponding list element.

During the copying of a portion of source into the resulting pathname, additional implementation-
defined translations of case or file naming conventions might occur, especially when from-wildcard
and to-wildcard are for different hosts.

It is valid for source to be a wild pathname; in general this will produce a wild result. It is valid
for from-wildcard and/or to-wildcard to be non-wild pathnames.

19–36 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

translate-pathname

There are no specified keyword arguments for translate-pathname, but implementations are
permitted to extend it by adding keyword arguments.

translate-pathname maps customary case in source into customary case in the output pathname.

Examples:

;; The results of the following five forms are all implementation-dependent.

;; The second item in particular is shown with multiple results just to

;; emphasize one of many particular variations which commonly occurs.

(pathname-name (translate-pathname "foobar" "foo*" "*baz")) → "barbaz"

(pathname-name (translate-pathname "foobar" "foo*" "*"))

→ "foobar"
or→ "bar"

(pathname-name (translate-pathname "foobar" "*" "foo*")) → "foofoobar"

(pathname-name (translate-pathname "bar" "*" "foo*")) → "foobar"

(pathname-name (translate-pathname "foobar" "foo*" "baz*")) → "bazbar"

(defun translate-logical-pathname-1 (pathname rules)

(let ((rule (assoc pathname rules :test #’pathname-match-p)))

(unless rule (error "No translation rule for ~A" pathname))

(translate-pathname pathname (first rule) (second rule))))

(translate-logical-pathname-1 "FOO:CODE;BASIC.LISP"

’(("FOO:DOCUMENTATION;" "MY-UNIX:/doc/foo/")

("FOO:CODE;" "MY-UNIX:/lib/foo/")

("FOO:PATCHES;*;" "MY-UNIX:/lib/foo/patch/*/")))

→ #P"MY-UNIX:/lib/foo/basic.l"

;;;This example assumes one particular set of wildcard conventions

;;;Not all file systems will run this example exactly as written

(defun rename-files (from to)

(dolist (file (directory from))

(rename-file file (translate-pathname file from to))))

(rename-files "/usr/me/*.lisp" "/dev/her/*.l")

;Renames /usr/me/init.lisp to /dev/her/init.l

(rename-files "/usr/me/pcl*/*" "/sys/pcl/*/")

;Renames /usr/me/pcl-5-may/low.lisp to /sys/pcl/pcl-5-may/low.lisp

;In some file systems the result might be /sys/pcl/5-may/low.lisp

(rename-files "/usr/me/pcl*/*" "/sys/library/*/")

;Renames /usr/me/pcl-5-may/low.lisp to /sys/library/pcl-5-may/low.lisp

;In some file systems the result might be /sys/library/5-may/low.lisp

(rename-files "/usr/me/foo.bar" "/usr/me2/")

;Renames /usr/me/foo.bar to /usr/me2/foo.bar

(rename-files "/usr/joe/*-recipes.text" "/usr/jim/cookbook/joe’s-*-rec.text")

;Renames /usr/joe/lamb-recipes.text to /usr/jim/cookbook/joe’s-lamb-rec.text

Filenames 19–37

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

;Renames /usr/joe/pork-recipes.text to /usr/jim/cookbook/joe’s-pork-rec.text

;Renames /usr/joe/veg-recipes.text to /usr/jim/cookbook/joe’s-veg-rec.text

Exceptional Situations:
If any of source, from-wildcard , or to-wildcard is not a pathname, a string , or a stream associated
with a file an error of type type-error is signaled.

(pathname-match-p source from-wildcard) must be true or an error of type error is signaled.

See Also:
namestring, pathname-host, pathname, logical-pathname, Section 20.1 (File System Concepts),
Section 19.1.2 (Pathnames as Filenames)

Notes:
The exact behavior of translate-pathname cannot be dictated by the Common Lisp language and
must be allowed to vary, depending on the user interface conventions of the file systems involved.

The following is an implementation guideline. One file system performs this operation by ex-
amining each piece of the three pathnames in turn, where a piece is a pathname component or
a list element of a structured component such as a hierarchical directory. Hierarchical directory
elements in from-wildcard and to-wildcard are matched by whether they are wildcards, not by
depth in the directory hierarchy. If the piece in to-wildcard is present and not wild, it is copied
into the result. If the piece in to-wildcard is :wild or nil, the piece in source is copied into the
result. Otherwise, the piece in to-wildcard might be a complex wildcard such as "foo*bar" and the
piece in from-wildcard should be wild; the portion of the piece in source that matches the wildcard
portion of the piece in from-wildcard replaces the wildcard portion of the piece in to-wildcard and
the value produced is used in the result.

merge-pathnames Function

Syntax:
merge-pathnames pathname &optional default-pathname default-version
→ merged-pathname

Arguments and Values:
pathname—a pathname designator .

default-pathname—a pathname designator . The default is the value of *default-pathname-defaults*.

default-version—a valid pathname version. The default is :newest.

merged-pathname—a pathname.

19–38 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

merge-pathnames

Description:
Constructs a pathname from pathname by filling in any unsupplied components with the corre-
sponding values from default-pathname and default-version.

Defaulting of pathname components is done by filling in components taken from another path-
name. This is especially useful for cases such as a program that has an input file and an output
file. Unspecified components of the output pathname will come from the input pathname, except
that the type should not default to the type of the input pathname but rather to the appropriate
default type for output from the program; for example, see the function compile-file-pathname.

If no version is supplied, default-version is used. If default-version is nil, the version component will
remain unchanged.

If pathname explicitly specifies a host and not a device, and if the host component of default-
pathname matches the host component of pathname, then the device is taken from the default-
pathname; otherwise the device will be the default file device for that host. If pathname does
not specify a host, device, directory, name, or type, each such component is copied from default-
pathname. If pathname does not specify a name, then the version, if not provided, will come from
default-pathname, just like the other components. If pathname does specify a name, then the
version is not affected by default-pathname. If this process leaves the version missing, the default-
version is used. If the host’s file name syntax provides a way to input a version without a name
or type, the user can let the name and type default but supply a version different from the one in
default-pathname.

If pathname is a stream, pathname effectively becomes (pathname pathname). merge-pathnames
can be used on either an open or a closed stream.

If pathname is a pathname it represents the name used to open the file. This may be, but is not
required to be, the actual name of the file.

merge-pathnames recognizes a logical pathname namestring when default-pathname is a logical
pathname, or when the namestring begins with the name of a defined logical host followed by a
colon. In the first of these two cases, the host portion of the logical pathname namestring and its
following colon are optional.

merge-pathnames returns a logical pathname if and only if its first argument is a logical path-
name, or its first argument is a logical pathname namestring with an explicit host, or its first
argument does not specify a host and the default-pathname is a logical pathname.

Pathname merging treats a relative directory specially. If (pathname-directory pathname) is a
list whose car is :relative, and (pathname-directory default-pathname) is a list , then the merged
directory is the value of

(append (pathname-directory default-pathname)
(cdr ;remove :relative from the front

(pathname-directory pathname)))

except that if the resulting list contains a string or :wild immediately followed by

Filenames 19–39

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

merge-pathnames

:back, both of them are removed. This removal of redundant :back keywords is repeated
as many times as possible. If (pathname-directory default-pathname) is not a list or
(pathname-directory pathname) is not a list whose car is :relative, the merged directory is
(or (pathname-directory pathname) (pathname-directory default-pathname))

merge-pathnames maps customary case in pathname into customary case in the output path-
name.

Examples:

(merge-pathnames "CMUC::FORMAT"

"CMUC::PS:<LISPIO>.FASL")

→ #P"CMUC::PS:<LISPIO>FORMAT.FASL.0"

See Also:
default-pathname-defaults, pathname, logical-pathname, Section 20.1 (File System Con-
cepts), Section 19.1.2 (Pathnames as Filenames)

Notes:
The net effect is that if just a name is supplied, the host, device, directory, and type will come
from default-pathname, but the version will come from default-version. If nothing or just a direc-
tory is supplied, the name, type, and version will come from default-pathname together.

19–40 Programming Language—Common Lisp

