
Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Programming Language—Common Lisp

10. Symbols

Symbols i

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

ii Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

10.1 Symbol Concepts
Figure 10–1 lists some defined names that are applicable to the property lists of symbols.

get remprop symbol-plist

Figure 10–1. Property list defined names

Figure 10–2 lists some defined names that are applicable to the creation of and inquiry about
symbols.

copy-symbol keywordp symbol-package
gensym make-symbol symbol-value
gentemp symbol-name

Figure 10–2. Symbol creation and inquiry defined names

Symbols 10–1

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

symbol System Class

Class Precedence List:
symbol, t

Description:
Symbols are used for their object identity to name various entities in Common Lisp, including
(but not limited to) linguistic entities such as variables and functions.

Symbols can be collected together into packages. A symbol is said to be interned in a package if
it is accessible in that package; the same symbol can be interned in more than one package. If a
symbol is not interned in any package, it is called uninterned .

An interned symbol is uniquely identifiable by its name from any package in which it is accessible.

Symbols have the following attributes. For historical reasons, these are sometimes referred
to as cells, although the actual internal representation of symbols and their attributes is
implementation-dependent .

Name

The name of a symbol is a string used to identify the symbol . Every symbol has a name,
and the consequences are undefined if that name is altered. The name is used as part of
the external, printed representation of the symbol ; see Section 2.1 (Character Syntax).
The function symbol-name returns the name of a given symbol . A symbol may have any
character in its name.

Package

The object in this cell is called the home package of the symbol . If the home package is
nil, the symbol is sometimes said to have no home package.

When a symbol is first created, it has no home package. When it is first interned , the
package in which it is initially interned becomes its home package. The home package of
a symbol can be accessed by using the function symbol-package.

If a symbol is uninterned from the package which is its home package, its home package
is set to nil. Depending on whether there is another package in which the symbol is
interned , the symbol might or might not really be an uninterned symbol . A symbol with
no home package is therefore called apparently uninterned .

The consequences are undefined if an attempt is made to alter the home package of a
symbol external in the COMMON-LISP package or the KEYWORD package.

Property list

The property list of a symbol provides a mechanism for associating named attributes

10–2 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

with that symbol . The operations for adding and removing entries are destructive to the
property list . Common Lisp provides operators both for direct manipulation of property
list objects (e.g., see getf , remf , and symbol-plist) and for implicit manipulation of
a symbol ’s property list by reference to the symbol (e.g., see get and remprop). The
property list associated with a fresh symbol is initially null .

Value

If a symbol has a value attribute, it is said to be bound , and that fact can be detected
by the function boundp. The object contained in the value cell of a bound symbol is the
value of the global variable named by that symbol , and can be accessed by the function
symbol-value. A symbol can be made to be unbound by the function makunbound.

The consequences are undefined if an attempt is made to change the value of a symbol
that names a constant variable, or to make such a symbol be unbound .

Function

If a symbol has a function attribute, it is said to be fbound , and that fact can be de-
tected by the function fboundp. If the symbol is the name of a function in the global
environment , the function cell contains the function, and can be accessed by the function
symbol-function. If the symbol is the name of either a macro in the global environ-
ment (see macro-function) or a special operator (see special-operator-p), the symbol is
fbound , and can be accessed by the function symbol-function, but the object which the
function cell contains is of implementation-dependent type and purpose. A symbol can be
made to be funbound by the function fmakunbound.

The consequences are undefined if an attempt is made to change the functional value of a
symbol that names a special form.

Operations on a symbol ’s value cell and function cell are sometimes described in terms of their
effect on the symbol itself, but the user should keep in mind that there is an intimate relation-
ship between the contents of those cells and the global variable or global function definition,
respectively.

Symbols are used as identifiers for lexical variables and lexical function definitions, but in that
role, only their object identity is significant. Common Lisp provides no operation on a symbol
that can have any effect on a lexical variable or on a lexical function definition.

See Also:
Section 2.3.4 (Symbols as Tokens), Section 2.3.1.1 (Potential Numbers as Tokens), Section
22.1.3.3 (Printing Symbols)

Symbols 10–3

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

keyword Type

Supertypes:
keyword, symbol, t

Description:
The type keyword includes all symbols interned the KEYWORD package.

Interning a symbol in the KEYWORD package has three automatic effects:

1. It causes the symbol to become bound to itself.

2. It causes the symbol to become an external symbol of the KEYWORD package.

3. It causes the symbol to become a constant variable.

See Also:
keywordp

symbolp Function

Syntax:
symbolp object → generalized-boolean

Arguments and Values:
object—an object .

generalized-boolean—a generalized boolean.

Description:
Returns true if object is of type symbol; otherwise, returns false.

Examples:

(symbolp ’elephant) → true
(symbolp 12) → false
(symbolp nil) → true
(symbolp ’()) → true
(symbolp :test) → true
(symbolp "hello") → false

See Also:
keywordp, symbol, typep

10–4 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Notes:

(symbolp object) ≡ (typep object ’symbol)

keywordp Function

Syntax:
keywordp object → generalized-boolean

Arguments and Values:
object—an object .

generalized-boolean—a generalized boolean.

Description:
Returns true if object is a keyword1; otherwise, returns false.

Examples:

(keywordp ’elephant) → false
(keywordp 12) → false
(keywordp :test) → true
(keywordp ’:test) → true
(keywordp nil) → false
(keywordp :nil) → true
(keywordp ’(:test)) → false
(keywordp "hello") → false
(keywordp ":hello") → false
(keywordp ’&optional) → false

See Also:
constantp, keyword, symbolp, symbol-package

Symbols 10–5

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

make-symbol Function

Syntax:
make-symbol name → new-symbol

Arguments and Values:
name—a string .

new-symbol—a fresh, uninterned symbol .

Description:
make-symbol creates and returns a fresh, uninterned symbol whose name is the given name. The
new-symbol is neither bound nor fbound and has a null property list .

It is implementation-dependent whether the string that becomes the new-symbol ’s name is the
given name or a copy of it. Once a string has been given as the name argument to make-symbol ,
the consequences are undefined if a subsequent attempt is made to alter that string .

Examples:

(setq temp-string "temp") → "temp"

(setq temp-symbol (make-symbol temp-string)) → #:|temp|

(symbol-name temp-symbol) → "temp"

(eq (symbol-name temp-symbol) temp-string) → implementation-dependent
(find-symbol "temp") → NIL, NIL

(eq (make-symbol temp-string) (make-symbol temp-string)) → false

Exceptional Situations:
Should signal an error of type type-error if name is not a string .

See Also:
copy-symbol

Notes:
No attempt is made by make-symbol to convert the case of the name to uppercase. The only
case conversion which ever occurs for symbols is done by the Lisp reader . The program interface
to symbol creation retains case, and the program interface to interning symbols is case-sensitive.

10–6 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

copy-symbol

copy-symbol Function

Syntax:
copy-symbol symbol &optional copy-properties → new-symbol

Arguments and Values:
symbol—a symbol .

copy-properties—a generalized boolean. The default is false.

new-symbol—a fresh, uninterned symbol .

Description:
copy-symbol returns a fresh, uninterned symbol , the name of which is string= to and possibly
the same as the name of the given symbol .

If copy-properties is false, the new-symbol is neither bound nor fbound and has a null property
list . If copy-properties is true, then the initial value of new-symbol is the value of symbol , the
initial function definition of new-symbol is the functional value of symbol , and the property list of
new-symbol is a copy2 of the property list of symbol .

Examples:

(setq fred ’fred-smith) → FRED-SMITH

(setf (symbol-value fred) 3) → 3

(setq fred-clone-1a (copy-symbol fred nil)) → #:FRED-SMITH

(setq fred-clone-1b (copy-symbol fred nil)) → #:FRED-SMITH

(setq fred-clone-2a (copy-symbol fred t)) → #:FRED-SMITH

(setq fred-clone-2b (copy-symbol fred t)) → #:FRED-SMITH

(eq fred fred-clone-1a) → false
(eq fred-clone-1a fred-clone-1b) → false
(eq fred-clone-2a fred-clone-2b) → false
(eq fred-clone-1a fred-clone-2a) → false
(symbol-value fred) → 3

(boundp fred-clone-1a) → false
(symbol-value fred-clone-2a) → 3

(setf (symbol-value fred-clone-2a) 4) → 4

(symbol-value fred) → 3

(symbol-value fred-clone-2a) → 4

(symbol-value fred-clone-2b) → 3

(boundp fred-clone-1a) → false
(setf (symbol-function fred) #’(lambda (x) x)) → #<FUNCTION anonymous>

(fboundp fred) → true
(fboundp fred-clone-1a) → false
(fboundp fred-clone-2a) → false

Symbols 10–7

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Exceptional Situations:
Should signal an error of type type-error if symbol is not a symbol .

See Also:
make-symbol

Notes:
Implementors are encouraged not to copy the string which is the symbol ’s name unnecessar-
ily. Unless there is a good reason to do so, the normal implementation strategy is for the new-
symbol ’s name to be identical to the given symbol ’s name.

gensym Function

Syntax:
gensym &optional x → new-symbol

Arguments and Values:
x—a string or a non-negative integer . Complicated defaulting behavior; see below.

new-symbol—a fresh, uninterned symbol .

Description:
Creates and returns a fresh, uninterned symbol , as if by calling make-symbol. (The only differ-
ence between gensym and make-symbol is in how the new-symbol ’s name is determined.)

The name of the new-symbol is the concatenation of a prefix, which defaults to "G", and a suffix,
which is the decimal representation of a number that defaults to the value of *gensym-counter*.

If x is supplied, and is a string , then that string is used as a prefix instead of "G" for this call to
gensym only.

If x is supplied, and is an integer , then that integer , instead of the value of *gensym-counter*, is
used as the suffix for this call to gensym only.

If and only if no explicit suffix is supplied, *gensym-counter* is incremented after it is used.

Examples:

(setq sym1 (gensym)) → #:G3142

(symbol-package sym1) → NIL

(setq sym2 (gensym 100)) → #:G100

(setq sym3 (gensym 100)) → #:G100

(eq sym2 sym3) → false
(find-symbol "G100") → NIL, NIL

10–8 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(gensym "T") → #:T3143

(gensym) → #:G3144

Side Effects:
Might increment *gensym-counter*.

Affected By:
gensym-counter

Exceptional Situations:
Should signal an error of type type-error if x is not a string or a non-negative integer .

See Also:
gentemp, *gensym-counter*

Notes:
The ability to pass a numeric argument to gensym has been deprecated; explicitly binding
gensym-counter is now stylistically preferred. (The somewhat baroque conventions for the
optional argument are historical in nature, and supported primarily for compatibility with older
dialects of Lisp. In modern code, it is recommended that the only kind of argument used be
a string prefix. In general, though, to obtain more flexible control of the new-symbol ’s name,
consider using make-symbol instead.)

∗gensym-counter∗ Variable

Value Type:
a non-negative integer .

Initial Value:
implementation-dependent .

Description:
A number which will be used in constructing the name of the next symbol generated by the
function gensym.

gensym-counter can be either assigned or bound at any time, but its value must always be a
non-negative integer .

Affected By:
gensym.

See Also:
gensym

Symbols 10–9

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Notes:
The ability to pass a numeric argument to gensym has been deprecated; explicitly binding
gensym-counter is now stylistically preferred.

gentemp Function

Syntax:
gentemp &optional prefix package → new-symbol

Arguments and Values:
prefix—a string . The default is "T".

package—a package designator . The default is the current package.

new-symbol—a fresh, interned symbol .

Description:
gentemp creates and returns a fresh symbol , interned in the indicated package. The symbol
is guaranteed to be one that was not previously accessible in package. It is neither bound nor
fbound , and has a null property list .

The name of the new-symbol is the concatenation of the prefix and a suffix, which is taken from
an internal counter used only by gentemp. (If a symbol by that name is already accessible in
package, the counter is incremented as many times as is necessary to produce a name that is not
already the name of a symbol accessible in package.)

Examples:

(gentemp) → T1298

(gentemp "FOO") → FOO1299

(find-symbol "FOO1300") → NIL, NIL

(gentemp "FOO") → FOO1300

(find-symbol "FOO1300") → FOO1300, :INTERNAL

(intern "FOO1301") → FOO1301, :INTERNAL

(gentemp "FOO") → FOO1302

(gentemp) → T1303

Side Effects:
Its internal counter is incremented one or more times.

Interns the new-symbol in package.

Affected By:
The current state of its internal counter, and the current state of the package.

10–10 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Exceptional Situations:
Should signal an error of type type-error if prefix is not a string . Should signal an error of type
type-error if package is not a package designator .

See Also:
gensym

Notes:
The function gentemp is deprecated.

If package is the KEYWORD package, the result is an external symbol of package. Otherwise, the
result is an internal symbol of package.

The gentemp internal counter is independent of *gensym-counter*, the counter used by
gensym. There is no provision for accessing the gentemp internal counter.

Just because gentemp creates a symbol which did not previously exist does not mean that such
a symbol might not be seen in the future (e.g., in a data file—perhaps even created by the same
program in another session). As such, this symbol is not truly unique in the same sense as a
gensym would be. In particular, programs which do automatic code generation should be careful
not to attach global attributes to such generated symbols (e.g., special declarations) and then
write them into a file because such global attributes might, in a different session, end up applying
to other symbols that were automatically generated on another day for some other purpose.

symbol-function Accessor

Syntax:
symbol-function symbol → contents

(setf (symbol-function symbol) new-contents)

Arguments and Values:
symbol—a symbol .

contents— If the symbol is globally defined as a macro or a special operator , an object of
implementation-dependent nature and identity is returned. If the symbol is not globally de-
fined as either a macro or a special operator , and if the symbol is fbound , a function object is
returned.

new-contents—a function.

Description:
Accesses the symbol ’s function cell .

Symbols 10–11

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

symbol-function

Examples:

(symbol-function ’car) → #<FUNCTION CAR>

(symbol-function ’twice) is an error ;because TWICE isn’t defined.

(defun twice (n) (* n 2)) → TWICE

(symbol-function ’twice) → #<FUNCTION TWICE>

(list (twice 3)

(funcall (function twice) 3)

(funcall (symbol-function ’twice) 3))

→ (6 6 6)

(flet ((twice (x) (list x x)))

(list (twice 3)

(funcall (function twice) 3)

(funcall (symbol-function ’twice) 3)))

→ ((3 3) (3 3) 6)

(setf (symbol-function ’twice) #’(lambda (x) (list x x)))

→ #<FUNCTION anonymous>

(list (twice 3)

(funcall (function twice) 3)

(funcall (symbol-function ’twice) 3))

→ ((3 3) (3 3) (3 3))

(fboundp ’defun) → true
(symbol-function ’defun)

→ implementation-dependent
(functionp (symbol-function ’defun))

→ implementation-dependent
(defun symbol-function-or-nil (symbol)

(if (and (fboundp symbol)

(not (macro-function symbol))

(not (special-operator-p symbol)))

(symbol-function symbol)

nil)) → SYMBOL-FUNCTION-OR-NIL

(symbol-function-or-nil ’car) → #<FUNCTION CAR>

(symbol-function-or-nil ’defun) → NIL

Affected By:
defun

Exceptional Situations:
Should signal an error of type type-error if symbol is not a symbol .

Should signal undefined-function if symbol is not fbound and an attempt is made to read its
definition. (No such error is signaled on an attempt to write its definition.)

See Also:
fboundp, fmakunbound, macro-function, special-operator-p

10–12 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Notes:
symbol-function cannot access the value of a lexical function name produced by flet or labels; it
can access only the global function value.

setf may be used with symbol-function to replace a global function definition when the symbol ’s
function definition does not represent a special operator .

(symbol-function symbol) ≡ (fdefinition symbol)

However, fdefinition accepts arguments other than just symbols.

symbol-name Function

Syntax:
symbol-name symbol → name

Arguments and Values:
symbol—a symbol .

name—a string .

Description:
symbol-name returns the name of symbol . The consequences are undefined if name is ever
modified.

Examples:

(symbol-name ’temp) → "TEMP"

(symbol-name :start) → "START"

(symbol-name (gensym)) → "G1234" ;for example

Exceptional Situations:
Should signal an error of type type-error if symbol is not a symbol .

Symbols 10–13

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

symbol-package

symbol-package Function

Syntax:
symbol-package symbol → contents

Arguments and Values:
symbol—a symbol .

contents—a package object or nil.

Description:
Returns the home package of symbol .

Examples:

(in-package "CL-USER") → #<PACKAGE "COMMON-LISP-USER">

(symbol-package ’car) → #<PACKAGE "COMMON-LISP">

(symbol-package ’bus) → #<PACKAGE "COMMON-LISP-USER">

(symbol-package :optional) → #<PACKAGE "KEYWORD">

;; Gensyms are uninterned, so have no home package.

(symbol-package (gensym)) → NIL

(make-package ’pk1) → #<PACKAGE "PK1">

(intern "SAMPLE1" "PK1") → PK1::SAMPLE1, NIL

(export (find-symbol "SAMPLE1" "PK1") "PK1") → T

(make-package ’pk2 :use ’(pk1)) → #<PACKAGE "PK2">

(find-symbol "SAMPLE1" "PK2") → PK1:SAMPLE1, :INHERITED

(symbol-package ’pk1::sample1) → #<PACKAGE "PK1">

(symbol-package ’pk2::sample1) → #<PACKAGE "PK1">

(symbol-package ’pk1::sample2) → #<PACKAGE "PK1">

(symbol-package ’pk2::sample2) → #<PACKAGE "PK2">

;; The next several forms create a scenario in which a symbol

;; is not really uninterned, but is "apparently uninterned",

;; and so SYMBOL-PACKAGE still returns NIL.

(setq s3 ’pk1::sample3) → PK1::SAMPLE3

(import s3 ’pk2) → T

(unintern s3 ’pk1) → T

(symbol-package s3) → NIL

(eq s3 ’pk2::sample3) → T

Affected By:
import, intern, unintern

Exceptional Situations:
Should signal an error of type type-error if symbol is not a symbol .

10–14 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

See Also:
intern

symbol-plist Accessor

Syntax:
symbol-plist symbol → plist

(setf (symbol-plist symbol) new-plist)

Arguments and Values:
symbol—a symbol .

plist, new-plist—a property list .

Description:
Accesses the property list of symbol .

Examples:

(setq sym (gensym)) → #:G9723

(symbol-plist sym) → ()

(setf (get sym ’prop1) ’val1) → VAL1

(symbol-plist sym) → (PROP1 VAL1)

(setf (get sym ’prop2) ’val2) → VAL2

(symbol-plist sym) → (PROP2 VAL2 PROP1 VAL1)

(setf (symbol-plist sym) (list ’prop3 ’val3)) → (PROP3 VAL3)

(symbol-plist sym) → (PROP3 VAL3)

Exceptional Situations:
Should signal an error of type type-error if symbol is not a symbol .

See Also:
get, remprop

Notes:
The use of setf should be avoided, since a symbol ’s property list is a global resource that can
contain information established and depended upon by unrelated programs in the same Lisp
image.

Symbols 10–15

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

symbol-value

symbol-value Accessor

Syntax:
symbol-value symbol → value

(setf (symbol-value symbol) new-value)

Arguments and Values:
symbol—a symbol that must have a value.

value, new-value—an object .

Description:
Accesses the symbol ’s value cell .

Examples:

(setf (symbol-value ’a) 1) → 1

(symbol-value ’a) → 1

;; SYMBOL-VALUE cannot see lexical variables.

(let ((a 2)) (symbol-value ’a)) → 1

(let ((a 2)) (setq a 3) (symbol-value ’a)) → 1

;; SYMBOL-VALUE can see dynamic variables.

(let ((a 2))

(declare (special a))

(symbol-value ’a)) → 2

(let ((a 2))

(declare (special a))

(setq a 3)

(symbol-value ’a)) → 3

(let ((a 2))

(setf (symbol-value ’a) 3)

a) → 2

a → 3

(symbol-value ’a) → 3

(let ((a 4))

(declare (special a))

(let ((b (symbol-value ’a)))

(setf (symbol-value ’a) 5)

(values a b))) → 5, 4

a → 3

(symbol-value :any-keyword) → :ANY-KEYWORD

(symbol-value ’nil) → NIL

(symbol-value ’()) → NIL

10–16 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

;; The precision of this next one is implementation-dependent.
(symbol-value ’pi) → 3.141592653589793d0

Affected By:
makunbound, set, setq

Exceptional Situations:
Should signal an error of type type-error if symbol is not a symbol .

Should signal unbound-variable if symbol is unbound and an attempt is made to read its value.
(No such error is signaled on an attempt to write its value.)

See Also:
boundp, makunbound, set, setq

Notes:
symbol-value can be used to get the value of a constant variable. symbol-value cannot access
the value of a lexical variable.

get Accessor

Syntax:
get symbol indicator &optional default → value

(setf (get symbol indicator &optional default) new-value)

Arguments and Values:
symbol—a symbol .

indicator—an object .

default—an object . The default is nil.

value—if the indicated property exists, the object that is its value; otherwise, the specified default.

new-value—an object .

Description:
get finds a property on the property list2 of symbol whose property indicator is identical to
indicator , and returns its corresponding property value. If there are multiple properties1 with that
property indicator , get uses the first such property . If there is no property with that property
indicator , default is returned.

Symbols 10–17

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

get

setf of get may be used to associate a new object with an existing indicator already on the sym-
bol ’s property list , or to create a new assocation if none exists. If there are multiple properties1

with that property indicator , setf of get associates the new-value with the first such property .
When a get form is used as a setf place, any default which is supplied is evaluated according to
normal left-to-right evaluation rules, but its value is ignored.

Examples:

(defun make-person (first-name last-name)

(let ((person (gensym "PERSON")))

(setf (get person ’first-name) first-name)

(setf (get person ’last-name) last-name)

person)) → MAKE-PERSON

(defvar *john* (make-person "John" "Dow")) → *JOHN*

john → #:PERSON4603

(defvar *sally* (make-person "Sally" "Jones")) → *SALLY*

(get *john* ’first-name) → "John"

(get *sally* ’last-name) → "Jones"

(defun marry (man woman married-name)

(setf (get man ’wife) woman)

(setf (get woman ’husband) man)

(setf (get man ’last-name) married-name)

(setf (get woman ’last-name) married-name)

married-name) → MARRY

(marry *john* *sally* "Dow-Jones") → "Dow-Jones"

(get *john* ’last-name) → "Dow-Jones"

(get (get *john* ’wife) ’first-name) → "Sally"

(symbol-plist *john*)

→ (WIFE #:PERSON4604 LAST-NAME "Dow-Jones" FIRST-NAME "John")

(defmacro age (person &optional (default ’’thirty-something))

‘(get ,person ’age ,default)) → AGE

(age *john*) → THIRTY-SOMETHING

(age *john* 20) → 20

(setf (age *john*) 25) → 25

(age *john*) → 25

(age *john* 20) → 25

Exceptional Situations:
Should signal an error of type type-error if symbol is not a symbol .

See Also:
getf , symbol-plist, remprop

Notes:

(get x y) ≡ (getf (symbol-plist x) y)

10–18 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Numbers and characters are not recommended for use as indicators in portable code since
get tests with eq rather than eql, and consequently the effect of using such indicators is
implementation-dependent .

There is no way using get to distinguish an absent property from one whose value is default.
However, see get-properties.

remprop Function

Syntax:
remprop symbol indicator → generalized-boolean

Arguments and Values:
symbol—a symbol .

indicator—an object .

generalized-boolean—a generalized boolean.

Description:
remprop removes from the property list2 of symbol a property1 with a property indicator identical
to indicator . If there are multiple properties1 with the identical key, remprop only removes the
first such property . remprop returns false if no such property was found, or true if a property was
found.

The property indicator and the corresponding property value are removed in an undefined order
by destructively splicing the property list. The permissible side-effects correspond to those
permitted for remf , such that:

(remprop x y) ≡ (remf (symbol-plist x) y)

Examples:

(setq test (make-symbol "PSEUDO-PI")) → #:PSEUDO-PI

(symbol-plist test) → ()

(setf (get test ’constant) t) → T

(setf (get test ’approximation) 3.14) → 3.14

(setf (get test ’error-range) ’noticeable) → NOTICEABLE

(symbol-plist test)

→ (ERROR-RANGE NOTICEABLE APPROXIMATION 3.14 CONSTANT T)

(setf (get test ’approximation) nil) → NIL

(symbol-plist test)

→ (ERROR-RANGE NOTICEABLE APPROXIMATION NIL CONSTANT T)

(get test ’approximation) → NIL

Symbols 10–19

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(remprop test ’approximation) → true
(get test ’approximation) → NIL

(symbol-plist test)

→ (ERROR-RANGE NOTICEABLE CONSTANT T)

(remprop test ’approximation) → NIL

(symbol-plist test)

→ (ERROR-RANGE NOTICEABLE CONSTANT T)

(remprop test ’error-range) → true
(setf (get test ’approximation) 3) → 3

(symbol-plist test)

→ (APPROXIMATION 3 CONSTANT T)

Side Effects:
The property list of symbol is modified.

Exceptional Situations:
Should signal an error of type type-error if symbol is not a symbol .

See Also:
remf , symbol-plist

Notes:
Numbers and characters are not recommended for use as indicators in portable code since
remprop tests with eq rather than eql, and consequently the effect of using such indicators is
implementation-dependent . Of course, if you’ve gotten as far as needing to remove such a prop-
erty , you don’t have much choice—the time to have been thinking about this was when you used
setf of get to establish the property .

boundp Function

Syntax:
boundp symbol → generalized-boolean

Arguments and Values:
symbol—a symbol .

generalized-boolean—a generalized boolean.

Description:
Returns true if symbol is bound ; otherwise, returns false.

10–20 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:

(setq x 1) → 1

(boundp ’x) → true
(makunbound ’x) → X

(boundp ’x) → false
(let ((x 2)) (boundp ’x)) → false
(let ((x 2)) (declare (special x)) (boundp ’x)) → true

Exceptional Situations:
Should signal an error of type type-error if symbol is not a symbol .

See Also:
set, setq, symbol-value, makunbound

Notes:
The function bound determines only whether a symbol has a value in the global environment ; any
lexical bindings are ignored.

makunbound Function

Syntax:
makunbound symbol → symbol

Arguments and Values:
symbol—a symbol

Description:
Makes the symbol be unbound , regardless of whether it was previously bound .

Examples:

(setf (symbol-value ’a) 1)

(boundp ’a) → true
a → 1

(makunbound ’a) → A

(boundp ’a) → false

Side Effects:
The value cell of symbol is modified.

Exceptional Situations:
Should signal an error of type type-error if symbol is not a symbol .

Symbols 10–21

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

See Also:
boundp, fmakunbound

set Function

Syntax:
set symbol value → value

Arguments and Values:
symbol—a symbol .

value—an object .

Description:
set changes the contents of the value cell of symbol to the given value.

(set symbol value) ≡ (setf (symbol-value symbol) value)

Examples:

(setf (symbol-value ’n) 1) → 1

(set ’n 2) → 2

(symbol-value ’n) → 2

(let ((n 3))

(declare (special n))

(setq n (+ n 1))

(setf (symbol-value ’n) (* n 10))

(set ’n (+ (symbol-value ’n) n))

n) → 80

n → 2

(let ((n 3))

(setq n (+ n 1))

(setf (symbol-value ’n) (* n 10))

(set ’n (+ (symbol-value ’n) n))

n) → 4

n → 44

(defvar *n* 2)

(let ((*n* 3))

(setq *n* (+ *n* 1))

(setf (symbol-value ’*n*) (* *n* 10))

(set ’*n* (+ (symbol-value ’*n*) *n*))

n) → 80

n → 2

10–22 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(defvar *even-count* 0) → *EVEN-COUNT*

(defvar *odd-count* 0) → *ODD-COUNT*

(defun tally-list (list)

(dolist (element list)

(set (if (evenp element) ’*even-count* ’*odd-count*)

(+ element (if (evenp element) *even-count* *odd-count*)))))

(tally-list ’(1 9 4 3 2 7)) → NIL

even-count → 6

odd-count → 20

Side Effects:
The value of symbol is changed.

See Also:
setq, progv, symbol-value

Notes:
The function set is deprecated.

set cannot change the value of a lexical variable.

unbound-variable Condition Type

Class Precedence List:
unbound-variable, cell-error, error, serious-condition, condition, t

Description:
The type unbound-variable consists of error conditions that represent attempts to read the value
of an unbound variable.

The name of the cell (see cell-error) is the name of the variable that was unbound .

See Also:
cell-error-name

Symbols 10–23

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

10–24 Programming Language—Common Lisp

