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12.1 Number Concepts

12.1.1 Numeric Operations

Common Lisp provides a large variety of operations related to numbers. This section provides

an overview of those operations by grouping them into categories that emphasize some of the
relationships among them.

Figure 12-1 shows operators relating to arithmetic operations.

+ *

~. !

1+

1-
conjugate
decf

ged
incf
lem

Figure 12—-1. Operators relating to Arithmetic.

Figure 12-2 shows defined names relating to exponential, logarithmic, and trigonometric opera-

tions.

abs
acos
acosh
asin
asinh
atan
atanh
cis

cos
cosh
exp
expt
isqrt
log
phase
pi

signum
sin
sinh
sqrt
tan
tanh

Figure 12—-2. Defined names relating to Exponentials, Logarithms, and Trigonometry.

Figure 12-3 shows operators relating to numeric comparison and predication.

/:
<

<=

>=
evenp
max
min
minusp

oddp

plusp
zerop

Figure 12—-3. Operators for numeric comparison and predication.
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Figure 12-4 shows defined names relating to numeric type manipulation and coercion.

ceiling float-radix rational
complex float-sign rationalize
decode-float floor realpart
denominator fround rem
fceiling ftruncate round
flloor imagpart scale-float
float integer-decode-float truncate
float-digits mod

float-precision numerator

Figure 12—-4. Defined names relating to numeric type manipulation and coercion.

12.1.1.1 Associativity and Commutativity in Numeric Operations

For functions that are mathematically associative (and possibly commutative), a conforming
implementation may process the arguments in any manner consistent with associative (and
possibly commutative) rearrangement. This does not affect the order in which the argument
forms are evaluated; for a discussion of evaluation order, see Section 3.1.2.1.2.3 (Function Forms).
What is unspecified is only the order in which the parameter values are processed. This implies
that implementations may differ in which automatic coercions are applied; see Section 12.1.1.2
(Contagion in Numeric Operations).

A conforming program can control the order of processing explicitly by separating the operations
into separate (possibly nested) function forms, or by writing explicit calls to functions that
perform coercions.

12.1.1.1.1 Examples of Associativity and Commutativity in Numeric Operations

Consider the following expression, in which we assume that 1.0 and 1.0e-15 both denote single
floats:

(+ 1/3 2/3 1.0d0 1.0 1.0e-15)

One conforming implementation might process the arguments from left to right, first adding
1/3 and 2/3 to get 1, then converting that to a double float for combination with 1.0d0, then
successively converting and adding 1.0 and 1.0e-15.

Another conforming implementation might process the arguments from right to left, first per-
forming a single float addition of 1.0 and 1.0e-15 (perhaps losing accuracy in the process), then
converting the sum to a double float and adding 1.0d0, then converting 2/3 to a double float and
adding it, and then converting 1/3 and adding that.

A third conforming implementation might first scan all the arguments, process all the rationals
first to keep that part of the computation exact, then find an argument of the largest floating-
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point format among all the arguments and add that, and then add in all other arguments, con-
verting each in turn (all in a perhaps misguided attempt to make the computation as accurate as
possible).

In any case, all three strategies are legitimate.
A conforming program could control the order by writing, for example,

(+ (+ 1/3 2/3) (+ 1.0d0 1.0e-15) 1.0)

12.1.1.2 Contagion in Numeric Operations

For information about the contagion rules for implicit coercions of arguments in numeric opera-
tions, see Section 12.1.4.4 (Rule of Float Precision Contagion), Section 12.1.4.1 (Rule of Float and
Rational Contagion), and Section 12.1.5.2 (Rule of Complex Contagion).

12.1.1.3 Viewing Integers as Bits and Bytes

12.1.1.3.1 Logical Operations on Integers

Logical operations require integers as arguments; an error of type type-error should be signaled
if an argument is supplied that is not an integer. Integer arguments to logical operations are
treated as if they were represented in two’s-complement notation.

Figure 12-5 shows defined names relating to logical operations on numbers.

ash boole-ior logbitp
boole boole-nand logcount
boole-1 boole-nor logeqv
boole-2 boole-orcl logior
boole-and boole-orc2 lognand
boole-andcl boole-set lognor
boole-andc2 boole-xor lognot
boole-cl integer-length logorcl
boole-c2 logand logorc2
boole-clr logandcl logtest
boole-eqv logandc2 logxor

Figure 12—-5. Defined names relating to logical operations on numbers.
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12.1.1.3.2 Byte Operations on Integers

The byte-manipulation functions use objects called byte specifiers to designate the size and posi-
tion of a specific byte within an integer. The representation of a byte specifier is implementation-
dependent; it might or might not be a number. The function byte will construct a byte specifier,

12.1.2

12.1.3

which various other byte-manipulation functions will accept.

Figure 126 shows defined names relating to manipulating bytes of numbers.

byte deposit-field 1db-test
byte-position dpb mask-field
byte-size 1db

Figure 12—6. Defined names relating to byte manipulation.

Implementation-Dependent Numeric Constants

Figure 12-7 shows defined names relating to implementation-dependent details about numbers.

double-float-epsilon
double-float-negative-epsilon
least-negative-double-float
least-negative-long-float
least-negative-short-float
least-negative-single-float
least-positive-double-float
least-positive-long-float
least-positive-short-float
least-positive-single-float
long-float-epsilon
long-float-negative-epsilon
most-negative-double-float

most-negative-fixnum
most-negative-long-float
most-negative-short-float
most-negative-single-float
most-positive-double-float
most-positive-fixnum
most-positive-long-float
most-positive-short-float
most-positive-single-float
short-float-epsilon
short-float-negative-epsilon
single-float-epsilon
single-float-negative-epsilon

Figure 12-7. Defined names relating to implementation-dependent details about numbers.

Rational Computations

The rules in this section apply to rational computations.
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12.1.3.1 Rule of Unbounded Rational Precision

Rational computations cannot overflow in the usual sense (though there may not be enough
storage to represent a result), since integers and ratios may in principle be of any magnitude.

12.1.3.2 Rule of Canonical Representation for Rationals

If any computation produces a result that is a mathematical ratio of two integers such that the
denominator evenly divides the numerator, then the result is converted to the equivalent integer.

If the denominator does not evenly divide the numerator, the canonical representation of a
rational number is as the ratio that numerator and that denominator, where the greatest common
divisor of the numerator and denominator is one, and where the denominator is positive and
greater than one.

When used as input (in the default syntax), the notation -0 always denotes the integer 0. A
conforming implementation must not have a representation of “minus zero” for integers that is
distinct from its representation of zero for integers. However, such a distinction is possible for
floats; see the type float.

12.1.3.3 Rule of Float Substitutability

When the arguments to an irrational mathematical function are all rational and the true math-
ematical result is also (mathematically) rational, then unless otherwise noted an implementation
is free to return either an accurate rational result or a single float approximation. If the argu-
ments are all rational but the result cannot be expressed as a rational number, then a single float
approximation is always returned.

If the arguments to an irrational mathematical function are all of type (or rational (complex rational))
and the true mathematical result is (mathematically) a complex number with rational real and
imaginary parts, then unless otherwise noted an implementation is free to return either an ac-

curate result of type (or rational (complex rational)) or a single float (permissible only if the
imaginary part of the true mathematical result is zero) or (complex single-float). If the argu-

ments are all of type (or rational (complex rational)) but the result cannot be expressed as a

rational or complex rational, then the returned value will be of type single-float (permissible only

if the imaginary part of the true mathematical result is zero) or (complex single-float).

Float substitutability applies neither to the rational functions +, -, *, and / nor to the related
operators 14, 1-, incf, decf, and conjugate. For rational functions, if all arguments are rational,
then the result is rational; if all arguments are of type (or rational (complex rational)), then
the result is of type (or rational (complex rational)).
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Function Sample Results
abs (abs #c(3 4)) — 5 or 5.0
acos (acos 1) — 0 or 0.0
acosh (acosh 1) — 0 or 0.0
asin (asin 0) — 0 or 0.0
asinh (asinh 0) — 0 or 0.0
atan (atan 0) — 0 or 0.0
atanh (atanh 0) — 0 or 0.0
cis (cis 0) — 1 or #c(1.0 0.0)
cos (cos 0) — 1 or 1.0
cosh (cosh 0) — 1 or 1.0
exp (exp 0) — 1 or 1.0
expt (expt 8 1/3) — 2 or 2.0
log (log 1) — 0 or 0.0

(log 8 2) — 3 or 3.0
phase (phase 7) — 0 or 0.0
signum (signum #c(3 4)) — #c(3/5 4/5) or #c(0.6 0.8)
sin (sin 0) — 0 or 0.0
sinh (sinh 0) — 0 or 0.0
sqrt (sqrt 4) — 2 or 2.0

(sqrt 9/16) — 3/4 or 0.75
tan (tan 0) — 0 or 0.0
tanh (tanh 0) — 0 or 0.0

Figure 12-8. Functions Affected by Rule of Float Substitutability

12.1.4 Floating-point Computations

The following rules apply to floating point computations.

12.1.4.1 Rule of Float and Rational Contagion

When rationals and floats are combined by a numerical function, the rational is first converted
to a float of the same format. For functions such as + that take more than two arguments, it is
permitted that part of the operation be carried out exactly using rationals and the rest be done

using floating-point arithmetic.

When rationals and floats are compared by a numerical function, the function rational is effec-
tively called to convert the float to a rational and then an exact comparison is performed. In the
case of compler numbers, the real and imaginary parts are effectively handled individually.
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12.1.4.1.1 Examples of Rule of Float and Rational Contagion

;555 Combining rationals with floats.

;33 This example assumes an implementation in which

;33 (float-radix 0.5) is 2 (as in IEEE) or 16 (as in IBM/360),
;53 or else some other implementation in which 1/2 has an exact
;33 Trepresentation in floating point.

(+ 1/2 0.5) — 1.0

(- 1/2 0.5d0) — 0.040

(+ 0.5 -0.5 1/2) — 0.5

;355 Comparing rationals with floats.

;35 This example assumes an implementation in which the default float
;;; format is IEEE single-float, IEEE double-float, or some other format
;55 in which 5/7 is rounded upwards by FLOAT.

(< 5/7 (float 5/7)) — true

(< 5/7 (rational (float 5/7))) — ftrue

(< (float 5/7) (float 5/7)) — false

12.1.4.2 Rule of Float Approximation

Computations with floats are only approximate, although they are described as if the results

were mathematically accurate. Two mathematically identical expressions may be computa-
tionally different because of errors inherent in the floating-point approximation process. The
precision of a float is not necessarily correlated with the accuracy of that number. For instance,
3.142857142857142857 is a more precise approximation to 7 than 3.14159, but the latter is more
accurate. The precision refers to the number of bits retained in the representation. When an
operation combines a short float with a long float, the result will be a long float. Common Lisp
functions assume that the accuracy of arguments to them does not exceed their precision. There-
fore when two small floats are combined, the result is a small float. Common Lisp functions never
convert automatically from a larger size to a smaller one.

12.1.4.3 Rule of Float Underflow and Overflow

An error of type floating-point-overflow or floating-point-underflow should be signaled if a
floating-point computation causes exponent overflow or underflow, respectively.

12.1.4.4 Rule of Float Precision Contagion

The result of a numerical function is a float of the largest format among all the floating-point
arguments to the function.
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12.1.5 Complex Computations

The following rules apply to complez computations:

12.1.5.1 Rule of Complex Substitutability

Except during the execution of irrational and transcendental functions, no numerical function
ever yields a complex unless one or more of its arguments is a complez.

12.1.5.2 Rule of Complex Contagion

When a real and a complex are both part of a computation, the real is first converted to a
compler by providing an imaginary part of 0.

12.1.5.3 Rule of Canonical Representation for Complex Rationals

If the result of any computation would be a complex number whose real part is of type rational
and whose imaginary part is zero, the result is converted to the rational which is the real part.
This rule does not apply to complez numbers whose parts are floats. For example, #C(5 0) and 5
are not different objects in Common Lisp(they are always the same under eql); #C(5.0 0.0) and
5.0 are always different objects in Common Lisp (they are never the same under eql, although
they are the same under equalp and =).

12.1.5.3.1 Examples of Rule of Canonical Representation for Complex Rationals

#c(1.0 1.0) — #C(1.0 1.0)

#c(0.0 0.0) — #C(0.0 0.0)

#c(1.0 1) — #C(1.0 1.0

#c(0.0 0) — #C(0.0 0.0)

#c(1 1) — #C(1 1)

#c(0 0) — O

(typep #c(1 1) ’(complex (eql 1))) — true
(typep #c(0 0) ’(complex (eql 0))) — false
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12.1.5.4 Principal Values and Branch Cuts

Many of the irrational and transcendental functions are multiply defined in the complex domain;
for example, there are in general an infinite number of complex values for the logarithm function.
In each such case, a principal value must be chosen for the function to return. In general, such
values cannot be chosen so as to make the range continuous; lines in the domain called branch
cuts must be defined, which in turn define the discontinuities in the range. Common Lisp defines
the branch cuts, principal values, and boundary conditions for the complex functions following
“Principal Values and Branch Cuts in Complex APL.” The branch cut rules that apply to each
function are located with the description of that function.

Figure 12-9 lists the identities that are obeyed throughout the applicable portion of the complex
domain, even on the branch cuts:

siniz =1sinh z sinhiz=1sinz arctan i z = i1 arctanh z
cos iz = cosh z cosh iz = cos z arcsinh i z = i arcsin z
taniz =1 tanh z arcsin i z = 1 arcsinh z arctanh 1 z = 1 arctan z

Figure 12—-9. Trigonometric Identities for Complex Domain

The quadrant numbers referred to in the discussions of branch cuts are as illustrated in Figure
12-10.

Positive
Imaginary Axis

II I
Negative Real Axis - ccvvovevveneen. Positive Real Axis
III IV
Negative

Imaginary Axis

Figure 12-10. Quadrant Numbering for Branch Cuts

12.1.6 Interval Designators

The compound type specifier form of the numeric type specifiers permit the user to specify an
interval on the real number line which describe a subtype of the type which would be described by
the corresponding atomic type specifier. A subtype of some type T is specified using an ordered
pair of objects called interval designators for type T.
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The first of the two interval designators for type T can be any of the following:

a number N of type T

This denotes a lower inclusive bound of N. That is, elements of the subtype of T will be
greater than or equal to N.

a singleton list whose element is a number M of type T

This denotes a lower exclusive bound of M. That is, elements of the subtype of T will be
greater than M.

the symbol *
This denotes the absence of a lower bound on the interval.

The second of the two interval designators for type T can be any of the following:

a number N of type T

This denotes an upper inclusive bound of N. That is, elements of the subtype of T will be
less than or equal to N.

a singleton list whose element is a number M of type T

This denotes an upper exclusive bound of M. That is, elements of the subtype of T will
be less than M.

the symbol *

This denotes the absence of an upper bound on the interval.

12.1.7 Random-State Operations

Figure 12-11 lists some defined names that are applicable to random states.

*random-state* random
make-random-state random-state-p

Figure 12-11. Random-state defined names
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number System Class

Class Precedence List:

number, t

Description:

Notes:

The type number contains objects which represent mathematical numbers. The types real and
complex are disjoint subtypes of number.

The function = tests for numerical equality. The function eql, when its arguments are both
numbers, tests that they have both the same type and numerical value. Two numbers that are the
same under eql or = are not necessarily the same under eq.

Common Lisp differs from mathematics on some naming issues. In mathematics, the set of
real numbers is traditionally described as a subset of the complex numbers, but in Common
Lisp, the type real and the type complex are disjoint. The Common Lisp type which includes
all mathematical complex numbers is called number. The reasons for these differences include
historical precedent, compatibility with most other popular computer languages, and various
issues of time and space efficiency.

complex System Class

Class Precedence List:

complex, number, t

Description:

The type complex includes all mathematical complex numbers other than those included in the
type rational. Complexes are expressed in Cartesian form with a real part and an imaginary part,
each of which is a real. The real part and imaginary part are either both rational or both of the
same float type. The imaginary part can be a float zero, but can never be a rational zero, for such
a number is always represented by Common Lisp as a rational rather than a complex.

Compound Type Specifier Kind:

Specializing.

Compound Type Specifier Syntax:

(complex [typespec | *1)
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Compound Type Specifier Arguments:
typespec—a type specifier that denotes a subtype of type real.

Compound Type Specifier Description:

Every element of this type is a complex whose real part and imaginary part are each of type
(upgraded-complex-part-type typespec). This type encompasses those complexes that can result
by giving numbers of type typespec to complex.

(complex type-specifier) refers to all complexes that can result from giving numbers of type type-
specifier to the function complex, plus all other complezes of the same specialized representation.

See Also:
Section 12.1.5.3 (Rule of Canonical Representation for Complex Rationals), Section 2.3.2 (Con-
structing Numbers from Tokens), Section 22.1.3.1.4 (Printing Complexes)

Notes:
The input syntax for a complexr with real part r and imaginary part ¢ is #C(r ). For further
details, see Section 2.4 (Standard Macro Characters).

For every float, n, there is a complexr which represents the same mathematical number and which
can be obtained by (COERCE 7n ’COMPLEX).

real System Class

Class Precedence List:

real, number, t

Description:

The type real includes all numbers that represent mathematical real numbers, though there are
mathematical real numbers (e.g., irrational numbers) that do not have an exact representation in
Common Lisp. Only reals can be ordered using the <, >, <=, and >= functions.

The types rational and float are disjoint subtypes of type real.

Compound Type Specifier Kind:
Abbreviating.

Compound Type Specifier Syntax:

(real [lower-limit [upper-limit]1)
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Compound Type Specifier Arguments:
lower-limit, upper-limit—interval designators for type real. The defaults for each of lower-limit and
upper-limit is the symbol *.

Compound Type Specifier Description:

This denotes the reals on the interval described by lower-limit and upper-limit.

float System Class

Class Precedence List:

float, real, number, t

Description:

A float is a mathematical rational (but not a Common Lisp rational) of the form s- f-b¢~P, where
sis +1 or —1, the sign; b is an integer greater than 1, the base or radiz of the representation; p is
a positive integer, the precision (in base-b digits) of the float; f is a positive integer between bP~!
and bP — 1 (inclusive), the significand; and e is an integer, the exponent. The value of p and the
range of e depends on the implementation and on the type of float within that implementation.

In addition, there is a floating-point zero; depending on the implementation, there can also be

a “minus zero”. If there is no minus zero, then 0.0 and —0.0 are both interpreted as simply a
floating-point zero. (= 0.0 -0.0) is always true. If there is a minus zero, (eql -0.0 0.0) is false,
otherwise it is true.

The types short-float, single-float, double-float, and long-float are subtypes of type float. Any
two of them must be either disjoint types or the same type; if the same type, then any other
types between them in the above ordering must also be the same type. For example, if the type
single-float and the type long-float are the same type, then the type double-float must be the
same type also.

Compound Type Specifier Kind:
Abbreviating.

Compound Type Specifier Syntax:

(float [lower-limit [upper-limit]1)

Compound Type Specifier Arguments:

lower-limit, upper-limit—interval designators for type float. The defaults for each of lower-limit
and upper-limit is the symbol *.

Compound Type Specifier Description:

This denotes the floats on the interval described by lower-limit and upper-limit.
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See Also:

Notes:

Figure 2-9, Section 2.3.2 (Constructing Numbers from Tokens), Section 22.1.3.1.3 (Printing
Floats)

Note that all mathematical integers are representable not only as Common Lisp reals, but also as
complez floats. For example, possible representations of the mathematical number 1 include the
integer 1, the float 1.0, or the complex #C(1.0 0.0).

short-float, single-float, double-float, long-float 7ype

Supertypes:

short-float: short-float, float, real, number, t
single-float: single-float, float, real, number, t
double-float: double-float, float, real, number, t

long-float: long-float, float, real, number, t

Description:

For the four defined subtypes of type float, it is true that intermediate between the type
short-float and the type long-float are the type single-float and the type double-float. The
precise definition of these categories is implementation-defined. The precision (measured in “bits”,
computed as plog, b) and the exponent size (also measured in “bits,” computed as logy(n + 1),
where n is the maximum exponent value) is recommended to be at least as great as the values in
Figure 12-12. Each of the defined subtypes of type float might or might not have a minus zero.

Format Minimum Precision Minimum Exponent Size
Short 13 bits 5 bits
Single 24 bits 8 bits
Double 50 bits 8 bits
Long 50 bits 8 bits

Figure 12-12. Recommended Minimum Floating-Point Precision and Exponent Size

There can be fewer than four internal representations for floats. If there are fewer distinct repre-
sentations, the following rules apply:

— If there is only one, it is the type single-float. In this representation, an object is simulta-
neously of types single-float, double-float, short-float, and long-float.
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short-float, single-float, double-float, long-float

— Two internal representations can be arranged in either of the following ways:

e Two types are provided: single-float and short-float. An object is simultaneously
of types single-float, double-float, and long-float.

e Two types are provided: single-float and double-float. An object is simultane-
ously of types single-float and short-float, or double-float and long-float.

—  Three internal representations can be arranged in either of the following ways:

e Three types are provided: short-float, single-float, and double-float. An object
can simultaneously be of type double-float and long-float.

e Three types are provided: single-float, double-float, and long-float. An object
can simultaneously be of types single-float and short-float.

Compound Type Specifier Kind:
Abbreviating.

Compound Type Specifier Syntax:

(short-float [short-lower-limit [short-upper-limit|1)
(single-float [single-lower-limit [single-upper-limit]1)
(double-float [double-lower-limit [double-upper-limit]1)
(long-float [long-lower-limit [long-upper-limit]1)

Compound Type Specifier Arguments:
short-lower-limit, short-upper-limit—interval designators for type short-float. The defaults for each
of lower-limit and upper-limit is the symbol *.

single-lower-limit, single-upper-limit—interval designators for type single-float. The defaults for
each of lower-limit and upper-limit is the symbol *.

double-lower-limit, double-upper-limit—interval designators for type double-float. The defaults for
each of lower-limit and upper-limit is the symbol *.

long-lower-limit, long-upper-limit—interval designators for type long-float. The defaults for each of
lower-limit and upper-limit is the symbol *.

Compound Type Specifier Description:

Each of these denotes the set of floats of the indicated type that are on the interval specified by
the interval designators.
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rational System Class

Class Precedence List:

rational, real, number, t

Description:

The canonical representation of a rational is as an integer if its value is integral, and otherwise as
a ratio.

The types integer and ratio are disjoint subtypes of type rational.

Compound Type Specifier Kind:
Abbreviating.

Compound Type Specifier Syntax:

(rational [lower-limit [upper-limit]1)

Compound Type Specifier Arguments:
lower-limit, upper-limit—interval designators for type rational. The defaults for each of lower-limit
and upper-limit is the symbol *.

Compound Type Specifier Description:

This denotes the rationals on the interval described by lower-limit and upper-limit.

ratio System Class

Class Precedence List:

ratio, rational, real, number, t

Description:

A ratio is a number representing the mathematical ratio of two non-zero integers, the numerator
and denominator, whose greatest common divisor is one, and of which the denominator is positive
and greater than one.

See Also:

Figure 2-9, Section 2.3.2 (Constructing Numbers from Tokens), Section 22.1.3.1.2 (Printing
Ratios)
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integer System Class

Class Precedence List:

integer, rational, real, number, t

Description:
An integer is a mathematical integer. There is no limit on the magnitude of an integer.

The types fixnum and bignum form an exhaustive partition of type integer.

Compound Type Specifier Kind:
Abbreviating.

Compound Type Specifier Syntax:

(integer [lower-limit [upper-limit]1)

Compound Type Specifier Arguments:

lower-limit, upper-limit—interval designators for type integer. The defaults for each of lower-limit
and upper-limit is the symbol *.

Compound Type Specifier Description:

This denotes the integers on the interval described by lower-limit and upper-limit.

See Also:
Figure 2-9, Section 2.3.2 (Constructing Numbers from Tokens), Section 22.1.3.1.1 (Printing
Integers)

Notes:

The type (integer lower upper), where lower and upper are most-negative-fixnum and
most-positive-fixnum, respectively, is also called fixnum.

The type (integer 0 1) is also called bit. The type (integer 0 *) is also called unsigned-byte.

signed-byte Type

Supertypes:

signed-byte, integer, rational, real, number, t

Description:

The atomic type specifier signed-byte denotes the same type as is denoted by the type specifier
integer; however, the list forms of these two type specifiers have different semantics.
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Compound Type Specifier Kind:
Abbreviating.

Compound Type Specifier Syntax:
(signed-byte [s | *1)

Compound Type Specifier Arguments:

s—a positive integer.

Compound Type Specifier Description:
This denotes the set of integers that can be represented in two’s-complement form in a byte
of s bits. This is equivalent to (integer —2°~! 2571 —1). The type signed-byte or the type
(signed-byte *) is the same as the type integer.

unsigned-byte Type

Supertypes:

unsigned-byte, signed-byte, integer, rational, real, number, t

Description:

The atomic type specifier unsigned-byte denotes the same type as is denoted by the type specifier
(integer 0 *).

Compound Type Specifier Kind:
Abbreviating.

Compound Type Specifier Syntax:
(unsigned-byte [s | *1)

Compound Type Specifier Arguments:

s—a positive integer.

Compound Type Specifier Description:

This denotes the set of non-negative integers that can be represented in a byte of size s (bits).
This is equivalent to (mod m) for m = 2° or to (integer 0 n) for n = 2° — 1. The type
unsigned-byte or the type (unsigned-byte *) is the same as the type (integer 0 *), the set
of non-negative integers.

Notes:
The type (unsigned-byte 1) is also called bit.
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mod Type Specifier

Compound Type Specifier Kind:
Abbreviating.

Compound Type Specifier Syntax:
(mod n)

Compound Type Specifier Arguments:

n—a positive integer.

Compound Type Specifier Description:

This denotes the set of non-negative integers less than n. This is equivalent to (integer 0 (n)) or
to (integer 0 m), where m=n — 1.

The argument is required, and cannot be *.

The symbol mod is not valid as a type specifier.

bit Type

Supertypes:

bit, unsigned-byte, signed-byte, integer, rational, real, number, t

Description:
The type bit is equivalent to the type (integer 0 1) and (unsigned-byte 1).
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fixnum Type

Supertypes:

fixnum, integer, rational, real, number, t

Description:
A fixnum is an integer whose value is between most-negative-fixnum and most-positive-fixnum
inclusive. Exactly which integers are firnums is implementation-defined. The type fixnum is
required to be a supertype of (signed-byte 16).

bignum Type

Supertypes:

bignum, integer, rational, real, number, t

Description:
The type bignum is defined to be exactly (and integer (not fixnum)).

=, /:, <G> <=, >= Function

Syntax:

= grest numberst™ — generalized-boolean
/= &rest numbers® — generalized-boolean
< grest numberst — generalized-boolean
> grest numberst — generalized-boolean
<= &rest numbers®™ — generalized-boolean
>= grest numbers" — generalized-boolean

Arguments and Values:
number—for <, >, <=, >=: a real; for =, /=: a number.

generalized-boolean—a, generalized boolean.
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— /:9 <y >y <=, >=

Description:

=, /=, <, >, <=, and >= perform arithmetic comparisons on their arguments as follows:

The value of = is true if all numbers are the same in value; otherwise it is false. Two
complexes are considered equal by = if their real and imaginary parts are equal according
to =.

The value of /= is true if no two numbers are the same in value; otherwise it is false.

The value of < is true if the numbers are in monotonically increasing order; otherwise it is
false.

The value of > is true if the numbers are in monotonically decreasing order; otherwise it is
false.

The value of <= is true if the numbers are in monotonically nondecreasing order; other-
wise it is false.

The value of >= is true if the numbers are in monotonically nonincreasing order; other-
wise it is false.

=, /=, <, >, <=, and >= perform necessary type conversions.

Examples:

The uses of these functions are illustrated in Figure 12—-13.
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3) is true.

5) is false.

3 3 3) is true.
3 5 3) is false.
6 5 2) is false.
2 3) is false.

3

3

3

3

3

3
(< 3 5) is true.
(< 3 -5) is false.
(< 3 3) is false.
(< 0346 7)is true.
(< 0344 6)is false.
(> 4 3) is true.
(>4 321 0)is true.
(> 4 3 320)is false.
(>4 31 20) is false.
= 3) is true.
(< 3) is true.
= 3.0 #c (3.0 0.0)) is true.
= 3 3.0) is true.
= 0.0 -0.0) is true.
(> 0.0 -0.0) is false.

(/= 3 3) is false.

(/= 3 5) is true.

(/= 3 3 3 3) is false.
(/=3 3 5 3) is false.
(/= 3 6 5 2) is true.
(/= 3 2 3) is false.
(<= 3 b) is true.

(<= 3 -5) is false.

(<= 3 3) is true.

(<= 03 4 6 7)is true.
(<= 0 3 4 4 6) is true.
(>= 4 3) is true.

(>=4 3 21 0) is true.
(>= 4 3 3 2 0) is true.
(>=4 31 2 0) is false.

(/= 3) is true.

(<= 3) is true.

(/= 3.0 #c (3.0 1.0)) is true.
(= 3.0s0 3.0d0) is true.

(= 5/2 2.5) is true.

(= 0 -0.0) is true.

(<= 0 x 9) is true if x is between 0 and 9, inclusive
(< 0.0 x 1.0) is true if x is between 0.0 and 1.0, exclusive
(< -1 j (length v)) is true if j is a valid array index for a vector v

Figure 12-13. Uses of /=, =, <, >, <=, and >=

Exceptional Situations:
Might signal type-error if some argument is not a real. Might signal arithmetic-error if other-

wise unable to fulfill its contract.

Notes:
= differs from eql in that (= 0.0 -0.0) is always true, because = compares the mathematical
values of its operands, whereas eql compares the representational values, so to speak.
max, 1min Function
Syntax:

max &rest realst — max-real
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max, min

min &rest reals™ — min-real

Arguments and Values:
real—a real.

max-real, min-real—a real.

Description:
max returns the real that is greatest (closest to positive infinity). min returns the real that is
least (closest to negative infinity).

For max, the implementation has the choice of returning the largest argument as is or applying
the rules of floating-point contagion, taking all the arguments into consideration for contagion
purposes. Also, if one or more of the arguments are =, then any one of them may be chosen as
the value to return. For example, if the reals are a mixture of rationals and floats, and the largest
argument is a rational, then the implementation is free to produce either that rational or its float
approximation; if the largest argument is a float of a smaller format than the largest format of
any float argument, then the implementation is free to return the argument in its given format or
expanded to the larger format. Similar remarks apply to min (replacing “largest argument” by
“smallest argument”).

Examples:

(max 3) — 3

(min 3) — 3

(max 6 12) — 12
(min 6 12) — 6

(max -6 -12) — -6
(min -6 -12) — -12
(max 1 3 2 -7) — 3
(min 1 3 2 -7) — -7
(max -2 307) — 7
(min -2 3 07) — -2
(max 5.0 2) — 5.0
(min 5.0 2)

— 2

Z 2.0

(max 3.0 7 1)

— 7

Z 7.0

(min 3.0 7 1)

— 1

Z 1.0

(max 1.0s0 7.0d40) — 7.0d0

2
2
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(min 1.0s0 7.0d0)

— 1.0s0

2% 1.0d0

(max 3 1 1.0s0 1.0d0)
— 3

2 3.0d0

(min 3 1 1.0s0 1.0d0)
— 1

2 1.0s0

or

— 1.0d0

Exceptional Situations:
Should signal an error of type type-error if any number is not a real.

minusp, plusp Function

Syntax:

minusp real — generalized-boolean
plusp real — generalized-boolean

Arguments and Values:
real—a real.

generalized-boolean—a generalized boolean.

Description:
minusp returns true if real is less than zero; otherwise, returns false.

plusp returns true if real is greater than zero; otherwise, returns false.

Regardless of whether an implementation provides distinct representations for positive and
negative float zeros, (minusp -0.0) always returns false.

Examples:

(minusp -1) — true
(plusp 0) — false
(plusp least-positive-single-float) — {rue

Exceptional Situations:
Should signal an error of type type-error if real is not a real.
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zerop Function

Syntax:

zerop number — generalized-boolean

Pronunciation:
[ : zé(,)r(_)(,)pé]

Arguments and Values:
number—a number.

generalized-boolean—a, generalized boolean.

Description:
Returns true if number is zero (integer, float, or complex); otherwise, returns false.

Regardless of whether an implementation provides distinct representations for positive and
negative floating-point zeros, (zerop -0.0) always returns true.

Examples:

(zerop 0) — true

(zerop 1) — false

(zerop -0.0) — ftrue
(zerop 0/100) — true
(zerop #c(0 0.0)) — true

Exceptional Situations:
Should signal an error of type type-error if number is not a number.

Notes:

(zerop number) = (= number 0)

floor, fHoor, ceiling, fceiling, truncate, ftruncate,

round, fround Function
Syntax:

floor number &optional divisor — quotient, remainder

floor number &optional divisor — quotient, remainder

ceiling number &optional divisor — quotient, remainder
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floor, flloor, ceiling, fceiling, truncate, ftruncate,

fceiling number &optional divisor — quotient, remainder
truncate number &optional divisor — quotient, remainder
ftruncate number &optional divisor — quotient, remainder
round number &optional divisor — quotient, remainder
fround number &optional divisor — quotient, remainder

Arguments and Values:
number—a real.

divisor—a non-zero real. The default is the integer 1.

quotient—for floor, ceiling, truncate, and round: an integer; for flloor, fceiling, ftruncate, and
fround: a float.

remainder—a, real.

Description:
These functions divide number by divisor, returning a quotient and remainder, such that

quotient-divisor+remainder=number

The quotient always represents a mathematical integer. When more than one mathematical inte-
ger might be possible (i.e., when the remainder is not zero), the kind of rounding or truncation
depends on the operator:

floor, flloor

floor and fHoor produce a quotient that has been truncated toward negative infinity; that
is, the quotient represents the largest mathematical integer that is not larger than the
mathematical quotient.

ceiling, fceiling

ceiling and fceiling produce a quotient that has been truncated toward positive infinity;
that is, the quotient represents the smallest mathematical integer that is not smaller than
the mathematical result.

truncate, ftruncate

truncate and ftruncate produce a quotient that has been truncated towards zero; that
is, the quotient represents the mathematical integer of the same sign as the mathematical
quotient, and that has the greatest integral magnitude not greater than that of the
mathematical quotient.

round, fround

round and fround produce a quotient that has been rounded to the nearest mathematical
integer; if the mathematical quotient is exactly halfway between two integers, (that is,
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floor, fHoor, ceiling, fceiling, truncate, ftruncate,

it has the form integer+1), then the quotient has been rounded to the even (divisible by
two) integer.

All of these functions perform type conversion operations on numbers.

The remainder is an integer if both x and y are integers, is a rational if both x and y are ratio-
nals, and is a float if either x or y is a float.

flloor, fceiling, ftruncate, and fround handle arguments of different types in the following way: If
number is a float, and divisor is not a float of longer format, then the first result is a float of the
same type as number. Otherwise, the first result is of the type determined by contagion rules; see
Section 12.1.1.2 (Contagion in Numeric Operations).

Examples:

Notes:

(floor 3/2) — 1, 1/2
(ceiling 3 2) — 2, -1
(ffloor 3 2) — 1.0, 1
(ffloor -4.7) — -5.0, 0.3
(ffloor 3.5d0) — 3.040, 0.5d0
(fceiling 3/2) — 2.0, -1/2
(truncate 1) — 1, 0
(truncate .5) — 0, 0.5
(round .5) — 0, 0.5
(ftruncate -7 2) — -3.0, -1
(fround -7 2) — -4.0, 1
(dolist (n (2.6 2.5 2.4 0.7 0.3 -0.3 -0.7 -2.4 -2.5 -2.6))
(format t "~&4,1@F ~2,> D "2, D ~2,> D ~2,’ D"
n (floor n) (ceiling n) (truncate n) (round n)))

>+2.6 2 3 2 3
>+2.6 2 3 2 2
>+2.4 2 3 2 2
>+0.7 0 1 0 1
>+0.3 0 1 0 O
>-0.3-1 0 0 O
>-0.7-1 0 0 -1
> -2.4 -3 -2 -2 -2
> -2.56 -3 -2 -2 -2
> -2.6 -3 -2 -2 -3
— NIL

When only number is given, the two results are exact; the mathematical sum of the two results is
always equal to the mathematical value of number.

(function number divisor) and (function (/ number divisor)) (where function is any of one of
floor, ceiling, floor, fceiling, truncate, round, ftruncate, and fround) return the same first
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value, but they return different remainders as the second value. For example:

(floor 5 2) — 2, 1
(floor (/ 5 2)) — 2, 1/2

If an effect is desired that is similar to round, but that always rounds up or down (rather
than toward the nearest even integer) if the mathematical quotient is exactly halfway between
two integers, the programmer should consider a construction such as (floor (+ x 1/2)) or
(ceiling (- x 1/2)).

sin, cos, tan Function

Syntax:

sin radians — number
cos radians — number
tan radians — number

Arguments and Values:
radians—a number given in radians.

number—a number.

Description:
sin, cos, and tan return the sine, cosine, and tangent, respectively, of radians.

Examples:

(sin 0) — 0.0
(cos 0.7853982) — 0.707107
(tan #c(0 1)) — #C(0.0 0.761594)

Exceptional Situations:

Should signal an error of type type-error if radians is not a number. Might signal
arithmetic-error.

See Also:
asin, acos, atan, Section 12.1.3.3 (Rule of Float Substitutability)
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asin, acos, atan

asin, acos, atan Function

Syntax:

asin number — radians
acos number — radians

atan numberl &optional number? — radians

Arguments and Values:
number—a number.

numberl—a number if number2 is not supplied, or a real if number2 is supplied.
number2—a real.
radians—a number (of radians).

Description:
asin, acos, and atan compute the arc sine, arc cosine, and arc tangent respectively.

The arc sine, arc cosine, and arc tangent (with only numberl supplied) functions can be defined
mathematically for number or numberl specified as z as in Figure 12—14.

Function Definition

Arc sine —i log (iz + V1 — x?)

Arc cosine (7/2) — arcsin x

Arc tangent —i log ((1+iz) \/1/(1+ 2?))

Figure 12-14. Mathematical definition of arc sine, arc cosine, and arc tangent

These formulae are mathematically correct, assuming completely accurate computation. They are
not necessarily the simplest ones for real-valued computations.

If both numberl and number2 are supplied for atan, the result is the arc tangent of

numberl /number2. The value of atan is always between —n (exclusive) and 7 (inclusive) when
minus zero is not supported. The range of the two-argument arc tangent when minus zero is
supported includes —r.

For a real numberl, the result is a real and lies between —7/2 and 7/2 (both exclusive). numberl
can be a complex if number2 is not supplied. If both are supplied, number2 can be zero provided
numberl is not zero.

The following definition for arc sine determines the range and branch cuts:
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asin, acos, atan

arcsin z = —1 log (ZZ +v1-— Z2)

The branch cut for the arc sine function is in two pieces: one along the negative real axis to the
left of —1 (inclusive), continuous with quadrant II, and one along the positive real axis to the
right of 1 (inclusive), continuous with quadrant IV. The range is that strip of the complex plane
containing numbers whose real part is between —7/2 and /2. A number with real part equal to
—m/2 is in the range if and only if its imaginary part is non-negative; a number with real part
equal to 7/2 is in the range if and only if its imaginary part is non-positive.

The following definition for arc cosine determines the range and branch cuts:

T
arccos z = 5 — arcsin 2
or, which are equivalent,
arccos z = —1 log (z +1v1— 22)

210g( (I+z)/2+4 (lfz)/Q)

arccos z =
1

The branch cut for the arc cosine function is in two pieces: one along the negative real axis to
the left of —1 (inclusive), continuous with quadrant II, and one along the positive real axis to
the right of 1 (inclusive), continuous with quadrant IV. This is the same branch cut as for arc
sine. The range is that strip of the complex plane containing numbers whose real part is between
0 and 7. A number with real part equal to 0 is in the range if and only if its imaginary part is
non-negative; a number with real part equal to 7 is in the range if and only if its imaginary part
is non-positive.

The following definition for (one-argument) arc tangent determines the range and branch cuts:

log (1 4+ iz) — log (1 —iz)
2t

arctan 2 =

Beware of simplifying this formula; “obvious” simplifications are likely to alter the branch cuts
or the values on the branch cuts incorrectly. The branch cut for the arc tangent function is in
two pieces: one along the positive imaginary axis above 4 (exclusive), continuous with quadrant
II, and one along the negative imaginary axis below —i (exclusive), continuous with quadrant IV.
The points ¢ and —¢ are excluded from the domain. The range is that strip of the complex plane
containing numbers whose real part is between —7/2 and /2. A number with real part equal to
—m/2 is in the range if and only if its imaginary part is strictly positive; a number with real part
equal to 7/2 is in the range if and only if its imaginary part is strictly negative. Thus the range
of arc tangent is identical to that of arc sine with the points —x/2 and 7/2 excluded.
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asin, acos, atan

For atan, the signs of numberl (indicated as z) and number2 (indicated as y) are used to derive
quadrant information. Figure 12-15 details various special cases. The asterisk (*) indicates that
the entry in the figure applies to implementations that support minus zero.

y Condition z Condition Cartesian locus Range of result
y=20 x>0 Positive x-axis 0

* y =40 x>0 Positive x-axis +0
y=—0 x>0 Positive x-axis -0
y>0 x>0 Quadrant I 0 < result < 7/2
y>0 z=0 Positive y-axis /2
y>0 x <0 Quadrant IT m/2 < result <7
y=20 x <0 Negative x-axis s

* y=40 x <0 Negative x-axis +7

* y=-0 x<0 Negative x-axis -7
y<0 <0 Quadrant III —m <result < —7/2
y<0 x=0 Negative y-axis —7/2
y<0 x>0 Quadrant IV —7/2 < result < 0
y=20 =0 Origin undefined consequences

* y=+40 x =40 Origin +0

*y=-0 x =40 Origin —0

* gy =40 x=-0 Origin +7

* y=-0 x=-0 Origin -7

Figure 12-15. Quadrant information for arc tangent

Examples:

(asin 0) — 0.0

(acos #c(0 1)) — #C(1.5707963267948966 -0.8813735870195432)
(/ (atan 1 (sqrt 3)) 6) — 0.087266

(atan #c(0 2)) — #C(-1.5707964 0.54930615)

Exceptional Situations:

acos and asin should signal an error of type type-error if number is not a number. atan should
signal type-error if one argument is supplied and that argument is not a number, or if two
arguments are supplied and both of those arguments are not reals.

acos, asin, and atan might signal arithmetic-error.

See Also:
log, sqrt, Section 12.1.3.3 (Rule of Float Substitutability)
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Notes:
The result of either asin or acos can be a complex even if number is not a complex; this occurs
when the absolute value of number is greater than one.
hd .
P1 Constant Variable
Value:
an implementation-dependent long float.
Description:
The best long float approximation to the mathematical constant .
Examples:
;3 In each of the following computations, the precision depends
;; on the implementation. Also, if ‘long float’ is treated by
;; the implementation as equivalent to some other float format
;3 (e.g., ‘double float’) the exponent marker might be the marker
;; for that equivalent (e.g., ‘D’ instead of ‘L’).
pi — 3.141592653589793L0
(cos pi) — -1.0LO
(defun sin-of-degrees (degrees)
(let ((x (if (floatp degrees) degrees (float degrees pi))))
(sin (x x (/ (float pi x) 180)))))
Notes:

An approximation to 7 in some other precision can be obtained by writing (float pi x), where x
is a float of the desired precision, or by writing (coerce pi type), where type is the desired type,
such as short-float.
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sinh, cosh, tanh, asinh, acosh, atanh

sinh, cosh, tanh, asinh, acosh, atanh Function

Syntax:

sinh number — result
cosh number — result
tanh number — result
asinh number — result
acosh number — result

atanh number — result

Arguments and Values:
number—a number.

result—a. number.

Description:

These functions compute the hyperbolic sine, cosine, tangent, arc sine, arc cosine, and arc tangent
functions, which are mathematically defined for an argument z as given in Figure 12-16.

Function Definition

Hyperbolic sine (e* —e™®)/2

Hyperbolic cosine (e +e77)/2

Hyperbolic tangent (e —e ") /(e*+e ™)
Hyperbolic arc sine log (x + V1 + 22)

Hyperbolic arc cosine 21log (/(z+1)/2+ +/(z —1)/2)
Hyperbolic arc tangent (Log (1+2) —log (1 —x))/2

Figure 12-16. Mathematical definitions for hyperbolic functions

The following definition for the inverse hyperbolic cosine determines the range and branch cuts:

arccosh z = 2 log (\/(z—|— D/2++(z— 1)/2).

The branch cut for the inverse hyperbolic cosine function lies along the real axis to the left of 1
(inclusive), extending indefinitely along the negative real axis, continuous with quadrant IT and
(between 0 and 1) with quadrant I. The range is that half-strip of the complex plane containing
numbers whose real part is non-negative and whose imaginary part is between —7 (exclusive)
and 7 (inclusive). A number with real part zero is in the range if its imaginary part is between
zero (inclusive) and 7 (inclusive).
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sinh, cosh, tanh, asinh, acosh, atanh

The following definition for the inverse hyperbolic sine determines the range and branch cuts:
arcsinh z = log (z +vV1+ 22).

The branch cut for the inverse hyperbolic sine function is in two pieces: one along the positive
imaginary axis above ¢ (inclusive), continuous with quadrant I, and one along the negative
imaginary axis below —i (inclusive), continuous with quadrant III. The range is that strip of the
complex plane containing numbers whose imaginary part is between —m/2 and 7/2. A number
with imaginary part equal to —m/2 is in the range if and only if its real part is non-positive;

a number with imaginary part equal to 7/2 is in the range if and only if its imaginary part is
non-negative.

The following definition for the inverse hyperbolic tangent determines the range and branch cuts:

1 1 -1 1-—
arctanh z = °8 ( + Z) o8 ( Z)

2

Note that:

¢ arctan z = arctanh 72.

The branch cut for the inverse hyperbolic tangent function is in two pieces: one along the neg-
ative real axis to the left of —1 (inclusive), continuous with quadrant III, and one along the
positive real axis to the right of 1 (inclusive), continuous with quadrant I. The points —1 and 1
are excluded from the domain. The range is that strip of the complex plane containing numbers
whose imaginary part is between —m/2 and 7/2. A number with imaginary part equal to —7/2

is in the range if and only if its real part is strictly negative; a number with imaginary part equal
to 7/2 is in the range if and only if its imaginary part is strictly positive. Thus the range of the
inverse hyperbolic tangent function is identical to that of the inverse hyperbolic sine function with
the points —mi/2 and 7i/2 excluded.

Examples:

(sinh 0) — 0.0
(cosh (complex 0 -1)) — #C(0.540302 -0.0)

Exceptional Situations:

Should signal an error of type type-error if number is not a number. Might signal
arithmetic-error.

See Also:
log, sqrt, Section 12.1.3.3 (Rule of Float Substitutability)
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Notes:

The result of acosh may be a complex even if number is not a complex; this occurs when number
is less than one. Also, the result of atanh may be a complex even if number is not a complex; this
occurs when the absolute value of number is greater than one.

The branch cut formulae are mathematically correct, assuming completely accurate computation.
Implementors should consult a good text on numerical analysis. The formulae given above are not
necessarily the simplest ones for real-valued computations; they are chosen to define the branch
cuts in desirable ways for the complex case.

* Function

Syntax:

* grest numbers — product

Arguments and Values:
number—a number.

product—a number.

Description:

Returns the product of numbers, performing any necessary type conversions in the process. If no
numbers are supplied, 1 is returned.

Examples:

(x) — 1
(x 35) — 15
(*x 1.0 #c(22 33) 55/98) — #C(12.346938775510203 18.520408163265305)

Exceptional Situations:
Might signal type-error if some argument is not a number. Might signal arithmetic-error.

See Also:

Section 12.1.1 (Numeric Operations), Section 12.1.3 (Rational Computations), Section 12.1.4
(Floating-point Computations), Section 12.1.5 (Complex Computations)
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-+ Function

Syntax:

+ &rest numbers — sum

Arguments and Values:
number—a number.

sum—a number.

Description:

Returns the sum of numbers, performing any necessary type conversions in the process. If no
numbers are supplied, 0 is returned.

Examples:
+) —= 0
+1 — 1

(+ 31/100 69/100) — 1
(+ 1/5 0.8) — 1.0

Exceptional Situations:
Might signal type-error if some argument is not a number. Might signal arithmetic-error.

See Also:

Section 12.1.1 (Numeric Operations), Section 12.1.3 (Rational Computations), Section 12.1.4
(Floating-point Computations), Section 12.1.5 (Complex Computations)

— Function

Syntax:

— number — negation
— minuend &rest subtrahends™ — difference

Arguments and Values:
number, minuend, subtrahend—a number.

negation, difference—a number.

Description:
The function - performs arithmetic subtraction and negation.

12-36 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

If only one number is supplied, the negation of that number is returned.

If more than one argument is given, it subtracts all of the subtrahends from the minuend and
returns the result.

The function - performs necessary type conversions.
Examples:

(- 565.55) — -55.55

(- #c(3 -5)) — #C(-3 5)

(-0 — 0

(eql (- 0.0) -0.0) — true

(- #c(100 45) #c(0 45)) — 100
(-101234) — 0

Exceptional Situations:
Might signal type-error if some argument is not a number. Might signal arithmetic-error.

See Also:

Section 12.1.1 (Numeric Operations), Section 12.1.3 (Rational Computations), Section 12.1.4
(Floating-point Computations), Section 12.1.5 (Complex Computations)

/ Function

Syntax:

/ number — reciprocal
/ numerator &rest denominatorst — quotient

Arguments and Values:
number, denominator—a non-zero number.

numerator, quotient, reciprocal—a number.

Description:
The function / performs division or reciprocation.

If no denominators are supplied, the function / returns the reciprocal of number.

If at least one denominator is supplied, the function / divides the numerator by all of the denomi-
nators and returns the resulting quotient.

If each argument is either an integer or a ratio, and the result is not an integer, then it is a ratio.
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The function / performs necessary type conversions.

If any argument is a float then the rules of floating-point contagion apply; see Section 12.1.4
(Floating-point Computations).

Examples:

(/ 12 4) — 3

(/ 13 4) — 13/4

(/ -8) — -1/8

(/ 345) — 3/20

(/ 0.5) — 2.0

(/ 20585) — 4

(/ 520) — 1/4

(/ 60 -2 3 5.0) — -2.0

(/ 2 #c(2 2)) — #C(1/2 -1/2)

Exceptional Situations:

The consequences are unspecified if any argument other than the first is zero. If there is only one
argument, the consequences are unspecified if it is zero.

Might signal type-error if some argument is not a number. Might signal division-by-zero if
division by zero is attempted. Might signal arithmetic-error.

See Also:

floor, ceiling, truncate, round

1 -+ ) 1— Function

Syntax:

14+ number — successor

1— number — predecessor

Arguments and Values:
number—a number.

successor, predecessor—a number.

Description:

1+ returns a number that is one more than its argument number. 1- returns a number that is one
less than its argument number.
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Examples:

(1+ 99) — 100
(1- 100) — 99
(1+ (complex 0.0)) — #C(1.0 0.0)
(1- 6/3) — 2/3

Exceptional Situations:
Might signal type-error if its argument is not a number. Might signal arithmetic-error.

See Also:

incf, decf
Notes:

(1+ number) = (+ number 1)
(1- number) = (- number 1)

Implementors are encouraged to make the performance of both the previous expressions be the
same.

abs Function

Syntax:

abs number — absolute-value

Arguments and Values:
number—a number.

absolute-value—a non-negative real.

Description:
abs returns the absolute value of number.

If number is a real, the result is of the same type as number.

If number is a complex, the result is a positive real with the same magnitude as number. The
result can be a float even if number’s components are rationals and an exact rational result would
have been possible. Thus the result of (abs #c(3 4)) can be either 5 or 5.0, depending on the
implementation.

Examples:

(abs 0) — O
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(abs 12/13) — 12/13

(abs -1.09) — 1.09

(abs #c(5.0 -5.0)) — 7.071068

(abs #c(5 5)) — 7.071068

(abs #c(3/5 4/5)) — 1 or approximately 1.0
(eql (abs -0.0) -0.0) — frue

See Also:
Section 12.1.3.3 (Rule of Float Substitutability)

Notes:

If number is a complex, the result is equivalent to the following:
(sqrt (+ (expt (realpart number) 2) (expt (imagpart number) 2)))

An implementation should not use this formula directly for all complezes but should handle very
large or very small components specially to avoid intermediate overflow or underflow.

evenp, oddp Function

Syntax:

evenp integer — generalized-boolean
oddp integer — generalized-boolean

Arguments and Values:
integer—an integer.

generalized-boolean—a generalized boolean.

Description:
evenp returns true if integer is even (divisible by two); otherwise, returns false.

oddp returns true if integer is odd (not divisible by two); otherwise, returns false.
Examples:

(evenp 0) — true
(oddp 10000000000000000000000) — false
(oddp -1) — true

Exceptional Situations:
Should signal an error of type type-error if integer is not an integer.
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Notes:

(evenp integer) = (not (oddp integer))

(oddp integer) = (not (evenp integer))

exp, expt Function
Syntax:

exp number — result

expt base-number power-number — result

Arguments and Values:

number—a number.
base-number—a, number.
power-number—a number.

result—a, number.

Description:

exp and expt perform exponentiation.

exp returns e raised to the power number, where e is the base of the natural logarithms. exp has
no branch cut.

expt returns base-number raised to the power power-number. If the base-number is a rational and
power-number is an integer, the calculation is exact and the result will be of ¢ype rational; oth-
erwise a floating-point approximation might result. For expt of a complex rational to an integer
power, the calculation must be exact and the result is of type (or rational (complex rational)).

The result of expt can be a compler, even when neither argument is a complex, if base-number is
negative and power-number is not an integer. The result is always the principal complex value.
For example, (expt -8 1/3) is not permitted to return -2, even though -2 is one of the cube roots
of -8. The principal cube root is a complexr approximately equal to #C(1.0 1.73205), not -2.

expt is defined as b* = e®°9®. This defines the principal values precisely. The range of expt

is the entire complex plane. Regarded as a function of z, with b fixed, there is no branch cut.
Regarded as a function of b, with z fixed, there is in general a branch cut along the negative real
axis, continuous with quadrant II. The domain excludes the origin. By definition, 0°=1. If b=0
and the real part of x is strictly positive, then b*=0. For all other values of z, 0” is an error.

Numbers 12-41



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

When power-number is an integer 0, then the result is always the value one in the type of base-
number, even if the base-number is zero (of any type). That is:

(expt x 0) = (coerce 1 (type-of x))

If power-number is a zero of any other type, then the result is also the value one, in the type of the
arguments after the application of the contagion rules in Section 12.1.1.2 (Contagion in Numeric
Operations), with one exception: the consequences are undefined if base-number is zero when
power-number is zero and not of type integer.

Examples:

(exp 0) — 1.0

(exp 1) — 2.718282

(exp (log 5)) — 5.0

(expt 2 8) — 256

(expt 4 .5) — 2.0

(expt #c(0 1) 2) — -1

(expt #c(2 2) 3) — #C(-16 16)
(expt #c(2 2) 4) — -64

See Also:
log, Section 12.1.3.3 (Rule of Float Substitutability)

Notes:
Implementations of expt are permitted to use different algorithms for the cases of a power-number
of type rational and a power-number of type float.

Note that by the following logic, (sqrt (expt x 3)) is not equivalent to (expt = 3/2).

(setq x (exp (/ (x 2 pi #c(0 1)) 3))) ;exp(2.pi.i/3)
(expt x 3) — 1 ;except for round-off error

(sqrt (expt x 3)) — 1 ;except for round-off error

(expt x 3/2) — -1 ;except for round-off error

ng Function

Syntax:

ged &rest integers — greatest-common-denominator

Arguments and Values:
integer—an integer.
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greatest-common-denominator—a non-negative integer.

Description:

Returns the greatest common divisor of integers. If only one integer is supplied, its absolute value
is returned. If no integers are given, ged returns 0, which is an identity for this operation.

Examples:

(gcd) — 0

(gcd 60 42) — 6

(gcd 3333 -33 101) — 1
(gcd 3333 -33 1002001) — 11
(gcd 91 -49) — 7

(gcd 63 -42 35) — 7

(gcd 5) — b

(gcd -4) — 4

Exceptional Situations:
Should signal an error of type type-error if any integer is not an integer.

See Also:
lem
Notes:
For three or more arguments,
(gcd bc ... z) = (gcd (gcd ab) ¢ ... z)
ian, decf Macro

Syntax:

incf place [delta-form| — new-value
decf place [delta-form| — new-value

Arguments and Values:
place—a place.

delta-form—a form; evaluated to produce a delta. The default is 1.
delta—a number.

new-value—a number.
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Description:

incf and decf are used for incrementing and decrementing the value of place, respectively.

The delta is added to (in the case of incf) or subtracted from (in the case of decf) the number in

place and the result is stored in place.

Any necessary type conversions are performed automatically.

For information about the evaluation of subforms of places, see Section 5.1.1.1 (Evaluation of

Subforms to Places).

Examples:
(setq n 0)
(incf n) — 1
n— 1
(decf n 3) — -2
n — -2

(decf n -5) — 3
(decf n) — 2

(incf n 0.5) — 2.5
(decf n) — 1.5

n — 1.5

Side Effects:

Place is modified.

See Also:
+, -, 14, 1-, setf

lcm

Function

Syntax:

lem &rest integers — least-common-multiple

Arguments and Values:
integer—an integer.

least-common-multiple—a non-negative integer.

Description:

lcm returns the least common multiple of the integers.

If no integer is supplied, the integer 1 is returned.

12-44 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

If only one integer is supplied, the absolute value of that integer is returned.
For two arguments that are not both zero,
(lcm a b) = (/ (abs (* a b)) (gcd a b))
If one or both arguments are zero,
(lcm a 0) = (Iem 0 a) = 0
For three or more arguments,

(Icmabc ... z) = (Icm (Icmab) c ... z)
Examples:

(lecm 10) — 10

(lcm 25 30) — 150

(lcm -24 18 10) — 360
(lcm 14 35) — 70

(lecm 0 5) — O

(lcm 1 2345 6) — 60

Exceptional Situations:
Should signal type-error if any argument is not an integer.

See Also:
ged

lOg Function

Syntax:

log number &optional base — logarithm

Arguments and Values:
number—a non-zero number.

base—a number.

logarithm—a number.

Description:
log returns the logarithm of number in base base. If base is not supplied its value is e, the base of
the natural logarithms.
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log

log may return a complezr when given a real negative number.
(log -1.0) = (complex 0.0 (float pi 0.0))
If base is zero, log returns zero.

The result of (log 8 2) may be either 3 or 3.0, depending on the implementation. An implemen-
tation can use floating-point calculations even if an exact integer result is possible.

The branch cut for the logarithm function of one argument (natural logarithm) lies along the
negative real axis, continuous with quadrant II. The domain excludes the origin.

The mathematical definition of a complex logarithm is as follows, whether or not minus zero is
supported by the implementation:

(log ) = (complex (log (abs z)) (phase %))

Therefore the range of the one-argument logarithm function is that strip of the complex plane
containing numbers with imaginary parts between —7 (exclusive) and 7 (inclusive) if minus zero
is not supported, or — (inclusive) and 7 (inclusive) if minus zero is supported.

The two-argument logarithm function is defined as

(log base number)
= (/ (log number) (log base))

This defines the principal values precisely. The range of the two-argument logarithm function is
the entire complex plane.

Examples:

(log 100 10)

— 2.0

— 2

(log 100.0 10) — 2.0
(log #c(0 1) #c(0 -1))
— #C(-1.0 0.0)

2 #c(-1 0)

(log 8.0 2) — 3.0

(log #c(-16 16) #c(2 2)) — 3 or approximately #c(3.0 0.0)
or approximately 3.0 (unlikely)

Affected By:

The implementation.
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See Also:

exp, expt, Section 12.1.3.3 (Rule of Float Substitutability)

mod, rem

Function

Syntax:

mod number divisor — modulus
rem number divisor — remainder

Arguments and Values:
number—a real.

divisor—a real.
modulus, remainder—a real.

Description:

mod and rem are generalizations of the modulus and remainder functions respectively.

mod performs the operation floor on number and divisor and returns the remainder of the floor

operation.

rem performs the operation truncate on number and divisor and returns the remainder of the

truncate operation.

mod and rem are the modulus and remainder functions when number and divisor are integers.

Examples:

(rem -1 5) -1
(mod -1 5)
(mod 13 4)
(rem 13 4)
(mod -13 4) — 3
(rem -13 4) — -1
(mod 13 -4) — -3
(rem 13 -4) — 1
(mod -13 -4) — -1
(rem -13 -4) — -1
(mod 13.4 1) — 0.4
(rem 13.4 1) — 0.4
(mod -13.4 1) — 0.6
(rem -13.4 1) — -0.4

I

4
1
1
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See Also:

floor, truncate

Notes:

The result of mod is either zero or a real with the same sign as divisor.

signum

Syntax:

signum number — signed-prototype

Arguments and Values:
number—a number.

signed-prototype—a number.

Description:

signum determines a numerical value that indicates whether number is negative, zero, or positive.

For a rational, signum returns one of -1, 0, or 1 according to whether number is negative, zero,
or positive. For a float, the result is a float of the same format whose value is minus one, zero, or
one. For a complex number z, (signum 2) is a complex number of the same phase but with unit
magnitude, unless z is a complex zero, in which case the result is z.

For rational arguments, signum is a rational function, but it may be irrational for complex

arguments.

If number is a float, the result is a float. If number is a rational, the result is a rational. If
number is a complex float, the result is a complex float. If number is a complex rational, the result
is a complez, but it is implementation-dependent whether that result is a complex rational or a

complezx float.

Examples:

(signum
(signum
(signum
(signum
(signum
(signum
(signum
(signum

0) — 0

99) — 1

4/5) — 1

-99/100) — -1

0.0) — 0.0

#c(0 33)) — #C(0.0 1.0)
#c(7.5 10.0)) — #C(0.6 0.8)
#c(0.0 -14.7)) — #C(0.0 -1.0)

(eql (signum -0.0) -0.0) — true
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See Also:
Section 12.1.3.3 (Rule of Float Substitutability)

Notes:

(signum x) = (if (zerop x) x (/ x (abs x)))

sqrt, isqrt

Function

Syntax:

sqrt number — root
isqrt natural — natural-root

Arguments and Values:
number, root—a number.

natural, natural-root—a non-negative integer.

Description:
sqrt and isqrt compute square roots.

sqrt returns the principal square root of number. If the number is not a complex but is negative,

then the result is a complex.

isqrt returns the greatest integer less than or equal to the exact positive square root of natural.

If number is a positive rational, it is implementation-dependent whether root is a rational or a
float. If number is a negative rational, it is implementation-dependent whether root is a complex

rational or a complex float.

The mathematical definition of complex square root (whether or not minus zero is supported)

follows:

(sqrt z) = (exp (/ (log @ 2))

The branch cut for square root lies along the negative real axis, continuous with quadrant II. The
range consists of the right half-plane, including the non-negative imaginary axis and excluding the

negative imaginary axis.
Examples:

(sqrt 9.0) — 3.0
(sqrt -9.0) — #C(0.0 3.0)
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(isqrt 9) — 3

(sqrt 12) — 3.4641016
(isqrt 12) — 3

(isqrt 300) — 17
(isqrt 325) — 18

(sqrt 25)

— 5

% 5.0

(isqrt 26) — 5

(sqrt -1) — #C(0.0 1.0)
(sqrt #c(0 2)) — #C(1.0 1.0)

Exceptional Situations:
The function sqrt should signal type-error if its argument is not a number.

The function isqrt should signal type-error if its argument is not a non-negative integer.
The functions sqrt and isqrt might signal arithmetic-error.

See Also:
exp, log, Section 12.1.3.3 (Rule of Float Substitutability)

Notes:
(isqrt x) = (values (floor (sqrt x)))

but it is potentially more efficient.

random-state System Class

Class Precedence List:

random-state, t

Description:

A random state object contains state information used by the pseudo-random number generator.
The nature of a random state object is implementation-dependent. It can be printed out and
successfully read back in by the same implementation, but might not function correctly as a
random state in another implementation.

Implementations are required to provide a read syntax for objects of type random-state, but the
specific nature of that syntax is implementation-dependent.

See Also:

*random-state*, random, Section 22.1.3.10 (Printing Random States)
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make-random-state Function

Syntax:

make-random-state &optional state — new-state

Arguments and Values:
state—a random state, or nil, or t. The default is nil.

new-state—a random state object.

Description:
Creates a fresh object of type random-state suitable for use as the value of *random-state*.

If state is a random state object, the new-state is a copys of that object. If state is nil, the new-
state is a copys of the current random state. If state is t, the new-state is a fresh random state
object that has been randomly initialized by some means.

Examples:

(let* ((rs1 (make-random-state nil))
(rs2 (make-random-state t))
(rs3 (make-random-state rs2))
(rs4 nil))
(list (loop for i from 1 to 10
collect (random 100)
when (= i 5)
do (setq rs4 (make-random-state)))
(loop for i from 1 to 10 collect (random 100 rsi))
(loop for i from 1 to 10 collect (random 100 rs2))
(loop for i from 1 to 10 collect (random 100 rs3))
(loop for i from 1 to 10 collect (random 100 rs4))))
— ((29 25 72 57 55 68 24 35 54 65)
(29 25 72 57 55 68 24 35 54 65)
(93 85 53 99 58 62 2 23 23 59)
(93 85 53 99 58 62 2 23 23 59)
(68 24 35 54 65 54 55 50 59 49))

Exceptional Situations:
Should signal an error of type type-error if state is not a random state, or nil, or t.

See Also:

random, *random-state*
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Notes:
One important use of make-random-state is to allow the same series of pseudo-random numbers
to be generated many times within a single program.
random Function
Syntax:

random /imit &optional random-state — random-number

Arguments and Values:
limit—a positive integer, or a positive float.

random-state—a random state. The default is the current random state.
random-number—a non-negative number less than /imit and of the same type as limit.

Description:

Returns a pseudo-random number that is a non-negative number less than limit and of the same
type as limit.

The random-state, which is modified by this function, encodes the internal state maintained by
the random number generator.

An approximately uniform choice distribution is used. If /imit is an integer, each of the possible
results occurs with (approximate) probability 1//imit.

Examples:

(<= 0 (random 1000) 1000) — true
(let ((statel (make-random-state))
(state2 (make-random-state)))

(= (random 1000 statel) (random 1000 state2))) — true

Side Effects:

The random-state is modified.

Exceptional Situations:
Should signal an error of type type-error if /imit is not a positive integer or a positive real.

See Also:

make-random-state, *random-state*

Notes:

See Common Lisp: The Language for information about generating random numbers.
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random-state-p Function

Syntax:

random-state-p object — generalized-boolean

Arguments and Values:
object—an object.

generalized-boolean—a, generalized boolean.

Description:
Returns true if object is of type random-state; otherwise, returns false.

Examples:

(random-state-p *random-state*) — {rue
(random-state-p (make-random-state)) — true
(random-state-p ’test-function) — false

See Also:

make-random-state, *random-state*
Notes:

(random-state-p object) = (typep object ’random-state)

srandom-statex Variable

Value Type:

a random state.

Initial Value:
implementation-dependent.

Description:

The current random state, which is used, for example, by the function random when a random
state is not explicitly supplied.
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Examples:

(random-state-p *random-statex) — {rue
(setq snap-shot (make-random-state))
;; The series from any given point is random,
;; but if you backtrack to that point, you get the same series.
(1ist (loop for i from 1 to 10 collect (random))
(let ((*random-state* snap-shot))
(loop for i from 1 to 10 collect (random)))
(loop for i from 1 to 10 collect (random))
(let ((*random-state* snap-shot))
(loop for i from 1 to 10 collect (random))))
— ((19 16 44 19 96 15 76 96 13 61)
(19 16 44 19 96 15 76 96 13 61)
(16 67 0 43 70 79 58 5 63 50)
(16 67 0 43 70 79 58 5 63 50))

Affected By:

The implementation.

random.
See Also:
make-random-state, random, random-state
Notes:
Binding *random-state* to a different random state object correctly saves and restores the old
random state object.
numberp Function
Syntax:

numberp object — generalized-boolean

Arguments and Values:
object—an object.

generalized-boolean—a. generalized boolean.

Description:
Returns true if object is of type number; otherwise, returns false.
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Examples:

(numberp 12) — {rue

(numberp (expt 2 130)) — {rue
(numberp #c(5/3 7.2)) — true
(numberp nil) — false
(numberp (cons 1 2)) — false

Notes:

(numberp object) = (typep object ’number)

C1S Function

Syntax:

cis radians — number

Arguments and Values:
radians—a real.

number—a complex.

Description:

cis returns the value of e , which is a complez in which the real part is equal to the cosine
of radians, and the imaginary part is equal to the sine of radians.

i- radians

Examples:
(cis 0) — #C(1.0 0.0)

See Also:
Section 12.1.3.3 (Rule of Float Substitutability)
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complex Function

Syntax:

complex realpart &optional imagpart — complex

Arguments and Values:
realpart—a real.

imagpart—a real.
complex—a rational or a complezx.

Description:
complex returns a number whose real part is realpart and whose imaginary part is imagpart.

If realpart is a rational and imagpart is the rational number zero, the result of complex is realpart,
a rational. Otherwise, the result is a complez.

If either realpart or imagpart is a float, the non-float is converted to a float before the complex is
created. If imagpart is not supplied, the imaginary part is a zero of the same type as realpart; i.e.,
(coerce 0 (type-of realpart)) is effectively used.

Type upgrading implies a movement upwards in the type hierarchy lattice. In the case of com-
plexes, the type-specifier must be a subtype of (upgraded-complex-part-type type-specifier).

If type-specifierl is a subtype of type-specifier2, then (upgraded-complex-element-type ’type-
specifier]) must also be a subtype of (upgraded-complex-element-type ’type-specifier?). Two
disjoint types can be upgraded into the same thing.

Examples:

(complex 0) — O

(complex 0.0) — #C(0.0 0.0)
(complex 1 1/2) — #C(1 1/2)
(complex 1 .99) — #C(1.0 0.99)
(complex 3/2 0.0) — #C(1.5 0.0)

See Also:
realpart, imagpart, Section 2.4.8.11 (Sharpsign C)
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complexp Function

Syntax:

complexp object — generalized-boolean

Arguments and Values:
object—an object.

generalized-boolean—a generalized boolean.

Description:
Returns true if object is of type complex; otherwise, returns false.

Examples:

(complexp 1.2d2) — false
(complexp #c(5/3 7.2)) — true

See Also:
complex (function and type), typep
Notes:
(complexp object) = (typep object ’complex)
conjugate Function
Syntax:

conjugate number — conjugate

Arguments and Values:
number—a number.

conjugate—a number.

Description:
Returns the complex conjugate of number. The conjugate of a real number is itself.

Examples:

(conjugate #c(0 -1)) — #C(0 1)
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(conjugate #c(1 1)) — #C(1 -1)

(conjugate 1.5) — 1.5

(conjugate #C(3/5 4/5)) — #C(3/5 -4/5)
(conjugate #C(0.0DO -1.0D0)) — #C(0.0DO 1.0DO)
(conjugate 3.7) — 3.7

Notes:
For a complex number z,
(conjugate z) = (complex (realpart z) (- (imagpart z)))
phase Function
Syntax:

phase number — phase

Arguments and Values:
number—a number.

phase—a number.

Description:
phase returns the phase of number (the angle part of its polar representation) in radians, in the
range —7 (exclusive) if minus zero is not supported, or —7 (inclusive) if minus zero is supported,
to 7 (inclusive). The phase of a positive real number is zero; that of a negative real number is 7.
The phase of zero is defined to be zero.

If number is a complex float, the result is a float of the same type as the components of number.
If number is a float, the result is a float of the same type. If number is a rational or a complex
rational, the result is a single float.

The branch cut for phase lies along the negative real axis, continuous with quadrant II. The
range cousists of that portion of the real axis between —7 (exclusive) and 7 (inclusive).

The mathematical definition of phase is as follows:
(phase 1) = (atan (imagpart 7) (realpart 1))
Examples:

(phase 1) — 0.0s0

(phase 0) — 0.0s0

(phase (cis 30)) — -1.4159266
(phase #c(0 1)) — 1.5707964
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Exceptional Situations:
Should signal type-error if its argument is not a number. Might signal arithmetic-error.

See Also:
Section 12.1.3.3 (Rule of Float Substitutability)

realpart, imagpart Function

Syntax:

realpart number — real
imagpart number — real

Arguments and Values:
number—a number.

real—a real.

Description:

realpart and imagpart return the real and imaginary parts of number respectively. If number
is real, then realpart returns number and imagpart returns (* 0 number), which has the effect
that the imaginary part of a rational is 0 and that of a float is a floating-point zero of the same
format.

Examples:

(realpart #c(23 41)) — 23
(imagpart #c(23 41.0)) — 41.0
(realpart #c(23 41.0)) — 23.0
(imagpart 23.0) — 0.0

Exceptional Situations:
Should signal an error of type type-error if number is not a number.

See Also:

complex
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upgraded-complex-part-type Function

Syntax:

upgraded-complex-part-type typespec &optional environment — upgraded-typespec

Arguments and Values:
typespec—a type specifier.

environment—an environment object. The default is nil, denoting the null lexical environment
and the and current global environment.

upgraded-typespec—a type specifier.

Description:

upgraded-complex-part-type returns the part type of the most specialized complex number
representation that can hold parts of type typespec.

The typespec is a subtype of (and possibly type equivalent to) the upgraded-typespec.

The purpose of upgraded-complex-part-type is to reveal how an implementation does its
upgrading.

See Also:

complex (function and type)

Notes:

realp Function

Syntax:

realp object — generalized-boolean

Arguments and Values:
object—an object.

generalized-boolean—a generalized boolean.

Description:
Returns true if object is of type real; otherwise, returns false.

Examples:

(realp 12) — true
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(realp #c(5/3 7.2)) — false
(realp nil) — false
(realp (coms 1 2)) — false

Notes:

(realp object) = (typep object ’real)

numerator, denominator Function

Syntax:

numerator rational — numerator

denominator rational — denominator

Arguments and Values:
rational—a rational.

numerator—an integer.
denominator—a positive integer.

Description:

numerator and denominator reduce rational to canonical form and compute the numerator or
denominator of that number.

numerator and denominator return the numerator or denominator of the canonical form of
rational.

If rational is an integer, numerator returns rational and denominator returns 1.
Examples:

(numerator 1/2) — 1
(denominator 12/36) — 3
(numerator -1) — -1
(denominator (/ -33)) — 33
(numerator (/ 8 -6)) — -4
(denominator (/ 8 -6)) — 3

See Also:
/
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Notes:

(gcd (numerator x) (denominator x)) — 1

rational, rationalize Function

Syntax:

rational number — rational

rationalize number — rational

Arguments and Values:
number—a real.

rational—a rational.

Description:
rational and rationalize convert reals to rationals.

If number is already rational, it is returned.

If number is a float, rational returns a rational that is mathematically equal in value to the
float. rationalize returns a rational that approximates the float to the accuracy of the underlying
floating-point representation.

rational assumes that the float is completely accurate.

rationalize assumes that the float is accurate only to the precision of the floating-point represen-
tation.

Examples:

(rational 0) — 0

(rationalize -11/100) — -11/100

(rational .1) — 13421773/134217728 ;implementation-dependent
(rationalize .1) — 1/10

Affected By:

The implementation.

Exceptional Situations:
Should signal an error of type type-error if number is not a real. Might signal arithmetic-error.
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Notes:

It is always the case that

(float (ratiomal x) x) = x
and

(float (rationalize x) x) = x

That is, rationalizing a float by either method and then converting it back to a float of the same
format produces the original number.

rationalp Function

Syntax:

rationalp object — generalized-boolean

Arguments and Values:
object—an object.

generalized-boolean—a, generalized boolean.

Description:
Returns true if object is of type rational; otherwise, returns false.

Examples:

(rationalp 12) — f{rue
(rationalp 6/5) — true
(rationalp 1.212) — false

See Also:

rational
Notes:

(rationalp object) = (typep object ’rational)
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ash

Function

Syntax:
ash integer count — shifted-integer

Arguments and Values:
integer—an integer.

count—an integer.
shifted-integer—an integer.

Description:

ash performs the arithmetic shift operation on the binary representation of integer, which is

treated as if it were binary.

ash shifts integer arithmetically left by count bit positions if count is positive, or right count bit

positions if count is negative. The shifted value of the same sign as integer is returned.

Mathematically speaking, ash performs the computation floor(integer-2¢°“"t). Logically, ash

moves all of the bits in integer to the left, adding zero-bits at the right, or moves them
right, discarding bits.

to the

ash is defined to behave as if integer were represented in two’s complement form, regardless of

how integers are represented internally.
Examples:

(ash 16 1) — 32
(ash 16 0) — 16
(ash 16 -1) — 8
(ash -100000000000000000000000000000000 -100) — =79

Exceptional Situations:

Should signal an error of type type-error if integer is not an integer. Should signal an error of

type type-error if count is not an integer. Might signal arithmetic-error.
Notes:

(logbitp j (ash n k))
= (and (>= j k) (logbitp (- j k) n))
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integer-length

integer-length

Function

Syntax:

integer-length integer — number-of-bits

Arguments and Values:
integer—an integer.

number-of-bits—a non-negative integer.

Description:
Returns the number of bits needed to represent integer in binary two’s-complement format.

Examples:

(integer-length
(integer-length
(integer-length
(integer-length
(integer-length
(integer-length
(integer-length
(integer-length
(integer-length
(integer-length
(integer-length
(integer-length
(integer-length

0) — 0
1) — 1
3) — 2
4) — 3
7 — 3
-1) — 0
-4) — 2
-7) — 3
-8) — 3

(expt 2 9)) — 10

(1- (expt 2 9))) — 9

(- (expt 2 9))) — 9

(- (1+ (expt 2 9)))) — 10

Exceptional Situations:

Notes:

Should signal an error of type type-error if integer is not an integer.

This function could have been defined by:

(defun integer-length (integer)
(ceiling (log (if (minusp integer)

(- integer)
(1+ integer))

2)))

If integer is non-negative, then its value can be represented in unsigned binary form in a field
whose width in bits is no smaller than (integer-length integer). Regardless of the sign of integer,
its value can be represented in signed binary two’s-complement form in a field whose width in bits

is no smaller than (+ (integer-length integer) 1).
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integerp Function

Syntax:

integerp object — generalized-boolean

Arguments and Values:
object—an object.

generalized-boolean—a, generalized boolean.

Description:
Returns true if object is of type integer; otherwise, returns false.

Examples:
(integerp 1) — true
(integerp (expt 2 130)) — frue
(integerp 6/5) — false
(integerp nil) — false

Notes:

(integerp object) = (typep object ’integer)

parse-integer Function

Syntax:

parse-integer string &key start end radix junk-allowed — integer, pos

Arguments and Values:
string—a, string.

start, end—bounding index designators of string. The defaults for start and end are 0 and nil,
respectively.

radix—a radiz. The default is 10.

junk-allowed—a generalized boolean. The default is false.
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integer—an integer or false.
pos—a. bounding index of string.

Description:

parse-integer parses an integer in the specified radix from the substring of string delimited by
start and end.

parse-integer expects an optional sign (+ or -) followed by a a non-empty sequence of digits to be
interpreted in the specified radix. Optional leading and trailing whitespace; is ignored.

parse-integer does not recognize the syntactic radix-specifier prefixes #0, #B, #X, and #nR, nor
does it recognize a trailing decimal point.

If junk-allowed is false, an error of type parse-error is signaled if substring does not consist en-
tirely of the representation of a signed integer, possibly surrounded on either side by whitespace;
characters.

The first value returned is either the integer that was parsed, or else nil if no syntactically correct
integer was seen but junk-allowed was true.

The second wvalue is either the index into the string of the delimiter that terminated the parse, or
the upper bounding index of the substring if the parse terminated at the end of the substring (as
is always the case if junk-allowed is false).

Examples:

(parse-integer "123") — 123, 3
(parse-integer "123" :start 1 :radix 5) — 13, 3
(parse-integer "no-integer" :junk-allowed t) — NIL, O

Exceptional Situations:

If junk-allowed is false, an error is signaled if substring does not consist entirely of the representa-
tion of an integer, possibly surrounded on either side by whitespace; characters.

boole Function

Syntax:

boole op integer-1 integer-2 — result-integer

Arguments and Values:
Op—a bit-wise logical operation specifier.

integer-1—an integer.
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boole

integer-2—an integer.
result-integer—an integer.

Description:

boole performs bit-wise logical operations on integer-1 and integer-2, which are treated as if they
were binary and in two’s complement representation.

The operation to be performed and the return value are determined by op.

boole returns the values specified for any op in Figure 12-17.

Op Result

boole-1 integer-1

boole-2 integer-2

boole-andcl and complement of integer-1 with integer-2
boole-andc2 and integer-1 with complement of integer-2
boole-and and

boole-cl complement of integer-1

boole-c2 complement of integer-2

boole-clr always 0 (all zero bits)

boole-eqv
boole-ior
boole-nand
boole-nor
boole-orcl
boole-orc2

equivalence (exclusive nor)

inclusive or

not-and

not-or

or complement of integer-1 with integer-2
or integer-1 with complement of integer-2

boole-set always -1 (all one bits)
boole-xor exclusive or

Figure 12-17. Bit-Wise Logical Operations

Examples:

(boole boole-ior 1 16) — 17
(boole boole-and -2 5) — 4
(boole boole-eqv 17 15) — -31

;55 These examples illustrate the result of applying BOOLE and each
;55 of the possible values of OP to each possible combination of bits.

(progn
(format t "~“&Results of (BOOLE <op> #b0011 #b0101) ...~
~%---0p——----- Decimal-—--- Binary----Bits---"%")
(dolist (symbol ’(boole-1 boole-2 boole-and boole-andcl

boole-andc2 boole-cil boole-c2  boole-clr
boole-eqv  boole-ior boole-nand boole-nor
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boole

Exceptional Situations:

BOOLE-1
BOOLE-2
BOOLE-AND
BOOLE-ANDC1
BOOLE-ANDC2
BOOLE-C1
BOOLE-C2
BOOLE-CLR
BOOLE-EQV
BOOLE-IOR
BOOLE-NAND
BOOLE-NOR
BOOLE-ORC1
BOOLE-ORC2
BOOLE-SET
BOOLE-XOR
— NIL

VVVVVVYVVVVVVVVVVVV

boole-orcl boole-orc2 boole-set boole-xor))
(let ((result (boole (symbol-value symbol) #b0011 #b0101)))
(format t "~& ~A~13T~3,’ D~23T~:%"5,’ B~31T ..

.74,°0B7%"

symbol result (logand result #b1111)))))

3
5
1
4
2

-4

————— Binary----Bits---

11 ...0011
101 ...0101

1 ...0001

100 ...0100
10 ..0010
-100 ..1100
-110 ...1010
0 ..0000
-111 ...1001
111 ..0111
-10 ..1110
-1000 ..1000
-11 ..1101
-101 ..1011
-1 L1111
110 ..0110

Results of (BOOLE <op> #b0011 #b0101)

Should signal type-error if its first argument is not a bit-wise logical operation specifier or if any

subsequent argument is not an integer.

See Also:

Notes:

logand

In general,

(boole boole-and x y) = (logand x y)

Programmers who would prefer to use numeric indices rather than bit-wise logical operation
specifiers can get an equivalent effect by a technique such as the following:

;; The order of the values in this
;3 (logand (boole (elt boole-n-vector n) #b0101 #b0011) #b111l) =>n

(defconstant boole-n-vector
boole-and boole-andcl boole-2

(vector boole-clr
boole-andc2 boole-1
boole-nor

‘table’

boole-xor
boole-eqv boole-cl

are such that

boole-ior
boole-orcil
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boole-c2 boole-orc2 boole-nand boole-set))

— BOOLE-N-VECTOR

(proclaim ’(inline boole-n))
— implementation-dependent

(defun boole-n (n integer &rest more-integers)

(apply #’boole (elt boole-n-vector n) integer more-integers))

— BOOLE-N

(boole-n #b0111 5 3) — 7

(boole-n #b0001 5 3) — 1

(boole-n #b1101 5 3) — -3

(loop for n from #b000O to #b111ll collect (boole-n n 5 3))
— (01234567 -8-7-6-5-4-3-2-1)

boole-1, boole-2, boole-and, boole-andc1, boole-
andc2, boole-c1, boole-c2, boole-clr, boole-eqv,
boole-ior, boole-nand, boole-nor, boole-orcl,
boole-orc2, boole-set, boole-xor Constant Variable

Constant Value:

The identity and nature of the values of each of these variables is implementation-dependent,
except that it must be distinct from each of the values of the others, and it must be a valid first
argument to the function boole.

Description:
Each of these constants has a value which is one of the sixteen possible bit-wise logical operation
specifiers.

Examples:

(boole boole-ior 1 16) — 17
(boole boole-and -2 5) — 4
(boole boole-eqv 17 15) — -31

See Also:

boole
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logand, logandcl, logandc2, logeqv, logior, lognand, ...

logand, logandcl, logandc2, logeqv, logior, lognand,

lognor, lognot, logorcl, logorc2, logxor

Function

Syntax:

logand &rest integers — result-integer
logandcl integer-1 integer-2 — result-integer
logandc2 integer-1 integer-2 — result-integer
logeqv &rest integers — result-integer
logior &rest integers — result-integer
lognand integer-1 integer-2 — result-integer
lognor integer-1 integer-2 — result-integer
lognot integer — result-integer

logorcl integer-1 integer-2 — result-integer
logorc2 integer-1 integer-2 — result-integer

logxor &rest integers — result-integer

Arguments and Values:

integers—integers.
integer—an integer.
integer-1—an integer.
integer-2—an integer.

result-integer—an integer.

Description:
The functions logandcl, logandc2, logand, logeqv, logior, lognand, lognor, lognot, logorcl,
logorc2, and logxor perform bit-wise logical operations on their arguments, that are treated as if

they were binary.

Figure 12-18 lists the meaning of each of the functions. Where an ‘identity’ is shown, it indicates

the value yielded by the function when no arguments are supplied.
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logand, logandcl, logandc2, logeqv, logior, lognand, ...

Function Identity Operation performed

logandcl — and complement of integer-1 with integer-2
logandc2 — and integer-1 with complement of integer-2
logand -1 and

logeqv -1 equivalence (exclusive nor)

logior 0 inclusive or

lognand — complement of integer-1 and integer-2
lognor — complement of integer-1 or integer-2
lognot — complement

logorcl — or complement of integer-1 with integer-2
logorc2 — or integer-1 with complement of integer-2
logxor 0 exclusive or

Figure 12—-18. Bit-wise Logical Operations on Integers

Negative integers are treated as if they were in two’s-complement notation.
Examples:

(logior 1 2 4 8) — 15

(logxor 1 3 7 156) — 10

(logeqv) — -1

(logand 16 31) — 16

(lognot 0) — -1

(lognot 1) — -2

(lognot -1) — 0

(lognot (1+ (lognot 1000))) — 999

;55 In the following example, m is a mask. For each bit in
;55 the mask that is a 1, the corresponding bits in x and y are
;55 exchanged. For each bit in the mask that is a 0, the
;35 corresponding bits of x and y are left unchanged.
(flet ((show (m x y)
(format t "“%m = #076,°007%x = #076,°007%y = #076,°00"%"
mx y))
(let ((m #0007750)
(x #0452576)
(y #0317407))
(show m x y)
(let ((z (logand (logxor x y) m)))
(setq x (logxzor z x))
(setq y (logxor z y))
(show m x y))))
> m = #0007750
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> x = #0452576
> y = #0317407
>

> m = #0007750
> x = #0457426
> y = #0312557
— NIL

Exceptional Situations:
Should signal type-error if any argument is not an integer.

See Also:

boole

Notes:

(logbitp k -1) returns true for all values of k.

Because the following functions are not associative, they take exactly two arguments rather than
any number of arguments.

(lognand nl n2) = (lognot (logand nl n2))
(lognor nl n2) = (lognot (logior nl n2))

(logandcl nl n2) (logand (lognot nl) n2)
(logandc2 nl n2) (logand nl (lognot n2))
(logiorcl nl n2) (logior (lognot nl) n2)
(logiorc2 nl n2) = (logior nl (lognot n2))
(logbitp j (lognot X)) = (mot (logbitp j X))

logbltp Function

Syntax:

logbitp index integer — generalized-boolean

Arguments and Values:
index—a non-negative integer.

integer—an integer.

generalized-boolean—a, generalized boolean.
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Description:

logbitp is used to test the value of a particular bit in integer, that is treated as if it were binary.
The value of logbitp is true if the bit in integer whose index is index (that is, its weight is 2inde?)
is a one-bit; otherwise it is false.

Negative integers are treated as if they were in two’s-complement notation.
Examples:

(logbitp 1 1) — false
(logbitp 0 1) — frue
(logbitp 3 10) — true
(logbitp 1000000 -1) — true
(logbitp 2 6) — frue
(logbitp 0 6) — false

Exceptional Situations:

Should signal an error of type type-error if index is not a non-negative integer. Should signal an
error of type type-error if integer is not an integer.

Notes:

(logbitp k n) = (1db-test (byte 1 k) n)

logcount Function

Syntax:

logcount integer — number-of-on-bits

Arguments and Values:
integer—an integer.

number-of-on-bits—a non-negative integer.

Description:

Computes and returns the number of bits in the two’s-complement binary representation of
integer that are ‘on’ or ‘set’. If integer is negative, the 0 bits are counted; otherwise, the 1 bits are
counted.

Examples:

(logcount 0) — 0
(logcount -1) — 0

12-74 Programming Language—Common Lisp



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(logcount
(logcount
(logcount
(logcount
(logcount
(logcount
(logcount
(logcount

7 — 3

13) — 3 ;Two’s-complement
-13) — 2 ;Two’s-complement
30) — 4 ;Two’s-complement
-30) — 4 ;Two’s-complement
(expt 2 100)) — 1

(- (expt 2 100))) — 100

(- (1+ (expt 2 100)))) — 1

Exceptional Situations:
Should signal type-error if its argument is not an integer.

Notes:

binary:
binary:
binary:
binary:

...0001101
...1110011
...0011110

..1100010

Even if the implementation does not represent integers internally in two’s complement binary,
logcount behaves as if it did.

The following identity always holds:

(logcount Xx)

(logcount (- (+ x 1)))
(logcount (lognot X))

logtest

Function

Syntax:

logtest integer-1 integer-2 — generalized-boolean

Arguments and Values:
integer-1—an integer.

integer-2—an integer.

generalized-boolean—a generalized boolean.

Description:

Returns true if any of the bits designated by the 1’s in integer-1 is 1 in integer-2; otherwise it is

false. integer-1 and integer-2 are treated as if they were binary.

Negative integer-1 and integer-2 are treated as if they were represented in two’s-complement

binary.
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Examples:

(logtest 1 7) — true
(logtest 1 2) — false
(logtest -2 -1) — true
(logtest 0 -1) — false

Exceptional Situations:

Should signal an error of type type-error if integer-1 is not an integer
type type-error if integer-2 is not an integer.

Notes:

(logtest x y) = (not (zerop (logand X y)))

. Should signal an error of

byte, byte-size, byte-position

Function

Syntax:

byte size position — bytespec
byte-size bytespec — size
byte-position bytespec — position

Arguments and Values:
size, position—a non-negative integer.

bytespec—a byte specifier.

Description:

byte returns a byte specifier that indicates a byte of width size and whose bits have weights
gpositiontsize—1 throygh 2P0si#ion and whose representation is implementation-dependent.

byte-size returns the number of bits specified by bytespec.
byte-position returns the position specified by bytespec.

Examples:

(setq b (byte 100 200)) — #<BYTE-SPECIFIER size 100 position 200>

(byte-size b) — 100
(byte-position b) — 200
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See Also:
1db, dpb

Notes:

(byte-size (byte j k)) = J
(byte-position (byte j k)) = k

A byte of size of 0 is permissible; it refers to a byte of width zero. For example,

(1db (byte 0 3) #07777) — O
(dpb #07777 (byte 0 3) 0) — 0O

deposit-field Function

Syntax:

deposit-field newbyte bytespec integer — result-integer

Arguments and Values:
newbyte—an integer.

bytespec—a byte specifier.
integer—an integer.
result-integer—an integer.

Description:

Replaces a field of bits within integer; specifically, returns an integer that contains the bits of
newbyte within the byte specified by bytespec, and elsewhere contains the bits of integer.

Examples:

(deposit-field 7 (byte 2 1) 0) — 6
(deposit-field -1 (byte 4 0) 0) — 15
(deposit-field 0 (byte 2 1) -3) — -7

See Also:
byte, dpb

Notes:

(Logbitp j (deposit-field m (byte s p) n))
= (if (and O=j p) (<K (+ p )N
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(logbitp j m)
(logbitp j n))

deposit-field is to mask-field as dpb is to 1db.

dpb

Function

Syntax:
dpb newbyte bytespec integer — result-integer

Pronunciation:
[,de' pib] or [ ,de ' peb] or [ 'de' pe ' be]

Arguments and Values:
newbyte—an integer.

bytespec—a byte specifier.
integer—an integer.
result-integer—an integer.

Description:

dpb (deposit byte) is used to replace a field of bits within integer. dpb returns an integer that is

the same as integer except in the bits specified by bytespec.

Let s be the size specified by bytespec; then the low s bits of newbyte appear in the result in the
byte specified by bytespec. Newbyte is interpreted as being right-justified, as if it were the result

of 1db.
Examples:

(dpb 1 (byte 1 10) 0) — 1024
(dpb -2 (byte 2 10) 0) — 2048
(dpb 1 (byte 2 10) 2048) — 1024

See Also:
byte, deposit-field, 1db

Notes:
(logbitp j (dpb m (byte s p) n))

= (if (and O=j p) (<K j (+ p )N
(logbitp (- j p) m)
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(logbitp j n))
In general,
(dpb x (byte 0 y) z) — Zz
for all valid values of x, y, and z.

Historically, the name “dpb” comes from a DEC PDP-10 assembly language instruction meaning
“deposit byte.”

I1db Accessor

Syntax:
1db bytespec integer — byte

(setf (1db bytespec place) new-byte)

Pronunciation:

[ 'lidib] or [ 'lideb] or [ 'el'dé ' be]
Arguments and Values:

bytespec—a byte specifier.

integer—an integer.

byte, new-byte—a non-negative integer.

Description:
1db extracts and returns the byte of integer specified by bytespec.

1db returns an integer in which the bits with weights 2=V through 2° are the same as those in
integer with weights 2(PT5=1) through 27, and all other bits zero; s is (byte-size bytespec) and p
is (byte-position bytespec).

setf may be used with 1db to modify a byte within the integer that is stored in a given place. The
order of evaluation, when an 1db form is supplied to setf, is exactly left-to-right. The effect is to
perform a dpb operation and then store the result back into the place.

Examples:
(1db (byte 2 1) 10) — 1

(setq a (list 8)) — (8)
(setf (1db (byte 2 1) (car a)) 1) — 1
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a — (10)

See Also:
byte, byte-position, byte-size, dpb

Notes:

(logbitp j (1db (byte s p) n))
= (and (< j s) (logbitp (+ j p) m))

In general,
(1db (byte 0 x) y) — O
for all valid values of x and y.

Historically, the name “ldb” comes from a DEC PDP-10 assembly language instruction meaning
“load byte.”

ldb-test Function

Syntax:

Idb-test bytespec integer — generalized-boolean

Arguments and Values:
bytespec—a byte specifier.

integer—an integer.
generalized-boolean—a, generalized boolean.

Description:

Returns true if any of the bits of the byte in integer specified by bytespec is non-zero; otherwise
returns false.

Examples:

(1db-test (byte 4 1) 16) — true
(1db-test (byte 3 1) 16) — false
(1db-test (byte 3 2) 16) — true

See Also:
byte, 1db, zerop
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Notes:
(1db-test bytespec n) =
(not (zerop (1db bytespec n))) =
(logtest (1db bytespec -1) n)
mask-field Accessor
Syntax:

mask-field bytespec integer — masked-integer

(setf (mask-field bytespec place) new-masked-integer)

Arguments and Values:
bytespec—a byte specifier.

integer—an integer.
masked-integer, new-masked-integer—a non-negative integer.

Description:
mask-field performs a “mask” operation on integer. It returns an integer that has the same bits
as integer in the byte specified by bytespec, but that has zero-bits everywhere else.

setf may be used with mask-field to modify a byte within the integer that is stored in a given
place. The effect is to perform a deposit-field operation and then store the result back into the
place.

Examples:

(mask-field (byte 1 5) -1) — 32

(setq a 15) — 15

(mask-field (byte 2 0) a) — 3

a — 15

(setf (mask-field (byte 2 0) a) 1) — 1
a — 13

See Also:
byte, 1db
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Notes:

(1db bs (mask-field bs n)) = (1db bs n)
(Llogbitp j (mask-field (byte s p) n))

= (and (>=j p) (< j s) (logbitp j n))
(mask-field bs n) = (logand n (dpb -1 bs 0))

most-positive-fixnum, most-negative-fixnum constant
Variable

Constant Value:
implementation-dependent.

Description:

most-positive-fixnum is that fixnum closest in value to positive infinity provided by the imple-
mentation, and greater than or equal to both 2!° - 1 and array-dimension-limit.

most-negative-fixnum is that fiznum closest in value to negative infinity provided by the imple-
mentation, and less than or equal to —2'°

decode-float, scale-float, float-radix, float-sign,
float-digits, float-precision, integer-decode-float
Function

Syntax:

decode-float float — significand, exponent, sign
scale-float float integer — scaled-float
float-radix float — float-radix

float-sign float-1 &optional float-2 — signed-float
float-digits float — digitsl

float-precision float — digits2

integer-decode-float float — significand, exponent, integer-sign
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decode-float, scale-float, float-radix, float-sign,

Arguments and Values:
digits]—a non-negative integer.

digits2—a non-negative integer.
exponent—an integer.

float—a float.

float-1—a float.

float-2—a float.

float-radix—an integer.

integer—a non-negative integer.
integer-sign—the integer -1, or the integer 1.
scaled-float—a float.

sign—A float of the same type as float but numerically equal to 1.0 or -1.0.
signed-float—a float.

significand—a float.

Description:
decode-float computes three values that characterize float. The first value is of the same type
as float and represents the significand. The second value represents the exponent to which the
radix (notated in this description by b) must be raised to obtain the value that, when multiplied
with the first result, produces the absolute value of float. If float is zero, any integer value may
be returned, provided that the identity shown for scale-float holds. The third value is of the same
type as float and is 1.0 if float is greater than or equal to zero or -1.0 otherwise.

decode-float divides float by an integral power of b so as to bring its value between 1/b (in-
clusive) and 1 (exclusive), and returns the quotient as the first value. If float is zero, however,
the result equals the absolute value of float (that is, if there is a negative zero, its significand is
considered to be a positive zero).

scale-float returns (x float (expt (float b float) integer)), where b is the radix of the floating-
point representation. float is not necessarily between 1/b and 1.

float-radix returns the radix of float.

float-sign returns a number z such that z and float-1 have the same sign and also such that z and
float-2 have the same absolute value. If float-2 is not supplied, its value is (float 1 float-1).

If an implementation has distinct representations for negative zero and positive zero, then
(float-sign -0.0) — -1.0.

Numbers 12-83



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

decode-float, scale-float, float-radix, float-sign,

float-digits returns the number of radix b digits used in the representation of float (including any
implicit digits, such as a “hidden bit”).

float-precision returns the number of significant radix b digits present in float; if float is a float
zero, then the result is an integer zero.

For normalized floats, the results of float-digits and float-precision are the same, but the preci-
sion is less than the number of representation digits for a denormalized or zero number.

integer-decode-float computes three values that characterize float - the significand scaled so as
to be an integer, and the same last two values that are returned by decode-float. If float is zero,
integer-decode-float returns zero as the first value. The second value bears the same relationship
to the first value as for decode-float:

(multiple-value-bind (signif expon sign)
(integer-decode-float f)
(scale-float (float signif f) expon)) = (abs f)

Examples:

;; Note that since the purpose of this functionality is to expose

;; details of the implementation, all of these examples are necessarily
;; very implementation-dependent. Results may vary widely.

;3 Values shown here are chosen consistently from one particular implementation.
(decode-float .5) — 0.5, 0, 1.0

(decode-float 1.0) — 0.5, 1, 1.0

(scale-float 1.0 1) — 2.0

(scale-float 10.01 -2) — 2.5025

(scale-float 23.0 0) — 23.0

(float-radix 1.0) — 2

(float-sign 5.0) — 1.0

(float-sign -5.0) — -1.0

(float-sign 0.0) — 1.0

(float-sign 1.0 0.0) — 0.0

(float-sign 1.0 -10.0) — 10.0

(float-sign -1.0 10.0) — -10.0

(float-digits 1.0) — 24

(float-precision 1.0) — 24

(float-precision least-positive-single-float) — 1
(integer-decode-float 1.0) — 8388608, -23, 1

Affected By:

The implementation’s representation for floats.

Exceptional Situations:

The functions decode-float, float-radix, float-digits, float-precision, and integer-decode-float
should signal an error if their only argument is not a float.
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The function scale-float should signal an error if its first argument is not a float or if its second
argument is not an integer.

The function float-sign should signal an error if its first argument is not a float or if its second
argument is supplied but is not a float.

Notes:

The product of the first result of decode-float or integer-decode-float, of the radix raised to the
power of the second result, and of the third result is exactly equal to the value of float.

(multiple-value-bind (signif expon sign)
(decode-float f)
(scale-float signif expon))
= (abs f)

and

(multiple-value-bind (signif expon sign)
(decode-float f)
(* (scale-float signif expon) sign))
=f

ﬂoat Function

Syntax:

float number &optional prototype — float

Arguments and Values:
number—a real.

prototype—a float.
float—a float.

Description:
float converts a real number to a float.

If a prototype is supplied, a float is returned that is mathematically equal to number but has the
same format as prototype.

If prototype is not supplied, then if the number is already a float, it is returned; otherwise, a float
is returned that is mathematically equal to number but is a single float.
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Examples:

(float 0) — 0.0
(float 1 .5) — 1.0
(float 1.0) — 1.0
(float 1/2) — 0.5
— 1.0d0

2 1.0

(eql (float 1.0 1.0d0) 1.0d0) — true

See Also:

coerce

ﬂoatp Function

Syntax:
floatp object

generalized-boolean

Arguments and Values:
object—an object.

generalized-boolean—a generalized boolean.

Description:
Returns true if object is of type float; otherwise, returns false.

Examples:

(floatp 1.2d2) — true
(floatp 1.212) — true
(floatp 1.2s2) — f{rue
(floatp (expt 2 130)) — false

Notes:

(floatp object) = (typep object ’float)
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most-positive-short-float, least-positive-short-float, ...

most-positive-short-float, least-positive-short-
float, least-positive-normalized-short-float, most-
positive-double-float, least-positive-double-float,
least-positive-normalized-double-float, most-
positive-long-float, least-positive-long-float, least-
positive-normalized-long-float, most-positive-
single-float, least-positive-single-float, least-
positive-normalized-single-float, most-negative-
short-float, least-negative-short-float, least-
negative-normalized-short-float, most-negative-
single-float, least-negative-single-float, least-
negative-normalized-single-float, most-negative-
double-float, least-negative-double-float, least-
negative-normalized-double-float, most-negative-
long-float, least-negative-long-float, least-negative-

normalized-long-float Constant
Variable

Constant Value:
implementation-dependent.

Description:

These constant variables provide a way for programs to examine the implementation-defined
limits for the various float formats.

Of these variables, each which has “-normalized” in its name must have a value which is a
normalized float, and each which does not have “-normalized” in its name may have a value
which is either a normalized float or a denormalized float, as appropriate.

Of these wvariables, each which has “short-float” in its name must have a value which is a short
float, each which has “single-float” in its name must have a value which is a single float, each
which has “double-float” in its name must have a value which is a double float, and each which
has “long-float” in its name must have a value which is a long float.

e most-positive-short-float, most-positive-single-float,

most-positive-double-float, most-positive-long-float

Each of these constant variables has as its value the positive float of the largest magni-

Numbers 12-87



Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Notes:

tude (closest in value to, but not equal to, positive infinity) for the float format implied
by its name.

least-positive-short-float, least-positive-normalized-short-float,
least-positive-single-float, least-positive-normalized-single-float,
least-positive-double-float, least-positive-normalized-double-float,
least-positive-long-float, least-positive-normalized-long-float

Each of these constant variables has as its value the smallest positive (nonzero) float for
the float format implied by its name.

least-negative-short-float, least-negative-normalized-short-float,
least-negative-single-float, least-negative-normalized-single-float,
least-negative-double-float, least-negative-normalized-double-float,
least-negative-long-float, least-negative-normalized-long-float

Each of these constant variables has as its value the negative (nonzero) float of the
smallest magnitude for the float format implied by its name. (If an implementation
supports minus zero as a different object from positive zero, this value must not be minus
7€ero.)

most-negative-short-float, most-negative-single-float,

most-negative-double-float, most-negative-long-float

Each of these constant variables has as its value the negative float of the largest magni-
tude (closest in value to, but not equal to, negative infinity) for the float format implied
by its name.

short-float-epsilon, short-float-negative-epsilon,
single-float-epsilon, single-float-negative-epsilon,
double-float-epsilon, double-float-negative-epsilon,
long-float-epsilon, long-float-negative-epsilon  con-
stant Variable

Constant Value:

Description:
The value of each of the constants short-float-epsilon, single-float-epsilon, double-float-epsilon,
and long-float-epsilon is the smallest positive float € of the given format, such that the following
expression is true when evaluated:

implementation-dependent.
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(not (= (float 1 €) (+ (float 1 €) €)))

The value of each of the constants short-float-negative-epsilon, single-float-negative-epsilon,
double-float-negative-epsilon, and long-float-negative-epsilon is the smallest positive float € of
the given format, such that the following expression is true when evaluated:

(not (= (float 1 €) (- (float 1 €) €)))

arithmetic-error Condition Type

Class Precedence List:
arithmetic-error, error, serious-condition, condition, t

Description:

The type arithmetic-error consists of error conditions that occur during arithmetic operations.
The operation and operands are initialized with the initialization arguments named :operation
and :operands to make-condition, and are accessed by the functions arithmetic-error-operation
and arithmetic-error-operands.

See Also:

arithmetic-error-operation, arithmetic-error-operands

arithmetic-error-operands, arithmetic-error-
operatlon Function

Syntax:

arithmetic-error-operands condition — operands
arithmetic-error-operation condition — operation

Arguments and Values:
condition—a condition of type arithmetic-error.

operands—a list.
operation—a, function designator.

Description:

arithmetic-error-operands returns a list of the operands which were used in the offending call to
the operation that signaled the condition.
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arithmetic-error-operation returns a list of the offending operation in the offending call that
signaled the condition.

See Also:

arithmetic-error, Chapter 9 (Conditions)

Notes:

division-by-zero Condition Type

Class Precedence List:

division-by-zero, arithmetic-error, error, serious-condition, condition, t

Description:
The type division-by-zero consists of error conditions that occur because of division by zero.

floating-point-invalid-operation Condition Type

Class Precedence List:

floating-point-invalid-operation, arithmetic-error, error, serious-condition, condition, t

Description:

The type floating-point-invalid-operation consists of error conditions that occur because of
certain floating point traps.

It is implementation-dependent whether floating point traps occur, and whether or how they may
be enabled or disabled. Therefore, conforming code may establish handlers for this condition, but
must not depend on its being signaled.
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floating-point-inexact Condition Type

Class Precedence List:

floating-point-inexact, arithmetic-error, error, serious-condition, condition, t

Description:

The type floating-point-inexact consists of error conditions that occur because of certain floating
point traps.

It is implementation-dependent whether floating point traps occur, and whether or how they may
be enabled or disabled. Therefore, conforming code may establish handlers for this condition, but
must not depend on its being signaled.

floating-point-overflow Condition Type

Class Precedence List:

floating-point-overflow, arithmetic-error, error, serious-condition, condition, t

Description:
The type floating-point-overflow consists of error conditions that occur because of floating-point
overflow.
floating-point-underflow Condition Type

Class Precedence List:

floating-point-underflow, arithmetic-error, error, serious-condition, condition, t

Description:

The type floating-point-underflow consists of error conditions that occur because of floating-
point underflow.
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