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Foreword

You are holding in your hands an unusual book. Winston Churchill once
said that the empires of the future will be empires of the mind. This book
might hold an electronic key to such an empire.

When computers were young and slow, the emerging computer science de-
veloped dreams of Artificial Intelligence and Automatic Theorem Proving
in which theorems can be proved by machines instead of mathematicians.
Now, when computer hardware has matured and become cheaper and
faster, there is not too much talk of putting the burden of formulat-
ing and proving theorems on the computer’s shoulders. Moreover, even
in those cases when computer programs do prove theorems, or establish
counter-examples (for example, the solution of the four color problem, the
non-existence of projective planes of order 10, the disproof of the Mertens
conjecture), humans carry most of the burden in the form of programming
and verification.

It is the language of computer programming that has turned out to be
the crucial instrument of productivity in the evolution of scientific com-
puting. The original Artificial Intelligence efforts gave birth to the first
symbolic manipulation systems based on LISP. The first complete sym-
bolic manipulation or, as they are called now, computer algebra packages
tried to imbed the development programming and execution of mathemat-
ical problems into a framework of familiar symbolic notations, operations
and conventions. In the third decade of symbolic computations, a couple
of these early systems—REDUCE and MACSYMA—still hold their own
among faithful users.

AXIOM was born in the mid-70’s as a system called Scratchpad devel-
oped by IBM researchers. Scratchpad/AXIOM was born big—its original
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platform was an IBM mainframe 3081, and later a 3090. The system was
growing and learning during the decade of the 80’s, and its development
and progress influenced the field of computer algebra. During this period,
the first commercially available computer algebra packages for mini and
and microcomputers made their debut. By now, our readers are aware of
Mathematica, Maple, Derive, and Macsyma. These systems (as well as a
few special purpose computer algebra packages in academia) emphasize
ease of operation and standard scientific conventions, and come with a
prepared set of mathematical solutions for typical tasks confronting an
applied scientist or an engineer. These features brought a recognition of
the enormous benefits of computer algebra to the widest circles of scien-
tists and engineers.

The Scratchpad system took its time to blossom into the beautiful AXIOM
product. There is no rival to this powerful environment in its scope and,
most importantly, in its structure and organization. AXIOM contains the
basis for any comprehensive and elaborate mathematical development. It
gives the user all Foundation and Algebra instruments necessary to de-
velop a computer realization of sophisticated mathematical objects in
exactly the way a mathematician would do it. AXIOM is also the basis of
a complete scientific cyberspace—it provides an environment for mathe-
matical objects used in scientific computation, and the means of control-
ling and communicating between these objects. Knowledge of only a few
AXIOM language features and operating principles is all that is required
to make impressive progress in a given domain of interest. The system is
powerful. It is not an interactive interpretive environment operating only
in response to one line commands—it is a complete language with rich
syntax and a full compiler. Mathematics can be developed and explored
with ease by the user of AXIOM. In fact, during AXIOM’s growth cycle,
many detailed mathematical domains were constructed. Some of them
are a part of AXIOM’s core and are described in this book. For a bird’s
eye view of the algebra hierarchy of AXIOM, glance inside the book cover.

The crucial strength of AXIOM lies in its excellent structural features and
unlimited expandability—it is open, modular system designed to support
an ever growing number of facilities with minimal increase in structural
complexity. Its design also supports the integration of other computation
tools such as numerical software libraries written in Fortran and C. While
AXIOM is already a very powerful system, the prospect of scientists using
the system to develop their own fields of Science is truly exciting—the day
is still young for AXIOM.

Over the last several years Scratchpad /AXIOM has scored many successes
in theoretical mathematics, mathematical physics, combinatorics, digital
signal processing, cryptography and parallel processing. We have to con-



fess that we enjoyed using Scratchpad/AXIOM. It provided us with an
excellent environment for our research, and allowed us to solve problems
intractable on other systems. We were able to prove new diophantine
results for 7; establish the Grothendieck conjecture for certain classes of
linear differential equations; study the arithmetic properties of the uni-
formization of hyperelliptic and other algebraic curves; construct new fac-
torization algorithms based on formal groups; within Scratchpad /AXIOM
we were able to obtain new identities needed for quantum field theory (el-
liptic genus formula and double scaling limit for quantum gravity), and
classify period relations for CM varieties in terms of hypergeometric se-
ries.

The AXIOM system is now supported and distributed by NAG, the group
that is well known for its high quality software products for numerical
and statistical computations. The development of AXIOM in IBM was
conducted at IBM T.J. Watson Research Center at Yorktown, New York
by a symbolic computation group headed by Richard D. Jenks. Shmuel
Winograd of IBM was instrumental in the progress of symbolic research
at IBM.

This book opens the wonderful world of AXIOM, guiding the reader and
user through AXIOM’s definitions, rules, applications and interfaces. A
variety of fully developed areas of mathematics are presented as packages,
and the user is well advised to take advantage of the sophisticated real-
ization of familiar mathematics. The AXIOM book is easy to read and
the AXIOM system is easy to use. It possesses all the features required
of a modern computer environment (for example, windowing, integration
of operating system features, and interactive graphics). AXIOM comes
with a detailed hypertext interface (HyperDoc), an elaborate browser,
and complete on-line documentation. The HyperDoc allows novices to
solve their problems in a straightforward way, by providing menus for
step-by-step interactive entry.

The appearance of AXIOM in the scientific market moves symbolic com-
puting into a higher plane, where scientists can formulate their state-
ments in their own language and receive computer assistance in their
proofs. AXIOM’s performance on workstations is truly impressive, and
users of AXIOM will get more from them than we, the early users, got
from mainframes. AXIOM provides a powerful scientific environment for
easy construction of mathematical tools and algorithms; it is a symbolic
manipulation system, and a high performance numerical system, with full
graphics capabilities. We expect every (computer) power hungry scientist
will want to take full advantage of AXIOM.

David V. Chudnovsky Gregory V. Chudnovsky
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Welcome to the world of AXIOM. We call AXIOM a scientific compu-
tation system: a self-contained toolbox designed to meet your scientific
programming needs, from symbolics, to numerics, to graphics.

This introduction is a quick overview of what AXIOM offers.

AXIOM provides a wide range of simple commands for symbolic mathe-
matical problem solving. Do you need to solve an equation, to expand a
series, or to obtain an integral? If so, just ask AXIOM to do it.

integrate(1/(x**3 * (atb*x)**(1/3)),x)
—92 1% 22 \/§log(€/5 Sbrta + Ya \S/bx+a—|—a>+
4 b% 22 V3 log (\3/52 \:s/bx—ka—a)—k

23 ¥at
12b2x2arctan< \/§\/& ;m+a+a\/§>+
a

(12bx79a)\/§\3‘/5\3/bx+a2
18 a2 22 /3 {a

(1)
Type: Union(Expression Integer, ...)

AXIOM provides state-of-the-art algebraic machinery to handle your most
advanced symbolic problems. For example, AXIOM’s integrator gives you
the answer when an answer exists. If one does not, it provides a proof
that there is no answer. Integration is just one of a multitude of symbolic



Numeric
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Solve %9 — 49z + 9 to 49 digits
of accuracy.

What is 10 to the 100 ! power
in base 327

Graphics

Draw Jo(4/z? 4 y2) for

—20 < z,y < 20.
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operations that AXIOM provides.

AXIOM has a numerical library that includes operations for linear al-
gebra, solution of equations, and special functions. For many of these
operations, you can select any number of floating point digits to be car-
ried out in the computation.

solve(x**49-49*x**4+9 = 0,1.e-49)

[z = —0.6546536706904271136718122105095984761851224331556,
x = 1.086921395653859508493939035954893289009213388763, (2)
x = 0.6546536707255271739694686066136764835361487607661]

Type: List Equation Polynomial Float
The output of a computation can be converted to FORTRAN to be
used in a later numerical computation. Besides floating point numbers,
AXIOM provides literally dozens of kinds of numbers to compute with.
These range from various kinds of integers, to fractions, complex num-
bers, quaternions, continued fractions, and to numbers represented with
an arbitrary base.

radix (10**100,32)

4T9LKIPOGRSTC5IF164P05V72ME827226JSLAP462585Q07H 3)
00000000000000000000

Type: RadixExpansion 32

You may often want to visualize a symbolic formula or draw a graph from
a set of numerical values. To do this, you can call upon the AXIOM
graphics capability.

draw(5*besselJ(0,sqrt (x**2+y**2)), x=-20..20, y=-20..20)

Compiling function %J with type (DoubleFloat,
DoubleFloat) -> DoubleFloat
Transmitting data...

ThreeDimensionalViewport: "5*besselJ (0, (yxy+x*x)**(1/2))" (4)
Type: ThreeDimensionalViewport
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Graphs in AXIOM are interactive objects you can manipulate with your
mouse. Just click on the graph, and a control panel pops up. Using this
mouse and the control panel, you can translate, rotate, zoom, change the
coloring, lighting, shading, and perspective on the picture. You can also
generate a PostScript copy of your graph to produce hard-copy output.

HyperDoc presents you windows on the world of AXIOM, offering on-line
help, examples, tutorials, a browser, and reference material. HyperDoc
gives you on-line access to this book in a “hypertext” format. Words that
appear in a different font (for example, Matrix, factor, and category) are
generally mouse-active; if you click on one with your mouse, HyperDoc
shows you a new window for that word.

As another example of a HyperDoc facility, suppose that you want to
compute the roots of x4 — 4924 + 9 to 49 digits (as in our previous
example) and you don’t know how to tell AXIOM to do this. The “basic
command” facility of HyperDoc leads the way. Through the series of
HyperDoc windows shown in Figure 1 and the specified mouse clicks, you
and HyperDoc generate the correct command to issue to compute the
answer.

AXIOM'’s interactive programming language lets you define your own
functions. A simple example of a user-defined function is one that com-
putes the successive Legendre polynomials. AXIOM lets you define these
polynomials in a piece-wise way.

p(0) == 1

Type: Void

HyperDoc - 3



The second Legendre
polynomial.

The n th Legendre polynomial

for (n > 1).
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= JJ_
HyperDoc

This is the top level of HyperDoc. To select an item, move the

cursor with the mouse to a word in this Font then click a mouse

button, For an introduction to HyperDoc, click on HELP.

What would you like to do?
B Basic Commands Solve problems by filling in templates.

B Topics Learn how to use Axiom, by topic.

B Browse Browse through the Axiom library,

B Examples See examples of use of the library.
B Ref erence Scan on-line documentation on Axiom,
[ Settings Change an Axiom system variable,

Figure 1: Computing the roots of 2% — 4924 4 9.

p(l) == x

Type: Void

p(n) == ((2*n-1)*x*p(n-1) - (n-1) * p(n-2))/n

Type: Void

In addition to letting you define simple functions like this, the interactive
language can be used to create entire application packages. All the graphs
in the AXIOM Images section in the center of the book, for example, were
created by programs written in the interactive language.

The above definitions for p do no computation—they simply tell AXIOM
how to compute p(k) for some positive integer k. To actually get a value
of a Legendre polynomial, you ask for it.



What is the tenth Legendre
polynomial?

What is the coefficient of z°° in
p(90)?

Data Structures

Create the infinite stream of
derivatives of Legendre
polynomials

p(10)

Compiling function p with type Integer -> Polynomial
Fraction Integer
Compiling function p as a recurrence relation.

46189 o 109395 5 45045 4 15015 , 3465 , 63
— x - x x® — = - — (8)
256 256 128 128 256 256

Type: Polynomial Fraction Integer
AXIOM applies the above pieces for p to obtain the value of p(10). But it
does more: it creates an optimized, compiled function for p. The function
is formed by putting the pieces together into a single piece of code. By
compiled, we mean that the function is translated into basic machine-
code. By optimized, we mean that certain transformations are performed
on that code to make it run faster. For p, AXIOM actually translates the
original definition that is recursive (one that calls itself) to one that is
iterative (one that consists of a simple loop).

coefficient (p(90),x,90)
5688265542052017822223458237426581853561497449095175

77371252455336267181195264 9)
Type: Polynomial Fraction Integer

In general, a user function is type-analyzed and compiled on first use.
Later, if you use it with a different kind of object, the function is recom-
piled if necessary.

A variety of data structures are available for interactive use. These include
strings, lists, vectors, sets, multisets, and hash tables. A particularly
useful structure for interactive use is the infinite stream:

[D(p(i),x) for i in 1..]

5 , 335 , 15 315 , 105 , 15
1,31’,31’2—5,?1‘3—*‘%,7%’4—71‘24— )
693 5 815 . 105 3003 3465 , 945 , 35 (10)

— - — x x T+ —2z"— =, ...
8 4 8 7 16 16 16 16
Type: Stream Polynomial Fraction Integer

Streams display only a few of their initial elements. Otherwise, they are
“lazy”: they only compute elements when you ask for them.

Data structures are an important component for building application soft-
ware. Advanced users can represent data for applications in optimal fash-
ion. In all, AXIOM offers over forty kinds of aggregate data structures,
ranging from mutable structures (such as cyclic lists and flexible arrays) to
storage efficient structures (such as bit vectors). As an example, streams

Data Structures - 5



What is the series expansion of
log(cot(x)) about z = 7/27

What is the coefficient of the
50 ! term of this series?

Mathematical
Structures

Even a simple input expression
can result in a type with several
levels.

The inverse operation requires
that elements of the above
matrices are fractions.

Pattern Matching
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are used as the internal data structure for power series.

series(log(cot(x)),x = %pi/2)

(52 o (3 (3) e D

8 2 3 \" 772 90 \* " 2 2835 \' 2
8

Type: GeneralUnivariatePowerSeries(Expression Integer, x, pi/2)

(11)

Series and streams make no attempt to compute all their elements! Rather,
they stand ready to deliver elements on demand.

coefficient (%,50)
44590788901016030052447242300856550965644

12
7131469286438669111584090881309360354581359130859375 (12)
Type: Expression Integer

AXIOM also has many kinds of mathematical structures. These range
from simple ones (like polynomials and matrices) to more esoteric ones
(like ideals and Clifford algebras). Most structures allow the construction
of arbitrarily complicated “types.”

[[x + %i,0], [1,-21]

z+1 O
1 -2

The AXIOM interpreter builds types in response to user input. Often,
the type of the result is changed in order to be applicable to an operation.

matrix
(13)

Type: Matrix Polynomial Complex Integer

inverse (%)

1
[ T ] (14)
a2 2

Type: Union(Matrix Fraction Polynomial Complex Integer, ...)

A convenient facility for symbolic computation is “pattern matching.”
Suppose you have a trigonometric expression and you want to transform
it to some equivalent form. Use a rule command to describe the trans-
formation rules you need. Then give the rules a name and apply that
name as a function to your trigonometric expression.



Introduce two rewrite rules.

Apply the rules to a simple
trigonometric expression.

Polymorphic
Algorithms

Define a system of polynomial
equations S.

Solve the system S using
rational number arithmetic and
30 digits of accuracy.

sinCosExpandRules := rule
gin(xty) == gin(x)*cos(y) + sin(y)*cos(x)
cos(xty) == cos(x)*cos(y) - sin(x)*sin(y)
gin(2*x) == 2*gin(x) *cos (x)
cos(2*x) == cos(x)**2 - sin(x)**2

{sin (y + x)==cos (z) sin (y) + cos (y) sin (),
cos (y + )==—sin (z) sin (y) + cos (x) cos (y), (15)
sin (2 2)==2 cos () sin (), cos (2 x)==—sin (x)? + cos (33)2}

Type: Ruleset(Integer, Integer, Expression Integer)

sinCosExpandRules (sin(a+2*b+c))

(—cos (a) sin (b)? — 2 cos (b) sin (a) sin (b) + cos (a) cos (b)Z) sin (¢)—
cos (¢) sin (a) sin (b)? 4 2 cos (a) cos (b) cos (¢) sin (b)+ (16)
cos (b)? cos (¢) sin (a)

Type: Expression Integer

Using input files, you can create your own library of transformation rules
relevant to your applications, then selectively apply the rules you need.

All components of the AXIOM algebra library are written in the AXIOM
library language. This language is similar to the interactive language
except for protocols that authors are obliged to follow. The library lan-
guage permits you to write “polymorphic algorithms,” algorithms defined
to work in their most natural settings and over a variety of types.

S := [3*x**3 + y + 1 =0,y**2 = 4]
y+3a°+1=0, 4> =14] (17)
Type: List Equation Polynomial Integer

solve(S,1/10**30)
H 9 1757879671211184245283070414507
Y= —4

T 2535301200456458802993406410752

pose=-]

(18)

Type: List List Equation Polynomial Fraction Integer

Polymorphic Algorithms - 7
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radicalSolve(S)

Hy:2,$:—1]7 y:2,x:_\/j3+11,

- V=341 B 1
_y—2,x—2,[y——2,x—\3/§}, (19)
PP 27 Sy I . Y 5
e N

Type: List List Equation Expression Integer

While these solutions look very different, the results were produced by
the same internal algorithm! The internal algorithm actually works with
equations over any “field.” Examples of fields are the rational numbers,
floating point numbers, rational functions, power series, and general ex-
pressions involving radicals.

Users and system developers alike can augment the AXIOM library, all
using one common language. Library code, like interpreter code, is com-
piled into machine binary code for run-time efficiency.

Using this language, you can create new computational types and new
algorithmic packages. All library code is polymorphic, described in terms
of a database of algebraic properties. By following the language protocols,
there is an automatic, guaranteed interaction between your code and that
of colleagues and system implementers.



A Technical
Introduction
to AXIOM

AXIOM has both an interactive language for user interactions and a pro-
gramming language for building library modules. Like Modula 2, PAS-
CAL, FORTRAN, and Ada, the programming language emphasizes strict
type-checking. Unlike these languages, types in AXIOM are dynamic ob-
jects: they are created at run-time in response to user commands.

Here is the idea of the AXIOM programming language in a nutshell.
AXIOM types range from algebraic ones (like polynomials, matrices, and
power series) to data structures (like lists, dictionaries, and input files).
Types combine in any meaningful way. You can build polynomials of ma-
trices, matrices of polynomials of power series, hash tables with symbolic
keys and rational function entries, and so on.

Categories define algebraic properties to ensure mathematical correctness.
They ensure, for example, that matrices of polynomials are OK, but ma-
trices of input files are not. Through categories, programs can discover
that polynomials of continued fractions have a commutative multiplica-
tion whereas polynomials of matrices do not.

Categories allow algorithms to be defined in their most natural setting.
For example, an algorithm can be defined to solve polynomial equations
over any field. Likewise a greatest common divisor can compute the “gcd”
of two elements from any Euclidean domain. Categories foil attempts to



Types are Defined by
Abstract Datatype
Programs

compute meaningless “gcds”, for example, of two hashtables. Categories
also enable algorithms to be compiled into machine code that can be run
with arbitrary types.

The AXIOM interactive language is oriented towards ease-of-use. The
AXIOM interpreter uses type-inferencing to deduce the type of an object
from user input. Type declarations can generally be omitted for common
types in the interactive language.

So much for the nutshell. Here are these basic ideas described by ten
design principles:

Basic types are called domains of computation, or, simply, domains. Do-
mains are defined by AXIOM programs of the form:

Name(...): Exports == Implementation

Each domain has a capitalized Name that is used to refer to the class of
its members. For example, Integer denotes “the class of integers,” Float,
“the class of floating point numbers,” and String, “the class of strings.”

The “...” part following Name lists zero or more parameters to the con-
structor. Some basic ones like Integer take no parameters. Others, like
Matrix, Polynomial and List, take a single parameter that again must be a
domain. For example, Matrix(Integer) denotes “matrices over the integers,”
Polynomial (Float) denotes “polynomial with floating point coefficients,” and
List (Matrix (Polynomial (Integer))) denotes “lists of matrices of polynomials
over the integers.” There is no restriction on the number or type of pa-
rameters of a domain constructor.

The Exports part specifies operations for creating and manipulating ob-
jects of the domain. For example, type Integer exports constants 0 and 1,
and operations “+”, “=” and “*”. While these operations are common,
others such as odd? and bit? are not.

The Implementation part defines functions that implement the exported
operations of the domain. These functions are frequently described in
terms of another lower-level domain used to represent the objects of the
domain.

10 - A Technical Introduction to AXIOM



The Type of Basic
Objects is a Domain
or Subdomain

Domains Have Types
Called Categories

Operations Can Refer
To Abstract Types

Every AXIOM object belongs to a unique domain. The domain of an
object is also called its type. Thus the integer 7 has type Integer and
the string "daniel" has type String.

The type of an object, however, is not unique. The type of integer 7 is not
only Integer but NonNegativeInteger, PositivelInteger, and possibly,
in general, any other “subdomain” of the domain Integer. A subdo-
main is a domain with a “membership predicate”. PositiveInteger is
a subdomain of Integer with the predicate “is the integer > 07”.

Subdomains with names are defined by abstract datatype programs simi-
lar to those for domains. The Ezport part of a subdomain, however, must
list a subset of the exports of the domain. The Implementation part
optionally gives special definitions for subdomain objects.

Domain and subdomains in AXIOM are themselves objects that have
types. The type of a domain or subdomain is called a category. Categories
are described by programs of the form:

Name(...): Category == Exports

The type of every category is the distinguished symbol Category. The
category Name is used to designate the class of domains of that type.
For example, category Ring designates the class of all rings. Like do-
mains, categories can take zero or more parameters as indicated by the
“...” part following Name. Two examples are Module(R) and MatrixCate-
gory(R,Row,Col).

The Exports part defines a set of operations. For example, Ring exports
the operations “0”, “1”7, “+” “~” and “x”. Many algebraic domains such
as Integer and Polynomial (Float) are rings. String and List (R) (for any domain
R) are not.

Categories serve to ensure the type-correctness. The definition of matrices
states Matrix(R: Ring) requiring its single parameter R to be a ring.
Thus a “matrix of polynomials” is allowed, but “matrix of lists” is not.

All operations have prescribed source and target types. Types can be
denoted by symbols that stand for domains, called “symbolic domains.”
The following lines of AXIOM code use a symbolic domain R:

R: Ring
power: (R, NonNegativeInteger): R -> R
power(x, n) == x ** n

Line 1 declares the symbol R to be a ring. Line 2 declares the type of

The Type of Basic Objects is a Domain or Subdomain - 11
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power in terms of R. From the definition on line 3, power (3,2) produces
9 for x = 3 and R = Integer. Also, power(3.0,2) produces 9.0 for x =
3.0 and R = Float. power ("oxford",2) however fails since "oxford" has
type String which is not a ring.

Using symbolic domains, algorithms can be defined in their most natural
or general setting.

Categories form hierarchies (technically, directed-acyclic graphs). A sim-
plified hierarchical world of algebraic categories is shown below in Figure
2. At the top of this world is SetCategory, the class of algebraic sets. The
notions of parents, ancestors, and descendants is clear. Thus ordered sets
(domains of category OrderedSet) and rings are also algebraic sets. Like-
wise, fields and integral domains are rings and algebraic sets. However
fields and integral domains are not ordered sets.

SetCategory
/ l \
Ring Finite OrderedSet
! N\ l
IntegralDomain OrderedSet
!
Field

Figure 2: A simplified category hierarchy.

A category designates a class of domains. Which domains? You might
think that Ring designates the class of all domains that export 0, 1, “+7,
“~” and “¥”. But this is not so. Each domain must assert which cate-
gories it belongs to.

The Export part of the definition for Integer reads, for example:
Join(OrderedSet, IntegralDomain, ...) with ...

This definition asserts that Integer is both an ordered set and an integral
domain. In fact, Integer does not explicitly export constants 0 and 1 and
operations “+”, “=” and “x” at all: it inherits them all from Ring! Since
IntegralDomain is a descendant of Ring, Integer is therefore also a ring.

Assertions can be conditional. For example, Complex(R) defines its exports
by:

12 - A Technical Introduction to AXIOM
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Ring with ... if R has Field then Field

Thus Complex(Float) is a field but Complex(Integer) is not since Integer is not
a field.

You may wonder: “Why not simply let the set of operations determine
whether a domain belongs to a given category?”’. AXIOM allows opera-
tion names (for example, norm) to have very different meanings in differ-
ent contexts. The meaning of an operation in AXIOM is determined by
context. By associating operations with categories, operation names can
be reused whenever appropriate or convenient to do so. As a simple exam-
ple, the operation “<” might be used to denote lexicographic-comparison
in an algorithm. However, it is wrong to use the same “<” with this def-
inition of absolute-value: abs(x) == if x < 0 then -x else x. Such
a definition for abs in AXIOM is protected by context: argument x is
required to be a member of a domain of category OrderedSet.

In AXTIOM, facilities for symbolic integration, solution of equations, and
the like are placed in “packages”. A package is a special kind of domain:
one whose exported operations depend solely on the parameters of the
constructor and/or explicit domains.

If you want to use AXIOM, for example, to define some algorithms for
solving equations of polynomials over an arbitrary field F, you can do so
with a package of the form:

MySolve(F: Field): Exports == Implementation

where Exports specifies the solve operations you wish to export and

Implementation defines functions for implementing your algorithms. Once
AXIOM has compiled your package, your algorithms can then be used for

any F: floating-point numbers, rational numbers, complex rational func-

tions, and power series, to name a few.

The AXIOM interpreter reads user input then builds whatever types it
needs to perform the indicated computations. For example, to create the

matrix
24+1 0
M= < 0 x/2>

the interpreter first loads the modules Matrix, Polynomial, Fraction, and
Integer from the library, then builds the domain tower “matrices of poly-
nomials of rational numbers (fractions of integers)”.

Packages Are Clusters of Polymorphic Operations - 13
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Once a domain tower is built, computation proceeds by calling operations
down the tower. For example, suppose that the user asks to square the
above matrix. To do this, the function “*” from Matrix is passed M to
compute M * M. The function is also passed an environment containing
R that, in this case, is Polynomial (Fraction (Integer)). This results in the
successive calling of the “x” operations from Polynomial, then from Fraction,
and then finally from Integer before a result is passed back up the tower.

Categories play a policing role in the building of domains. Because the
argument of Matrix is required to be a ring, AXIOM will not build non-
sensical types such as “matrices of input files”.

AXIOM programs are statically compiled to machine code, then placed
into library modules. Categories provide an important role in obtaining
efficient object code by enabling;:

e static type-checking at compile time;

e fast linkage to operations in domain-valued parameters;

e optimization techniques to be used for partially specified types (op-
erations for “vectors of R”, for instance, can be open-coded even
though R is unknown).

Users and system implementers alike use the AXIOM language to add
facilities to the AXIOM library. The entire AXIOM library is in fact
written in the AXIOM source code and available for user modification
and/or extension.

AXIOM’s use of abstract datatypes clearly separates the exports of a
domain (what operations are defined) from its implementation (how the
objects are represented and operations are defined). Users of a domain
can thus only create and manipulate objects through these exported op-
erations. This allows implementers to “remove and replace” parts of the
library safely by newly upgraded (and, we hope, correct) implementations
without consequence to its users.

Categories protect names by context, making the same names available
for use in other contexts. Categories also provide for code-economy. Al-
gorithms can be parameterized categorically to characterize their correct
and most general context. Once compiled, the same machine code is
applicable in all such contexts.

Finally, AXIOM provides an automatic, guaranteed interaction between
new and old code. For example:
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e if you write a new algorithm that requires a parameter to be a field,
then your algorithm will work automatically with every field defined
in the system; past, present, or future.

e if you introduce a new domain constructor that produces a field,
then the objects of that domain can be used as parameters to any
algorithm using field objects defined in the system; past, present,
or future.

These are the key ideas. For further information, we particularly rec-
ommend your reading chapters 11, 12, and 13, where these ideas are
explained in greater detail.

AXIOM is Extensible - 15
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CHAPTER 1

What's New
in AXIOM
Version 2.0

1.1
Important Things
to Read First

1.2
The New AXIOM
Library Compiler

Many things have changed in this new version of AXIOM and we describe
many of the more important topics here.

If you have any private .spad files (that is, library files which were not
shipped with AXIOM) you will need to recompile them. For exam-
ple, if you wrote the file regress.spad then you should issue ) compile
regress.spad before trying to use it.

The internal representation of Union has changed. This means that
AXIOM data saved with Release 1.x may not be readable by this Re-
lease. If you cannot recreate the saved data by recomputing in Release
2.0, please contact NAG for assistance.

A new compiler is now available for AXIOM. The programming language
is referred to as the AXIOM Extension Language (or Aldor for short), and
improves upon the old AXIOM language in many ways. The )compile
command has been upgraded to be able to invoke the new or old com-
pilers. The language and the compiler are described in the hard-copy
documentation which came with your AXIOM system.

To ease the chore of upgrading your .spad files (old compiler) to .as files

19



1.3
The NAG Library
Link

1.3.1
Interpreting NAG
Documentation

Correspondence Between
Fortran and AXIOM types

(new compiler), the )compile command has been given a )translate
option. This invokes a special version of the old compiler which parses
and analyzes your old code and produces augmented code using the new
syntax. Please be aware that the translation is not necessarily one hun-
dred percent complete or correct. You should attempt to compile the
output with the Aldor compiler and make any necessary corrections.

The NAG Foundation Library link allows you to call NAG Fortran rou-
tines from within AXIOM, passing AXIOM objects as parameters and
getting them back as results.

The NAG Foundation Library and, consequently, the link are divided into
chapters, which cover different areas of numerical analysis. The statistical
and sorting chapters of the Library, however, are not included in the link
and various support and utility routines (mainly the FO6 and X chapters)
have been omitted.

Each chapter has a short (at most three-letter) name; for example, the
chapter devoted to the solution of ordinary differential equations is called
D02. When using the link via the HyperDoc interface, you will be
presented with a complete menu of these chapters. The names of indi-
vidual routines within each chapter are formed by adding three letters to
the chapter name, so for example the routine for solving ODEs by Adams
method is called d02cjf.

Information about using the NAG Foundation Library in general, and
about using individual routines in particular, can be accessed via Hyper-
Doc. This documentation refers to the Fortran routines directly; the pur-
pose of this subsection is to explain how this corresponds to the AXIOM
routines.

For general information about the NAG Foundation Library users should
consult Essential Introduction to the NAG Foundation Library.
The documentation is in ASCII format, and a description of the conven-
tions used to represent mathematical symbols is given in Introduction
to NAG On-Line Documentation. Advice about choosing a routine
from a particular chapter can be found in the Chapter Documents.

The NAG documentation refers to the Fortran types of objects; in general,
the correspondence to AXIOM types is as follows.

e Fortran INTEGER corresponds to AXIOM Integer.
e Fortran DOUBLE PRECISION corresponds to AXIOM DoubleFloat.
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Classification of NAG
parameters

IFAIL

e Fortran COMPLEX corresponds to AXIOM Complex DoubleFloat.
e Fortran LOGICAL corresponds to AXIOM Boolean.
e Fortran CHARACTER*(*) corresponds to AXIOM String.

(Exceptionally, for NAG EXTERNAL parameters — ASPs in link parlance
— REAL and COMPLEX correspond to MachineFloat and MachineComplex,
respectively; see Section 1.3.3 on page 24.)

The correspondence for aggregates is as follows.

e A one-dimensional Fortran array corresponds to an AXIOM Matrix
with one column.

e A two-dimensional Fortran ARRAY corresponds to an AXIOM Matrix.

e A three-dimensional Fortran ARRAY corresponds to an AXIOM
ThreeDimensionalMatrix.

Higher-dimensional arrays are not currently needed for the NAG Founda-
tion Library.

Arguments which are Fortran FUNCTIONs or SUBROUTINESs corre-
spond to special ASP domains in AXIOM. See Section 1.3.3 on page 24.

NAG parameters are classified as belonging to one (or more) of the fol-
lowing categories: Input, Output, Workspace or External procedure.
Within External procedures a similar classification is used, and parame-
ters may also be Dummies, or User Workspace (data structures not used
by the NAG routine but provided for the convenience of the user).

When calling a NAG routine via the link the user only provides values
for Input and External parameters.

The order of the parameters is, in general, different from the order spec-
ified in the NAG Foundation Library documentation. The Browser de-
scription for each routine helps in determining the correspondence. As
a rule of thumb, Input parameters come first followed by Input/Output
parameters. The External parameters are always found at the end.

NAG routines often return diagnostic information through a parameter
called ifail. With a few exceptions, the principle is that on input ifail
takes one of the values —1,0, 1. This determines how the routine behaves
when it encounters an error:

e a value of 1 causes the NAG routine to return without printing an
erTor Mmessage;

e a value of 0 causes the NAG routine to print an error message and
abort;

e a value of -1 causes the NAG routine to return and print an error
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1.3.2
Using the Link

message.

The user is STRONGLY ADVISED to set ifail to —1 when using the
link. If ifail has been set to 1 or —1 on input, then its value on output
will determine the possible cause of any error. A value of 0 indicates
successful completion, otherwise it provides an index into a table of di-
agnostics provided as part of the routine documentation (accessible via
Browse).

The easiest way to use the link is via the HyperDoc interface. You will
be presented with a set of fill-in forms where you can specify the param-
eters for each call. Initially, the forms contain example values, demon-
strating the use of each routine (these, in fact, correspond to the standard
NAG example program for the routine in question). For some parameters,
these values can provide reasonable defaults; others, of course, represent
data. When you change a parameter which controls the size of an array,
the data in that array are reset to a “neutral” value — usually zero.

When you are satisfied with the values entered, clicking on the “Continue”
button will display the AXIOM command needed to run the chosen NAG
routine with these values. Clicking on the “Do It” button will then cause
AXIOM to execute this command and return the result in the parent
AXIOM session, as described below. Note that, for some routines, mul-
tiple HyperDoc “pages” are required, due to the structure of the data.
For these, returning to an earlier page causes HyperDoc to reset the later
pages (this is a general feature of HyperDoc); in such a case, the simplest
way to repeat a call, varying a parameter on an earlier page, is probably
to modify the call displayed in the parent session.

An alternative approach is to call NAG routines directly in your normal
AXIOM session (that is, using the AXIOM interpreter). Such calls return
an object of type Result. As not all parameters in the underlying NAG
routine are required in the AXIOM call (and the parameter ordering may
be different), before calling a NAG routine you should consult the de-
scription of the AXIOM operation in the Browser. (The quickest route to
this is to type the routine name, in lower case, into the Browser’s input
area, then click on Operations.) The parameter names used coincide
with NAG’s, although they will appear here in lower case. Of course, it
is also possible to become familiar with the AXIOM form of a routine by
first using it through the HyperDoc interface.
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As an example of this mode of
working, we can find a zero of a
function, lying between 3 and 4,
as follows:

By default, Result only displays
the type of returned values,
since the amount of information
returned can be quite large.
Individual components can be
examined as follows:

In order to avoid conflict with
names defined in the workspace,
you can also get the values by
using the String type (the
interpreter automatically
coerces them to Symbol)

There is also a .input file for
each NAG routine, containing
AXIOM interpreter commands
to set up and run the standard
NAG example for that routine.

answer:=c05adf(3.0,4.0,1.0e-5,0.0,-1,sin(X) ::ASP1(F))

[i fail:Integer , z:DoubleFloat |
answer . X

3.14159265545896

answer . ifail

0

answer "x"

3.14159265545896

(1)

Type: Result

(2)

Type: DoubleFloat

3)

Type: Integer

(4)

Type: DoubleFloat

It is possible to have AXIOM display the values of scalar or array results
automatically. For more details, see the commands showScalarValues

and showArray Values.

)read c05adf.input

--Copyright The Numerical Algorithms Group Limited

1994.
Jclear all

All user variables and function definitions have been

cleared.
showArrayValues true

true

showScalarValues true

true

f:ASP1(F) :=exp(-X)-X
F

(1)

Type: Boolean

(2)

Type: Boolean

(3)

Type: Asp1 F
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1.3.3

Providing values for
Argument
Subprograms

For example c05adf requires an
object of type
Union(fn: FileName,fp: Asp1 F)

Providing ASPs via
FortranExpression

0.0 (4)
Type: DoubleFloat

b:SF:=1.0

1.0 (5)
Type: DoubleFloat

eps:SF:=1.0e-5

1.0e — 05 (6)
Type: DoubleFloat

eta:SF:=0.0

0.0 (7)
Type: DoubleFloat

result:= c05adf(a,b,eps,eta,-1,1f)

[ifail:0, x:0.567143306604963] (8)

Type: Result

There are a number of ways in which users can provide values for argument
subprograms (ASPs). At the top level the user will see that NAG routines
require an object from the Union of a Filename and an ASP.

)display operation cO5adf

There is one exposed function called cO05adf
[1] (DoubleFloat,DoubleFloat,DoubleFloat,DoubleFloat,
Integer,Union(fn: FileName,fp: Aspl F)) ->
Result
from NagRootFindingPackage

The user thus has a choice of providing the name of a file containing
Fortran source code, or of somehow generating the ASP within AXIOM.
If a filename is specified, it is searched for in the local machine, i.e., the
machine that AXIOM is running on.

The FortranExpression domain is used to represent expressions which can be
translated into Fortran under certain circumstances. It is very similar to
Expression except that only operators which exist in Fortran can be used,
and only certain variables can occur. For example the instantiation For-
tranExpression([X],[IM],MachineFloat) is the domain of expressions containing
the scalar X and the array M.
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This allows us to create
expressions like:

but not

Providing ASPs via
FortranCode

So for example, to integrate the
function abs(x) we could use the
built-in abs function. But
suppose we want to get back to
basics and define it directly,
then we could do the following:

Providing ASPs via FileName

f : FortranExpression([X], [M],MachineFloat) :=
sin(X)+M[3,1]

sin (X)) + M3 1 (1)

Type: FortranExpression([X], [M], MachineFloat)
f : FortranExpression([X], [M],MachineFloat) := sin(M)+Y
Cannot convert right-hand side of assignment

sin(M) + Y

to an object of the type FortranExpression([X], [M]
,MachineFloat) of the left-hand side.

Those ASPs which represent expressions usually export a coerce from an
appropriate instantiation of FortranExpression (or perhaps Vector FortranEx-
pression etc.). For convenience there are also retractions from appropriate
instantiations of Expression, Polynomial and Fraction Polynomial.

FortranCode allows us to build arbitrarily complex ASPs via a kind of
pseudo-code. It is described fully in Section 1.3.4 on page 26.

Every ASP exports two coerce functions: one from FortranCode and one

from List FortranCode. There is also a coerce from

Record( localSymbols: SymbolTable, code: List FortranCode) which is used for

passing extra symbol information about the ASP.

d0lajf(-1.0, 1.0, 0.0, 1.0e-5, 800, 200, -1, cond(LT(X,0),

assign(F,-X), assign(F,X))) result

1.0 (2)
Type: DoubleFloat

The cond operation creates a conditional clause and the assign an as-

signment statement.

Suppose we have created the file “asp.f” as follows:

DOUBLE PRECISION FUNCTION F(X)
DOUBLE PRECISION X

F=4.0D0/ (X*X+1.0DO0)

RETURN

END

and wish to pass it to the NAG routine dOlajf which performs one-
dimensional quadrature. We can do this as follows:

d0lajf(0.0 ,1.0, 0.0, 1.0e-5, 800, 200, -1, "asp.f")
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1.3.4

General
Fortran-generation
utilities in AXIOM

Template Manipulation

This section describes more advanced facilities which are available to users
who wish to generate Fortran code from within AXIOM. There are facil-
ities to manipulate templates, store type information, and generate code
fragments or complete programs.

A template is a skeletal program which is “fleshed out” with data when
it is processed. It is a sequence of active and passive parts: active parts
are sequences of AXIOM commands which are processed as if they had
been typed into the interpreter; passive parts are simply echoed verbatim
on the Fortran output stream.

Suppose, for example, that we have the following template, stored in the
file “test.tem”:

-- A gsimple template
beginVerbatim
DOUBLE PRECISION FUNCTION F(X)
DOUBLE PRECISION X
endVerbatim
outputAsFortran("F",f)
beginVerbatim
RETURN
END
endVerbatim

The passive parts lie between the two tokens beginVerbatim and
endVerbatim. There are two active statements: one which is simply an
AXIOM ( --) comment, and one which produces an assignment to the
current value of £. We could use it as follows:

(4) ->f := 4.0/ (1+X**2)

(5) ->processTemplate "test.tem"
DOUBLE PRECISION FUNCTION F(X)
DOUBLE PRECISION X
F=4.0D0/ (X*X+1.0D0)

RETURN
END

(5) "CONSOLE"

(A more reliable method of specifying the filename will be introduced
below.) Note that the Fortran assignment F=4.0D0/(X*X+1.0D0) au-
tomatically converted 4.0 and 1 into DOUBLE PRECISION numbers;
in general, the AXIOM Fortran generation facility will convert anything
which should be a floating point object into either a Fortran REAL or
DOUBLE PRECISION object.
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Which alternative is used is )set fortran precision

det ined by th d . .
etermined by the command ——________________ The precision Option ----------------

Description: precision of generated FORTRAN objects

The precision option may be followed by any one
of the following:

single
-> double

The current setting is indicated within the 1list.

It is sometimes useful to end a template before the file itself ends (e.g.
to allow the template to be tested incrementally or so that a piece of
text describing how the template works can be included). It is of course
possible to “comment-out” the remainder of the file. Alternatively, the
single token endInput as part of an active portion of the template will
cause processing to be ended prematurely at that point.

The processTemplate command comes in two flavours. In the first case,
illustrated above, it takes one argument of domain FileName, the name of
the template to be processed, and writes its output on the current Fortran
output stream. In general, a filename can be generated from directory,
name and extension components, using the operation filename, as in

processTemplate filename("","test","tem")

There is an alternative version of processTemplate, which takes two
arguments (both of domain FileName). In this case the first argument
is the name of the template to be processed, and the second is the file
in which to write the results. Both versions return the location of the
generated Fortran code as their result ("CONSOLE" in the above example).

It is sometimes useful to be able to mix active and passive parts of a line or
statement. For example you might want to generate a Fortran Comment
describing your data set. For this kind of application we provide three
functions as follows:

fortranLiteral writes a string on the Fortran output
stream

fortranCarriageReturn  writes a carriage return on the Fortran
output stream

fortranLiteralLine writes a string followed by a return on
the Fortran output stream
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So we could create our comment
as follows:

or, alternatively:

m := matrix [[1,2,3],[4,5,6]]
1 2 3
{ 4 5 6 } M)
Type: Matrix Integer

fortranLiterallLine concat ["C The Matrix has ",
nrows (m) : : String, " rows and ", ncols(m)::String, "
columns"]

C The Matrix has 2 rows and 3 columns
Type: Void
fortranLiteral "C The Matrix has "
C The Matrix has
Type: Void
fortranLiteral(nrows(m)::String)
2
Type: Void
fortranLiteral " rows and "
rows and
Type: Void
fortranLiteral(ncols(m)::String)
3
Type: Void
fortranLiteral " columns"
columns
Type: Void
fortranCarriageReturn()
Type: Void

We should stress that these functions, together with the outputAsFor-
tran function are the only sure ways of getting output to appear on the
Fortran output stream. Attempts to use AXIOM commands such as out-
put or writeline! may appear to give the required result when displayed
on the console, but will give the wrong result when Fortran and algebraic
output are sent to differing locations. On the other hand, these functions
can be used to send helpful messages to the user, without interfering with
the generated Fortran.
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Manipulating the Fortran
Output Stream

Fortran Types

FortranScalarType

FortranType

Sometimes it is useful to manipulate the Fortran output stream in a pro-
gram, possibly without being aware of its current value. The main use of
this is for gathering type declarations (see “Fortran Types” below) but
it can be useful in other contexts as well. Thus we provide a set of com-
mands to manipulate a stack of (open) output streams. Only one stream
can be written to at any given time. The stack is never empty—its initial
value is the console or the current value of the Fortran output stream,
and can be determined using

topFortranOutputStack()

"CONSOLE" 9)
Type: String
(see below). The commands available to manipulate the stack are:

clearFortranOutputStack resets the stack to the console
pushFortranOutputStack pushes a FileName onto the stack
popFortranOutputStack  pops the stack
showFortranOutputStack returns the current stack
topFortranOutputStack returns the top element of the stack

These commands are all part of FortranOutputStackPackage.

When generating code it is important to keep track of the Fortran types
of the objects which we are generating. This is useful for a number of
reasons, not least to ensure that we are actually generating legal Fortran
code. The current type system is built up in several layers, and we shall
describe each in turn.

This domain represents the simple Fortran datatypes: REAL, DOUBLE
PRECISION, COMPLEX, LOGICAL, INTEGER, and CHARACTER.
It is possible to coerce a String or Symbol into the domain, test whether
two objects are equal, and also apply the predicate functions real? etc.

This domain represents “full” types: i.e., datatype plus array dimensions
(where appropriate) plus whether or not the parameter is an external
subprogram. It is possible to coerce an object of FortranScalarType into
the domain or construct one from an element of FortranScalarType, a list
of Polynomial Integers (which can of course be simple integers or symbols)
representing its dimensions, and a Boolean declaring whether it is external
or not. The list of dimensions must be empty if the Boolean is true.
The functions scalarTypeOf, dimensionsOf and external? return
the appropriate parts, and it is possible to get the various basic Fortran
Types via functions like fortranReal.
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For example: type:=construct(real, [i,10],false)$FortranType
REAL (;, 10) (10)
Type: FortranType
or type:=[real, [i,10],false]l$FortranType
REAL (;, 10) (11)
Type: FortranType
scalarTypeOf type

REAL (12)
Type: Union(fst: FortranScalarType, ...)

dimensionsOf type
[i, 10] (13)
Type: List Polynomial Integer

external? type

false (14)
Type: Boolean

fortranLogical()

LOGICAL (15)
Type: FortranType

construct (integer, [],true)$FortranType

EXTERNAL INTEGER (16)
Type: FortranType

SymbolTable This domain creates and manipulates a symbol table for generated Fortran
code. This is used by FortranProgram to represent the types of objects in
a subprogram. The commands available are:

empty creates a new SymbolTable

declare! creates a new entry in a table
fortranTypeOf returns the type of an object in a table
parametersOf returns a list of all the symbols in the table

typeList returns a list of all objects of a given type
typeLists returns a list of lists of all objects sorted by type
externalList returns a list of all EXTERNAL objects
printTypes produces Fortran type declarations from a table

symbols := empty()$SymbolTable

table() (17)
Type: SymbolTable
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TheSymbolTable

declare! (X,fortranReal(),symbols)

REAL (18)
Type: FortranType

declare! (M,construct(real,[i,j],false)$FortranType, symbols)

REAL (4, 5) (19)
Type: FortranType

declare! ([i,j].fortranInteger(),symbols)

INTEGER (20)
Type: FortranType

symbols

table (X = REAL, M = REAL ; j), i = INTEGER , j = INTEGER) (21)
Type: SymbolTable
fortranTypeOf (i, symbols)

INTEGER (22)
Type: FortranType

typeList(real, symbols)

X, [M, i, j]] (23)
Type: List Union(name: Symbol, bounds: List Union(S: Symbol, P: Polynomial
Integer))

printTypes symbols

INTEGER j,i
DOUBLE PRECISION X,M(1i,3)

Type: Void
This domain creates and manipulates one global symbol table to be used,
for example, during template processing. It is also used when linking to

external Fortran routines. The information stored for each subprogram
(and the main program segment, where relevant) is:

e its name;

its return type;

its argument list;

and its argument types.

Initially, any information provided is deemed to be for the main program
segment.
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Issuing the following command
indicates that from now on all
information refers to the
subprogram F.

It is possible to return to
processing the main program
segment by issuing the
command:

newSubProgram F

Type: Void
endSubProgram()
MAIN (26)
Type: Symbol
The following commands exist:
returnType! declares the return type of the current
subprogram
returnTypeOf returns the return type of a subprogram
argumentList! declares the argument list of the current
subprogram
argumentListOf returns the argument list of a subprogram
declare! provides type declarations for parameters
of the current subprogram
symbolTableOf returns the symbol table of a subprogram
printHeader produces the Fortran header for the cur-

rent subprogram

In addition there are versions of these commands which are parameterised
by the name of a subprogram, and others parameterised by both the name
of a subprogram and by an instance of TheSymbolTable.

newSubProgram F

Type: Void
argumentList! (F, [X])

Type: Void
returnType! (F,real)

Type: Void

declare! (X,fortranReal(),F)

REAL (30)
Type: FortranType
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Advanced Fortran Code
Generation

Switch

So for example:

FortranCode

For example we can create quite
a complicated conditional
statement using assignments,
and then turn it into Fortran
code:

printHeader F

DOUBLE PRECISION FUNCTION F(X)
DOUBLE PRECISION X

Type: Void

This section describes facilities for representing Fortran statements, and
building up complete subprograms from them.

This domain is used to represent statements like x < y. Although these
can be represented directly in AXIOM, it is a little cumbersome, since
AXIOM evaluates the last statement, for example, to true (since x is
lexicographically less than y).

Instead we have a set of operations, such as LT to represent <, to let us
build such statements. The available constructors are:

LT <
GT >
LE <
GE >
EQ =
AND and
OR or
NOT not
LT (x,y)
r<y (32)

Type: Switch
This domain represents code segments or operations: currently assign-
ments, conditionals, blocks, comments, gotos, continues, various kinds of
loops, and return statements.

¢ := cond(LT(X,Y),assign(F,X),cond(GT(Y,Z),assign(F,Y),
assign(F,Z)))

conditional (33)
Type: FortranCode
printCode ¢
IF(X.LT.Y)THEN
F=X
ELSEIF (Y.GT.Z) THEN
F=Y
ELSE
F=Z
ENDIF

Type: Void
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FortranProgram

First of all we create a symbol
table:

Now put some type declarations
into it:

Then (for convenience) we set
up the particular instantiation
of FortranProgram

Create an object of type
Expression(Integer):

Now coerce it into FP, and
print its Fortran form:

Augment our symbol table:

The Fortran code is printed on the current Fortran output stream.

This domain is used to construct complete Fortran subprograms out of
elements of FortranCode. It is parameterised by the name of the target sub-
program (a Symbol), its return type (from Union(FortranScalarType,“void”)),
its arguments (from List Symbol), and its symbol table (from SymbolTable).
One can coerce elements of either FortranCode or Expression into it.

symbols := empty()$SymbolTable

table() (35)
Type: SymbolTable

declare! ([X,Y],fortranReal(),symbols)

REAL (36)
Type: FortranType
FP := FortranProgram(F,real, [X,Y],symbols)
FortranProgram (F,REAL , [X, Y], table(...,...)) (37)
Type: Domain
asp := X*sin(Y)
X sin(Y) (38)

Type: Expression Integer
outputAsFortran(asp::FP)

DOUBLE PRECISION FUNCTION F(X,Y)
DOUBLE PRECISION Y,X
F=X*DSIN(Y)

RETURN

END

Type: Void
We can generate a FortranProgram using FortranCode. For example:

declare! (Z,fortranReal(),symbols)

REAL (40)

Type: FortranType
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and transform the conditional
expression we prepared earlier:

1.3.5
Some technical
information

outputAsFortran([c,returns()]::FP)

DOUBLE PRECISION FUNCTION F(X,Y)
DOUBLE PRECISION Z,Y,X
IF(X.LT.Y)THEN
F=X
ELSEIF (Y.GT.Z) THEN
F=Y
ELSE
F=Z
ENDIF
RETURN
END

Type: Void

The model adopted for the link is a server-client configuration — AXIOM
acting as a client via a local agent (a process called nagman). The server
side is implemented by the nagd daemon process which may run on a
different host. The nagman local agent is started by default whenever you
start AXIOM. The nagd server must be started separately. Instructions
for installing and running the server are supplied in Section 7.7 on page
777. Use the )set naglink host system command to point your local
agent to a server in your network.

On the AXIOM side, one sees a set of packages (ask Browse for Nag*) for
each chapter, each exporting operations with the same name as a routine
in the NAG Foundation Library. The arguments and return value of each
operation belong to standard AXIOM types.

The man pages for the NAG Foundation Library are accessible via the
description of each operation in Browse (among other places).

In the implementation of each operation, the set of inputs is passed to the
local agent nagman, which makes a Remote Procedure Call (RPC) to the
remote nagd daemon process. The local agent receives the RPC results
and forwards them to the AXIOM workspace where they are interpreted
appropriately.

How are Fortran subroutines turned into RPC calls? For each Fortran
routine in the NAG Foundation Library, a C main() routine is supplied.
Its job is to assemble the RPC input (numeric) data stream into the ap-
propriate Fortran data structures for the routine, call the Fortran routine
from C and serialize the results into an RPC output data stream.

Many NAG Foundation Library routines accept ASPs (Argument Sub-
program Parameters). These specify user-supplied Fortran routines (e.g.
a routine to supply values of a function is required for numerical integra-
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tion). How are they handled? There are new facilities in AXIOM to help.
A set of AXIOM domains has been provided to turn values in standard
AXIOM types (such as Expression Integer) into the appropriate piece of
Fortran for each case (a filename pointing to Fortran source for the ASP
can always be supplied instead). Ask Browse for Asp* to see these do-
mains. The Fortran fragments are included in the outgoing RPC stream,
but nagd intercepts them, compiles them, and links them with the main()
C program before executing the resulting program on the numeric part
of the RPC stream.

The leave keyword has been replaced by the break keyword for compati-
bility with the new AXIOM extension language. See section Section 5.4.3
on page 159 for more information.

Curly braces are no longer used to create sets. Instead, use set followed
by a bracketed expression. For example,

set [1,2,3,4]

{1, 2, 3, 4} (1)
Type: Set Positivelnteger

Curly braces are now used to enclose a block (see section Section 5.2 on
page 153 for more information). For compatibility, a block can still be
enclosed by parentheses as well.

“Free functions” created by the Aldor compiler can now be loaded and
used within the AXIOM interpreter. A free function is a library function
that is implemented outside a domain or category constructor.

New coercions to and from type Expression have been added. For example,
it is now possible to map a polynomial represented as an expression to an
appropriate polynomial type.

Various messages have been added or rewritten for clarity.

The FullPartialFractionExpansion domain has been added. This domain com-
putes factor-free full partial fraction expansions. See section ‘FullPartial-
FractionExpansion’ on page 435 for examples.

We have implemented the Bertrand/Cantor algorithm for integrals of hy-
perelliptic functions. This brings a major speedup for some classes of
algebraic integrals.

We have implemented a new (direct) algorithm for integrating trigonomet-
ric functions. This brings a speedup and an improvement in the answer
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quality.

The SmallFloat domain has been renamed DoubleFloat and Smalllnteger
has been renamed Singleinteger. The new abbreviations as DFLOAT and
SINT, respectively. We have defined the macro SF, the old abbreviation
for SmallFloat, to expand to DoubleFloat and modified the documentation
and input file examples to use the new names and abbreviations. You
should do the same in any private AXIOM files you have.

There are many new categories, domains and packages related to the NAG
Library Link facility. See the file

$AXIOM/../../src/algebra/exposed.lsp
for a list of constructors in the naglink AXIOM exposure group.

We have made improvements to the differential equation solvers and there
is a new facility for solving systems of first-order linear differential equa-
tions. In particular, an important fix was made to the solver for inhomoge-
neous linear ordinary differential equations that corrected the calculation
of particular solutions. We also made improvements to the polynomial
and transcendental equation solvers including the ability to solve some
classes of systems of transcendental equations.

The efficiency of power series have been improved and left and right ex-
pansions of tan(f(x)) at x = a pole of £(x) can now be computed. A
number of power series bugs were fixed and the GeneralSeries domain was
added. The power series variable can appear in the coefficients and when
this happens, you cannot differentiate or integrate the series. Differenti-
ation and integration with respect to other variables is supported.

A domain was added for representing asymptotic expansions of a function
at an exponential singularity.

For limits, the main new feature is the exponential expansion domain used
to treat certain exponential singularities. Previously, such singularities
were treated in an ad hoc way and only a few cases were covered. Now

AXIOM can do things like
limit ((x+1)** (x+1) /x**x-x**x/ (x-1)**(x-1), x=%plusInfinity)

in a systematic way. It only does one level of nesting, though. In
other words, we can handle exp( some function with a pole ), but not
exp (exp ( some function with a pole )) .

The computation of integral bases has been improved through careful
use of Hermite row reduction. A P-adic algorithm for function fields of
algebraic curves in finite characteristic has also been developed.

Miscellaneous: There is improved conversion of definite and indefinite
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integrals to InputForm; binomial coefficients are displayed in a new way;
some new simplifications of radicals have been implemented; the opera-
tion complexForm for converting to rectangular coordinates has been
added; symmetric product operations have been added to LinearOrdinary-
DifferentialOperator.

1.6 The buttons on the titlebar and scrollbar have been replaced with ones
HyperDoc which have a 3D effect. You can change the foreground and background
colors of these “controls” by including and modifying the following lines
in your .Xdefaults file.

Axiom.hyperdoc.ControlBackground: White
Axiom.hyperdoc.ControlForeground: Black

For various reasons, HyperDoc sometimes displays a secondary window.
You can control the size and placement of this window by including and
modifying the following line in your .Xdefaults file.

Axiom.hyperdoc.FormGeometry: =950x450+100+0

This setting is a standard X Window System geometry specification: you
are requesting a window 950 pixels wide by 450 deep and placed in the
upper left corner.

Some key definitions have been changed to conform more closely with the
CUA guidelines. Press F9 to see the current definitions.

Input boxes (for example, in the Browser) now accept paste-ins from the
X Window System. Use the second button to paste in something you
have previously copied or cut. An example of how you can use this is
that you can paste the type from an AXIOM computation into the main
Browser input box.

1.7 We describe here a few additions to the on-line version of the AXIOM
Documentation book which you can read with HyperDoc.

A section has been added to the graphics chapter, describing how to build
two-dimensional graphs from lists of points. An example is given showing
how to read the points from a file. See section Section 7.1.9 on page 256
for details.

A further section has been added to that same chapter, describing how to
add a two-dimensional graph to a viewport which already contains other
graphs. See section Section 7.7 on page 777 for details.

Chapter 3 and the on-line HyperDoc help have been unified.
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An explanation of operation names ending in “?” and “!” has been added
to the first chapter. See the end of the section Section 1.3.6 on page 51
for details.

An expanded explanation of using predicates has been added to the sixth
chapter. See the example involving evenRule in the middle of the section
Section 6.21 on page 228 for details.

Documentation for the )compile, )1ibrary and )load commands has
been greatly changed. This reflects the ability of the )compile to now
invoke the Aldor compiler, the impending deletion of the )load com-
mand and the new ) 1ibrary command. The )1library command replaces
)load and is compatible with the compiled output from both the old and
new compilers.
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CHAPTER 1

An Overview
of AXIOM

Welcome to the AXIOM environment for interactive computation and
problem solving. Consider this chapter a brief, whirlwind tour of the
AXIOM world. We introduce you to AXIOM’s graphics and the AXIOM
language. Then we give a sampling of the large variety of facilities in
the AXIOM system, ranging from the various kinds of numbers, to data
types (like lists, arrays, and sets) and mathematical objects (like matrices,
integrals, and differential equations). We conclude with the discussion of
system commands and an interactive “undo.”

Before embarking on the tour, we need to brief those readers working
interactively with AXIOM on some details. Others can skip right imme-
diately to Section 1.2 on page 46.

43



1.1
Starting Up and
Winding Down
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You need to know how to start the AXIOM system and how to stop it.
We assume that AXIOM has been correctly installed on your machine (as
described in another AXIOM document).

To begin using AXIOM, issue the command axiom to the operating sys-
tem shell. There is a brief pause, some start-up messages, and then one
or more windows appear.

If you are not running AXIOM under the X Window System, there is
only one window (the console). At the lower left of the screen there is a
prompt that looks like

(1) ->

When you want to enter input to AXIOM, you do so on the same line
after the prompt. The “1” in “(1)” is the computation step number and
is incremented after you enter AXIOM statements. Note, however, that
a system command such as )clear all may change the step number in
other ways. We talk about step numbers more when we discuss system
commands and the workspace history facility.

If you are running AXIOM under the X Window System, there may be
two windows: the console window (as just described) and the HyperDoc
main menu. HyperDoc is a multiple-window hypertext system that lets
you view AXIOM documentation and examples on-line, execute AXIOM
expressions, and generate graphics. If you are in a graphical windowing
environment, it is usually started automatically when AXIOM begins. If
it is not running, issue )hd to start it. We discuss the basics of HyperDoc
in Chapter 3.

To interrupt an AXIOM computation, hold down the (control) key
and press [c]. This brings you back to the AXIOM prompt.

To exit from AXIOM, move to the console window, type )quit at the

input prompt and press the key. You will probably be prompted
with the following message:

Please enter y or yes if you really want to leave the
interactive environment and return to the operating system

You should respond yes, for example, to exit AXIOM.

We are purposely vague in describing exactly what your screen looks like
or what messages AXIOM displays. AXIOM runs on a number of different
machines, operating systems and window environments, and these differ-
ences all affect the physical look of the system. You can also change the



1.1.1
Clef

way that AXIOM behaves via system commands described later in this
chapter and in Appendix A. System commands are special commands,
like ) set, that begin with a closing parenthesis and are used to change
your environment. For example, you can set a system variable so that
you are not prompted for confirmation when you want to leave AXIOM.

If you are using AXIOM under the X Window System, the Clef command
line editor is probably available and installed. With this editor you can
recall previous lines with the up and down arrow keys ( and ) To
move forward and backward on a line, use the right and left arrows (=]
and [—]). You can use the key to toggle insert mode on or off.

When you are in insert mode, the cursor appears as a large block and
if you type anything, the characters are inserted into the line without
deleting the previous ones.

If you press the key, the cursor moves to the beginning of the
line and if you press the key, the cursor moves to the end of the

line. Pressing deletes all the text from the cursor to the
end of the line.

Clef also provides AXIOM operation name completion for a limited set

of operations. If you enter a few letters and then press the key,
Clef tries to use those letters as the prefix of an AXIOM operation name.

If a name appears and it is not what you want, press again to see
another name.

You are ready to begin your journey into the world of AXIOM. Proceed
to the first stop.
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In this book we have followed these typographical conventions:

Categories, domains and packages are displayed in a sans-serif type-
face: Ring, Integer, DiophantineSolutionPackage.

Prefix operators, infix operators, and punctuation symbols in the
AXIOM language are displayed in the text like this: “+7, “§”, “+->".
AXIOM expressions or expression fragments are displayed in a mon-
ospace typeface: inc(x) == x + 1.

For clarity of presentation, TEX is often used to format expressions:
g(z) =22+ 1.

Function names and HyperDoc button names are displayed in the
text in a bold typeface: factor, integrate, Lighting.

Italics are used for emphasis and for words defined in the glossary:
category.

This book contains over 2500 examples of AXIOM input and output. All
examples were run though AXIOM and their output was created in TEX
form for this book by the AXIOM TexFormat package. We have deleted
system messages from the example output if those messages are not im-
portant for the discussions in which the examples appear.



1.3
The AXIOM
Language

1.3.1
Arithmetic
Expressions

AXIOM puts implicit
parentheses around operations
of higher precedence, and
groups those of equal
precedence from left to right.

The above expression is
equivalent to this.

If an expression contains
subexpressions enclosed in
parentheses, the parenthesized
subexpressions are evaluated
first (from left to right, from
inside out).

1.3.2
Previous Results

This is ten to the tenth power.

The AXIOM language is a rich language for performing interactive com-
putations and for building components of the AXIOM library. Here we
present only some basic aspects of the language that you need to know
for the rest of this chapter. Our discussion here is intentionally informal,
with details unveiled on an “as needed” basis. For more information on a
particular construct, we suggest you consult the index at the back of the
book.

For arithmetic expressions, use the “+” and “~” operators as in mathemat-
ics. Use “x” for multiplication, and “**” for exponentiation. To create a
fraction, use “/”. When an expression contains several operators, those
of highest precedence are evaluated first. For arithmetic operators, “x*”
has highest precedence, “*” and “/” have the next highest precedence,
and “+” and “-” have the lowest precedence.

1+2 -3/ 4 * 3 * 2 -1

19
7 (1)

Type: Fraction Integer
((1L+2) - ((3/ 4) * (3 *2))) -1
.o

4 (2)

Type: Fraction Integer
1+2 -3/ (4*3* (2-1))

11
. 3)

Type: Fraction Integer

Use the percent sign (“%”) to refer to the last result. Also, use “%%” to
refer to previous results. %%(-1) is equivalent to “%”, %%(-2) returns
the next to the last result, and so on. %%(1) returns the result from step
number 1, %% (2) returns the result from step number 2, and so on. %%(0)
is not defined.

10 ** 10

10000000000 (1)
Type: Positivelnteger
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This is the last result minus
one.

This is the last result.

This is the result from step
number 1.

1.3.3
Some Types

Positive integers are given type
Positivelnteger.

Negative ones are given type
Integer. This fine distinction is
helpful to the AXIOM
interpreter.

Here a positive integer exponent
gives a polynomial result.

Here a negative integer
exponent produces a fraction.

1.34

Symbols, Variables,
Assignments, and
Declarations
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% - 1

9999999999 (2)
Type: Positivelnteger

%% (-1)

9999999999 (3)
Type: Positivelnteger

%% (1)

10000000000 (4)

Type: Positivelnteger

Everything in AXIOM has a type. The type determines what operations
you can perform on an object and how the object can be used. An entire
chapter of this book (Chapter 2) is dedicated to the interactive use of
types. Several of the final chapters discuss how types are built and how
they are organized in the AXIOM library.

8
8 (1)
Type: Positivelnteger
-8
-8 (2)
Type: Integer
x**8
2" (3)
Type: Polynomial Integer
x** ( - 8)
1
— 4
a8 (4)

Type: Fraction Polynomial Integer

A symbol is a literal used for the input of things like the “variables” in
polynomials and power series.



We use the three symbols x, y,
and z in entering this
polynomial.

This assignment gives the value
4 (an integer) to a variable
named x.

This gives the value z + 3/5 (a
polynomial) to x.

To restrict the types of objects
that can be assigned to a
variable, use a declaration

After a variable is declared to
be of some type, only values of
that type can be assigned to
that variable.

The declaration for y forces
values assigned to y to be
converted to integer values.

If no such conversion is possible,
AXIOM refuses to assign a
value to y.

(x - y*z)**2
v’ -2z y 24 2? (1)
Type: Polynomial Integer

A symbol has a name beginning with an uppercase or lowercase alphabetic
character, “%”, or “!”. Successive characters (if any) can be any of the
above, digits, or “?”. Case is distinguished: the symbol points is different

from the symbol Points.

A symbol can also be used in AXIOM as a variable. A variable refers to
a value. To assign a value to a variable, the operator “:=" is used.! A
variable initially has no restrictions on the kinds of values to which it can
refer.

X = 4
4 (2)
Type: Positivelnteger
x =z + 3/5
3
- 3
z+ 3 (3)

Type: Polynomial Fraction Integer

y : Integer

Type: Void

y := 89
89 (5)
Type: Integer

:= sin %pi

(6)
Type: Integer

y = 2/3

Cannot convert right-hand side of assignment
2

3

to an object of the type Integer of the left-hand
side.

! AXIOM actually has two forms of assignment: immediate assignment, as discussed
here, and delayed assignment. See Section 5.1 on page 150 for details.
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A type declaration can also be
given together with an
assignment. The declaration can
assist AXIOM in choosing the
correct operations to apply.

These two expressions have the
same effect as the previous
single expression.

By default, the interpreter gives
this symbol the type Variable(q).

When multiple symbols are
involved, Symbol is used.

What happens when you try to
use a symbol that is the name of
a variable?

Use a single quote (“’”) before
the name to get the symbol.

1.3.5
Conversion
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f : Float := 2/3

0.66666666666666666667 (7)

Type: Float

Any number of expressions can be given on input line. Just separate
them by semicolons. Only the result of evaluating the last expression is
displayed.

f : Float; f := 2/3

0.66666666666666666667 (8)

Type: Float

The type of a symbol is either Symbol or Variable(name) where name is the
name of the symbol.

q
q (9)
Type: Variable g
[q, rl]
(g, 7] (10)
Type: List OrderedVariableList [q, r]
f

0.66666666666666666667 (11)

Type: Float

! (12)
Type: Variable f

Quoting a name creates a symbol by preventing evaluation of the name
as a variable. Experience will teach you when you are most likely going
to need to use a quote. We try to point out the location of such trouble
spots.

Objects of one type can usually be “converted” to objects of several other
types. To convert an object to a new type, use the “::” infix operator.?
For example, to display an object, it is necessary to convert the object to
type OutputForm.

2Conversion is discussed in detail in Section 2.7 on page 113.



This produces a polynomial
with rational number
coefficients.

Create a quotient of
polynomials with integer
coefficients by using “::”.

1.3.6
Calling Functions

This calls the operation factor
with the single integer argument
120.

This is a call to divide with the
two integer arguments 125 and
7.

This calls quatern with four
floating-point arguments.

This is the same as
factorial(10).

2
2
A 1
= 1)
Type: Polynomial Fraction Integer
p :: Fraction Polynomial Integer
371242
—_— 2
- (2)

Type: Fraction Polynomial Integer

Some conversions can be performed automatically when AXIOM tries to
evaluate your input. Others conversions must be explicitly requested.

As we saw earlier, when you want to add or subtract two values, you
place the arithmetic operator “+” or “-~” between the two arguments de-
noting the values. To use most other AXIOM operations, however, you
use another syntax: write the name of the operation first, then an open
parenthesis, then each of the arguments separated by commas, and, fi-
nally, a closing parenthesis. If the operation takes only one argument and
the argument is a number or a symbol, you can omit the parentheses.

factor(120)
2235 (1)
Type: Factored Integer
divide(125,7)
[quotient = 17, remainder = 6] (2)
Type: Record(quotient: Integer, remainder: Integer)
quatern(3.4,5.6,2.9,0.1)
3445614+29354+01k (3)
Type: Quaternion Float
factorial 10
3628800 (4)
Type: Positivelnteger

An operations that returns a Boolean value (that is, true or false) fre-
quently has a name suffixed with a question mark (“?”). For example, the
even? operation returns true if its integer argument is an even number,
false otherwise.

An operation that can be destructive on one or more arguments usually
has a name ending in a exclamation point (“!”). This actually means that
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1.3.7
Some Predefined
Macros

1.3.8
Long Lines

1.3.9
Comments
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it is allowed to update its arguments but it is not required to do so. For
example, the underlying representation of a collection type may not allow
the very last element to removed and so an empty object may be returned
instead. Therefore, it is important that you use the object returned by the
operation and not rely on a physical change having occurred within the
object. Usually, destructive operations are provided for efficiency reasons.

AXIOM provides several macros for your convenience.® Macros are names
(or forms) that expand to larger expressions for commonly used values.

%i The square root of -1.

%e The base of the natural logarithm.
%pi .

Zinfinity 00.

%plusInfinity +00.

%minusInfinity —oo.

When you enter AXIOM expressions from your keyboard, there will be
times when they are too long to fit on one line. AXIOM does not care how
long your lines are, so you can let them continue from the right margin
to the left side of the next line.

Alternatively, you may want to enter several shorter lines and have AXIOM
glue them together. To get this glue, put an underscore (_) at the end of
each line you wish to continue.

2
+_
3

is the same as if you had entered
2+3

If you are putting your AXIOM statements in an input file (see Section
4.1 on page 139), you can use indentation to indicate the structure of your
program. (see Section 5.2 on page 153).

Comment statements begin with two consecutive hyphens or two consec-
utive plus signs and continue until the end of the line.

3See Section 6.2 on page 179 for a discussion on how to write your own macros.



The comment beginning with -- 2 + 3 -- this is rather simple, no?

is ignored by AXIOM.
5 (1)

Type: Positivelnteger

There is no way to write long multi-line comments other than starting
each line with “-=" or “++”.
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Graphics

This is an example of AXIOM’s
two-dimensional plotting. From
the 2D Control Panel you can
rescale the plot, turn axes and
units on and off and save the
image, among other things.
This PostScript image was
produced by clicking on the

2D Control Panel button.

This is an example of AXIOM’s
three-dimensional plotting. It is
a monochrome graph of the
complex arctangent function.
The image displayed was
rotated and had the “shade”
and “outline” display options
set from the 3D Control Panel.
The PostScript output was
produced by clicking on the

3D Control Panel button
and then clicking on the
button. See Section 8.1 on page
264 for more details and
examples of AXIOM’s numeric
and graphics capabilities.
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AXIOM has a two- and three-dimensional drawing and rendering pack-
age that allows you to draw, shade, color, rotate, translate, map, clip,
scale and combine graphic output of AXIOM computations. The graph-
ics interface is capable of plotting functions of one or more variables and
plotting parametric surfaces. Once the graphics figure appears in a win-
dow, move your mouse to the window and click. A control panel appears
immediately and allows you to interactively transform the object.

draw(cos(5*t/8), t=0..16*%pi, coordinates==polar)

Compiling function %B with type DoubleFloat ->

DoubleFloat
Graph data being transmitted to the viewport

manager. ..
AXIOM2D data being transmitted to the viewport
manager. ..

TwoDimensionalViewport: "cos (5%t)/8" (1)
Type: TwoDimensionalViewport

draw((x,y) +-> real atan complex(x,y), -%pi..%pi, -
%pi..%pi, colorFunction == (x,y) +-> argument atan
complex(x,y))

Transmitting data...

ThreeDimensionalViewport: "AXIOM3D" (2)
Type: ThreeDimensionalViewport




An exhibit of AXIOM Images is given in the center section of this book.
For a description of the commands and programs that produced these
figures, see Appendix F. PostScript output is available so that AXIOM
images can be printed.* See Chapter 7 for more examples and details
about using AXIOM'’s graphics facilities.

4PostScript is a trademark of Adobe Systems Incorporated, registered in the United
States.

1.4. Graphics - 55



1.5
Numbers

Integer arithmetic is always
exact.

Integers can be represented in
factored form.

Results stay factored when you
do arithmetic. Note that the 12
is automatically factored for
you.

Integers can also be displayed to
bases other than 10. This is an
integer in base 11.

Roman numerals are also
available for those special
occasions.

Rational number arithmetic is
also exact.

To factor fractions, you have to
map factor onto the numerator
and denominator.

Type Singlelnteger refers to
machine word-length integers.
In English, this expression
means “11 as a small integer”.

Machine double-precision
floating-point numbers are also
available for numeric and
graphical applications.
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AXIOM distinguishes very carefully between different kinds of numbers,
how they are represented and what their properties are. Here are a sam-
pling of some of these kinds of numbers and some things you can do with
them.

11**13 * 13**11 * 17**7
25387751112538918594666224484237298 (1)
Type: Positivelnteger

factor 643238070748569023720594412551704344145570763243
1113 131 177 19° 233 292 (2)
Type: Factored Integer

19**5 * 23**3

% * 12

22 3 111 1311 177 195 233 292 (3)
Type: Factored Integer

radix(25937424601,11)

10000000000 (4)
Type: RadixExpansion 11

roman(1992)

MCMXCII (5)
Type: RomanNumeral

r := 10 + 9/2 + 8/3 +7/4 + 6/5 + 5/6 + 4/7 + 3/8 + 2/9

55739

2520 (6)

Type: Fraction Integer

map (factor,r)

139 401

5= 7

233257 (M)
Type: Fraction Factored Integer

ll@SinglelInteger

11 (8)

Type: Singlelnteger

123.21@DoubleFloat
123.21000000000001 (9)
Type: DoubleFloat

The normal floating-point type in AXIOM, Float, is a software implemen-
tation of floating-point numbers in which the exponent and the man-



This is a floating-point
approximation to about twenty
digits. The “::” is used here to
change from one kind of object
(here, a rational number) to
another (a floating-point
number).

Use digits to change the
number of digits in the
representation. This operation
returns the previous value so
you can reset it later.

To 22 digits of precision, the

TV163.

number e O appears to be

an integer.

Increase the precision to forty
digits and try again.

Here are complex numbers with
rational numbers as real and
imaginary parts.

The standard operations on
complex numbers are available.

You can factor complex integers.

Complex numbers with floating
point parts are also available.

tissa may have any number of digits.® The types Complex(Float) and
Complex(DoubleFloat) are the corresponding software implementations of
complex floating-point numbers.
r :: Float

22.118650793650793651 (10)

Type: Float

digits(22)
20 (11)
Type: Positivelnteger

exp(%pi * sqrt 163.0)

262537412640768744.0 (12)
Type: Float
digits(40); exp(%pi * sqrt 163.0)
262537412640768743.9999999999992500725976 (13)
Type: Float
(2/3 + %i)**3
46 1
—— 4+ -1 14
7 3’ (14)

Type: Complex Fraction Integer

conjugate %

(15)
Type: Complex Fraction Integer
factor(89 - 23 * %i)
—(1+4) (241)* (3+21)° (16)
Type: Factored Complex Integer
exp (%pi/4.0 * %i)

0.7071067811865475244008443621048490392849+

0.7071067811865475244008443621048490392848 ¢ (17)

Type: Complex Float

5See ‘Float’ on page 427 and ‘DoubleFloat’ on page 404 for additional information on
floating-point types.
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Every rational number has an
exact representation as a
repeating decimal expansion
(see ‘DecimalExpansion’ on page
401).

A rational number can also be
expressed as a continued
fraction (see ‘ContinuedFraction
on page 385).

Also, partial fractions can be
used and can be displayed in a
compact ...

or expanded format (see
‘PartialFraction’ on page 525).

Like integers, bases (radices)
other than ten can be used for
rational numbers (see
‘RadixExpansion’ on page 537).
Here we use base eight.

Of course, there are complex
versions of these as well.
AXIOM decides to make the
result a complex rational
number.

You can also use AXIOM to
manipulate fractional powers.

You can also compute with
integers modulo a prime.

Arithmetic is then done modulo
7.

Since 7 is prime, you can invert
nonzero values.
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decimal(1/352)
0.0028409

continuedFraction(6543/210)

1 1 1,
314+ o —
TR

partialFraction(l,factorial(10))
159 23 12 1

2% T3 Ty

padicFraction (%)
1 1 1 1 1 1 2 1

PRI R T T TR ¥

radix (4/7, 8)
0.4

% + 2/3*%i
4+ 2
-+
73

(5 + sqrt 63 + sqrt 847)**(1/3)

3

14V7+5

I
w

X : PrimeField 7

x**3

1/x

3 5 527

(18)
Type: DecimalExpansion

(19)

Type: ContinuedFraction Integer

(20)

Type: PartialFraction Integer

2 2 2 1

+ = (21)

Type: PartialFraction Integer

(22)
Type: RadixExpansion 8

(23)

Type: Complex Fraction Integer

(24)
Type: AlgebraicNumber

(25)
Type: PrimeField 7

(26)
Type: PrimeField 7

(27)
Type: PrimeField 7



You can also compute modulo
an integer that is not a prime.

All of the usual arithmetic
operations are available.

Inversion is not available if the
modulus is not a prime number.
Modular arithmetic and prime
fields are discussed in Section
8.11.1 on page 316.

This defines a to be an algebraic
number, that is, a root of a
polynomial equation.

Computations with a are
reduced according to the
polynomial equation.

Define b to be an algebraic
number involving a.

Do some arithmetic.

y : IntegerMod 6 := 5
(28)
Type: IntegerMod 6
y* *3
5 (29)
Type: IntegerMod 6
1/y

There are 11 exposed and 12 unexposed library
operations named / having 2 argument(s) but none
was determined to be applicable. Use HyperDoc
Browse, or issue

)display op /
to learn more about the available operations.
Perhaps package-calling the operation or using
coercions on the arguments will allow you to apply
the operation.

Cannot find a definition or applicable library
operation named / with argument type(s)
PositivelInteger
IntegerMod 6

Perhaps you should use "@" to indicate the

required return type, or "$" to specify which
version of the function you need.

a := rootOf(a**5 + a**3 + a**2 + 3,a)

a (30)
Type: Expression Integer

(a + 1)**10

—85 a* — 264 a® — 378 a® — 458 a — 287 (31)

Type: Expression Integer

b := rootOf(b**4 + a,b)
b (32)
Type: Expression Integer
2/(b - 1)
2
e 33
— (33)

Type: Expression Integer
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To expand and simplify this,
call ratDenom to rationalize
the denominator.

If we do this, we should get b.

But we need to rationalize the
denominator again.

Types Quaternion and Octonion
are also available.

Multiplication of quaternions is
non-commutative, as expected.
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ratDenom (%)
at—ad+2d®—a+1 b3+(a4—a3+2a2—a+1> b+ (34)
at—a*+2a*—a+1)b+a*—adP+2d®*—a+1
Type: Expression Integer
2/%+1
at—add+2d>—a+1 b3+(a4—a3+2a2—a+1> b2+

ad—a*+2ad?—a+1)b+a*—a?+2a®>—a+3

: (35)
ad—add+2d>—a+1 b5+(a4—a3+2a2—a+1) b2+
ad—add+2d?—a+1)b+at—a*+2a®>—a+1
Type: Expression Integer
ratDenom (%)
b (36)
Type: Expression Integer

q:=quatern(1,2,3,4)*quatern(5,6,7,8) -
quatern(5,6,7,8) *quatern(1,2,3,4)

—8i+165—-8%k (37)
Type: Quaternion Integer



1.6
Data Structures

Write a list of elements using
square brackets with commas
separating the elements.

This is the value at the third
node. Alternatively, you can say
u.3.

The operation concat!(u,v)
replaces the last link of the list
u to point to some other list v.
Since u refers to the original list,
this change is seen by u.

A cyclic list is a list with a
“cycle”: a link pointing back to
an earlier node of the list. To
create a cycle, first get a node
somewhere down the list.

Use setrest! to change the link
emanating from that node to
point back to an earlier part of
the list.

AXIOM has a large variety of data structures available. Many data struc-
tures are particularly useful for interactive computation and others are
useful for building applications. The data structures of AXIOM are or-
ganized into category hierarchies as shown on the inside back cover.

A list is the most commonly used data structure in AXIOM for holding
objects all of the same type. The name list is short for “linked-list of
nodes.” Each node consists of a value (first) and a link (rest) that points
to the next node, or to a distinguished value denoting the empty list. To
get to, say, the third element, AXIOM starts at the front of the list, then
traverses across two links to the third node.

[1,-7,11]

Type: List Integer

u =

first rest rest u
11 (2)
Type: Positivelnteger

Many operations are defined on lists, such as: empty?, to test that a list
has no elements; cons(x,1), to create a new list with first element x and
rest 1; reverse, to create a new list with elements in reverse order; and
sort, to arrange elements in order.

An important point about lists is that they are “mutable”: their con-
stituent elements and links can be changed “in place.” To do this, use
any of the operations whose names end with the character “!”.

concat! (u,[9,1,3,-4]); u
[]-a _7) 117 97 17 37 _4] (3)
Type: List Integer

lastnode := rest(u,3)

[9, 1, 3, —4] (4)
Type: List Integer

setrest! (lastnode,rest(u,2)); u

[17 _77 117 9] (5)
Type: List Integer

A stream is a structure that (potentially) has an infinite number of distinct

SLists are discussed in ‘List’ on page 489 and in Section 5.5 on page 171.
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Create an infinite stream of
factored integers. Only a certain
number of initial elements are
computed and displayed.

AXIOM represents streams by a
collection of already-computed
elements together with a
function to compute the next
element “on demand.” Asking

for the n th element causes
elements 1 through n to be
evaluated.

A simple way to create a
one-dimensional array is to
apply the operation
oneDimensionalArray to a
list of elements.

One-dimensional arrays are also

mutable: you can change their
constituent elements “in place.”
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elements.” Think of a stream as an “infinite list” where elements are
computed successively.

[factor (i) for i in 2.. by 2]

[2, 9223 2% 25 223 27, ] (6)
Type: Stream Factored Integer

%.36

23 32 (7)

Type: Factored Integer

Streams can also be finite or cyclic. They are implemented by a linked
list structure similar to lists and have many of the same operations. For
example, first and rest are used to access elements and successive nodes
of a stream.

A one-dimensional array is another data structure used to hold objects of
the same type.® Unlike lists, one-dimensional arrays are inflexible—they
are implemented using a fixed block of storage. Their advantage is that
they give quick and equal access time to any element.

a := oneDimensionalArray [1, -7, 3, 3/2]

3
1, =7, 3, = 8
1735 0

Type: OneDimensionalArray Fraction Integer

a.3 = 11; a

3
|:17 _77 11) 2:| (9)

Type: OneDimensionalArray Fraction Integer

"Streams are discussed in ‘Stream’ on page 575 and in Section 5.5 on page 171.
8See ‘OneDimensionalArray’ on page 514 for details.



However, one-dimensional arrays concat! (a,oneDimensionalArray [1,-2])
are not flexible structures. You
cannot destructively concat!
them together.

There are 5 exposed and 0 unexposed library
operations named concat! having 2 argument(s) but
none was determined to be applicable. Use HyperDoc
Browse, or issue

)display op concat!
to learn more about the available operations.
Perhaps package-calling the operation or using
coercions on the arguments will allow you to apply
the operation.

Cannot find a definition or applicable library
operation named concat! with argument type(s)
OneDimensionalArray Fraction Integer
OneDimensionalArray Integer

Perhaps you should use "@" to indicate the
required return type, or "$" to specify which
version of the function you need.

Examples of datatypes similar to OneDimensionalArray are: Vector (vec-
tors are mathematical structures implemented by one-dimensional ar-
rays), String (arrays of “characters,” represented by byte vectors), and
Bits (represented by “bit vectors”).

A vector of 32 bits, each bits(32,true)
representing the Boolean value
true. "11111111111111111111111111111111 (10)

Type: Bits

A flezible array is a cross between a list and a one-dimensional array.’
Like a one-dimensional array, a flexible array occupies a fixed block of
storage. Its block of storage, however, has room to expand! When it gets
full, it grows (a new, larger block of storage is allocated); when it has too
much room, it contracts.

Create a flexible array of three f := flexibleArray [2, 7, -5]
elements.

Type: FlexibleArray Integer
Insert some elements between insert! (flexibleArray [11, -3]1,f,2)

the second and third elements.

2, 11, =3, 7, —5] (12)
Type: FlexibleArray Integer

Flexible arrays are used to implement “heaps.” A heap is an example
of a data structure called a priority queue, where elements are ordered

9See ‘FlexibleArray’ on page 425 for details.
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An easy way to create a heap is
to apply the operation heap to
a list of values.

This loop extracts elements
one-at-a-time from h until the
heap is exhausted, returning the
elements as a list in the order
they were extracted.

A binary search tree is a binary
tree such that, for each node,
the value of the node is greater
than all values (if any) in the
left subtree, and less than or
equal all values (if any) in the
right subtree.

A balanced binary tree is useful
for doing modular
computations. Given a list 1m of
moduli, modTree(a,lm)
produces a balanced binary tree
with the values @ mod m at its
leaves.
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with respect to one another.! A heap is organized so as to optimize
insertion and extraction of maximum elements. The extract! operation
returns the maximum element of the heap, after destructively removing
that element and reorganizing the heap so that the next maximum element
is ready to be delivered.

h := heap [-4,7,11,3,4,-7]
[11, 4, 7, —4, 3, —7] (13)
Type: Heap Integer
[extract! (h) while not empty? (h)]
[11, 7, 4, 3, —4, —T7] (14)
Type: List Integer

A binary tree is a “tree” with at most two branches per node: it is either
empty, or else is a node consisting of a value, and a left and right subtree
(again, binary trees).!!

binarySearchTree [5,3,2,9,4,7,11]
[2, 3, 4], 5, [7, 9, 11]] (15)

Type: BinarySearchTree Positivelnteger

modTree(8,[2,3,5,7])
[0, 2, 3, 1] (16)

Type: List Integer

A setis a collection of elements where duplication and order is irrelevant.!?
Sets are always finite and have no corresponding structure like streams
for infinite collections.

fs := set[1/3,4/5,-1/3,4/5]

(17)

——
cal
wl=
SIS

——

Type: Set Fraction Integer

108ee ‘Heap’ on page 443 for more details. Heaps are also examples of data structures
called bags. Other bag data structures are Stack, Queue, and Dequeue.

"Example of binary tree types are BinarySearchTree (see ‘BinarySearchTree’ on page
361, PendantTree, TournamentTree, and BalancedBinaryTree (see ‘BalancedBinaryTree’ on
page 354).

12See ‘Set’ on page 563 for more details.



For all the primes p between 2
and 1000, find the distribution
of p mod 5.

Compute the above distribution
of primes using tables. First, let
t denote an empty table of keys
and values, each of type Integer.

In English, this says “Define
howMany (k) as follows. First, let
n be the value of search(k,t).
Then, if n has the value

” failed”, return the value 1;
otherwise return n 4 1.”

Run through the primes to
create the table, then print the
table. The expression t.m :=
howMany (m) updates the value in
table t stored under key m.

Declare that daniel can only be
assigned a record with two
prescribed fields.

A multiset is a set that keeps track of the number of duplicate values.'3

[x rem 5 for x in primes(2,1000)]

{0, 42:3, 40:1, 38:4, 47:2}

multiset
(18)
Type: Multiset Integer

A table is conceptually a set of “key—value” pairs and is a generalization
of a multiset.'"* The domain Table(Key, Entry) provides a general-purpose
type for tables with values of type Entry indexed by keys of type Key.

t : Table(Integer,Integer) :=

table()

empty ()
(19)
Type: Table(Integer, Integer)
We define a function howMany to return the number of values of a given
modulus k seen so far. It calls search(k,t) which returns the number of

values stored under the key k in table t, or "failed" if no such value is
yet stored in t under k.

howMany (k) == (n:=search(k,t); n case "failed" => 1; n+1l)
Type: Void
for p in primes(2,1000) repeat (m:= p rem 5; t.m:=
howMany(m)); t
Compiling function howMany with type Integer ->
Integer
table (2 =47, 4=38,1=40,3=42,0=1) (21)

Type: Table(Integer, Integer)

A record is an example of an inhomogeneous collection of objects.!®> A
record consists of a set of named selectors that can be used to access its
components.

daniel Record(age Integer, salary Float)

Type: Void

13Gee ‘MultiSet’ on page 506 for details.

Y“For examples of tables, see AssociationList (‘AssociationList’ on page 352), HashTable,
KeyedAccessFile (‘KeyedAccessFile’ on page 460), Library (‘Library’ on page 474),
SparseTable (‘SparseTable’ on page 568), StringTable (‘StringTable’ on page 581), and
Table (‘Table’ on page 585).

15See Section 2.4 on page 105 for details.
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Give daniel a value, using
square brackets to enclose the
values of the fields.

Give daniel a raise.

Let dog be either an integer or a
string value.

Give dog a name.
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daniel := [28, 32005.12]

[age = 28, salary = 32005.12] (23)
Type: Record(age: Integer, salary: Float)

daniel.salary := 35000; daniel

[age = 28, salary = 35000.0] (24)
Type: Record(age: Integer, salary: Float)

A wunion is a data structure used when objects have multiple types.'6

dog: Union(licenseNumber: Integer, name: String)

Type: Void

dog := "Whisper"
"Whisper" (26)
Type: Union(name: String, ...)

All told, there are over forty different data structures in AXIOM. Using
the domain constructors described in Chapter 13, you can add your own
data structure or extend an existing one. Choosing the right data struc-
ture for your application may be the key to obtaining good performance.

16See Section 2.5 on page 108 for details.



1.7
Expanding to
Higher
Dimensions

You can create a matrix from a
list of lists, where each of the
inner lists represents a row of
the matrix.

The “collections” construct (see
Section 5.5 on page 171) is
useful for creating matrices
whose entries are given by
formulas.

Let vm denote the three by three
Vandermonde matrix.

Use this syntax to extract an
entry in the matrix.

To get higher dimensional aggregates, you can create one-dimensional
aggregates with elements that are themselves aggregates, for example,
lists of lists, one-dimensional arrays of lists of multisets, and so on. For
applications requiring two-dimensional homogeneous aggregates, you will
likely find two-dimensional arrays and matrices most useful.

The entries in TwoDimensionalArray and Matrix objects are all the same type,
except that those for Matrix must belong to a Ring. You create and access
elements in roughly the same way. Since matrices have an understood
algebraic structure, certain algebraic operations are available for matrices
but not for arrays. Because of this, we limit our discussion here to Matrix,
that can be regarded as an extension of TwoDimensionalArray.'”

m := matrix([[1,2], [3,4]1)
1 2
51 1)
Type: Matrix Integer
matrix([[1/(i + j - x) for i in 1..4] for j in 1..4])
r 1 1 1 1 7
r—2 r—3 r—4 r—05
1 1 1 1
r—3 r—4 r—>5 z—6
(2)
1 1 1 1
r—4 r—>5 r—6 x—17
1 1 1 1
L -5 z—6 x—17 z—8
Type: Matrix Fraction Polynomial Integer
vm := matrix [[1,1,1], [x,y,zl, [x*x,y*y,z*z]]
11 1
r Yy =z (3)
22 2 22
Type: Matrix Polynomial Integer
vm (3, 3)
2 (4)

Type: Polynomial Integer

17See ‘TwoDimensionalArray’ on page 590 for more information about arrays. For
more information about AXIOM’s linear algebra facilities, see ‘Matrix’ on page 500,
‘Permanent’ on page 528, ‘SquareMatrix’ on page 569, ‘Vector’ on page 601, Section 8.4
on page 280(computation of eigenvalues and eigenvectors), and Section 8.5 on page
283(solution of linear and polynomial equations).
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You can also pull out a row or a
column.

You can do arithmetic.

You can perform operations
such as transpose, trace, and
determinant.
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column (vm,2)

1, v, 4]
vm * vm
>+ +1 v +y+1
2 ztzytr Yzt

()

Type: Vector Polynomial Integer

224241
Btyzta (6)

2?2224y’ 4+a? P PP Ay a4 a?

factor determinant vm

(y—=) (z-y) (z-2)

Type: Matrix Polynomial Integer

(7)

Type: Factored Polynomial Integer



1.8
Writing Your Own
Functions

Define the value of fact at 0.

Define the value of fact(n) for
general n.

Ask for the value at 50. The
resulting function created by
AXIOM computes the value by
iteration.

A second definition uses an
if-then-else and recursion.

AXIOM provides you with a very large library of predefined operations
and objects to compute with. You can use the AXIOM library of con-
structors to create new objects dynamically of quite arbitrary complexity.
For example, you can make lists of matrices of fractions of polynomials
with complex floating point numbers as coefficients. Moreover, the library
provides a wealth of operations that allow you to create and manipulate
these objects.

For many applications, you need to interact with the interpreter and write
some AXIOM programs to tackle your application. AXIOM allows you
to write functions interactively, thereby effectively extending the system
library. Here we give a few simple examples, leaving the details to Chap-
ter 6.

We begin by looking at several ways that you can define the “factorial”
function in AXIOM. The first way is to give a piece-wise definition of the
function. This method is best for a general recurrence relation since the
pieces are gathered together and compiled into an efficient iterative func-
tion. Furthermore, enough previously computed values are automatically
saved so that a subsequent call to the function can pick up from where it
left off.

fact(0) == 1

Type: Void
fact(n) == n*fact(n-1)

Type: Void
fact(50)

Compiling function fact with type Integer -> Integer
Compiling function fact as a recurrence relation.

30414093201713378043612608166064768844377641568960512 3)
000000000000

Type: Positivelnteger

fac(n) == if n < 3 then n else n * fac(n - 1)

Type: Void
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This function is less efficient
than the previous version since
each iteration involves a
recursive function call.

A third version directly uses
iteration.

This is the least
space-consumptive version.

A final version appears to
construct a large list and then
reduces over it with
multiplication.

In fact, the resulting
computation is optimized into
an efficient iteration loop
equivalent to that of the third
version.

The library version uses an
algorithm that is different from
the four above because it highly
optimizes the recurrence
relation definition of factorial.
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fac (50)

Compiling function fac with type Integer -> Integer

30414093201713378043612608166064768844377641568960512 (5)
000000000000

Type: Positivelnteger

fa(n) == (a := 1; for i in 2..n repeat a := a*i; a)
Type: Void
fa(50)
Compiling function fa with type Positivelnteger ->
Positivelnteger

30414093201713378043612608166064768844377641568960512 (7)
000000000000

Type: Positivelnteger

f(n) == reduce(*,[i for i in 2..n])
Type: Void
£(50)
Compiling function f with type PositiveInteger ->
PositivelInteger

30414093201713378043612608166064768844377641568960512 (9)
000000000000

Type: Positivelnteger
factorial(50)

30414093201713378043612608166064768844377641568960512 (10)
000000000000

Type: Positivelnteger

You are not limited to one-line functions in AXIOM. If you place your
function definitions in .input files (see Section 4.1 on page 139), you can
have multi-line functions that use indentation for grouping.

Given n elements, diagonalMatrix creates an n by n matrix with those
elements down the diagonal. This function uses a permutation matrix
that interchanges the ith and jth rows of a matrix by which it is right-
multiplied.



This function definition shows a  permMat(n, i, j) ==

style of definition that can be m := diagonalMatrix

used in .input files. Indentation [(if i = k or j = k then 0 else 1)

is used to create blocks: for k in 1..n]

sequences of expressions that m(i,j) := 1

are evaluated in sequence except m(j,i) :=1

as modified by control m

statements such as

if-then-else and return. Type: Void
This creates a four by four p := permMat(4,2,3)

matrix that interchanges the
second and third rows.

Create an example matrix to
permute.

Interchange the second and
third rows of m.

This declares t to be a
two-argument function that
returns a Float. The first
argument is a function that
takes one Float argument and
returns a Float.

Compiling function permMat with type (Positivelnteger
,PositiveInteger,Positivelnteger) -> Matrix

Integer
1 0 00
0010
0100 (12)
0 0 01
Type: Matrix Integer
m := matrix [[4*1 + j for j in 1..4] for i in 0..3]
1 2 3 4
5 6 7 8
9 10 11 12 (13)
13 14 15 16

Type: Matrix Integer
permMat(4,2,3) * m

1 2 3 4
9 10 11 12
5 6 7 8 (14)
13 14 15 16

Type: Matrix Integer

A function can also be passed as an argument to another function, which
then applies the function or passes it off to some other function that
does. You often have to declare the type of a function that has functional
arguments.

t : (Float -> Float, Float) -> Float

Type: Void
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This is the definition of t.

We have not defined a cos in
the workspace. The one from
the AXIOM library will do.

Here we define our own
(user-defined) function.

Pass this function as an
argument to t.

Give this rule the name
groupSqrt.

Here is a test expression.

The rule groupSqrt
successfully simplifies the
expression.
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t(fun, x) == fun(x)**2 + sin(x)**2

Type: Void
t(cos, 5.2058)
Compiling function t with type ((Float -> Float),
Float) -> Float
1.0 (17)
Type: Float
cosinv(y) == cos(1l/y)
Type: Void
t(cosinv, 5.2058)
Compiling function cosinv with type Float -> Float
1.739223724180051649254147684772932520785 (19)
Type: Float

AXIOM also has pattern matching capabilities for simplification of ex-
pressions and for defining new functions by rules. For example, suppose
that you want to apply regularly a transformation that groups together
products of radicals:

Va Vb — Vab,

Note that such a transformation is not generally correct. AXIOM never
uses it automatically.

(Va)(vb)

groupSqrt := rule(sqrt(a) * sqrt(b) == sqrt(a*b))
%E a Vb= =%E Va b (20)

Type: RewriteRule(Integer, Integer, Expression Integer)
a := (sqrt(x) + sqrt(y) + sqrt(z))**4
(4z+4y+122z) Jy+ (A z+12y+4z) Vz) Vot

(12z24+4y+4a) Vo Jy+22+6y+6z) 2+1y> +6xy+a?
Type: Expression Integer

(21)

groupSqrt a
Qz4+4y+122) Vyz+ (4 2+12y+4 ) Vo 2+

(12z44y+4z) Jry+22+6y+62) 2+9y°>+6zy+2°
Type: Expression Integer

(22)



1.9
Polynomials

The polynomial constructor
most familiar to the interactive
user is Polynomial.

If you wish to restrict the
variables used,
UnivariatePolynomial provides
polynomials in one variable.

The constructor
MultivariatePolynomial provides
polynomials in one or more
specified variables.

You can change the way the
polynomial appears by
modifying the variable ordering
in the explicit list.

The constructor
DistributedMultivariatePolynomial
provides polynomials in one or
more specified variables with
the monomials ordered
lexicographically.

The constructor Homogeneous-
DistributedMultivariatePolynomial
is similar except that the
monomials are ordered by total
order refined by reverse
lexicographic order.

Polynomials are the commonly used algebraic types in symbolic compu-
tation. Interactive users of AXIOM generally only see one type of poly-
nomial: Polynomial(R). This type represents polynomials in any number
of unspecified variables over a particular coefficient domain R. This type
represents its coefficients sparsely: only terms with non-zero coefficients
are represented.

In building applications, many other kinds of polynomial representations
are useful. Polynomials may have one variable or multiple variables, the
variables can be named or unnamed, the coefficients can be stored sparsely
or densely. So-called “distributed multivariate polynomials” store poly-
nomials as coefficients paired with vectors of exponents. This type is par-
ticularly efficient for use in algorithms for solving systems of non-linear
polynomial equations.
(X**z - X*y**3 +3*y)**2
2y -6yt —223 P +99y%+6 2% y+ 2t (1)
Type: Polynomial Integer
(3*x-1)**2 *

p: UP(x,INT) := (2*x + 8)

18 23 +60 2 — 46 = + 8 (2)
Type: UnivariatePolynomial(x, Integer)

m: MPOLY([x,y],INT) := (x**2-x*y**3+3*y)**2

x4—2y3x3+<y6+6y)1:2—6y4:r:+9y2 (3)
Type: MultivariatePolynomial([x, y], Integer)
m :: MPOLY([y,x],INT)
2y -6yt —223 P +99°+6 2% y+ 2t (4)
Type: MultivariatePolynomial(ly, x], Integer)
m :: DMP([y,x],INT)
WPt —6yte—2y 2 +99°+6y 2+t (5)
Type: DistributedMultivariatePolynomial([y, x], Integer)

m :: HDMP([y,x],INT)

Pt —2yP3 -6yt s +at+6ya?+99° (6)

Type: HomogeneousDistributedMultivariatePolynomial(ly, x], Integer)

More generally, the domain constructor GeneralDistributedMultivariatePoly-
nomial allows the user to provide an arbitrary predicate to define his
own term ordering. These last three constructors are typically used in
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Grobner basis applications and when a flat (that is, non-recursive) display
is wanted and the term ordering is critical for controlling the computation.
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1.10
Limits

You can take limits of functions
with parameters.

As you can see, the limit is
expressed in terms of the
parameters.

A variable may also approach
plus or minus infinity:

Use %plusInfinity and
fminusInfinity to denote co
and —oo.

A function can be defined on
both sides of a particular value,
but may tend to different limits
as its variable approaches that
value from the left and from the
right.

As x approaches 0 along the real
axis, exp(-1/x**2) tends to 0.

However, if x is allowed to
approach 0 along any path in
the complex plane, the limiting
value of exp(-1/x**2) depends
on the path taken because the
function has an essential
singularity at x=0. This is
reflected in the error message
returned by the function.

AXIOM’s limit function is usually used to evaluate limits of quotients
where the numerator and denominator both tend to zero or both tend to
infinity. To find the limit of an expression f as a real variable x tends to
a limit value a, enter 1imit(f, x=a). Use complexLimit if the variable
is complex. Additional information and examples of limits are in Section
8.6 on page 288.

g := csc(a*x) / csch(b*x)
csc (a ) (1)
csch (b x)

Type: Expression Integer

limit(g,x=0)

b
5 )
Type: Union(OrderedCompletion Expression Integer, ...)
h = (1 + k/x)**x
xz+k”
3
. (3)

Type: Expression Integer
limit (h,x=%plusInfinity)
e* (4)
Type: Union(OrderedCompletion Expression Integer, ...)
limit(sqrt(y**2)/y,y = 0)
[leftHandLimit = —1, right HandLimit = 1] (5)

Type: Union(Record(leftHandLimit: Union(OrderedCompletion Expression Integer,
"failed"), rightHandLimit: Union(OrderedCompletion Expression Integer,
"failed")), ...)

limit(exp(-1/x**2),x = 0)
0 (6)
Type: Union(OrderedCompletion Expression Integer, ...)
complexLimit (exp(-1/x**2),x = 0)
"failed" (7)
Type: Union("failed", ...)
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1.11
Series

You can convert a functional
expression to a power series by
using the operation series. In
this example, sin(a*x) is
expanded in powers of (x - 0),
that is, in powers of x.

This expression expands
sin(a*x) in powers of (x -
%pi/4).

AXIOM provides Puiseuz
series: series with rational
number exponents. The first
argument to series is an
in-place function that computes

the n t! coefficient. (Recall that
the “+->” is an infix operator
meaning “maps to.”)

Once you have created a power
series, you can perform
arithmetic operations on that
series. We compute the Taylor
expansion of 1/(1-x).

Compute the square of the
series.
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AXIOM also provides power series. By default, AXIOM tries to com-
pute and display the first ten elements of a series. Use )set streams
calculate to change the default value to something else. For the pur-
poses of this book, we have used this system command to display fewer
than ten terms. For more information about working with series, see
Section 8.9 on page 295.

series(sin(a*x),x = 0)
3 5 7
a3, a 5 a 7 9
_ el _ 1
ax 6x+120x z010 © +O(a:) (1)

Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)

series(sin(a*x),x = %pi/4)

in<M>+ w© (M) (x_f)_cﬂmm< _ﬂ>2_
STy ) T8y 4 2 Ty

a® cos (%) (x B 7r>3 a* sin (%) ( 7r>4 N a® cos (%)
4

Type: UnivariatePuiseuxSeries(Expression Integer, x, pi/4)

series(n +-> (-1)**((3*n - 4)/6)/factorial(n -
0,4/3..,2)

1/3) ,x =

ot - s a¥ 4+ 0(a!) 3)

Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)

f := series(1/(1-x),x = 0)

1+x+x2+x3+x4+x5+x6+x7+0<$8) (4)
Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)

f ** 2

14+22+327+42°+52'+62°+ 7204827+ 0 (o) (5)

Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)



The usual elementary functions
(log, exp, trigonometric
functions, and so on) are defined
for power series.

Here is a way to obtain
numerical approximations of e
from the Taylor series expansion
of exp(x). First create the
desired Taylor expansion.

Evaluate the series at the value
1.0. As you see, you get a
sequence of partial sums.

f := series(1/(1-x),x = 0)

1+:13—|—a:2+m3+x4+$5+az6+m7+0<1‘8) (6)
Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)

g := log(f)

x+%;UQ—I—%xS—I—Ex4+%m5+éaz6+%x7+éx8+0<x9) (7)
Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)

exp (g)

1+:13—|—332+m3+x4+x5+x6+$7+0<m8) (8)

Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)

f := taylor(exp(x))

1 1 1 1 1 1
1 Lo 1 3 1 4 1 5 L ¢ T 0(22) (9
+;1:—|—2a: +6:1: —1—2496 —1—120:U +72033 +504Ox + (x)()

Type: UnivariateTaylorSeries(Expression Integer, x, 0)

eval(£f,1.0)

1.0, 2.0, 2.5,
2.666666666666666666666666666666666666667,
2.708333333333333333333333333333333333333,
2.716666666666666666666666666666666666667,
2.718055555555555555555555555555555555556, . . .|

Type: Stream Expression Float

(10)
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1.12
Derivatives

To find the derivative of an
expression f with respect to a
variable x, enter D(f, x).

An optional third argument n in
D asks AXIOM for the nth
derivative of £. This finds the
fourth derivative of £ with
respect to x.

You can also compute partial
derivatives by specifying the
order of differentiation.

This returns 0 since F (so far)
does not explicitly depend on x.

Start by declaring that F, x, and
y are operators.
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Use the AXIOM function D to differentiate an expression.

f := exp exp x

e (1)

Type: Expression Integer

D(f, x)

e® e (2)
Type: Expression Integer

D(f, x, 4)

(em4 +6e" 4+ 7"+ e‘r) e’ (3)
Type: Expression Integer

g := sin(x**2 + y)

sin (y + m2> (4)
Type: Expression Integer

D(g, y)

cos (y + 1‘2> (5)
Type: Expression Integer

D(g, [y, vy, x, x])

4 z? sin (y + x2> — 2 cos (y + :U2) (6)
Type: Expression Integer

AXIOM can manipulate the derivatives (partial and iterated) of expres-
sions involving formal operators. All the dependencies must be explicit.

D(F,x)
0 (7)
Type: Polynomial Integer

Suppose that we have F a function of x, y, and z, where x and y are
themselves functions of z.

:= operator ’y

y (8)
Type: BasicOperator

F := operator ’'F; x := operator ’'x; y



You can use F, x, and y in
expressions.

Differentiate formally with
respect to z. The formal
derivatives appearing in dadz
are not just formal symbols, but

do represent the derivatives of x,

y, and F.

You can evaluate the above for
particular functional values of F,
x, and y. If x(z2) is exp(z) and
y(2) is log(z+1), then this
evaluates dadz.

You obtain the same result by
first evaluating a and then
differentiating.

a :=F(xz, yz, z**2) + x y(z+1)
T+ 1)+ F (2(2), y(2), 2) (9)
Type: Expression Integer
dadz := D(a, z)
2z F3 ( , 22) (93 (2), y(2), 22)—{— (10)
v (2) Fi (o <> (z),z)w( +1) v (c+1)

Type: Expression Integer
'y, z +-> log(z+1))

.,

Type: Expression Integer
z +-> exp z), 'y, z +-> log(z+l))

'x, z +-> exp z),
(2 2242 z) F3 (ez, log (z + 1), 22) + F (ez, log(z+1), 2z
+(z+1) e* Fy (ez, log (z + 1), 22) +z+1

z+1

eval (eval (dadz,

eval(eval(a, ’x,

F (e, log (2 + 1), (12)

Type: Expression Integer

) (13)

Type: Expression Integer

z2)—|—z+2

D(%, z)
(2 22 42 z) Fs (ez, log (z + 1), 22) + Fo (ez, log (z + 1), 22)
+(z+1) e Fy (ez, log (z+ 1), z2) +z+1
z+1
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1.13
Integration

We use a factorization-free
algorithm.

Rather than query the user or
make sign assumptions, AXIOM
returns all possible answers.

If the parameter is complex
instead of real, then the notion
of sign is undefined and there is
a unique answer. You can
request this answer by
“prepending” the word
“complex” to the command
name:

This one is the easy one. The
next one looks very similar but
the answer is much more
complicated.
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AXIOM has extensive library facilities for integration.

The first example is the integration of a fraction with denominator that
factors into a quadratic and a quartic irreducible polynomial. The usual
partial fraction approach used by most other computer algebra systems
either fails or introduces expensive unneeded algebraic numbers.

integrate ((x**2+2*x+1)/ ((x+1)**6+1),x)

arctan (23 +3 22 +3 2 + 1) 1)
3

Type: Union(Expression Integer, ...)

When real parameters are present, the form of the integral can depend
on the signs of some expressions.

integrate(1/(x**2 + a),x)

log ((m2 —a) y=a+2a m) arctan <a: ﬁ)

2 +a a
2v—a ’ Vva

(2)

Type: Union(List Expression Integer, ...)
The integrate operation generally assumes that all parameters are real.
The only exception is when the integrand has complex valued quantities.

complexIntegrate(1/(x**2 + a),x)
log rv—a+t+a ~log rv—a—a
Voo Voo 3
2y/—a

Type: Expression Integer

The following two examples illustrate the limitations of table-based ap-
proaches. The two integrands are very similar, but the answer to one of
them requires the addition of two new algebraic numbers.

integrate(x**3 / (atb*x)**(1/3),x)
(120 3 23 — 135 a b2 22 + 162 a2 b — 243 a®) Vb z +a°

440 vt (4)
Type: Union(Expression Integer, ...)




Only an algorithmic approach is
guaranteed to find what new
constants must be added in
order to find a solution.

When AXIOM returns an
integral sign, it has proved that
no answer exists as an
elementary function.

Whenever possible, AXIOM
tries to express the answer using
the functions present in the
integrand.

A strong structure-checking
algorithm in AXIOM finds
hidden algebraic relationships
between functions.

integrate(l / (x**3 * (atb*x)**(1/3)),x)

—2b% 2 \/§log(\3/6 \3/bx+a2+{”/52 \3/bx+a+a>+
4 b% 22 V3 log (\3/&2 \S/bx—i-a—a)—i-

2 Ya> /b
12b2x2arctan< \/§\/E x+a+a\/§>+

3a

(12bx—9a)\/§\3/5v3ba:+a2
18 a2 22 /3 ¥a

(5)
Type: Union(Expression Integer, ...)

Some computer algebra systems use heuristics or table-driven approaches
to integration. When these systems cannot determine the answer to an
integration problem, they reply “I don’t know.” AXIOM uses a algo-
rithm for integration. that conclusively proves that an integral cannot be
expressed in terms of elementary functions.

integrate(log(l + sqrt(a*x + b)) / x,x)

x log (\/m + 1)
I

A%V (6)

Type: Union(Expression Integer, ...)

AXIOM can handle complicated mixed functions much beyond what you
can find in tables.

integrate((sinh(1+sqrt(x+b))+2*sqrt(x+b)) / (sqrt(x+b) *
(x + cosh(l+sqrt(x + b)))), x)

-2 cosh(/m—k 1) -2
sinh (\/m + 1) — cosh (\/m + 1)

Type: Union(Expression Integer, ...)

2 log -2V +b (7)

integrate(tan(atan(x)/3),x)

2 2
8 log (3 tan (25 )" 1) — 3 tan (2227 4 18 5 tan (220
8
18 (8)
Type: Union(Expression Integer, ...)

The discovery of this algebraic relationship is necessary for correct inte-
gration of this function. Here are the details:

1. If x = tant and ¢g = tan(¢/3) then the following algebraic relation
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This is an example of a mixed
function where the algebraic
layer is over the transcendental
one.

While incomplete for
non-elementary functions,
AXIOM can handle some of
them.
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is true:
¢® =3z —3g+2=0

2. Integrate g using this algebraic relation; this produces:

(24g% — 8)log(3g% — 1) + (8122 + 24)g? + T2xg — 272 — 16
54g% — 18

3. Rationalize the denominator, producing:

8log(3g? — 1) — 3¢ + 1829 + 16
18

Replace g by the initial definition g = tan(arctan(x)/3) to produce
the final result.

integrate((x + 1) / (x*(x + log x) ** (3/2)), x)
2 /log(z) +z (9)

log (z) + =
Type: Union(Expression Integer, ...)

integrate(exp(-x**2) * erf(x) / (erf(x)**3 - erf(x)**2 -
erf(x) + 1),x)
erf (z) — 1

(erf () — 1) /7 log (erf(x)—i—l
8 erf () — 8

)2 (10)

Type: Union(Expression Integer, ...)

More examples of AXIOM’s integration capabilities are discussed in Sec-
tion 8.8 on page 292.



1.14
Differential
Equations

Let’s solve some differential
equations. Let y be the

unknown function in terms of x.

Here we solve a third order
equation with polynomial
coefficients.

Here we find all the algebraic
function solutions of the
equation.

This example has solutions
whose logarithmic derivative is
an algebraic function of degree
two.

The general approach used in integration also carries over to the solution
of linear differential equations.

y := operator 'y
y (1)
Type: BasicOperator

deq := x**3 * D(y %, x, 3) + x**2 * D(y x, x, 2) - 2 * x *
D(y x, x) + 2 * y x =2 * x**4

2’y (2) + a2y (2) 22y (2) +2y(x) =22 (2)
Type: Equation Expression Integer

solve(deq, y, x)

[particular = z° — 102 +20 2% + 4
15 z ’
basis_[2:c3—3x2+1 3 —1 x3—3w2—1H (3)
x oo x

Type: Union(Record(particular: Expression Integer, basis: List Expression Integer),

)

deq := (x**2 + 1) * D(y x, x, 2) +3 * x * D(y x, x) +y x

(x2+1> vy (z)+3 2y (z)+y(z)=0 (4)
Type: Equation Expression Integer
solve(deq, y, x)

1 log (\/JJQ +1- :r)
Ve S o | ®)

Type: Union(Record(particular: Expression Integer, basis: List Expression Integer),

)

Coefficients of differential equations can come from arbitrary constant
fields. For example, coeflicients can contain algebraic numbers.

particular = 0, basis =

eq := 2*x**3 * D(y x,x,2) + 3*x**2 * D(y x,x) - 2 * y x

22% y () +3 2% y () —2y(2) (6)
Type: Expression Integer
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Here’s another differential
equation to solve.

Let’s solve a system of nonlinear
first order equations and get a
solution in power series. Tell
AXIOM that x is also an
operator.

Here are the two equations
forming our system.
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solve(eq,y,x) .basis
(_2> 2
e\ VI , € v (7)

Type: List Expression Integer
:=D(y x, x) =y(x) / (x + y(x) * log y x)

y (z)
y (z) log (y (z)) + @ (8)

y (z) =
Type: Equation Expression Integer
solve(deq, y, x)

y(z) log (y (x))* -2z
2y ()

(9)
Type: Union(Expression Integer, ...)

Rather than attempting to get a closed form solution of a differential
equation, you instead might want to find an approximate solution in the
form of a series.

X := operator ’'x

x (10)
Type: BasicOperator

eql := D(x(t), t) =1 + x(t)**2

v )=z () +1 (11)

Type: Equation Expression Integer

eq2 := D(y(t), t) x(t)

y () ==@)y()

* y ()
(12)
Type: Equation Expression Integer



We can solve the system around
t = 0 with the initial conditions
x(0) = 0 and y(0) = 1. Notice
that since we give the unknowns
in the order [x, y], the answer
is a list of two series in the order
[series for x(t), series

for y(t)].

seriesSolve([eq2, eqll, [x, yl, t =0, [y(0) =1, x(0) =
01)

Compiling function %BT with type List
UnivariateTaylorSeries (Expression Integer,t,0) ->
UnivariateTaylorSeries (Expression Integer,t,0)

Compiling function %BU with type List
UnivariateTaylorSeries (Expression Integer,t,0) ->
UnivariateTaylorSeries (Expression Integer,t,0)

1 2 17 1 5 61
t+ -+ =+ —t"+0 (), 1+ 4+ — ¢+ — 5
{+3 Tl et T (> To Ut Tt

o (")

(13)

Type: List UnivariateTaylorSeries(Expression Integer, t, 0)
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1.15
Solution of
Equations

A system of two equations
involving a symbolic parameter
t.

Find the real roots of S(19)
with rational arithmetic, correct
to within 1/10%°.

Find the complex roots of S(19)
with floating point coefficients
to 20 digits accuracy in the
mantissa.

If a system of equations has
symbolic coefficients and you
want a solution in radicals, try
radicalSolve.
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AXIOM also has state-of-the-art algorithms for the solution of systems
of polynomial equations. When the number of equations and unknowns
is the same, and you have no symbolic coefficients, you can use solve for
real roots and complexSolve for complex roots. In each case, you tell
AXIOM how accurate you want your result to be. All operations in the
solve family return answers in the form of a list of solution sets, where
each solution set is a list of equations.

S(t) == [x**2-2*y**2 - t,x*y-y-5*x + 5]

Type: Void
solve(S(19),1/10**20)

Compiling function S with type Positivelnteger ->
List Polynomial Integer

H e 2451682632253093442511]
Y T T 05147905179352825356 |

~2451682632253093442511 } }

pu— 5 pu—
[y » T 095147905179352825856

Type: List List Equation Polynomial Fraction Integer
complexSolve(S(19),10.e-20)

[[y = 5.0, x = 8.306623862918074852561669055295290320373],
[y = 5.0, x = —8.306623862918074852561669055295290320373], (3)
[y=-3.04, x =1.0], [y =3.04, z =1.0]]

Type: List List Equation Polynomial Complex Float
radicalSolve(S(a), [x,y])

Compiling function S with type Variable a -> List
Polynomial Integer

H:c:—\/a—i-E)O,y:E)], [x:\/a+50,y:51,

— 1
7[$:17y:_ a2+

Type: List List Equation Expression Integer

—a+1
2

[le,y:

For systems of equations with symbolic coefficients, you can apply solve,
listing the variables that you want AXIOM to solve for. For polynomial
equations, a solution cannot usually be expressed solely in terms of the
other variables. Instead, the solution is presented as a “triangular” system
of equations, where each polynomial has coefficients involving only the
succeeding variables. This is analogous to converting a linear system of



A system of three equations in
five variables.

Solve the system for unknowns
[x,y, 2], reducing the solution to
triangular form.

equations to “triangular form”.
eqns := [x**2 - y + z,x**2%z + x**4 - b*y, y**2 *z - a -
b*x]
[zfy+x2,x2szy+x4,y227b:pfa (5)
Type: List Polynomial Integer

solve(eqns, [x,y,2])

a a? BH2b22 40 2 —a
e
y:z+b,z6+4bz5+6b224+(4b3—2a>23—1— (6)

(b4—4ab) 22—2ab2z—b3—|—a2:OH

Type: List List Equation Fraction Polynomial Integer
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1.16 We conclude our tour of AXIOM with a brief discussion of system com-
system mands. System commands are special statements that start with a closing
Commands parenthesis (“)”). They are used to control or display your AXIOM envi-
ronment, start the HyperDoc system, issue operating system commands
and leave AXIOM. For example, )system is used to issue commands to
the operating system from AXIOM. Here is a brief description of some
of these commands. For more information on specific commands, see

Appendix A.

Perhaps the most important user command is the ) clear all command
that initializes your environment. Every section and subsection in this
book has an invisible ) clear all that is read prior to the examples given
in the section. )clear all gives you a fresh, empty environment with
no user variables defined and the step number reset to 1. The )clear
command can also be used to selectively clear values and properties of
system variables.

Another useful system command is )read. A preferred way to develop
an application in AXIOM is to put your interactive commands into a
file, say my.input file. To get AXIOM to read this file, you use the
system command )read my.input. If you need to make changes to your
approach or definitions, go into your favorite editor, change my.input,
then )read my.input again.

Other system commands include: )history, to display previous input
and/or output lines; )display, to display properties and values of workspace
variables; and )what.

Issue )what to get a list of )what operations integrate
AXIOM objects that contain a

given substring in their name. Operations whose names satisfy the above pattern(s):

HermiteIntegrate algintegrate
complexIntegrate expintegrate
extendedIntegrate fintegrate
infieldIntegrate integrate
internalIntegrate internalIntegrateO
lazyGintegrate lazyIntegrate
lfintegrate limitedIntegrate
monomialIntegrate nagPolygonIntegrate
palgintegrate pmComplexintegrate
pmintegrate primintegrate
tanintegrate

To get more information about an operation such as
HermiteIntegrate , issue the command )display op
HermiteIntegrate

A useful system command is )undo. Sometimes while computing interac-
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“Let me define two mutually
dependent functions f and g
piece-wise.”

“Here is the general term for £.”

“And here is the general term
for g.”

“What is value of £(3)7”

tively with AXIOM, you make a mistake and enter an incorrect definition
or assignment. Or perhaps you need to try one of several alternative
approaches, one after another, to find the best way to approach an appli-
cation. For this, you will find the undo facility of AXIOM helpful.

System command )undo n means “undo back to step n”; it restores the
values of user variables to those that existed immediately after input
expression n was evaluated. Similarly, Jundo -n undoes changes caused
by the last n input expressions. Once you have done an )undo, you
can continue on from there, or make a change and redo all your input
expressions from the point of the )undo forward. The )undo is completely
general: it changes the environment like any user expression. Thus you
can )undo any previous undo.

Here is a sample dialogue between user and AXIOM.

£f(0) == 1; g(0) == 1

Type: Void
f(n) == e/2*f(n-1) - x*g(n-1)

Type: Void
g(n) == -x*f(n-1) + d/3*g(n-1)

Type: Void
£(3)

Compiling function g with type Integer -> Polynomial
Fraction Integer

Compiling function g as a recurrence relation.

Compiling function g with type Integer -> Polynomial
Fraction Integer

Compiling function g as a recurrence relation.

+++ |*1;g;1;initial;AUX| redefined
+++ |*1;g;1l;initial| redefined
Compiling function f with type Integer -> Polynomial

Fraction Integer
Compiling function f as a recurrence relation.

+++ |*l;f;1;initial| redefined
1 1 1 1 1
3 2 2 2 3
Pt (e+-d)a?+(—-—-de—-d*) x+- 4
‘ <63>m (46 6°° 9 )x 8 ° )
Type: Polynomial Fraction Integer
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“Hmm, I think I want to define
£ differently. Undo to the
environment right after I defined
f'”

“Here is how I think I want f to
be defined instead.”

Redo the computation from
expression 3 forward.

“I want my old definition of £
after all. Undo the undo and
restore the environment to that
immediately after (4).”

“Check that the value of £(3) is
restored.”
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Jundo 2

f(n) == d/3*f(n-1) - x*g(n-1)
1 old definition(s) deleted for function or rule £
Type: Void

Jundo )redo

Jundo 4

£(3)

Compiling function g with type Integer -> Polynomial
Fraction Integer
Compiling function g as a recurrence relation.

+++ |*1;g;1;initial;AUX| redefined

+++ |*1;g;1l;initial| redefined

Compiling function g with type Integer -> Polynomial
Fraction Integer

Compiling function g as a recurrence relation.

+++ |*1;g;1l;initial;AUX| redefined
+++ |*1;g;1l;initial| redefined
Compiling function f with type Integer -> Polynomial

Fraction Integer
Compiling function f as a recurrence relation.

+++ |*l;f;l;initial;AUX| redefined
+++ |*l;f;l;initial| redefined
1 1 1 1 1
3 2 2 2 3
-+ e+ d x+—e—de—d>x+e 6
( 3 ) ( 4 6 9 8 (6)
Type: Polynomial Fraction Integer
After you have gone off on several tangents, then backtracked to previous
points in your conversation using )undo, you might want to save all the
“correct” input commands you issued, disregarding those undone. The

system command )history )write mynew.input writes a clean straight-
line program onto the file mynew.input on your disk.

This concludes your tour of AXIOM. To disembark, issue the system
command )quit to leave AXIOM and return to the operating system.



CHAPTER 2

Using Types
and Modes

In this chapter we look at the key notion of type and its generalization
mode. We show that every AXIOM object has a type that determines
what you can do with the object. In particular, we explain how to use
types to call specific functions from particular parts of the library and
how types and modes can be used to create new objects from old. We
also look at Record and Union types and the special type Any. Finally, we
give you an idea of how AXIOM manipulates types and modes internally
to resolve ambiguities.
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2.1
The Basic Ildea

After an AXIOM computation,
the type is displayed toward the
right-hand side of the page (or
screen).

Here we create a rational
number but it looks like the last
result. The type however tells
you it is different. You cannot
identify the type of an object by
how AXIOM displays the
object.

When a computation produces a
result of a simpler type, AXIOM
leaves the type unsimplified.
Thus no information is lost.

This seldom matters since
AXIOM retracts the answer to
the simpler type if it is
necessary.

When you issue a positive
number, the type Positivelnteger
is printed. Surely, 3 also has
type Integer! The curious reader
may now have two questions.
First, is the type of an object
not unique? Second, how is
Positivelnteger related to Integer?
Read on!
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The AXIOM world deals with many kinds of objects. There are mathe-
matical objects such as numbers and polynomials, data structure objects
such as lists and arrays, and graphics objects such as points and graphic
images. Functions are objects too.

AXIOM organizes objects using the notion of domain of computation, or
simply domain. Each domain denotes a class of objects. The class of
objects it denotes is usually given by the name of the domain: Integer for
the integers, Float for floating-point numbers, and so on. The convention is
that the first letter of a domain name is capitalized. Similarly, the domain
Polynomial(Integer) denotes “polynomials with integer coefficients.” Also,
Matrix(Float) denotes “matrices with floating-point entries.”

Every basic AXIOM object belongs to a unique domain. The integer 3
belongs to the domain Integer and the polynomial x + 3 belongs to the
domain Polynomial(Integer). The domain of an object is also called its type.
Thus we speak of “the type Integer” and “the type Polynomial(Integer).”

-3
-3 (1)
Type: Integer

-3/1

-3 (2)
Type: Fraction Integer

x + 3 - x

3 (3)

Type: Polynomial Integer

factorial (%)
6 (4)
Type: Expression Integer

()

Type: Positivelnteger



2.1.1
Domain Constructors

To ask for “the factorial of 7”7
you enter this expression to
AXIOM. This applies the
function factorial to the value
7 to compute the result.

Enter the type Polynomial
(Integer) as an expression to
AXIOM. This looks much like a
function call as well. It is! The
result is appropriately stated to
be of type Domain, which
according to our usual
convention, denotes the class of
all domains.

Any domain can be refined to a subdomain by a membership predicate.!
For example, the domain Integer can be refined to the subdomain Posi-
tivelnteger, the set of integers x such that x > 0, by giving the AXIOM
predicate x +-> x > 0. Similarly, AXIOM can define subdomains such
as “the subdomain of diagonal matrices,” “the subdomain of lists of length
two,” “the subdomain of monic irreducible polynomials in x,” and so on.
Trivially, any domain is a subdomain of itself.

While an object belongs to a unique domain, it can belong to any number
of subdomains. Any subdomain of the domain of an object can be used
as the type of that object. The type of 3 is indeed both Integer and
Positivelnteger as well as any other subdomain of integer whose predicate is
satisfied, such as “the prime integers,” “the odd positive integers between
3 and 17,” and so on.

In AXIOM, domains are objects. You can create them, pass them to
functions, and, as we’ll see later, test them for certain properties.

In AXIOM, you ask for a value of a function by applying its name to a
set of arguments.

factorial(7)

5040 (1)
Type: Positivelnteger

Polynomial (Integer)

Polynomial Integer (2)
Type: Domain

The most basic operation involving domains is that of building a new
domain from a given one. To create the domain of “polynomials over the
integers,” AXIOM applies the function Polynomial to the domain Integer.
A function like Polynomial is called a domain constructor or, more simply,
a constructor. A domain constructor is a function that creates a domain.
An argument to a domain constructor can be another domain or, in gen-
eral, an arbitrary kind of object. Polynomial takes a single domain argu-
ment while SquareMatrix takes a positive integer as an argument to give
its dimension and a domain argument to give the type of its components.

'A predicate is a function that, when applied to an object of the domain, returns
either true or false.
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Create a complicated algebraic
domain.

Try to create a meaningless
domain.

94 - Using Types and Modes

What kinds of domains can you use as the argument to Polynomial or
SquareMatrix or List? Well, the first two are mathematical in nature. You
want to be able to perform algebraic operations like “+” and “*” on
polynomials and square matrices, and operations such as determinant
on square matrices. So you want to allow polynomials of integers and
polynomials of square matrices with complex number coefficients and, in
general, anything that “makes sense.” At the same time, you don’t want
AXIOM to be able to build nonsense domains such as “polynomials of
strings!”

In contrast to algebraic structures, data structures can hold any kind
of object. Operations on lists such as insert, delete, and concat just
manipulate the list itself without changing or operating on its elements.
Thus you can build List over almost any datatype, including itself.

List (List (Matrix (Polynomial (Complex (Fraction
(Integer))))))

List List Matrix Polynomial Complex Fraction Integer (3)
Type: Domain

Polynomial (String)

Polynomial String is not a valid type.

Evidently from our last example, AXIOM has some mechanism that tells
what a constructor can use as an argument. This brings us to the notion
of category. As domains are objects, they too have a domain. The domain
of a domain is a category. A category is simply a type whose members
are domains.

A common algebraic category is Ring, the class of all domains that are
“rings.” A ring is an algebraic structure with constants 0 and 1 and op-
erations “+”, “=” and “*”. These operations are assumed “closed” with
respect to the domain, meaning that they take two objects of the do-
main and produce a result object also in the domain. The operations are
understood to satisfy certain “axioms,” certain mathematical principles
providing the algebraic foundation for rings. For example, the additive
inverse axiom for rings states:

Every element x has an additive inverse y such that x + y = 0.

The prototypical example of a domain that is a ring is the integers. Keep
them in mind whenever we mention Ring.

Many algebraic domain constructors such as Complex, Polynomial, Fraction,
take rings as arguments and return rings as values. You can use the infix



All numerical types are rings.
Domain constructor Polynomial
builds “the ring of polynomials
over any other ring.”

Constructor List never produces
a ring.

The constructor Matrix(R) builds
“the domain of all matrices over
the ring R.” This domain is
never a ring since the operations
“+7 0 ¢«=” “and “*” on matrices of
arbitrary shapes are undefined.

Thus you can never build
polynomials over matrices.

Use SquareMatrix(n,R) instead.
For any positive integer n, it
builds “the ring of n by n
matrices over R.”

The complex integers (often
called the “Gaussian integers”)
do not form a field.

But fractions of complex
integers do.

operator “has” to ask a domain if it belongs to a particular category.
Polynomial (Integer) has Ring

true (4)

Type: Boolean
List(Integer) has Ring

false (5)

Type: Boolean

Matrix(Integer) has Ring

false

(6)

Type: Boolean

Polynomial (Matrix(Integer))

Polynomial Matrix Integer is not a valid type.

Polynomial (SquareMatrix(7,Complex(Integer)))

Polynomial SquareMatrix (7, Complex Integer )

(7)
Type: Domain

Another common category is Field, the class of all fields. A field is a
ring with additional operations. For example, a field has commutative
multiplication and a closed operation “/” for the division of two elements.
Integer is not a field since, for example, 3/2 does not have an integer result.
The prototypical example of a field is the rational numbers, that is, the
domain Fraction(Integer). In general, the constructor Fraction takes a ring
as an argument and returns a field.? Other domain constructors, such as
Complex, build fields only if their argument domain is a field.
Complex (Integer) has Field

false (8)
Type: Boolean

Fraction(Complex(Integer)) has Field
true

(9)

Type: Boolean

2Actually, the argument domain must have some additional properties so as to
belong to category IntegralDomain.
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The algebraically equivalent
domain of complex rational
numbers is a field since domain
constructor Complex produces a
field whenever its argument is a
field.
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Complex (Fraction(Integer)) has Field

true (10)
Type: Boolean

The most basic category is Type. It denotes the class of all domains and
subdomains.? Domain constructor List is able to build “lists of elements
from domain D” for arbitrary D simply by requiring that D belong to
category Type.

Now, you may ask, what exactly is a category? Like domains, categories
can be defined in the AXIOM language. A category is defined by three
components:

1. a name (for example, Ring), used to refer to the class of domains
that the category represents;

2. a set of operations, used to refer to the operations that the domains

W

of this class support (for example, “+”, , and “*” for rings); and
3. an optional list of other categories that this category extends.

This last component is a new idea. And it is key to the design of AXIOM!
Because categories can extend one another, they form hierarchies. De-
tailed charts showing the category hierarchies in AXIOM are displayed in
the endpages of this book. There you see that all categories are extensions
of Type and that Field is an extension of Ring.

The operations supported by the domains of a category are called the
exports of that category because these are the operations made available
for system-wide use. The exports of a domain of a given category are
not only the ones explicitly mentioned by the category. Since a category
extends other categories, the operations of these other categories—and
all categories these other categories extend—are also exported by the
domains.

For example, polynomial domains belong to PolynomialCategory. This cat-
egory explicitly mentions some twenty-nine operations on polynomials,
but it extends eleven other categories (including Ring). As a result, the
current system has over one hundred operations on polynomials.

If a domain belongs to a category that extends, say, Ring, it is convenient
to say that the domain exports Ring. The name of the category thus
provides a convenient shorthand for the list of operations exported by
the category. Rather than listing operations such as “+” and “x” of Ring
each time they are needed, the definition of a type simply asserts that it

3Type does not denote the class of all types. The type of all categories is Category.
The type of Type itself is undefined.



exports category Ring.

The category name, however, is more than a shorthand. The name Ring, in
fact, implies that the operations exported by rings are required to satisfy
a set of “axioms” associated with the name Ring.4

Why is it not correct to assume that some type is a ring if it exports all
of the operations of Ring? Here is why. Some languages such as APL
denote the Boolean constants true and false by the integers 1 and 0
respectively, then use “+” and “*” to denote the logical operators or and
and. But with these definitions Boolean is not a ring since the additive
inverse axiom is violated.® This alternative definition of Boolean can be
easily and correctly implemented in AXIOM, since Boolean simply does
not assert that it is of category Ring. This prevents the system from build-
ing meaningless domains such as Polynomial(Boolean) and then wrongfully
applying algorithms that presume that the ring axioms hold.

Enough on categories. To learn more about them, see Chapter 12. We
now return to our discussion of domains.

Domains export a set of operations to make them available for system-wide
use. Integer, for example, exports the operations “+”’ and “=” given by
the signatures “+”: (Integer,Integer) — Integer and “=": (Integer,Integer)
— Boolean, respectively. Each of these operations takes two Integer ar-
guments. The “+” operation also returns an Integer but “=” returns a
Boolean: true or false. The operations exported by a domain usually
manipulate objects of the domain—but not always.

The operations of a domain may actually take as arguments, and return as
values, objects from any domain. For example, Fraction (Integer) exports the
operations “/”: (Integer,Integer) — Fraction(Integer) and characteristic:
— NonNegativelnteger.

Suppose all operations of a domain take as arguments and return as
values, only objects from other domains. This kind of domain is what
AXIOM calls a package.

A package does not designate a class of objects at all. Rather, a package
is just a collection of operations. Actually the bulk of the AXIOM library
of algorithms consists of packages. The facilities for factorization; inte-
gration; solution of linear, polynomial, and differential equations; compu-
tation of limits; and so on, are all defined in packages. Domains needed
by algorithms can be passed to a package as arguments or used by name if

“This subtle but important feature distinguishes AXIOM from other abstract
datatype designs.

5There is no inverse element a such that 1 + a = 0, or, in the usual terms: true
or a = false.
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they are not “variable.” Packages are useful for defining operations that
convert objects of one type to another, particularly when these types have
different parameterizations. As an example, the package PolynomialFunc-
tion2(R,S) defines operations that convert polynomials over a domain R to
polynomials over S. To convert an object from Polynomial(integer) to Polyno-
mial(Float), AXIOM builds the package PolynomialFunctions2(Integer,Float) in
order to create the required conversion function. (This happens “behind
the scenes” for you: see Section 2.7 on page 113 for details on how to
convert objects.)

AXIOM categories, domains and packages and all their contained func-
tions are written in the AXIOM programming language and have been
compiled into machine code. This is what comprises the AXIOM library.
In the rest of this book we show you how to use these domains and their
functions and how to write your own functions.



2.2
Writing Types and
Modes

When might you need to write a
type or mode? You need to do
so when you declare variables.

You need to do so when you
declare functions (Section 2.3 on
page 103),

You need to do so when you
convert an object from one type
to another (Section 2.7 on page
113).

You need to do so when you
give computation target type
information (Section 2.9 on page
119).

2.2.1
Types with No
Arguments

2.2.2
Types with One
Argument

We have already seen in the last section several examples of types. Most
of these examples had either no arguments (for example, Integer) or one
argument (for example, Polynomial (Integer)). In this section we give details
about writing arbitrary types. We then define modes an