
Richard D. Jenks Robert S. Sutor

AXIOM

The Scientific Computation System

Draft: March 17, 2011

To my children, Douglas, Daniel, and Susan,
for their love, support, and understanding over the years.

R.D.J.

To Judith and Kate,
to whom my debt is beyond computation.

R.S.S.

Foreword
You are holding in your hands an unusual book. Winston Churchill once
said that the empires of the future will be empires of the mind. This book
might hold an electronic key to such an empire.

When computers were young and slow, the emerging computer science de-
veloped dreams of Artificial Intelligence and Automatic Theorem Proving
in which theorems can be proved by machines instead of mathematicians.
Now, when computer hardware has matured and become cheaper and
faster, there is not too much talk of putting the burden of formulat-
ing and proving theorems on the computer’s shoulders. Moreover, even
in those cases when computer programs do prove theorems, or establish
counter-examples (for example, the solution of the four color problem, the
non-existence of projective planes of order 10, the disproof of the Mertens
conjecture), humans carry most of the burden in the form of programming
and verification.

It is the language of computer programming that has turned out to be
the crucial instrument of productivity in the evolution of scientific com-
puting. The original Artificial Intelligence efforts gave birth to the first
symbolic manipulation systems based on LISP. The first complete sym-
bolic manipulation or, as they are called now, computer algebra packages
tried to imbed the development programming and execution of mathemat-
ical problems into a framework of familiar symbolic notations, operations
and conventions. In the third decade of symbolic computations, a couple
of these early systems—REDUCE and MACSYMA—still hold their own
among faithful users.

AXIOM was born in the mid-70’s as a system called Scratchpad devel-
oped by IBM researchers. Scratchpad/AXIOM was born big—its original

vii

platform was an IBM mainframe 3081, and later a 3090. The system was
growing and learning during the decade of the 80’s, and its development
and progress influenced the field of computer algebra. During this period,
the first commercially available computer algebra packages for mini and
and microcomputers made their debut. By now, our readers are aware of
Mathematica, Maple, Derive, and Macsyma. These systems (as well as a
few special purpose computer algebra packages in academia) emphasize
ease of operation and standard scientific conventions, and come with a
prepared set of mathematical solutions for typical tasks confronting an
applied scientist or an engineer. These features brought a recognition of
the enormous benefits of computer algebra to the widest circles of scien-
tists and engineers.

The Scratchpad system took its time to blossom into the beautiful AXIOM
product. There is no rival to this powerful environment in its scope and,
most importantly, in its structure and organization. AXIOM contains the
basis for any comprehensive and elaborate mathematical development. It
gives the user all Foundation and Algebra instruments necessary to de-
velop a computer realization of sophisticated mathematical objects in
exactly the way a mathematician would do it. AXIOM is also the basis of
a complete scientific cyberspace—it provides an environment for mathe-
matical objects used in scientific computation, and the means of control-
ling and communicating between these objects. Knowledge of only a few
AXIOM language features and operating principles is all that is required
to make impressive progress in a given domain of interest. The system is
powerful. It is not an interactive interpretive environment operating only
in response to one line commands—it is a complete language with rich
syntax and a full compiler. Mathematics can be developed and explored
with ease by the user of AXIOM. In fact, during AXIOM’s growth cycle,
many detailed mathematical domains were constructed. Some of them
are a part of AXIOM’s core and are described in this book. For a bird’s
eye view of the algebra hierarchy of AXIOM, glance inside the book cover.

The crucial strength of AXIOM lies in its excellent structural features and
unlimited expandability—it is open, modular system designed to support
an ever growing number of facilities with minimal increase in structural
complexity. Its design also supports the integration of other computation
tools such as numerical software libraries written in Fortran and C. While
AXIOM is already a very powerful system, the prospect of scientists using
the system to develop their own fields of Science is truly exciting—the day
is still young for AXIOM.

Over the last several years Scratchpad/AXIOM has scored many successes
in theoretical mathematics, mathematical physics, combinatorics, digital
signal processing, cryptography and parallel processing. We have to con-

viii · Foreword

fess that we enjoyed using Scratchpad/AXIOM. It provided us with an
excellent environment for our research, and allowed us to solve problems
intractable on other systems. We were able to prove new diophantine
results for π; establish the Grothendieck conjecture for certain classes of
linear differential equations; study the arithmetic properties of the uni-
formization of hyperelliptic and other algebraic curves; construct new fac-
torization algorithms based on formal groups; within Scratchpad/AXIOM
we were able to obtain new identities needed for quantum field theory (el-
liptic genus formula and double scaling limit for quantum gravity), and
classify period relations for CM varieties in terms of hypergeometric se-
ries.

The AXIOM system is now supported and distributed by NAG, the group
that is well known for its high quality software products for numerical
and statistical computations. The development of AXIOM in IBM was
conducted at IBM T.J. Watson Research Center at Yorktown, New York
by a symbolic computation group headed by Richard D. Jenks. Shmuel
Winograd of IBM was instrumental in the progress of symbolic research
at IBM.

This book opens the wonderful world of AXIOM, guiding the reader and
user through AXIOM’s definitions, rules, applications and interfaces. A
variety of fully developed areas of mathematics are presented as packages,
and the user is well advised to take advantage of the sophisticated real-
ization of familiar mathematics. The AXIOM book is easy to read and
the AXIOM system is easy to use. It possesses all the features required
of a modern computer environment (for example, windowing, integration
of operating system features, and interactive graphics). AXIOM comes
with a detailed hypertext interface (HyperDoc), an elaborate browser,
and complete on-line documentation. The HyperDoc allows novices to
solve their problems in a straightforward way, by providing menus for
step-by-step interactive entry.

The appearance of AXIOM in the scientific market moves symbolic com-
puting into a higher plane, where scientists can formulate their state-
ments in their own language and receive computer assistance in their
proofs. AXIOM’s performance on workstations is truly impressive, and
users of AXIOM will get more from them than we, the early users, got
from mainframes. AXIOM provides a powerful scientific environment for
easy construction of mathematical tools and algorithms; it is a symbolic
manipulation system, and a high performance numerical system, with full
graphics capabilities. We expect every (computer) power hungry scientist
will want to take full advantage of AXIOM.

David V. Chudnovsky Gregory V. Chudnovsky

Foreword · ix

Contents

Foreword vii

Contributors xxi

Introduction to AXIOM 1

A Technical Introduction to AXIOM 9

I What’s new at Release 2.0 17

1 What’s New in AXIOM Version 2.0 19
1.1 Important Things to Read First . 19
1.2 The New AXIOM Library Compiler . 19
1.3 The NAG Library Link . 20
1.4 Interactive Front-end and Language . 36
1.5 Library . 36
1.6 HyperDoc . 38
1.7 Documentation . 38

II Basic Features of AXIOM 41

· xi

1 An Overview of AXIOM 43
1.1 Starting Up and Winding Down . 44
1.2 Typographic Conventions . 46
1.3 The AXIOM Language . 47
1.4 Graphics . 54
1.5 Numbers . 56
1.6 Data Structures . 61
1.7 Expanding to Higher Dimensions . 67
1.8 Writing Your Own Functions . 69
1.9 Polynomials . 73
1.10 Limits . 75
1.11 Series . 76
1.12 Derivatives . 78
1.13 Integration . 80
1.14 Differential Equations . 83
1.15 Solution of Equations . 86
1.16 System Commands . 88

2 Using Types and Modes 91
2.1 The Basic Idea . 92
2.2 Writing Types and Modes . 99
2.3 Declarations . 103
2.4 Records . 105
2.5 Unions . 108
2.6 The “Any” Domain . 112
2.7 Conversion . 113
2.8 Subdomains Again . 116
2.9 Package Calling and Target Types . 119
2.10 Resolving Types . 122
2.11 Exposing Domains and Packages . 124
2.12 Commands for Snooping . 127

3 Using HyperDoc 131
3.1 Headings . 132
3.2 Key Definitions . 132
3.3 Scroll Bars . 133
3.4 Input Areas . 134
3.5 Radio Buttons and Toggles . 134
3.6 Search Strings . 135

xii · Foreword

3.7 Example Pages . 136
3.8 X Window Resources for HyperDoc . 136

4 Input Files and Output Styles 139
4.1 Input Files . 139
4.2 The axiom.input File . 140
4.3 Common Features of Using Output Formats . 141
4.4 Monospace Two-Dimensional Mathematical Format . 142
4.5 TeX Format . 143
4.6 IBM Script Formula Format . 144
4.7 FORTRAN Format . 144

5 Introduction to the AXIOM Interactive Language 149
5.1 Immediate and Delayed Assignments . 150
5.2 Blocks . 153
5.3 if-then-else . 156
5.4 Loops . 158
5.5 Creating Lists and Streams with Iterators . 171
5.6 An Example: Streams of Primes . 173

6 User-Defined Functions, Macros and Rules 177
6.1 Functions vs. Macros . 178
6.2 Macros . 179
6.3 Introduction to Functions . 181
6.4 Declaring the Type of Functions . 183
6.5 One-Line Functions . 185
6.6 Declared vs. Undeclared Functions . 187
6.7 Functions vs. Operations . 189
6.8 Delayed Assignments vs. Functions with No Arguments 190
6.9 How AXIOM Determines What Function to Use . 191
6.10 Compiling vs. Interpreting . 193
6.11 Piece-Wise Function Definitions . 195
6.12 Caching Previously Computed Results . 202
6.13 Recurrence Relations . 204
6.14 Making Functions from Objects . 207
6.15 Functions Defined with Blocks . 210
6.16 Free and Local Variables . 213
6.17 Anonymous Functions . 218

· xiii

6.18 Example: A Database . 222
6.19 Example: A Famous Triangle . 224
6.20 Example: Testing for Palindromes . 226
6.21 Rules and Pattern Matching . 228

7 Graphics 235
7.1 Two-Dimensional Graphics . 236

III Advanced Problem Solving and Examples 261

8 Advanced Problem Solving 263
8.1 Numeric Functions . 264
8.2 Polynomial Factorization . 274
8.3 Manipulating Symbolic Roots of a Polynomial . 277
8.4 Computation of Eigenvalues and Eigenvectors . 280
8.5 Solution of Linear and Polynomial Equations . 283
8.6 Limits . 288
8.7 Laplace Transforms . 291
8.8 Integration . 292
8.9 Working with Power Series . 295
8.10 Solution of Differential Equations . 308
8.11 Finite Fields . 316
8.12 Primary Decomposition of Ideals . 335
8.13 Computation of Galois Groups . 338
8.14 Non-Associative Algebras and Modelling Genetic Laws 345

9 Some Examples of Domains and Packages 351
9.1 AssociationList . 352
9.2 BalancedBinaryTree . 354
9.3 BasicOperator . 356
9.4 BinaryExpansion . 359
9.5 BinarySearchTree . 361
9.6 CardinalNumber . 363
9.7 CartesianTensor . 366
9.8 Character . 374
9.9 CharacterClass . 376
9.10 CliffordAlgebra . 378

xiv · Foreword

9.11 Complex . 383
9.12 ContinuedFraction . 385
9.13 CycleIndicators . 389
9.14 DeRhamComplex . 397
9.15 DecimalExpansion . 401
9.16 DistributedMultivariatePolynomial . 402
9.17 DoubleFloat . 404
9.18 EqTable . 406
9.19 Equation . 407
9.20 Exit . 409
9.21 Expression . 410
9.22 Factored . 414
9.23 FactoredFunctions2 . 419
9.24 File . 420
9.25 FileName . 422
9.26 FlexibleArray . 425
9.27 Float . 427
9.28 Fraction . 433
9.29 FullPartialFractionExpansion . 435
9.30 GeneralSparseTable . 439
9.31 GroebnerFactorizationPackage . 440
9.32 Heap . 443
9.33 HexadecimalExpansion . 444
9.34 Integer . 445
9.35 IntegerLinearDependence . 451
9.36 IntegerNumberTheoryFunctions . 453
9.37 Kernel . 457
9.38 KeyedAccessFile . 460
9.39 LazardSetSolvingPackage . 463
9.40 Library . 474
9.41 LinearOrdinaryDifferentialOperator . 475
9.42 LinearOrdinaryDifferentialOperator1 . 480
9.43 LinearOrdinaryDifferentialOperator2 . 484
9.44 List . 489
9.45 MakeFunction . 494
9.46 MappingPackage1 . 496
9.47 Matrix . 500
9.48 MultiSet . 506
9.49 MultivariatePolynomial . 508

· xv

9.50 None . 510
9.51 Octonion . 511
9.52 OneDimensionalArray . 514
9.53 Operator . 516
9.54 OrderedVariableList . 519
9.55 OrderlyDifferentialPolynomial . 520
9.56 PartialFraction . 525
9.57 Permanent . 528
9.58 Polynomial . 529
9.59 Quaternion . 535
9.60 RadixExpansion . 537
9.61 RealClosure . 539
9.62 RegularTriangularSet . 548
9.63 RomanNumeral . 557
9.64 Segment . 559
9.65 SegmentBinding . 561
9.66 Set . 563
9.67 SingleInteger . 566
9.68 SparseTable . 568
9.69 SquareMatrix . 569
9.70 SquareFreeRegularTriangularSet . 570
9.71 Stream . 575
9.72 String . 577
9.73 StringTable . 581
9.74 Symbol . 582
9.75 Table . 585
9.76 TextFile . 588
9.77 TwoDimensionalArray . 590
9.78 UnivariatePolynomial . 594
9.79 UniversalSegment . 599
9.80 Vector . 601
9.81 Void . 603
9.82 WuWenTsunTriangularSet . 604
9.83 ZeroDimensionalSolvePackage . 607

IV Advanced Programming in AXIOM 615

10 Interactive Programming 617

xvi · Foreword

10.1 Drawing Ribbons Interactively . 618
10.2 A Ribbon Program . 622
10.3 Coloring and Positioning Ribbons . 625
10.4 Points, Lines, and Curves . 626
10.5 A Bouquet of Arrows . 630
10.6 Drawing Complex Vector Fields . 632
10.7 Drawing Complex Functions . 637
10.8 Functions Producing Functions . 641
10.9 Automatic Newton Iteration Formulas . 642

11 Packages 649
11.1 Names, Abbreviations, and File Structure . 650
11.2 Syntax . 650
11.3 Abstract Datatypes . 651
11.4 Capsules . 652
11.5 Input Files vs. Packages . 653
11.6 Compiling Packages . 653
11.7 Parameters . 655
11.8 Conditionals . 657
11.9 Testing . 658
11.10 How Packages Work . 660

12 Categories 663
12.1 Definitions . 664
12.2 Exports . 665
12.3 Documentation . 665
12.4 Hierarchies . 667
12.5 Membership . 667
12.6 Defaults . 668
12.7 Axioms . 669
12.8 Correctness . 670
12.9 Attributes . 670
12.10 Parameters . 672
12.11 Conditionals . 672
12.12 Anonymous Categories . 673

13 Domains 675
13.1 Domains vs. Packages . 675

· xvii

13.2 Definitions . 676
13.3 Category Assertions . 677
13.4 A Demo . 678
13.5 Browse . 679
13.6 Representation . 680
13.7 Multiple Representations . 681
13.8 Add Domain . 681
13.9 Defaults . 682
13.10 Origins . 683
13.11 Short Forms . 683
13.12 Example 1: Clifford Algebra . 684
13.13 Example 2: Building A Query Facility . 685

14 Browse 699
14.1 The Front Page: Searching the Library . 699
14.2 The Constructor Page . 704
14.3 Miscellaneous Features of Browse . 714

Appendices 721

A AXIOM System Commands 723
A.1 Introduction . 723
A.2)abbreviation . 724
A.3)boot . 725
A.4)cd . 726
A.5)close . 726
A.6)clear . 727
A.7)compile . 728
A.8)display . 732
A.9)edit . 733
A.10)fin . 733
A.11)frame . 734
A.12)help . 735
A.13)history . 735
A.14)library . 737
A.15)lisp . 738
A.16)load . 739
A.17)ltrace . 739

xviii · Foreword

A.18)pquit . 739
A.19)quit . 740
A.20)read . 740
A.21)set . 741
A.22)show . 741
A.23)spool . 742
A.24)synonym . 743
A.25)system . 743
A.26)trace . 744
A.27)undo . 747
A.28)what . 748

B Categories 753

C Domains 761

D Packages 783

E Operations 795

F Programs for AXIOM Images 861
F.1 images1.input . 861
F.2 images2.input . 862
F.3 images3.input . 862
F.4 images5.input . 862
F.5 images6.input . 863
F.6 images7.input . 864
F.7 images8.input . 864
F.8 conformal.input . 865
F.9 tknot.input . 867
F.10 ntube.input . 867
F.11 dhtri.input . 869
F.12 tetra.input . 870
F.13 antoine.input . 871
F.14 scherk.input . 872

G Glossary 875

· xix

H Index 891

xx · Foreword

Contributors
The design and development of AXIOM was led by the Symbolic Com-
putation Group of the Mathematical Sciences Department, IBM Thomas
J. Watson Research Center, Yorktown Heights, New York. The current
implementation of AXIOM is the product of many people. The primary
contributors are:

Richard D. Jenks (IBM, Yorktown) received a Ph.D. from the Univer-
sity of Illinois and was a principal architect of the Scratchpad com-
puter algebra system (1971). In 1977, Jenks initiated the AXIOM
effort with the design of MODLISP, inspired by earlier work with
Rüdiger Loos (Tübingen), James Griesmer (IBM, Yorktown), and
David Y. Y. Yun (Hawaii). Joint work with David R. Barton (Berke-
ley, California) and James Davenport led to the design and imple-
mentation of prototypes and the concept of categories (1980). More
recently, Jenks led the effort on user interface software for AXIOM.

Barry M. Trager (IBM, Yorktown) received a Ph.D. from MIT while
working in the MACSYMA computer algebra group. Trager’s the-
sis laid the groundwork for a complete theory for closed-form inte-
gration of elementary functions and its implementation in AXIOM.
Trager and Richard Jenks are responsible for the original abstract
datatype design and implementation of the programming language
with its current MODLISP-based compiler and run-time system.
Trager is also responsible for the overall design of the current AXIOM
library and for the implementation of many of its components.

Stephen M. Watt (IBM, Yorktown) received a Ph.D. from the Uni-
versity of Waterloo and is one of the original authors of the Maple
computer algebra system. Since joining IBM in 1984, he has made
central contributions to the AXIOM language and system design, as
well as numerous contributions to the library. He is the principal
architect of the new AXIOM compiler, planned for Release 2.

Robert S. Sutor (IBM, Yorktown) received a Ph.D. in mathematics

xxi

from Princeton University and has been involved with the design
and implementation of the system interpreter, system commands,
and documentation since 1984. Sutor’s contributions to the AXIOM
library include factored objects, partial fractions, and the original
implementation of finite field extensions. Recently, he has devised
technology for producing automatic hard-copy and on-line documen-
tation from single source files.

Scott C. Morrison (IBM, Yorktown) received an M.S. from the Univer-
sity of California, Berkeley, and is a principal person responsible for
the design and implementation of the AXIOM interface, including
the interpreter, HyperDoc, and applications of the computer graph-
ics system.

Manuel Bronstein (ETH, Zürich) received a Ph.D. in mathematics
from the University of California, Berkeley, completing the theo-
retical work on closed-form integration by Barry Trager. Bronstein
designed and implemented the algebraic structures and algorithms
in the AXIOM library for integration, closed form solution of dif-
ferential equations, operator algebras, and manipulation of top-level
mathematical expressions. He also designed (with Richard Jenks)
and implemented the current pattern match facility for AXIOM.

William H. Burge (IBM, Yorktown) received a Ph.D. from Cambridge
University, implemented the AXIOM parser, designed (with Stephen
Watt) and implemented the stream and power series structures, and
numerous algebraic facilities including those for data structures,
power series, and combinatorics.

Timothy P. Daly (IBM, Yorktown) is pursuing a Ph.D. in computer sci-
ence at Brooklyn Polytechnic Institute and is responsible for porting,
testing, performance, and system support work for AXIOM.

James Davenport (Bath) received a Ph.D. from Cambridge University,
is the author of several computer algebra textbooks, and has long
recognized the need for AXIOM’s generality for computer algebra.
He was involved with the early prototype design of system inter-
nals and the original category hierarchy for AXIOM (with David R.
Barton). More recently, Davenport and Barry Trager designed the
algebraic category hierarchy currently used in AXIOM. Davenport
is Hebron and Medlock Professor of Information Technology at Bath
University.

Michael Dewar (Bath) received a Ph.D. from the University of Bath
for his work on the IRENA system (an interface between the RE-
DUCE computer algebra system and the NAG Library of numerical
subprograms), and work on interfacing algebraic and numerical sys-
tems in general. He has contributed code to produce FORTRAN
output from AXIOM, and is currently developing a comprehensive
foreign language interface and a link to the NAG Library for release
2 of AXIOM.

Albrecht Fortenbacher (IBM Scientific Center, Heidelberg) received a
doctorate from the University of Karlsruhe and is a designer and

xxii · Contributors

implementer of the type-inferencing code in the AXIOM interpreter.
The result of research by Fortenbacher on type coercion by rewrite
rules will soon be incorporated into AXIOM.

Patrizia Gianni (Pisa) received a Laurea in mathematics from the Uni-
versity of Pisa and is the prime author of the polynomial and rational
function component of the AXIOM library. Her contributions in-
clude algorithms for greatest common divisors, factorization, ideals,
Gröbner bases, solutions of polynomial systems, and linear algebra.
She is currently Associate Professor of Mathematics at the Univer-
sity of Pisa.

Johannes Grabmeier (IBM Scientific Center, Heidelberg) received a
Ph.D. from University Bayreuth (Bavaria) and is responsible for
many AXIOM packages, including those for representation theory
(with Holger Gollan (Essen)), permutation groups (with Gerhard
Schneider (Essen)), finite fields (with Alfred Scheerhorn), and non-
associative algebra (with Robert Wisbauer (Düsseldorf)).

Larry Lambe received a Ph.D. from the University of Illinois (Chicago)
and has been using AXIOM for research in homological algebra.
Lambe contributed facilities for Lie ring and exterior algebra cal-
culations and has worked with Scott Morrison on various graphics
applications.

Michael Monagan (ETH, Zürich) received a Ph.D. from the University
of Waterloo and is a principal contributor to the Maple computer
algebra system. He designed and implemented the category hierar-
chy and domains for data structures (with Stephen Watt), multi-
precision floating point arithmetic, code for polynomials modulo a
prime, and also worked on the new compiler.

William Sit (CCNY) received a Ph.D. from Columbia University. He
has been using AXIOM for research in differential algebra, and con-
tributed operations for differential polynomials (with Manuel Bron-
stein).

Jonathan M. Steinbach (IBM, Yorktown) received a B.A. degree from
Ohio State University and has responsibility for the AXIOM com-
puter graphics facility. He has modified and extended this facility
from the original design by Jim Wen. Steinbach is currently involved
in the new compiler effort.

Jim Wen, a graduate student in computer graphics at Brown University,
designed and implemented the original computer graphics system for
AXIOM with pop-up control panels for interactive manipulation of
graphic objects.

Clifton J. Williamson (Cal Poly) received a Ph.D. in Mathematics
from the University of California, Berkeley. He implemented the
power series (with William Burge and Stephen Watt), matrix, and
limit facilities in the library and made numerous contributions to
the HyperDoc documentation and algebraic side of the computer
graphics facility. Williamson is currently an Assistant Professor of

Contributors · xxiii

Mathematics at California Polytechnic State University, San Luis
Obispo.

Contributions to the current AXIOM system were also made by: Yurij
Baransky (IBM Research, Yorktown), David R. Barton, Bruce Char
(Drexel), Korrinn Fu, Rüdiger Gebauer, Holger Gollan (Essen), Steven J.
Gortler, Michael Lucks, Victor Miller (IBM Research, Yorktown), C. An-
drew Neff (IBM Research, Yorktown), H. Michael Möller (Hagen), Simon
Robinson, Gerhard Schneider (Essen), Thorsten Werther (Bonn), John
M. Wiley, Waldemar Wiwianka (Paderborn), David Y. Y. Yun (Hawaii).

Other group members, visitors and contributors to AXIOM include Richard
Anderson, George Andrews, David R. Barton, Alexandre Bouyer, Martin
Brock, Florian Bundschuh, Cheekai Chin, David V. Chudnovsky, Gre-
gory V. Chudnovsky, Josh Cohen, Gary Cornell, Jean Della Dora, Claire
DiCrescendo, Dominique Duval, Lars Erickson, Timothy Freeman, Marc
Gaetano, Vladimir A. Grinberg, Florian Bundschuh, Oswald Gschnitzer,
Klaus Kusche, Bernhard Kutzler, Mohammed Mobarak, Julian A. Pad-
get, Michael Rothstein, Alfred Scheerhorn, William F. Schelter, Martin
Schönert, Fritz Schwarz, Christine J. Sundaresan, Moss E. Sweedler, The-
mos T. Tsikas, Berhard Wall, Robert Wisbauer, and Knut Wolf.

This book has contributions from several people in addition to its principal
authors. Scott Morrison is responsible for the computer graphics gallery
and the programs in Appendix F. Jonathan Steinbach wrote the original
version of Chapter 7. Michael Dewar contributed material on the FOR-
TRAN interface in Chapter 4. Manuel Bronstein, Clifton Williamson,
Patricia Gianni, Johannes Grabmeier, and Barry Trager, and Stephen
Watt contributed to Chapters 8 and 9 and Appendix E. William Burge,
Timothy Daly, Larry Lambe, and William Sit contributed material to
Chapter 9.

The authors would like to thank the production staff at Springer-Verlag
for their guidance in the preparation of this book, and Jean K. Rivlin of
IBM Yorktown Heights for her assistance in producing the camera-ready
copy. Also, thanks to Robert F. Caviness, James H. Davenport, Sam
Dooley, Richard J. Fateman, Stuart I. Feldman, Stephen J. Hague, John
A. Nelder, Eugene J. Surowitz, Themos T. Tsikas, James W. Thatcher,
and Richard E. Zippel for their constructive suggestions on drafts of the
book.

xxiv · Contributors

Introduction
to AXIOM

Welcome to the world of AXIOM. We call AXIOM a scientific compu-
tation system: a self-contained toolbox designed to meet your scientific
programming needs, from symbolics, to numerics, to graphics.

This introduction is a quick overview of what AXIOM offers.

Symbolic
computation

AXIOM provides a wide range of simple commands for symbolic mathe-
matical problem solving. Do you need to solve an equation, to expand a
series, or to obtain an integral? If so, just ask AXIOM to do it.

Integrate 1

(x3 (a+bx)1/3)
with

respect to x.

integrate(1/(x**3 * (a+b*x)**(1/3)),x)



−2 b2 x2
√

3 log
(

3
√

a
3
√

b x + a
2
+ 3
√

a
2 3
√

b x + a + a
)
+

4 b2 x2
√

3 log
(

3
√

a
2 3
√

b x + a− a
)
+

12 b2 x2 arctan

(
2
√

3 3
√

a
2 3
√

b x + a + a
√

3
3 a

)
+

(12 b x− 9 a)
√

3 3
√

a
3
√

b x + a
2




18 a2 x2
√

3 3
√

a
(1)

Type: Union(Expression Integer, ...)

AXIOM provides state-of-the-art algebraic machinery to handle your most
advanced symbolic problems. For example, AXIOM’s integrator gives you
the answer when an answer exists. If one does not, it provides a proof
that there is no answer. Integration is just one of a multitude of symbolic

1

operations that AXIOM provides.

Numeric
computation

AXIOM has a numerical library that includes operations for linear al-
gebra, solution of equations, and special functions. For many of these
operations, you can select any number of floating point digits to be car-
ried out in the computation.

Solve x49− 49x4 + 9 to 49 digits
of accuracy.

solve(x**49-49*x**4+9 = 0,1.e-49)

[x = −0.6546536706904271136718122105095984761851224331556,
x = 1.086921395653859508493939035954893289009213388763,
x = 0.6546536707255271739694686066136764835361487607661]

(2)

Type: List Equation Polynomial Float

The output of a computation can be converted to FORTRAN to be
used in a later numerical computation. Besides floating point numbers,
AXIOM provides literally dozens of kinds of numbers to compute with.
These range from various kinds of integers, to fractions, complex num-
bers, quaternions, continued fractions, and to numbers represented with
an arbitrary base.

What is 10 to the 100 th power
in base 32?

radix(10**100,32)

4I9LKIP9GRSTC5IF164PO5V72ME827226JSLAP462585Q7H
00000000000000000000

(3)

Type: RadixExpansion 32

Graphics You may often want to visualize a symbolic formula or draw a graph from
a set of numerical values. To do this, you can call upon the AXIOM
graphics capability.

Draw J0(
√

x2 + y2) for
−20 ≤ x, y ≤ 20.

draw(5*besselJ(0,sqrt(x**2+y**2)), x=-20..20, y=-20..20)

Compiling function %J with type (DoubleFloat,
DoubleFloat) -> DoubleFloat

Transmitting data...

ThreeDimensionalViewport: "5*besselJ(0,(y*y+x*x)**(1/2))" (4)
Type: ThreeDimensionalViewport

2 · Introduction to AXIOM

X Y

Z

Graphs in AXIOM are interactive objects you can manipulate with your
mouse. Just click on the graph, and a control panel pops up. Using this
mouse and the control panel, you can translate, rotate, zoom, change the
coloring, lighting, shading, and perspective on the picture. You can also
generate a PostScript copy of your graph to produce hard-copy output.

HyperDoc HyperDoc presents you windows on the world of AXIOM, offering on-line
help, examples, tutorials, a browser, and reference material. HyperDoc
gives you on-line access to this book in a “hypertext” format. Words that
appear in a different font (for example, Matrix, factor, and category) are
generally mouse-active; if you click on one with your mouse, HyperDoc
shows you a new window for that word.

As another example of a HyperDoc facility, suppose that you want to
compute the roots of x49 − 49x4 + 9 to 49 digits (as in our previous
example) and you don’t know how to tell AXIOM to do this. The “basic
command” facility of HyperDoc leads the way. Through the series of
HyperDoc windows shown in Figure 1 and the specified mouse clicks, you
and HyperDoc generate the correct command to issue to compute the
answer.

Interactive
Programming

AXIOM’s interactive programming language lets you define your own
functions. A simple example of a user-defined function is one that com-
putes the successive Legendre polynomials. AXIOM lets you define these
polynomials in a piece-wise way.

The first Legendre polynomial. p(0) == 1

Type: Void

HyperDoc · 3

Figure 1: Computing the roots of x49 − 49x4 + 9.

The second Legendre
polynomial.

p(1) == x

Type: Void

The n th Legendre polynomial
for (n > 1).

p(n) == ((2*n-1)*x*p(n-1) - (n-1) * p(n-2))/n

Type: Void

In addition to letting you define simple functions like this, the interactive
language can be used to create entire application packages. All the graphs
in the AXIOM Images section in the center of the book, for example, were
created by programs written in the interactive language.

The above definitions for p do no computation—they simply tell AXIOM
how to compute p(k) for some positive integer k. To actually get a value
of a Legendre polynomial, you ask for it.

4 · Introduction to AXIOM

What is the tenth Legendre
polynomial?

p(10)

Compiling function p with type Integer -> Polynomial
Fraction Integer

Compiling function p as a recurrence relation.

46189
256

x10 − 109395
256

x8 +
45045
128

x6 − 15015
128

x4 +
3465
256

x2 − 63
256

(8)

Type: Polynomial Fraction Integer

AXIOM applies the above pieces for p to obtain the value of p(10). But it
does more: it creates an optimized, compiled function for p. The function
is formed by putting the pieces together into a single piece of code. By
compiled, we mean that the function is translated into basic machine-
code. By optimized, we mean that certain transformations are performed
on that code to make it run faster. For p, AXIOM actually translates the
original definition that is recursive (one that calls itself) to one that is
iterative (one that consists of a simple loop).

What is the coefficient of x90 in
p(90)?

coefficient(p(90),x,90)

5688265542052017822223458237426581853561497449095175
77371252455336267181195264

(9)

Type: Polynomial Fraction Integer

In general, a user function is type-analyzed and compiled on first use.
Later, if you use it with a different kind of object, the function is recom-
piled if necessary.

Data Structures A variety of data structures are available for interactive use. These include
strings, lists, vectors, sets, multisets, and hash tables. A particularly
useful structure for interactive use is the infinite stream:

Create the infinite stream of
derivatives of Legendre
polynomials

[D(p(i),x) for i in 1..]
[
1, 3 x,

15
2

x2 − 3
2
,

35
2

x3 − 15
2

x,
315
8

x4 − 105
4

x2 +
15
8

,

693
8

x5 − 315
4

x3 +
105
8

x,
3003
16

x6 − 3465
16

x4 +
945
16

x2 − 35
16

, . . .

] (10)

Type: Stream Polynomial Fraction Integer

Streams display only a few of their initial elements. Otherwise, they are
“lazy”: they only compute elements when you ask for them.

Data structures are an important component for building application soft-
ware. Advanced users can represent data for applications in optimal fash-
ion. In all, AXIOM offers over forty kinds of aggregate data structures,
ranging from mutable structures (such as cyclic lists and flexible arrays) to
storage efficient structures (such as bit vectors). As an example, streams

Data Structures · 5

are used as the internal data structure for power series.

What is the series expansion of
log(cot(x)) about x = π/2?

series(log(cot(x)),x = %pi/2)

log
(−2 x + π

2

)
+

1
3

(
x− π

2

)2

+
7
90

(
x− π

2

)4

+
62

2835

(
x− π

2

)6

+

O

((
x− π

2

)8
) (11)

Type: GeneralUnivariatePowerSeries(Expression Integer, x, pi/2)

Series and streams make no attempt to compute all their elements! Rather,
they stand ready to deliver elements on demand.

What is the coefficient of the
50 th term of this series?

coefficient(%,50)

44590788901016030052447242300856550965644
7131469286438669111584090881309360354581359130859375

(12)

Type: Expression Integer

Mathematical
Structures

AXIOM also has many kinds of mathematical structures. These range
from simple ones (like polynomials and matrices) to more esoteric ones
(like ideals and Clifford algebras). Most structures allow the construction
of arbitrarily complicated “types.”

Even a simple input expression
can result in a type with several
levels.

matrix [[x + %i,0], [1,-2]]
[

x + i 0
1 −2

]
(13)

Type: Matrix Polynomial Complex Integer

The AXIOM interpreter builds types in response to user input. Often,
the type of the result is changed in order to be applicable to an operation.

The inverse operation requires
that elements of the above
matrices are fractions.

inverse(%)
[

1
x+i 0
1

2 x+2 i −1
2

]
(14)

Type: Union(Matrix Fraction Polynomial Complex Integer, ...)

Pattern Matching A convenient facility for symbolic computation is “pattern matching.”
Suppose you have a trigonometric expression and you want to transform
it to some equivalent form. Use a rule command to describe the trans-
formation rules you need. Then give the rules a name and apply that
name as a function to your trigonometric expression.

6 · Introduction to AXIOM

Introduce two rewrite rules. sinCosExpandRules := rule
sin(x+y) == sin(x)*cos(y) + sin(y)*cos(x)
cos(x+y) == cos(x)*cos(y) - sin(x)*sin(y)
sin(2*x) == 2*sin(x)*cos(x)
cos(2*x) == cos(x)**2 - sin(x)**2

{sin (y + x)==cos (x) sin (y) + cos (y) sin (x),
cos (y + x)==−sin (x) sin (y) + cos (x) cos (y),
sin (2 x)==2 cos (x) sin (x), cos (2 x)==−sin (x)2 + cos (x)2

} (15)

Type: Ruleset(Integer, Integer, Expression Integer)

Apply the rules to a simple
trigonometric expression.

sinCosExpandRules(sin(a+2*b+c))
(
−cos (a) sin (b)2 − 2 cos (b) sin (a) sin (b) + cos (a) cos (b)2

)
sin (c)−

cos (c) sin (a) sin (b)2 + 2 cos (a) cos (b) cos (c) sin (b)+
cos (b)2 cos (c) sin (a)

(16)

Type: Expression Integer

Using input files, you can create your own library of transformation rules
relevant to your applications, then selectively apply the rules you need.

Polymorphic
Algorithms

All components of the AXIOM algebra library are written in the AXIOM
library language. This language is similar to the interactive language
except for protocols that authors are obliged to follow. The library lan-
guage permits you to write “polymorphic algorithms,” algorithms defined
to work in their most natural settings and over a variety of types.

Define a system of polynomial
equations S.

S := [3*x**3 + y + 1 = 0,y**2 = 4]
[
y + 3 x3 + 1 = 0, y2 = 4

]
(17)

Type: List Equation Polynomial Integer

Solve the system S using
rational number arithmetic and
30 digits of accuracy.

solve(S,1/10**30)
[[

y = −2, x =
1757879671211184245283070414507
2535301200456458802993406410752

]
,

[
y = 2, x = −1

]] (18)

Type: List List Equation Polynomial Fraction Integer

Polymorphic Algorithms · 7

Solve S with the solutions
expressed in radicals.

radicalSolve(S)
[[

y = 2, x = −1

]
,

[
y = 2, x =

−√−3 + 1
2

]
,

[
y = 2, x =

√−3 + 1
2

]
,

[
y = −2, x =

1
3
√

3

]
,

[
y = −2, x =

√−1
√

3− 1
2 3
√

3

]
,

[
y = −2, x =

−√−1
√

3− 1
2 3
√

3

]]

(19)

Type: List List Equation Expression Integer

While these solutions look very different, the results were produced by
the same internal algorithm! The internal algorithm actually works with
equations over any “field.” Examples of fields are the rational numbers,
floating point numbers, rational functions, power series, and general ex-
pressions involving radicals.

Extensibility Users and system developers alike can augment the AXIOM library, all
using one common language. Library code, like interpreter code, is com-
piled into machine binary code for run-time efficiency.

Using this language, you can create new computational types and new
algorithmic packages. All library code is polymorphic, described in terms
of a database of algebraic properties. By following the language protocols,
there is an automatic, guaranteed interaction between your code and that
of colleagues and system implementers.

8 · Introduction to AXIOM

A Technical
Introduction
to AXIOM

AXIOM has both an interactive language for user interactions and a pro-
gramming language for building library modules. Like Modula 2, PAS-
CAL, FORTRAN, and Ada, the programming language emphasizes strict
type-checking. Unlike these languages, types in AXIOM are dynamic ob-
jects: they are created at run-time in response to user commands.

Here is the idea of the AXIOM programming language in a nutshell.
AXIOM types range from algebraic ones (like polynomials, matrices, and
power series) to data structures (like lists, dictionaries, and input files).
Types combine in any meaningful way. You can build polynomials of ma-
trices, matrices of polynomials of power series, hash tables with symbolic
keys and rational function entries, and so on.

Categories define algebraic properties to ensure mathematical correctness.
They ensure, for example, that matrices of polynomials are OK, but ma-
trices of input files are not. Through categories, programs can discover
that polynomials of continued fractions have a commutative multiplica-
tion whereas polynomials of matrices do not.

Categories allow algorithms to be defined in their most natural setting.
For example, an algorithm can be defined to solve polynomial equations
over any field. Likewise a greatest common divisor can compute the “gcd”
of two elements from any Euclidean domain. Categories foil attempts to

9

compute meaningless “gcds”, for example, of two hashtables. Categories
also enable algorithms to be compiled into machine code that can be run
with arbitrary types.

The AXIOM interactive language is oriented towards ease-of-use. The
AXIOM interpreter uses type-inferencing to deduce the type of an object
from user input. Type declarations can generally be omitted for common
types in the interactive language.

So much for the nutshell. Here are these basic ideas described by ten
design principles:

Types are Defined by
Abstract Datatype
Programs

Basic types are called domains of computation, or, simply, domains. Do-
mains are defined by AXIOM programs of the form:

Name(...): Exports == Implementation

Each domain has a capitalized Name that is used to refer to the class of
its members. For example, Integer denotes “the class of integers,” Float,
“the class of floating point numbers,” and String, “the class of strings.”

The “...” part following Name lists zero or more parameters to the con-
structor. Some basic ones like Integer take no parameters. Others, like
Matrix, Polynomial and List, take a single parameter that again must be a
domain. For example, Matrix(Integer) denotes “matrices over the integers,”
Polynomial (Float) denotes “polynomial with floating point coefficients,” and
List (Matrix (Polynomial (Integer))) denotes “lists of matrices of polynomials
over the integers.” There is no restriction on the number or type of pa-
rameters of a domain constructor.

The Exports part specifies operations for creating and manipulating ob-
jects of the domain. For example, type Integer exports constants 0 and 1,
and operations “+”, “-”, and “*”. While these operations are common,
others such as odd? and bit? are not.

The Implementation part defines functions that implement the exported
operations of the domain. These functions are frequently described in
terms of another lower-level domain used to represent the objects of the
domain.

10 · A Technical Introduction to AXIOM

The Type of Basic
Objects is a Domain
or Subdomain

Every AXIOM object belongs to a unique domain. The domain of an
object is also called its type. Thus the integer 7 has type Integer and
the string "daniel" has type String.

The type of an object, however, is not unique. The type of integer 7 is not
only Integer but NonNegativeInteger, PositiveInteger, and possibly,
in general, any other “subdomain” of the domain Integer. A subdo-
main is a domain with a “membership predicate”. PositiveInteger is
a subdomain of Integer with the predicate “is the integer > 0?”.

Subdomains with names are defined by abstract datatype programs simi-
lar to those for domains. The Export part of a subdomain, however, must
list a subset of the exports of the domain. The Implementation part
optionally gives special definitions for subdomain objects.

Domains Have Types
Called Categories

Domain and subdomains in AXIOM are themselves objects that have
types. The type of a domain or subdomain is called a category. Categories
are described by programs of the form:

Name(...): Category == Exports

The type of every category is the distinguished symbol Category. The
category Name is used to designate the class of domains of that type.
For example, category Ring designates the class of all rings. Like do-
mains, categories can take zero or more parameters as indicated by the
“...” part following Name. Two examples are Module(R) and MatrixCate-
gory(R,Row,Col).

The Exports part defines a set of operations. For example, Ring exports
the operations “0”, “1”, “+”, “-”, and “*”. Many algebraic domains such
as Integer and Polynomial (Float) are rings. String and List (R) (for any domain
R) are not.

Categories serve to ensure the type-correctness. The definition of matrices
states Matrix(R: Ring) requiring its single parameter R to be a ring.
Thus a “matrix of polynomials” is allowed, but “matrix of lists” is not.

Operations Can Refer
To Abstract Types

All operations have prescribed source and target types. Types can be
denoted by symbols that stand for domains, called “symbolic domains.”
The following lines of AXIOM code use a symbolic domain R:

R: Ring
power: (R, NonNegativeInteger): R -> R
power(x, n) == x ** n

Line 1 declares the symbol R to be a ring. Line 2 declares the type of

The Type of Basic Objects is a Domain or Subdomain · 11

power in terms of R. From the definition on line 3, power(3,2) produces
9 for x = 3 and R = Integer. Also, power(3.0,2) produces 9.0 for x =
3.0 and R = Float. power("oxford",2) however fails since "oxford" has
type String which is not a ring.

Using symbolic domains, algorithms can be defined in their most natural
or general setting.

Categories Form
Hierarchies

Categories form hierarchies (technically, directed-acyclic graphs). A sim-
plified hierarchical world of algebraic categories is shown below in Figure
2. At the top of this world is SetCategory, the class of algebraic sets. The
notions of parents, ancestors, and descendants is clear. Thus ordered sets
(domains of category OrderedSet) and rings are also algebraic sets. Like-
wise, fields and integral domains are rings and algebraic sets. However
fields and integral domains are not ordered sets.

SetCategory
↙ ↓ ↘

Ring Finite OrderedSet
↓ ↘ ↓

IntegralDomain OrderedSet
↓

Field

Figure 2: A simplified category hierarchy.

Domains Belong to
Categories by
Assertion

A category designates a class of domains. Which domains? You might
think that Ring designates the class of all domains that export 0, 1, “+”,
“-”, and “*”. But this is not so. Each domain must assert which cate-
gories it belongs to.

The Export part of the definition for Integer reads, for example:

Join(OrderedSet, IntegralDomain, ...) with ...

This definition asserts that Integer is both an ordered set and an integral
domain. In fact, Integer does not explicitly export constants 0 and 1 and
operations “+”, “-” and “*” at all: it inherits them all from Ring! Since
IntegralDomain is a descendant of Ring, Integer is therefore also a ring.

Assertions can be conditional. For example, Complex(R) defines its exports
by:

12 · A Technical Introduction to AXIOM

Ring with ... if R has Field then Field ...

Thus Complex(Float) is a field but Complex(Integer) is not since Integer is not
a field.

You may wonder: “Why not simply let the set of operations determine
whether a domain belongs to a given category?”. AXIOM allows opera-
tion names (for example, norm) to have very different meanings in differ-
ent contexts. The meaning of an operation in AXIOM is determined by
context. By associating operations with categories, operation names can
be reused whenever appropriate or convenient to do so. As a simple exam-
ple, the operation “<” might be used to denote lexicographic-comparison
in an algorithm. However, it is wrong to use the same “<” with this def-
inition of absolute-value: abs(x) == if x < 0 then -x else x. Such
a definition for abs in AXIOM is protected by context: argument x is
required to be a member of a domain of category OrderedSet.

Packages Are
Clusters of
Polymorphic
Operations

In AXIOM, facilities for symbolic integration, solution of equations, and
the like are placed in “packages”. A package is a special kind of domain:
one whose exported operations depend solely on the parameters of the
constructor and/or explicit domains.

If you want to use AXIOM, for example, to define some algorithms for
solving equations of polynomials over an arbitrary field F, you can do so
with a package of the form:

MySolve(F: Field): Exports == Implementation

where Exports specifies the solve operations you wish to export and
Implementation defines functions for implementing your algorithms. Once
AXIOM has compiled your package, your algorithms can then be used for
any F: floating-point numbers, rational numbers, complex rational func-
tions, and power series, to name a few.

The Interpreter
Builds Domains
Dynamically

The AXIOM interpreter reads user input then builds whatever types it
needs to perform the indicated computations. For example, to create the
matrix

M =
(

x2 + 1 0
0 x/2

)

the interpreter first loads the modules Matrix, Polynomial, Fraction, and
Integer from the library, then builds the domain tower “matrices of poly-
nomials of rational numbers (fractions of integers)”.

Packages Are Clusters of Polymorphic Operations · 13

Once a domain tower is built, computation proceeds by calling operations
down the tower. For example, suppose that the user asks to square the
above matrix. To do this, the function “*” from Matrix is passed M to
compute M * M. The function is also passed an environment containing
R that, in this case, is Polynomial (Fraction (Integer)). This results in the
successive calling of the “*” operations from Polynomial, then from Fraction,
and then finally from Integer before a result is passed back up the tower.

Categories play a policing role in the building of domains. Because the
argument of Matrix is required to be a ring, AXIOM will not build non-
sensical types such as “matrices of input files”.

AXIOM Code is
Compiled

AXIOM programs are statically compiled to machine code, then placed
into library modules. Categories provide an important role in obtaining
efficient object code by enabling:

• static type-checking at compile time;
• fast linkage to operations in domain-valued parameters;
• optimization techniques to be used for partially specified types (op-

erations for “vectors of R”, for instance, can be open-coded even
though R is unknown).

AXIOM is Extensible Users and system implementers alike use the AXIOM language to add
facilities to the AXIOM library. The entire AXIOM library is in fact
written in the AXIOM source code and available for user modification
and/or extension.

AXIOM’s use of abstract datatypes clearly separates the exports of a
domain (what operations are defined) from its implementation (how the
objects are represented and operations are defined). Users of a domain
can thus only create and manipulate objects through these exported op-
erations. This allows implementers to “remove and replace” parts of the
library safely by newly upgraded (and, we hope, correct) implementations
without consequence to its users.

Categories protect names by context, making the same names available
for use in other contexts. Categories also provide for code-economy. Al-
gorithms can be parameterized categorically to characterize their correct
and most general context. Once compiled, the same machine code is
applicable in all such contexts.

Finally, AXIOM provides an automatic, guaranteed interaction between
new and old code. For example:

14 · A Technical Introduction to AXIOM

• if you write a new algorithm that requires a parameter to be a field,
then your algorithm will work automatically with every field defined
in the system; past, present, or future.

• if you introduce a new domain constructor that produces a field,
then the objects of that domain can be used as parameters to any
algorithm using field objects defined in the system; past, present,
or future.

These are the key ideas. For further information, we particularly rec-
ommend your reading chapters 11, 12, and 13, where these ideas are
explained in greater detail.

AXIOM is Extensible · 15

PART I

What’s new
at Release 2.0

CHAPTER 1

What’s New
in AXIOM
Version 2.0

Many things have changed in this new version of AXIOM and we describe
many of the more important topics here.

1.1
Important Things
to Read First

If you have any private .spad files (that is, library files which were not
shipped with AXIOM) you will need to recompile them. For exam-
ple, if you wrote the file regress.spad then you should issue)compile
regress.spad before trying to use it.

The internal representation of Union has changed. This means that
AXIOM data saved with Release 1.x may not be readable by this Re-
lease. If you cannot recreate the saved data by recomputing in Release
2.0, please contact NAG for assistance.

1.2
The New AXIOM
Library Compiler

A new compiler is now available for AXIOM. The programming language
is referred to as the AXIOM Extension Language (or Aldor for short), and
improves upon the old AXIOM language in many ways. The)compile
command has been upgraded to be able to invoke the new or old com-
pilers. The language and the compiler are described in the hard-copy
documentation which came with your AXIOM system.

To ease the chore of upgrading your .spad files (old compiler) to .as files

19

(new compiler), the)compile command has been given a)translate
option. This invokes a special version of the old compiler which parses
and analyzes your old code and produces augmented code using the new
syntax. Please be aware that the translation is not necessarily one hun-
dred percent complete or correct. You should attempt to compile the
output with the Aldor compiler and make any necessary corrections.

1.3
The NAG Library
Link

The NAG Foundation Library link allows you to call NAG Fortran rou-
tines from within AXIOM, passing AXIOM objects as parameters and
getting them back as results.

The NAG Foundation Library and, consequently, the link are divided into
chapters, which cover different areas of numerical analysis. The statistical
and sorting chapters of the Library, however, are not included in the link
and various support and utility routines (mainly the F06 and X chapters)
have been omitted.

Each chapter has a short (at most three-letter) name; for example, the
chapter devoted to the solution of ordinary differential equations is called
D02. When using the link via the HyperDoc interface, you will be
presented with a complete menu of these chapters. The names of indi-
vidual routines within each chapter are formed by adding three letters to
the chapter name, so for example the routine for solving ODEs by Adams
method is called d02cjf.

1.3.1
Interpreting NAG
Documentation

Information about using the NAG Foundation Library in general, and
about using individual routines in particular, can be accessed via Hyper-
Doc. This documentation refers to the Fortran routines directly; the pur-
pose of this subsection is to explain how this corresponds to the AXIOM
routines.

For general information about the NAG Foundation Library users should
consult Essential Introduction to the NAG Foundation Library.
The documentation is in ASCII format, and a description of the conven-
tions used to represent mathematical symbols is given in Introduction
to NAG On-Line Documentation. Advice about choosing a routine
from a particular chapter can be found in the Chapter Documents.

Correspondence Between
Fortran and AXIOM types

The NAG documentation refers to the Fortran types of objects; in general,
the correspondence to AXIOM types is as follows.

• Fortran INTEGER corresponds to AXIOM Integer.
• Fortran DOUBLE PRECISION corresponds to AXIOM DoubleFloat.

20 · What’s New in AXIOM Version 2.0

• Fortran COMPLEX corresponds to AXIOM Complex DoubleFloat.
• Fortran LOGICAL corresponds to AXIOM Boolean.
• Fortran CHARACTER*(*) corresponds to AXIOM String.

(Exceptionally, for NAG EXTERNAL parameters – ASPs in link parlance
– REAL and COMPLEX correspond to MachineFloat and MachineComplex,
respectively; see Section 1.3.3 on page 24.)

The correspondence for aggregates is as follows.

• A one-dimensional Fortran array corresponds to an AXIOM Matrix
with one column.

• A two-dimensional Fortran ARRAY corresponds to an AXIOM Matrix.
• A three-dimensional Fortran ARRAY corresponds to an AXIOM

ThreeDimensionalMatrix.

Higher-dimensional arrays are not currently needed for the NAG Founda-
tion Library.

Arguments which are Fortran FUNCTIONs or SUBROUTINEs corre-
spond to special ASP domains in AXIOM. See Section 1.3.3 on page 24.

Classification of NAG
parameters

NAG parameters are classified as belonging to one (or more) of the fol-
lowing categories: Input, Output, Workspace or External procedure.
Within External procedures a similar classification is used, and parame-
ters may also be Dummies, or User Workspace (data structures not used
by the NAG routine but provided for the convenience of the user).

When calling a NAG routine via the link the user only provides values
for Input and External parameters.

The order of the parameters is, in general, different from the order spec-
ified in the NAG Foundation Library documentation. The Browser de-
scription for each routine helps in determining the correspondence. As
a rule of thumb, Input parameters come first followed by Input/Output
parameters. The External parameters are always found at the end.

IFAIL NAG routines often return diagnostic information through a parameter
called ifail. With a few exceptions, the principle is that on input ifail
takes one of the values −1, 0, 1. This determines how the routine behaves
when it encounters an error:

• a value of 1 causes the NAG routine to return without printing an
error message;

• a value of 0 causes the NAG routine to print an error message and
abort;

• a value of -1 causes the NAG routine to return and print an error

1.3. The NAG Library Link · 21

message.

The user is STRONGLY ADVISED to set ifail to −1 when using the
link. If ifail has been set to 1 or −1 on input, then its value on output
will determine the possible cause of any error. A value of 0 indicates
successful completion, otherwise it provides an index into a table of di-
agnostics provided as part of the routine documentation (accessible via
Browse).

1.3.2
Using the Link

The easiest way to use the link is via the HyperDoc interface. You will
be presented with a set of fill-in forms where you can specify the param-
eters for each call. Initially, the forms contain example values, demon-
strating the use of each routine (these, in fact, correspond to the standard
NAG example program for the routine in question). For some parameters,
these values can provide reasonable defaults; others, of course, represent
data. When you change a parameter which controls the size of an array,
the data in that array are reset to a “neutral” value – usually zero.

When you are satisfied with the values entered, clicking on the “Continue”
button will display the AXIOM command needed to run the chosen NAG
routine with these values. Clicking on the “Do It” button will then cause
AXIOM to execute this command and return the result in the parent
AXIOM session, as described below. Note that, for some routines, mul-
tiple HyperDoc “pages” are required, due to the structure of the data.
For these, returning to an earlier page causes HyperDoc to reset the later
pages (this is a general feature of HyperDoc); in such a case, the simplest
way to repeat a call, varying a parameter on an earlier page, is probably
to modify the call displayed in the parent session.

An alternative approach is to call NAG routines directly in your normal
AXIOM session (that is, using the AXIOM interpreter). Such calls return
an object of type Result. As not all parameters in the underlying NAG
routine are required in the AXIOM call (and the parameter ordering may
be different), before calling a NAG routine you should consult the de-
scription of the AXIOM operation in the Browser. (The quickest route to
this is to type the routine name, in lower case, into the Browser’s input
area, then click on Operations.) The parameter names used coincide
with NAG’s, although they will appear here in lower case. Of course, it
is also possible to become familiar with the AXIOM form of a routine by
first using it through the HyperDoc interface.

22 · What’s New in AXIOM Version 2.0

As an example of this mode of
working, we can find a zero of a
function, lying between 3 and 4,
as follows:

answer:=c05adf(3.0,4.0,1.0e-5,0.0,-1,sin(X)::ASP1(F))

[ifail:Integer , x:DoubleFloat] (1)
Type: Result

By default, Result only displays
the type of returned values,
since the amount of information
returned can be quite large.
Individual components can be
examined as follows:

answer . x

3.14159265545896 (2)
Type: DoubleFloat

answer . ifail

0 (3)
Type: Integer

In order to avoid conflict with
names defined in the workspace,
you can also get the values by
using the String type (the
interpreter automatically
coerces them to Symbol)

answer "x"

3.14159265545896 (4)
Type: DoubleFloat

It is possible to have AXIOM display the values of scalar or array results
automatically. For more details, see the commands showScalarValues
and showArrayValues.

There is also a .input file for
each NAG routine, containing
AXIOM interpreter commands
to set up and run the standard
NAG example for that routine.

)read c05adf.input

--Copyright The Numerical Algorithms Group Limited
1994.
)clear all

All user variables and function definitions have been
cleared.

showArrayValues true

true (1)
Type: Boolean

showScalarValues true

true (2)
Type: Boolean

f:ASP1(F):=exp(-X)-X

F (3)
Type: Asp1 F

1.3. The NAG Library Link · 23

a:SF:=0.0

0.0 (4)
Type: DoubleFloat

b:SF:=1.0

1.0 (5)
Type: DoubleFloat

eps:SF:=1.0e-5

1.0e− 05 (6)
Type: DoubleFloat

eta:SF:=0.0

0.0 (7)
Type: DoubleFloat

result:= c05adf(a,b,eps,eta,-1,f)

[ifail:0, x:0.567143306604963] (8)
Type: Result

1.3.3
Providing values for
Argument
Subprograms

There are a number of ways in which users can provide values for argument
subprograms (ASPs). At the top level the user will see that NAG routines
require an object from the Union of a Filename and an ASP.

For example c05adf requires an
object of type
Union(fn: FileName,fp: Asp1 F)

)display operation c05adf

There is one exposed function called c05adf :
[1] (DoubleFloat,DoubleFloat,DoubleFloat,DoubleFloat,

Integer,Union(fn: FileName,fp: Asp1 F)) ->
Result

from NagRootFindingPackage

The user thus has a choice of providing the name of a file containing
Fortran source code, or of somehow generating the ASP within AXIOM.
If a filename is specified, it is searched for in the local machine, i.e., the
machine that AXIOM is running on.

Providing ASPs via
FortranExpression

The FortranExpression domain is used to represent expressions which can be
translated into Fortran under certain circumstances. It is very similar to
Expression except that only operators which exist in Fortran can be used,
and only certain variables can occur. For example the instantiation For-
tranExpression([X],[M],MachineFloat) is the domain of expressions containing
the scalar X and the array M.

24 · What’s New in AXIOM Version 2.0

This allows us to create
expressions like:

f : FortranExpression([X],[M],MachineFloat) :=
sin(X)+M[3,1]

sin (X) + M3, 1 (1)
Type: FortranExpression([X], [M], MachineFloat)

but not f : FortranExpression([X],[M],MachineFloat) := sin(M)+Y

Cannot convert right-hand side of assignment
sin(M) + Y

to an object of the type FortranExpression([X],[M]
,MachineFloat) of the left-hand side.

Those ASPs which represent expressions usually export a coerce from an
appropriate instantiation of FortranExpression (or perhaps Vector FortranEx-
pression etc.). For convenience there are also retractions from appropriate
instantiations of Expression, Polynomial and Fraction Polynomial.

Providing ASPs via
FortranCode

FortranCode allows us to build arbitrarily complex ASPs via a kind of
pseudo-code. It is described fully in Section 1.3.4 on page 26.

Every ASP exports two coerce functions: one from FortranCode and one
from List FortranCode. There is also a coerce from
Record(localSymbols: SymbolTable, code: List FortranCode) which is used for
passing extra symbol information about the ASP.

So for example, to integrate the
function abs(x) we could use the
built-in abs function. But
suppose we want to get back to
basics and define it directly,
then we could do the following:

d01ajf(-1.0, 1.0, 0.0, 1.0e-5, 800, 200, -1, cond(LT(X,0),
assign(F,-X), assign(F,X))) result

1.0 (2)
Type: DoubleFloat

The cond operation creates a conditional clause and the assign an as-
signment statement.

Providing ASPs via FileName Suppose we have created the file “asp.f” as follows:

DOUBLE PRECISION FUNCTION F(X)
DOUBLE PRECISION X
F=4.0D0/(X*X+1.0D0)
RETURN
END

and wish to pass it to the NAG routine d01ajf which performs one-
dimensional quadrature. We can do this as follows:

d01ajf(0.0 ,1.0, 0.0, 1.0e-5, 800, 200, -1, "asp.f")

1.3. The NAG Library Link · 25

1.3.4
General
Fortran-generation
utilities in AXIOM

This section describes more advanced facilities which are available to users
who wish to generate Fortran code from within AXIOM. There are facil-
ities to manipulate templates, store type information, and generate code
fragments or complete programs.

Template Manipulation A template is a skeletal program which is “fleshed out” with data when
it is processed. It is a sequence of active and passive parts: active parts
are sequences of AXIOM commands which are processed as if they had
been typed into the interpreter; passive parts are simply echoed verbatim
on the Fortran output stream.

Suppose, for example, that we have the following template, stored in the
file “test.tem”:

-- A simple template
beginVerbatim

DOUBLE PRECISION FUNCTION F(X)
DOUBLE PRECISION X

endVerbatim
outputAsFortran("F",f)
beginVerbatim

RETURN
END

endVerbatim

The passive parts lie between the two tokens beginVerbatim and
endVerbatim. There are two active statements: one which is simply an
AXIOM (--) comment, and one which produces an assignment to the
current value of f. We could use it as follows:

(4) ->f := 4.0/(1+X**2)

4
(4) ------

2
X + 1

(5) ->processTemplate "test.tem"
DOUBLE PRECISION FUNCTION F(X)
DOUBLE PRECISION X
F=4.0D0/(X*X+1.0D0)
RETURN
END

(5) "CONSOLE"

(A more reliable method of specifying the filename will be introduced
below.) Note that the Fortran assignment F=4.0D0/(X*X+1.0D0) au-
tomatically converted 4.0 and 1 into DOUBLE PRECISION numbers;
in general, the AXIOM Fortran generation facility will convert anything
which should be a floating point object into either a Fortran REAL or
DOUBLE PRECISION object.

26 · What’s New in AXIOM Version 2.0

Which alternative is used is
determined by the command

)set fortran precision

---------------- The precision Option ----------------

Description: precision of generated FORTRAN objects

The precision option may be followed by any one
of the following:

single
-> double

The current setting is indicated within the list.

It is sometimes useful to end a template before the file itself ends (e.g.
to allow the template to be tested incrementally or so that a piece of
text describing how the template works can be included). It is of course
possible to “comment-out” the remainder of the file. Alternatively, the
single token endInput as part of an active portion of the template will
cause processing to be ended prematurely at that point.

The processTemplate command comes in two flavours. In the first case,
illustrated above, it takes one argument of domain FileName, the name of
the template to be processed, and writes its output on the current Fortran
output stream. In general, a filename can be generated from directory,
name and extension components, using the operation filename, as in

processTemplate filename("","test","tem")

There is an alternative version of processTemplate, which takes two
arguments (both of domain FileName). In this case the first argument
is the name of the template to be processed, and the second is the file
in which to write the results. Both versions return the location of the
generated Fortran code as their result ("CONSOLE" in the above example).

It is sometimes useful to be able to mix active and passive parts of a line or
statement. For example you might want to generate a Fortran Comment
describing your data set. For this kind of application we provide three
functions as follows:
fortranLiteral writes a string on the Fortran output

stream
fortranCarriageReturn writes a carriage return on the Fortran

output stream
fortranLiteralLine writes a string followed by a return on

the Fortran output stream

1.3. The NAG Library Link · 27

So we could create our comment
as follows:

m := matrix [[1,2,3],[4,5,6]]
[

1 2 3
4 5 6

]
(1)

Type: Matrix Integer

fortranLiteralLine concat ["C The Matrix has ",
nrows(m)::String, " rows and ", ncols(m)::String, "
columns"]

C The Matrix has 2 rows and 3 columns

Type: Void

or, alternatively: fortranLiteral "C The Matrix has "

C The Matrix has
Type: Void

fortranLiteral(nrows(m)::String)

2
Type: Void

fortranLiteral " rows and "

rows and
Type: Void

fortranLiteral(ncols(m)::String)

3
Type: Void

fortranLiteral " columns"

columns
Type: Void

fortranCarriageReturn()

Type: Void

We should stress that these functions, together with the outputAsFor-
tran function are the only sure ways of getting output to appear on the
Fortran output stream. Attempts to use AXIOM commands such as out-
put or writeline! may appear to give the required result when displayed
on the console, but will give the wrong result when Fortran and algebraic
output are sent to differing locations. On the other hand, these functions
can be used to send helpful messages to the user, without interfering with
the generated Fortran.

28 · What’s New in AXIOM Version 2.0

Manipulating the Fortran
Output Stream

Sometimes it is useful to manipulate the Fortran output stream in a pro-
gram, possibly without being aware of its current value. The main use of
this is for gathering type declarations (see “Fortran Types” below) but
it can be useful in other contexts as well. Thus we provide a set of com-
mands to manipulate a stack of (open) output streams. Only one stream
can be written to at any given time. The stack is never empty—its initial
value is the console or the current value of the Fortran output stream,
and can be determined using

topFortranOutputStack()

"CONSOLE" (9)
Type: String

(see below). The commands available to manipulate the stack are:

clearFortranOutputStack resets the stack to the console
pushFortranOutputStack pushes a FileName onto the stack
popFortranOutputStack pops the stack
showFortranOutputStack returns the current stack
topFortranOutputStack returns the top element of the stack

These commands are all part of FortranOutputStackPackage.

Fortran Types When generating code it is important to keep track of the Fortran types
of the objects which we are generating. This is useful for a number of
reasons, not least to ensure that we are actually generating legal Fortran
code. The current type system is built up in several layers, and we shall
describe each in turn.

FortranScalarType This domain represents the simple Fortran datatypes: REAL, DOUBLE
PRECISION, COMPLEX, LOGICAL, INTEGER, and CHARACTER.
It is possible to coerce a String or Symbol into the domain, test whether
two objects are equal, and also apply the predicate functions real? etc.

FortranType This domain represents “full” types: i.e., datatype plus array dimensions
(where appropriate) plus whether or not the parameter is an external
subprogram. It is possible to coerce an object of FortranScalarType into
the domain or construct one from an element of FortranScalarType, a list
of Polynomial Integers (which can of course be simple integers or symbols)
representing its dimensions, and a Boolean declaring whether it is external
or not. The list of dimensions must be empty if the Boolean is true.
The functions scalarTypeOf, dimensionsOf and external? return
the appropriate parts, and it is possible to get the various basic Fortran
Types via functions like fortranReal.

1.3. The NAG Library Link · 29

For example: type:=construct(real,[i,10],false)$FortranType

REAL (i, 10) (10)
Type: FortranType

or type:=[real,[i,10],false]$FortranType

REAL (i, 10) (11)
Type: FortranType

scalarTypeOf type

REAL (12)
Type: Union(fst: FortranScalarType, ...)

dimensionsOf type

[i, 10] (13)
Type: List Polynomial Integer

external? type

false (14)
Type: Boolean

fortranLogical()

LOGICAL (15)
Type: FortranType

construct(integer,[],true)$FortranType

EXTERNAL INTEGER (16)
Type: FortranType

SymbolTable This domain creates and manipulates a symbol table for generated Fortran
code. This is used by FortranProgram to represent the types of objects in
a subprogram. The commands available are:

empty creates a new SymbolTable
declare! creates a new entry in a table
fortranTypeOf returns the type of an object in a table
parametersOf returns a list of all the symbols in the table
typeList returns a list of all objects of a given type
typeLists returns a list of lists of all objects sorted by type
externalList returns a list of all EXTERNAL objects
printTypes produces Fortran type declarations from a table

symbols := empty()$SymbolTable

table() (17)
Type: SymbolTable

30 · What’s New in AXIOM Version 2.0

declare!(X,fortranReal(),symbols)

REAL (18)
Type: FortranType

declare!(M,construct(real,[i,j],false)$FortranType,symbols)

REAL (i, j) (19)
Type: FortranType

declare!([i,j],fortranInteger(),symbols)

INTEGER (20)
Type: FortranType

symbols

table
(
X = REAL , M = REAL (i, j), i = INTEGER , j = INTEGER

)
(21)

Type: SymbolTable

fortranTypeOf(i,symbols)

INTEGER (22)
Type: FortranType

typeList(real,symbols)

[X, [M, i, j]] (23)
Type: List Union(name: Symbol, bounds: List Union(S: Symbol, P: Polynomial

Integer))

printTypes symbols

INTEGER j,i
DOUBLE PRECISION X,M(i,j)

Type: Void

TheSymbolTable This domain creates and manipulates one global symbol table to be used,
for example, during template processing. It is also used when linking to
external Fortran routines. The information stored for each subprogram
(and the main program segment, where relevant) is:

• its name;
• its return type;
• its argument list;
• and its argument types.

Initially, any information provided is deemed to be for the main program
segment.

1.3. The NAG Library Link · 31

Issuing the following command
indicates that from now on all
information refers to the
subprogram F.

newSubProgram F

Type: Void

It is possible to return to
processing the main program
segment by issuing the
command:

endSubProgram()

MAIN (26)
Type: Symbol

The following commands exist:

returnType! declares the return type of the current
subprogram

returnTypeOf returns the return type of a subprogram
argumentList! declares the argument list of the current

subprogram
argumentListOf returns the argument list of a subprogram
declare! provides type declarations for parameters

of the current subprogram
symbolTableOf returns the symbol table of a subprogram
printHeader produces the Fortran header for the cur-

rent subprogram

In addition there are versions of these commands which are parameterised
by the name of a subprogram, and others parameterised by both the name
of a subprogram and by an instance of TheSymbolTable.

newSubProgram F

Type: Void

argumentList!(F,[X])

Type: Void

returnType!(F,real)

Type: Void

declare!(X,fortranReal(),F)

REAL (30)
Type: FortranType

32 · What’s New in AXIOM Version 2.0

printHeader F

DOUBLE PRECISION FUNCTION F(X)
DOUBLE PRECISION X

Type: Void

Advanced Fortran Code
Generation

This section describes facilities for representing Fortran statements, and
building up complete subprograms from them.

Switch This domain is used to represent statements like x < y. Although these
can be represented directly in AXIOM, it is a little cumbersome, since
AXIOM evaluates the last statement, for example, to true (since x is
lexicographically less than y).

Instead we have a set of operations, such as LT to represent <, to let us
build such statements. The available constructors are:

LT <
GT >
LE ≤
GE ≥
EQ =
AND and
OR or
NOT not

So for example: LT(x,y)

x < y (32)
Type: Switch

FortranCode This domain represents code segments or operations: currently assign-
ments, conditionals, blocks, comments, gotos, continues, various kinds of
loops, and return statements.

For example we can create quite
a complicated conditional
statement using assignments,
and then turn it into Fortran
code:

c := cond(LT(X,Y),assign(F,X),cond(GT(Y,Z),assign(F,Y),
assign(F,Z)))

conditional (33)
Type: FortranCode

printCode c

IF(X.LT.Y)THEN
F=X

ELSEIF(Y.GT.Z)THEN
F=Y

ELSE
F=Z

ENDIF

Type: Void

1.3. The NAG Library Link · 33

The Fortran code is printed on the current Fortran output stream.

FortranProgram This domain is used to construct complete Fortran subprograms out of
elements of FortranCode. It is parameterised by the name of the target sub-
program (a Symbol), its return type (from Union(FortranScalarType,“void”)),
its arguments (from List Symbol), and its symbol table (from SymbolTable).
One can coerce elements of either FortranCode or Expression into it.

First of all we create a symbol
table:

symbols := empty()$SymbolTable

table() (35)
Type: SymbolTable

Now put some type declarations
into it:

declare!([X,Y],fortranReal(),symbols)

REAL (36)
Type: FortranType

Then (for convenience) we set
up the particular instantiation
of FortranProgram

FP := FortranProgram(F,real,[X,Y],symbols)

FortranProgram (F, REAL , [X, Y], table(..., ...)) (37)
Type: Domain

Create an object of type
Expression(Integer):

asp := X*sin(Y)

X sin (Y) (38)
Type: Expression Integer

Now coerce it into FP, and
print its Fortran form:

outputAsFortran(asp::FP)

DOUBLE PRECISION FUNCTION F(X,Y)
DOUBLE PRECISION Y,X
F=X*DSIN(Y)
RETURN
END

Type: Void

We can generate a FortranProgram using FortranCode. For example:

Augment our symbol table: declare!(Z,fortranReal(),symbols)

REAL (40)
Type: FortranType

34 · What’s New in AXIOM Version 2.0

and transform the conditional
expression we prepared earlier:

outputAsFortran([c,returns()]::FP)

DOUBLE PRECISION FUNCTION F(X,Y)
DOUBLE PRECISION Z,Y,X
IF(X.LT.Y)THEN
F=X

ELSEIF(Y.GT.Z)THEN
F=Y

ELSE
F=Z

ENDIF
RETURN
END

Type: Void

1.3.5
Some technical
information

The model adopted for the link is a server-client configuration – AXIOM
acting as a client via a local agent (a process called nagman). The server
side is implemented by the nagd daemon process which may run on a
different host. The nagman local agent is started by default whenever you
start AXIOM. The nagd server must be started separately. Instructions
for installing and running the server are supplied in Section ?.? on page
???. Use the)set naglink host system command to point your local
agent to a server in your network.

On the AXIOM side, one sees a set of packages (ask Browse for Nag*) for
each chapter, each exporting operations with the same name as a routine
in the NAG Foundation Library. The arguments and return value of each
operation belong to standard AXIOM types.

The man pages for the NAG Foundation Library are accessible via the
description of each operation in Browse (among other places).

In the implementation of each operation, the set of inputs is passed to the
local agent nagman, which makes a Remote Procedure Call (RPC) to the
remote nagd daemon process. The local agent receives the RPC results
and forwards them to the AXIOM workspace where they are interpreted
appropriately.

How are Fortran subroutines turned into RPC calls? For each Fortran
routine in the NAG Foundation Library, a C main() routine is supplied.
Its job is to assemble the RPC input (numeric) data stream into the ap-
propriate Fortran data structures for the routine, call the Fortran routine
from C and serialize the results into an RPC output data stream.

Many NAG Foundation Library routines accept ASPs (Argument Sub-
program Parameters). These specify user-supplied Fortran routines (e.g.
a routine to supply values of a function is required for numerical integra-

1.3. The NAG Library Link · 35

tion). How are they handled? There are new facilities in AXIOM to help.
A set of AXIOM domains has been provided to turn values in standard
AXIOM types (such as Expression Integer) into the appropriate piece of
Fortran for each case (a filename pointing to Fortran source for the ASP
can always be supplied instead). Ask Browse for Asp* to see these do-
mains. The Fortran fragments are included in the outgoing RPC stream,
but nagd intercepts them, compiles them, and links them with the main()
C program before executing the resulting program on the numeric part
of the RPC stream.

1.4
Interactive
Front-end and
Language

The leave keyword has been replaced by the break keyword for compati-
bility with the new AXIOM extension language. See section Section 5.4.3
on page 159 for more information.

Curly braces are no longer used to create sets. Instead, use set followed
by a bracketed expression. For example,

set [1,2,3,4]

{1, 2, 3, 4} (1)
Type: Set PositiveInteger

Curly braces are now used to enclose a block (see section Section 5.2 on
page 153 for more information). For compatibility, a block can still be
enclosed by parentheses as well.

“Free functions” created by the Aldor compiler can now be loaded and
used within the AXIOM interpreter. A free function is a library function
that is implemented outside a domain or category constructor.

New coercions to and from type Expression have been added. For example,
it is now possible to map a polynomial represented as an expression to an
appropriate polynomial type.

Various messages have been added or rewritten for clarity.

1.5
Library

The FullPartialFractionExpansion domain has been added. This domain com-
putes factor-free full partial fraction expansions. See section ‘FullPartial-
FractionExpansion’ on page 435 for examples.

We have implemented the Bertrand/Cantor algorithm for integrals of hy-
perelliptic functions. This brings a major speedup for some classes of
algebraic integrals.

We have implemented a new (direct) algorithm for integrating trigonomet-
ric functions. This brings a speedup and an improvement in the answer

36 · What’s New in AXIOM Version 2.0

quality.

The SmallFloat domain has been renamed DoubleFloat and SmallInteger
has been renamed SingleInteger. The new abbreviations as DFLOAT and
SINT, respectively. We have defined the macro SF, the old abbreviation
for SmallFloat, to expand to DoubleFloat and modified the documentation
and input file examples to use the new names and abbreviations. You
should do the same in any private AXIOM files you have.

There are many new categories, domains and packages related to the NAG
Library Link facility. See the file

$AXIOM/../../src/algebra/exposed.lsp

for a list of constructors in the naglink AXIOM exposure group.

We have made improvements to the differential equation solvers and there
is a new facility for solving systems of first-order linear differential equa-
tions. In particular, an important fix was made to the solver for inhomoge-
neous linear ordinary differential equations that corrected the calculation
of particular solutions. We also made improvements to the polynomial
and transcendental equation solvers including the ability to solve some
classes of systems of transcendental equations.

The efficiency of power series have been improved and left and right ex-
pansions of tan(f(x)) at x = a pole of f(x) can now be computed. A
number of power series bugs were fixed and the GeneralSeries domain was
added. The power series variable can appear in the coefficients and when
this happens, you cannot differentiate or integrate the series. Differenti-
ation and integration with respect to other variables is supported.

A domain was added for representing asymptotic expansions of a function
at an exponential singularity.

For limits, the main new feature is the exponential expansion domain used
to treat certain exponential singularities. Previously, such singularities
were treated in an ad hoc way and only a few cases were covered. Now
AXIOM can do things like
limit((x+1)**(x+1)/x**x-x**x/(x-1)**(x-1), x=%plusInfinity)

in a systematic way. It only does one level of nesting, though. In
other words, we can handle exp(some function with a pole), but not
exp(exp(some function with a pole)).

The computation of integral bases has been improved through careful
use of Hermite row reduction. A P-adic algorithm for function fields of
algebraic curves in finite characteristic has also been developed.

Miscellaneous: There is improved conversion of definite and indefinite

1.5. Library · 37

integrals to InputForm; binomial coefficients are displayed in a new way;
some new simplifications of radicals have been implemented; the opera-
tion complexForm for converting to rectangular coordinates has been
added; symmetric product operations have been added to LinearOrdinary-
DifferentialOperator.

1.6
HyperDoc

The buttons on the titlebar and scrollbar have been replaced with ones
which have a 3D effect. You can change the foreground and background
colors of these “controls” by including and modifying the following lines
in your .Xdefaults file.

Axiom.hyperdoc.ControlBackground: White
Axiom.hyperdoc.ControlForeground: Black

For various reasons, HyperDoc sometimes displays a secondary window.
You can control the size and placement of this window by including and
modifying the following line in your .Xdefaults file.

Axiom.hyperdoc.FormGeometry: =950x450+100+0

This setting is a standard X Window System geometry specification: you
are requesting a window 950 pixels wide by 450 deep and placed in the
upper left corner.

Some key definitions have been changed to conform more closely with the
CUA guidelines. Press F9 to see the current definitions.

Input boxes (for example, in the Browser) now accept paste-ins from the
X Window System. Use the second button to paste in something you
have previously copied or cut. An example of how you can use this is
that you can paste the type from an AXIOM computation into the main
Browser input box.

1.7
Documentation

We describe here a few additions to the on-line version of the AXIOM
book which you can read with HyperDoc.

A section has been added to the graphics chapter, describing how to build
two-dimensional graphs from lists of points. An example is given showing
how to read the points from a file. See section Section 7.1.9 on page 256
for details.

A further section has been added to that same chapter, describing how to
add a two-dimensional graph to a viewport which already contains other
graphs. See section Section ?.? on page ??? for details.

Chapter 3 and the on-line HyperDoc help have been unified.

38 · What’s New in AXIOM Version 2.0

An explanation of operation names ending in “?” and “!” has been added
to the first chapter. See the end of the section Section 1.3.6 on page 51
for details.

An expanded explanation of using predicates has been added to the sixth
chapter. See the example involving evenRule in the middle of the section
Section 6.21 on page 228 for details.

Documentation for the)compile,)library and)load commands has
been greatly changed. This reflects the ability of the)compile to now
invoke the Aldor compiler, the impending deletion of the)load com-
mand and the new)library command. The)library command replaces
)load and is compatible with the compiled output from both the old and
new compilers.

1.7. Documentation · 39

PART II

Basic Features
of AXIOM

CHAPTER 1

An Overview
of AXIOM

Welcome to the AXIOM environment for interactive computation and
problem solving. Consider this chapter a brief, whirlwind tour of the
AXIOM world. We introduce you to AXIOM’s graphics and the AXIOM
language. Then we give a sampling of the large variety of facilities in
the AXIOM system, ranging from the various kinds of numbers, to data
types (like lists, arrays, and sets) and mathematical objects (like matrices,
integrals, and differential equations). We conclude with the discussion of
system commands and an interactive “undo.”

Before embarking on the tour, we need to brief those readers working
interactively with AXIOM on some details. Others can skip right imme-
diately to Section 1.2 on page 46.

43

1.1
Starting Up and
Winding Down

You need to know how to start the AXIOM system and how to stop it.
We assume that AXIOM has been correctly installed on your machine (as
described in another AXIOM document).

To begin using AXIOM, issue the command axiom to the operating sys-
tem shell. There is a brief pause, some start-up messages, and then one
or more windows appear.

If you are not running AXIOM under the X Window System, there is
only one window (the console). At the lower left of the screen there is a
prompt that looks like

(1) ->

When you want to enter input to AXIOM, you do so on the same line
after the prompt. The “1” in “(1)” is the computation step number and
is incremented after you enter AXIOM statements. Note, however, that
a system command such as)clear all may change the step number in
other ways. We talk about step numbers more when we discuss system
commands and the workspace history facility.

If you are running AXIOM under the X Window System, there may be
two windows: the console window (as just described) and the HyperDoc
main menu. HyperDoc is a multiple-window hypertext system that lets
you view AXIOM documentation and examples on-line, execute AXIOM
expressions, and generate graphics. If you are in a graphical windowing
environment, it is usually started automatically when AXIOM begins. If
it is not running, issue)hd to start it. We discuss the basics of HyperDoc
in Chapter 3.

To interrupt an AXIOM computation, hold down the Ctrl (control) key
and press c . This brings you back to the AXIOM prompt.

To exit from AXIOM, move to the console window, type)quit at the
input prompt and press the Enter key. You will probably be prompted
with the following message:

Please enter y or yes if you really want to leave the
interactive environment and return to the operating system

You should respond yes, for example, to exit AXIOM.

We are purposely vague in describing exactly what your screen looks like
or what messages AXIOM displays. AXIOM runs on a number of different
machines, operating systems and window environments, and these differ-
ences all affect the physical look of the system. You can also change the

44 · An Overview of AXIOM

way that AXIOM behaves via system commands described later in this
chapter and in Appendix A. System commands are special commands,
like)set, that begin with a closing parenthesis and are used to change
your environment. For example, you can set a system variable so that
you are not prompted for confirmation when you want to leave AXIOM.

1.1.1
Clef

If you are using AXIOM under the X Window System, the Clef command
line editor is probably available and installed. With this editor you can
recall previous lines with the up and down arrow keys (↑ and ↓). To
move forward and backward on a line, use the right and left arrows (→
and ←). You can use the Insert key to toggle insert mode on or off.
When you are in insert mode, the cursor appears as a large block and
if you type anything, the characters are inserted into the line without
deleting the previous ones.

If you press the Home key, the cursor moves to the beginning of the
line and if you press the End key, the cursor moves to the end of the
line. Pressing Ctrl – End deletes all the text from the cursor to the
end of the line.

Clef also provides AXIOM operation name completion for a limited set
of operations. If you enter a few letters and then press the Tab key,
Clef tries to use those letters as the prefix of an AXIOM operation name.
If a name appears and it is not what you want, press Tab again to see
another name.

You are ready to begin your journey into the world of AXIOM. Proceed
to the first stop.

1.1. Starting Up and Winding Down · 45

1.2
Typographic
Conventions

In this book we have followed these typographical conventions:

• Categories, domains and packages are displayed in a sans-serif type-
face: Ring, Integer, DiophantineSolutionPackage.

• Prefix operators, infix operators, and punctuation symbols in the
AXIOM language are displayed in the text like this: “+”, “$”, “+->”.

• AXIOM expressions or expression fragments are displayed in a mon-
ospace typeface: inc(x) == x + 1.

• For clarity of presentation, TEX is often used to format expressions:
g(x) = x2 + 1.

• Function names and HyperDoc button names are displayed in the
text in a bold typeface: factor, integrate, Lighting.

• Italics are used for emphasis and for words defined in the glossary:
category.

This book contains over 2500 examples of AXIOM input and output. All
examples were run though AXIOM and their output was created in TEX
form for this book by the AXIOM TexFormat package. We have deleted
system messages from the example output if those messages are not im-
portant for the discussions in which the examples appear.

46 · An Overview of AXIOM

1.3
The AXIOM
Language

The AXIOM language is a rich language for performing interactive com-
putations and for building components of the AXIOM library. Here we
present only some basic aspects of the language that you need to know
for the rest of this chapter. Our discussion here is intentionally informal,
with details unveiled on an “as needed” basis. For more information on a
particular construct, we suggest you consult the index at the back of the
book.

1.3.1
Arithmetic
Expressions

For arithmetic expressions, use the “+” and “-” operators as in mathemat-
ics. Use “*” for multiplication, and “**” for exponentiation. To create a
fraction, use “/”. When an expression contains several operators, those
of highest precedence are evaluated first. For arithmetic operators, “**”
has highest precedence, “*” and “/” have the next highest precedence,
and “+” and “-” have the lowest precedence.

AXIOM puts implicit
parentheses around operations
of higher precedence, and
groups those of equal
precedence from left to right.

1 + 2 - 3 / 4 * 3 ** 2 - 1

−19
4

(1)

Type: Fraction Integer

The above expression is
equivalent to this.

((1 + 2) - ((3 / 4) * (3 ** 2))) - 1

−19
4

(2)

Type: Fraction Integer

If an expression contains
subexpressions enclosed in
parentheses, the parenthesized
subexpressions are evaluated
first (from left to right, from
inside out).

1 + 2 - 3/ (4 * 3 ** (2 - 1))

11
4

(3)

Type: Fraction Integer

1.3.2
Previous Results

Use the percent sign (“%”) to refer to the last result. Also, use “%%” to
refer to previous results. %%(-1) is equivalent to “%”, %%(-2) returns
the next to the last result, and so on. %%(1) returns the result from step
number 1, %%(2) returns the result from step number 2, and so on. %%(0)
is not defined.

This is ten to the tenth power. 10 ** 10

10000000000 (1)
Type: PositiveInteger

1.3. The AXIOM Language · 47

This is the last result minus
one.

% - 1

9999999999 (2)
Type: PositiveInteger

This is the last result. %%(-1)

9999999999 (3)
Type: PositiveInteger

This is the result from step
number 1.

%%(1)

10000000000 (4)
Type: PositiveInteger

1.3.3
Some Types

Everything in AXIOM has a type. The type determines what operations
you can perform on an object and how the object can be used. An entire
chapter of this book (Chapter 2) is dedicated to the interactive use of
types. Several of the final chapters discuss how types are built and how
they are organized in the AXIOM library.

Positive integers are given type
PositiveInteger.

8

8 (1)
Type: PositiveInteger

Negative ones are given type
Integer. This fine distinction is
helpful to the AXIOM
interpreter.

-8

−8 (2)
Type: Integer

Here a positive integer exponent
gives a polynomial result.

x**8

x8 (3)
Type: Polynomial Integer

Here a negative integer
exponent produces a fraction.

x**(-8)

1
x8

(4)

Type: Fraction Polynomial Integer

1.3.4
Symbols, Variables,
Assignments, and
Declarations

A symbol is a literal used for the input of things like the “variables” in
polynomials and power series.

48 · An Overview of AXIOM

We use the three symbols x, y,
and z in entering this
polynomial.

(x - y*z)**2

y2 z2 − 2 x y z + x2 (1)
Type: Polynomial Integer

A symbol has a name beginning with an uppercase or lowercase alphabetic
character, “%”, or “!”. Successive characters (if any) can be any of the
above, digits, or “?”. Case is distinguished: the symbol points is different
from the symbol Points.

A symbol can also be used in AXIOM as a variable. A variable refers to
a value. To assign a value to a variable, the operator “:=” is used.1 A
variable initially has no restrictions on the kinds of values to which it can
refer.

This assignment gives the value
4 (an integer) to a variable
named x.

x := 4

4 (2)
Type: PositiveInteger

This gives the value z + 3/5 (a
polynomial) to x.

x := z + 3/5

z +
3
5

(3)

Type: Polynomial Fraction Integer

To restrict the types of objects
that can be assigned to a
variable, use a declaration

y : Integer

Type: Void

After a variable is declared to
be of some type, only values of
that type can be assigned to
that variable.

y := 89

89 (5)
Type: Integer

The declaration for y forces
values assigned to y to be
converted to integer values.

y := sin %pi

0 (6)
Type: Integer

If no such conversion is possible,
AXIOM refuses to assign a
value to y.

y := 2/3

Cannot convert right-hand side of assignment
2
-
3

to an object of the type Integer of the left-hand
side.

1AXIOM actually has two forms of assignment: immediate assignment, as discussed
here, and delayed assignment. See Section 5.1 on page 150 for details.

1.3. The AXIOM Language · 49

A type declaration can also be
given together with an
assignment. The declaration can
assist AXIOM in choosing the
correct operations to apply.

f : Float := 2/3

0.66666666666666666667 (7)
Type: Float

Any number of expressions can be given on input line. Just separate
them by semicolons. Only the result of evaluating the last expression is
displayed.

These two expressions have the
same effect as the previous
single expression.

f : Float; f := 2/3

0.66666666666666666667 (8)
Type: Float

The type of a symbol is either Symbol or Variable(name) where name is the
name of the symbol.

By default, the interpreter gives
this symbol the type Variable(q).

q

q (9)
Type: Variable q

When multiple symbols are
involved, Symbol is used.

[q, r]

[q, r] (10)
Type: List OrderedVariableList [q, r]

What happens when you try to
use a symbol that is the name of
a variable?

f

0.66666666666666666667 (11)
Type: Float

Use a single quote (“’”) before
the name to get the symbol.

’f

f (12)
Type: Variable f

Quoting a name creates a symbol by preventing evaluation of the name
as a variable. Experience will teach you when you are most likely going
to need to use a quote. We try to point out the location of such trouble
spots.

1.3.5
Conversion

Objects of one type can usually be “converted” to objects of several other
types. To convert an object to a new type, use the “::” infix operator.2

For example, to display an object, it is necessary to convert the object to
type OutputForm.

2Conversion is discussed in detail in Section 2.7 on page 113.

50 · An Overview of AXIOM

This produces a polynomial
with rational number
coefficients.

p := r**2 + 2/3

r2 +
2
3

(1)

Type: Polynomial Fraction Integer

Create a quotient of
polynomials with integer
coefficients by using “::”.

p :: Fraction Polynomial Integer

3 r2 + 2
3

(2)

Type: Fraction Polynomial Integer

Some conversions can be performed automatically when AXIOM tries to
evaluate your input. Others conversions must be explicitly requested.

1.3.6
Calling Functions

As we saw earlier, when you want to add or subtract two values, you
place the arithmetic operator “+” or “-” between the two arguments de-
noting the values. To use most other AXIOM operations, however, you
use another syntax: write the name of the operation first, then an open
parenthesis, then each of the arguments separated by commas, and, fi-
nally, a closing parenthesis. If the operation takes only one argument and
the argument is a number or a symbol, you can omit the parentheses.

This calls the operation factor
with the single integer argument
120.

factor(120)

23 3 5 (1)
Type: Factored Integer

This is a call to divide with the
two integer arguments 125 and
7.

divide(125,7)

[quotient = 17, remainder = 6] (2)
Type: Record(quotient: Integer, remainder: Integer)

This calls quatern with four
floating-point arguments.

quatern(3.4,5.6,2.9,0.1)

3.4 + 5.6 i + 2.9 j + 0.1 k (3)
Type: Quaternion Float

This is the same as
factorial(10).

factorial 10

3628800 (4)
Type: PositiveInteger

An operations that returns a Boolean value (that is, true or false) fre-
quently has a name suffixed with a question mark (“?”). For example, the
even? operation returns true if its integer argument is an even number,
false otherwise.

An operation that can be destructive on one or more arguments usually
has a name ending in a exclamation point (“!”). This actually means that

1.3. The AXIOM Language · 51

it is allowed to update its arguments but it is not required to do so. For
example, the underlying representation of a collection type may not allow
the very last element to removed and so an empty object may be returned
instead. Therefore, it is important that you use the object returned by the
operation and not rely on a physical change having occurred within the
object. Usually, destructive operations are provided for efficiency reasons.

1.3.7
Some Predefined
Macros

AXIOM provides several macros for your convenience.3 Macros are names
(or forms) that expand to larger expressions for commonly used values.

%i The square root of -1.
%e The base of the natural logarithm.
%pi π.
%infinity ∞.
%plusInfinity +∞.
%minusInfinity −∞.

1.3.8
Long Lines

When you enter AXIOM expressions from your keyboard, there will be
times when they are too long to fit on one line. AXIOM does not care how
long your lines are, so you can let them continue from the right margin
to the left side of the next line.

Alternatively, you may want to enter several shorter lines and have AXIOM
glue them together. To get this glue, put an underscore () at the end of
each line you wish to continue.

2_
+_
3

is the same as if you had entered

2+3

If you are putting your AXIOM statements in an input file (see Section
4.1 on page 139), you can use indentation to indicate the structure of your
program. (see Section 5.2 on page 153).

1.3.9
Comments

Comment statements begin with two consecutive hyphens or two consec-
utive plus signs and continue until the end of the line.

3See Section 6.2 on page 179 for a discussion on how to write your own macros.

52 · An Overview of AXIOM

The comment beginning with --
is ignored by AXIOM.

2 + 3 -- this is rather simple, no?

5 (1)
Type: PositiveInteger

There is no way to write long multi-line comments other than starting
each line with “--” or “++”.

1.3. The AXIOM Language · 53

1.4
Graphics

AXIOM has a two- and three-dimensional drawing and rendering pack-
age that allows you to draw, shade, color, rotate, translate, map, clip,
scale and combine graphic output of AXIOM computations. The graph-
ics interface is capable of plotting functions of one or more variables and
plotting parametric surfaces. Once the graphics figure appears in a win-
dow, move your mouse to the window and click. A control panel appears
immediately and allows you to interactively transform the object.

This is an example of AXIOM’s
two-dimensional plotting. From
the 2D Control Panel you can
rescale the plot, turn axes and
units on and off and save the
image, among other things.
This PostScript image was
produced by clicking on the

PS 2D Control Panel button.

draw(cos(5*t/8), t=0..16*%pi, coordinates==polar)

Compiling function %B with type DoubleFloat ->
DoubleFloat

Graph data being transmitted to the viewport
manager...
AXIOM2D data being transmitted to the viewport
manager...

TwoDimensionalViewport: "cos (5*t)/8" (1)
Type: TwoDimensionalViewport

0.00 0.40 0.80-0.40-0.80

0.39

0.79

-0.39

-0.79

This is an example of AXIOM’s
three-dimensional plotting. It is
a monochrome graph of the
complex arctangent function.
The image displayed was
rotated and had the “shade”
and “outline” display options
set from the 3D Control Panel.
The PostScript output was
produced by clicking on the
save 3D Control Panel button

and then clicking on the PS
button. See Section 8.1 on page
264 for more details and
examples of AXIOM’s numeric
and graphics capabilities.

draw((x,y) +-> real atan complex(x,y), -%pi..%pi, -
%pi..%pi, colorFunction == (x,y) +-> argument atan
complex(x,y))

Transmitting data...

ThreeDimensionalViewport: "AXIOM3D" (2)
Type: ThreeDimensionalViewport

X
Y

Z

54 · An Overview of AXIOM

An exhibit of AXIOM Images is given in the center section of this book.
For a description of the commands and programs that produced these
figures, see Appendix F. PostScript output is available so that AXIOM
images can be printed.4 See Chapter 7 for more examples and details
about using AXIOM’s graphics facilities.

4PostScript is a trademark of Adobe Systems Incorporated, registered in the United
States.

1.4. Graphics · 55

1.5
Numbers

AXIOM distinguishes very carefully between different kinds of numbers,
how they are represented and what their properties are. Here are a sam-
pling of some of these kinds of numbers and some things you can do with
them.

Integer arithmetic is always
exact.

11**13 * 13**11 * 17**7 - 19**5 * 23**3

25387751112538918594666224484237298 (1)
Type: PositiveInteger

Integers can be represented in
factored form.

factor 643238070748569023720594412551704344145570763243

1113 1311 177 195 233 292 (2)
Type: Factored Integer

Results stay factored when you
do arithmetic. Note that the 12
is automatically factored for
you.

% * 12

22 3 1113 1311 177 195 233 292 (3)
Type: Factored Integer

Integers can also be displayed to
bases other than 10. This is an
integer in base 11.

radix(25937424601,11)

10000000000 (4)
Type: RadixExpansion 11

Roman numerals are also
available for those special
occasions.

roman(1992)

MCMXCII (5)
Type: RomanNumeral

Rational number arithmetic is
also exact.

r := 10 + 9/2 + 8/3 + 7/4 + 6/5 + 5/6 + 4/7 + 3/8 + 2/9

55739
2520

(6)

Type: Fraction Integer

To factor fractions, you have to
map factor onto the numerator
and denominator.

map(factor,r)

139 401
23 32 5 7

(7)

Type: Fraction Factored Integer

Type SingleInteger refers to
machine word-length integers.
In English, this expression
means “11 as a small integer”.

11@SingleInteger

11 (8)
Type: SingleInteger

Machine double-precision
floating-point numbers are also
available for numeric and
graphical applications.

123.21@DoubleFloat

123.21000000000001 (9)
Type: DoubleFloat

The normal floating-point type in AXIOM, Float, is a software implemen-
tation of floating-point numbers in which the exponent and the man-

56 · An Overview of AXIOM

tissa may have any number of digits.5 The types Complex(Float) and
Complex(DoubleFloat) are the corresponding software implementations of
complex floating-point numbers.

This is a floating-point
approximation to about twenty
digits. The “::” is used here to
change from one kind of object
(here, a rational number) to
another (a floating-point
number).

r :: Float

22.118650793650793651 (10)
Type: Float

Use digits to change the
number of digits in the
representation. This operation
returns the previous value so
you can reset it later.

digits(22)

20 (11)
Type: PositiveInteger

To 22 digits of precision, the

number eπ
√

163.0 appears to be
an integer.

exp(%pi * sqrt 163.0)

262537412640768744.0 (12)
Type: Float

Increase the precision to forty
digits and try again.

digits(40); exp(%pi * sqrt 163.0)

262537412640768743.9999999999992500725976 (13)
Type: Float

Here are complex numbers with
rational numbers as real and
imaginary parts.

(2/3 + %i)**3

−46
27

+
1
3

i (14)

Type: Complex Fraction Integer

The standard operations on
complex numbers are available.

conjugate %

−46
27
− 1

3
i (15)

Type: Complex Fraction Integer

You can factor complex integers. factor(89 - 23 * %i)

−(1 + i) (2 + i)2 (3 + 2 i)2 (16)
Type: Factored Complex Integer

Complex numbers with floating
point parts are also available.

exp(%pi/4.0 * %i)

0.7071067811865475244008443621048490392849+
0.7071067811865475244008443621048490392848 i

(17)

Type: Complex Float

5See ‘Float’ on page 427 and ‘DoubleFloat’ on page 404 for additional information on
floating-point types.

1.5. Numbers · 57

Every rational number has an
exact representation as a
repeating decimal expansion
(see ‘DecimalExpansion’ on page
401).

decimal(1/352)

0.0028409 (18)
Type: DecimalExpansion

A rational number can also be
expressed as a continued
fraction (see ‘ContinuedFraction’
on page 385).

continuedFraction(6543/210)

31 +
1|
|6 +

1|
|2 +

1|
|1 +

1|
|3 (19)

Type: ContinuedFraction Integer

Also, partial fractions can be
used and can be displayed in a
compact . . .

partialFraction(1,factorial(10))

159
28

− 23
34
− 12

52
+

1
7

(20)

Type: PartialFraction Integer

or expanded format (see
‘PartialFraction’ on page 525).

padicFraction(%)

1
2

+
1
24

+
1
25

+
1
26

+
1
27

+
1
28
− 2

32
− 1

33
− 2

34
− 2

5
− 2

52
+

1
7

(21)

Type: PartialFraction Integer

Like integers, bases (radices)
other than ten can be used for
rational numbers (see
‘RadixExpansion’ on page 537).
Here we use base eight.

radix(4/7, 8)

0.4 (22)
Type: RadixExpansion 8

Of course, there are complex
versions of these as well.
AXIOM decides to make the
result a complex rational
number.

% + 2/3*%i

4
7

+
2
3

i (23)

Type: Complex Fraction Integer

You can also use AXIOM to
manipulate fractional powers.

(5 + sqrt 63 + sqrt 847)**(1/3)

3
√

14
√

7 + 5 (24)
Type: AlgebraicNumber

You can also compute with
integers modulo a prime.

x : PrimeField 7 := 5

5 (25)
Type: PrimeField 7

Arithmetic is then done modulo
7.

x**3

6 (26)
Type: PrimeField 7

Since 7 is prime, you can invert
nonzero values.

1/x

3 (27)
Type: PrimeField 7

58 · An Overview of AXIOM

You can also compute modulo
an integer that is not a prime.

y : IntegerMod 6 := 5

5 (28)
Type: IntegerMod 6

All of the usual arithmetic
operations are available.

y**3

5 (29)
Type: IntegerMod 6

Inversion is not available if the
modulus is not a prime number.
Modular arithmetic and prime
fields are discussed in Section
8.11.1 on page 316.

1/y

There are 11 exposed and 12 unexposed library
operations named / having 2 argument(s) but none
was determined to be applicable. Use HyperDoc
Browse, or issue

)display op /
to learn more about the available operations.
Perhaps package-calling the operation or using
coercions on the arguments will allow you to apply
the operation.

Cannot find a definition or applicable library
operation named / with argument type(s)

PositiveInteger
IntegerMod 6

Perhaps you should use "@" to indicate the
required return type, or "$" to specify which
version of the function you need.

This defines a to be an algebraic
number, that is, a root of a
polynomial equation.

a := rootOf(a**5 + a**3 + a**2 + 3,a)

a (30)
Type: Expression Integer

Computations with a are
reduced according to the
polynomial equation.

(a + 1)**10

−85 a4 − 264 a3 − 378 a2 − 458 a− 287 (31)
Type: Expression Integer

Define b to be an algebraic
number involving a.

b := rootOf(b**4 + a,b)

b (32)
Type: Expression Integer

Do some arithmetic. 2/(b - 1)

2
b− 1

(33)

Type: Expression Integer

1.5. Numbers · 59

To expand and simplify this,
call ratDenom to rationalize
the denominator.

ratDenom(%)
(
a4 − a3 + 2 a2 − a + 1

)
b3 +

(
a4 − a3 + 2 a2 − a + 1

)
b2+(

a4 − a3 + 2 a2 − a + 1
)

b + a4 − a3 + 2 a2 − a + 1
(34)

Type: Expression Integer

If we do this, we should get b. 2/%+1


(
a4 − a3 + 2 a2 − a + 1

)
b3 +

(
a4 − a3 + 2 a2 − a + 1

)
b2+(

a4 − a3 + 2 a2 − a + 1
)

b + a4 − a3 + 2 a2 − a + 3







(
a4 − a3 + 2 a2 − a + 1

)
b3 +

(
a4 − a3 + 2 a2 − a + 1

)
b2+(

a4 − a3 + 2 a2 − a + 1
)

b + a4 − a3 + 2 a2 − a + 1




(35)

Type: Expression Integer

But we need to rationalize the
denominator again.

ratDenom(%)

b (36)
Type: Expression Integer

Types Quaternion and Octonion
are also available.
Multiplication of quaternions is
non-commutative, as expected.

q:=quatern(1,2,3,4)*quatern(5,6,7,8) -
quatern(5,6,7,8)*quatern(1,2,3,4)

−8 i + 16 j − 8 k (37)
Type: Quaternion Integer

60 · An Overview of AXIOM

1.6
Data Structures

AXIOM has a large variety of data structures available. Many data struc-
tures are particularly useful for interactive computation and others are
useful for building applications. The data structures of AXIOM are or-
ganized into category hierarchies as shown on the inside back cover.

A list is the most commonly used data structure in AXIOM for holding
objects all of the same type.6 The name list is short for “linked-list of
nodes.” Each node consists of a value (first) and a link (rest) that points
to the next node, or to a distinguished value denoting the empty list. To
get to, say, the third element, AXIOM starts at the front of the list, then
traverses across two links to the third node.

Write a list of elements using
square brackets with commas
separating the elements.

u := [1,-7,11]

[1, −7, 11] (1)
Type: List Integer

This is the value at the third
node. Alternatively, you can say
u.3.

first rest rest u

11 (2)
Type: PositiveInteger

Many operations are defined on lists, such as: empty?, to test that a list
has no elements; cons(x,l), to create a new list with first element x and
rest l; reverse, to create a new list with elements in reverse order; and
sort, to arrange elements in order.

An important point about lists is that they are “mutable”: their con-
stituent elements and links can be changed “in place.” To do this, use
any of the operations whose names end with the character “!”.

The operation concat!(u,v)
replaces the last link of the list
u to point to some other list v.
Since u refers to the original list,
this change is seen by u.

concat!(u,[9,1,3,-4]); u

[1, −7, 11, 9, 1, 3, −4] (3)
Type: List Integer

A cyclic list is a list with a
“cycle”: a link pointing back to
an earlier node of the list. To
create a cycle, first get a node
somewhere down the list.

lastnode := rest(u,3)

[9, 1, 3, −4] (4)
Type: List Integer

Use setrest! to change the link
emanating from that node to
point back to an earlier part of
the list.

setrest!(lastnode,rest(u,2)); u
[
1, −7, 11, 9

]
(5)

Type: List Integer

A stream is a structure that (potentially) has an infinite number of distinct
6Lists are discussed in ‘List’ on page 489 and in Section 5.5 on page 171.

1.6. Data Structures · 61

elements.7 Think of a stream as an “infinite list” where elements are
computed successively.

Create an infinite stream of
factored integers. Only a certain
number of initial elements are
computed and displayed.

[factor(i) for i in 2.. by 2]
[
2, 22, 2 3, 23, 2 5, 22 3, 2 7, . . .

]
(6)

Type: Stream Factored Integer

AXIOM represents streams by a
collection of already-computed
elements together with a
function to compute the next
element “on demand.” Asking

for the n th element causes
elements 1 through n to be
evaluated.

%.36

23 32 (7)
Type: Factored Integer

Streams can also be finite or cyclic. They are implemented by a linked
list structure similar to lists and have many of the same operations. For
example, first and rest are used to access elements and successive nodes
of a stream.

A one-dimensional array is another data structure used to hold objects of
the same type.8 Unlike lists, one-dimensional arrays are inflexible—they
are implemented using a fixed block of storage. Their advantage is that
they give quick and equal access time to any element.

A simple way to create a
one-dimensional array is to
apply the operation
oneDimensionalArray to a
list of elements.

a := oneDimensionalArray [1, -7, 3, 3/2]
[
1, −7, 3,

3
2

]
(8)

Type: OneDimensionalArray Fraction Integer

One-dimensional arrays are also
mutable: you can change their
constituent elements “in place.”

a.3 := 11; a
[
1, −7, 11,

3
2

]
(9)

Type: OneDimensionalArray Fraction Integer

7Streams are discussed in ‘Stream’ on page 575 and in Section 5.5 on page 171.
8See ‘OneDimensionalArray’ on page 514 for details.

62 · An Overview of AXIOM

However, one-dimensional arrays
are not flexible structures. You
cannot destructively concat!
them together.

concat!(a,oneDimensionalArray [1,-2])

There are 5 exposed and 0 unexposed library
operations named concat! having 2 argument(s) but
none was determined to be applicable. Use HyperDoc
Browse, or issue

)display op concat!
to learn more about the available operations.
Perhaps package-calling the operation or using
coercions on the arguments will allow you to apply
the operation.

Cannot find a definition or applicable library
operation named concat! with argument type(s)

OneDimensionalArray Fraction Integer
OneDimensionalArray Integer

Perhaps you should use "@" to indicate the
required return type, or "$" to specify which
version of the function you need.

Examples of datatypes similar to OneDimensionalArray are: Vector (vec-
tors are mathematical structures implemented by one-dimensional ar-
rays), String (arrays of “characters,” represented by byte vectors), and
Bits (represented by “bit vectors”).

A vector of 32 bits, each
representing the Boolean value
true.

bits(32,true)

"11111111111111111111111111111111" (10)
Type: Bits

A flexible array is a cross between a list and a one-dimensional array.9

Like a one-dimensional array, a flexible array occupies a fixed block of
storage. Its block of storage, however, has room to expand! When it gets
full, it grows (a new, larger block of storage is allocated); when it has too
much room, it contracts.

Create a flexible array of three
elements.

f := flexibleArray [2, 7, -5]

[2, 7, −5] (11)
Type: FlexibleArray Integer

Insert some elements between
the second and third elements.

insert!(flexibleArray [11, -3],f,2)

[2, 11, −3, 7, −5] (12)
Type: FlexibleArray Integer

Flexible arrays are used to implement “heaps.” A heap is an example
of a data structure called a priority queue, where elements are ordered

9See ‘FlexibleArray’ on page 425 for details.

1.6. Data Structures · 63

with respect to one another.10 A heap is organized so as to optimize
insertion and extraction of maximum elements. The extract! operation
returns the maximum element of the heap, after destructively removing
that element and reorganizing the heap so that the next maximum element
is ready to be delivered.

An easy way to create a heap is
to apply the operation heap to
a list of values.

h := heap [-4,7,11,3,4,-7]

[11, 4, 7, −4, 3, −7] (13)
Type: Heap Integer

This loop extracts elements
one-at-a-time from h until the
heap is exhausted, returning the
elements as a list in the order
they were extracted.

[extract!(h) while not empty?(h)]

[11, 7, 4, 3, −4, −7] (14)
Type: List Integer

A binary tree is a “tree” with at most two branches per node: it is either
empty, or else is a node consisting of a value, and a left and right subtree
(again, binary trees).11

A binary search tree is a binary
tree such that, for each node,
the value of the node is greater
than all values (if any) in the
left subtree, and less than or
equal all values (if any) in the
right subtree.

binarySearchTree [5,3,2,9,4,7,11]

[[2, 3, 4], 5, [7, 9, 11]] (15)
Type: BinarySearchTree PositiveInteger

A balanced binary tree is useful
for doing modular
computations. Given a list lm of
moduli, modTree(a,lm)
produces a balanced binary tree
with the values a mod m at its
leaves.

modTree(8,[2,3,5,7])

[0, 2, 3, 1] (16)
Type: List Integer

A set is a collection of elements where duplication and order is irrelevant.12

Sets are always finite and have no corresponding structure like streams
for infinite collections.

fs := set[1/3,4/5,-1/3,4/5]
{
−1

3
,

1
3
,

4
5

}
(17)

Type: Set Fraction Integer

10See ‘Heap’ on page 443 for more details. Heaps are also examples of data structures
called bags. Other bag data structures are Stack, Queue, and Dequeue.

11Example of binary tree types are BinarySearchTree (see ‘BinarySearchTree’ on page
361, PendantTree, TournamentTree, and BalancedBinaryTree (see ‘BalancedBinaryTree’ on
page 354).

12See ‘Set’ on page 563 for more details.

64 · An Overview of AXIOM

A multiset is a set that keeps track of the number of duplicate values.13

For all the primes p between 2
and 1000, find the distribution
of p mod 5.

multiset [x rem 5 for x in primes(2,1000)]

{0, 42:3, 40:1, 38:4, 47:2} (18)
Type: Multiset Integer

A table is conceptually a set of “key–value” pairs and is a generalization
of a multiset.14 The domain Table(Key, Entry) provides a general-purpose
type for tables with values of type Entry indexed by keys of type Key.

Compute the above distribution
of primes using tables. First, let
t denote an empty table of keys
and values, each of type Integer.

t : Table(Integer,Integer) := empty()

table() (19)
Type: Table(Integer, Integer)

We define a function howMany to return the number of values of a given
modulus k seen so far. It calls search(k,t) which returns the number of
values stored under the key k in table t, or "failed" if no such value is
yet stored in t under k.

In English, this says “Define
howMany(k) as follows. First, let
n be the value of search(k, t).
Then, if n has the value
”failed”, return the value 1;
otherwise return n + 1.”

howMany(k) == (n:=search(k,t); n case "failed" => 1; n+1)

Type: Void

Run through the primes to
create the table, then print the
table. The expression t.m :=
howMany(m) updates the value in
table t stored under key m.

for p in primes(2,1000) repeat (m:= p rem 5; t.m:=
howMany(m)); t

Compiling function howMany with type Integer ->
Integer

table (2 = 47, 4 = 38, 1 = 40, 3 = 42, 0 = 1) (21)
Type: Table(Integer, Integer)

A record is an example of an inhomogeneous collection of objects.15 A
record consists of a set of named selectors that can be used to access its
components.

Declare that daniel can only be
assigned a record with two
prescribed fields.

daniel : Record(age : Integer, salary : Float)

Type: Void

13See ‘MultiSet’ on page 506 for details.
14For examples of tables, see AssociationList (‘AssociationList’ on page 352), HashTable,

KeyedAccessFile (‘KeyedAccessFile’ on page 460), Library (‘Library’ on page 474),
SparseTable (‘SparseTable’ on page 568), StringTable (‘StringTable’ on page 581), and
Table (‘Table’ on page 585).

15See Section 2.4 on page 105 for details.

1.6. Data Structures · 65

Give daniel a value, using
square brackets to enclose the
values of the fields.

daniel := [28, 32005.12]

[age = 28, salary = 32005.12] (23)
Type: Record(age: Integer, salary: Float)

Give daniel a raise. daniel.salary := 35000; daniel

[age = 28, salary = 35000.0] (24)
Type: Record(age: Integer, salary: Float)

A union is a data structure used when objects have multiple types.16

Let dog be either an integer or a
string value.

dog: Union(licenseNumber: Integer, name: String)

Type: Void

Give dog a name. dog := "Whisper"

"Whisper" (26)
Type: Union(name: String, ...)

All told, there are over forty different data structures in AXIOM. Using
the domain constructors described in Chapter 13, you can add your own
data structure or extend an existing one. Choosing the right data struc-
ture for your application may be the key to obtaining good performance.

16See Section 2.5 on page 108 for details.

66 · An Overview of AXIOM

1.7
Expanding to
Higher
Dimensions

To get higher dimensional aggregates, you can create one-dimensional
aggregates with elements that are themselves aggregates, for example,
lists of lists, one-dimensional arrays of lists of multisets, and so on. For
applications requiring two-dimensional homogeneous aggregates, you will
likely find two-dimensional arrays and matrices most useful.

The entries in TwoDimensionalArray and Matrix objects are all the same type,
except that those for Matrix must belong to a Ring. You create and access
elements in roughly the same way. Since matrices have an understood
algebraic structure, certain algebraic operations are available for matrices
but not for arrays. Because of this, we limit our discussion here to Matrix,
that can be regarded as an extension of TwoDimensionalArray.17

You can create a matrix from a
list of lists, where each of the
inner lists represents a row of
the matrix.

m := matrix([[1,2], [3,4]])
[

1 2
3 4

]
(1)

Type: Matrix Integer

The “collections” construct (see
Section 5.5 on page 171) is
useful for creating matrices
whose entries are given by
formulas.

matrix([[1/(i + j - x) for i in 1..4] for j in 1..4])



− 1
x− 2

− 1
x− 3

− 1
x− 4

− 1
x− 5

− 1
x− 3

− 1
x− 4

− 1
x− 5

− 1
x− 6

− 1
x− 4

− 1
x− 5

− 1
x− 6

− 1
x− 7

− 1
x− 5

− 1
x− 6

− 1
x− 7

− 1
x− 8




(2)

Type: Matrix Fraction Polynomial Integer

Let vm denote the three by three
Vandermonde matrix.

vm := matrix [[1,1,1], [x,y,z], [x*x,y*y,z*z]]



1 1 1
x y z
x2 y2 z2


 (3)

Type: Matrix Polynomial Integer

Use this syntax to extract an
entry in the matrix.

vm(3,3)

z2 (4)
Type: Polynomial Integer

17See ‘TwoDimensionalArray’ on page 590 for more information about arrays. For
more information about AXIOM’s linear algebra facilities, see ‘Matrix’ on page 500,
‘Permanent’ on page 528, ‘SquareMatrix’ on page 569, ‘Vector’ on page 601, Section 8.4
on page 280(computation of eigenvalues and eigenvectors), and Section 8.5 on page
283(solution of linear and polynomial equations).

1.7. Expanding to Higher Dimensions · 67

You can also pull out a row or a
column.

column(vm,2)[
1, y, y2

]
(5)

Type: Vector Polynomial Integer

You can do arithmetic. vm * vm



x2 + x + 1 y2 + y + 1 z2 + z + 1
x2 z + x y + x y2 z + y2 + x z3 + y z + x

x2 z2 + x y2 + x2 y2 z2 + y3 + x2 z4 + y2 z + x2


 (6)

Type: Matrix Polynomial Integer

You can perform operations
such as transpose, trace, and
determinant.

factor determinant vm

(y − x) (z − y) (z − x) (7)
Type: Factored Polynomial Integer

68 · An Overview of AXIOM

1.8
Writing Your Own
Functions

AXIOM provides you with a very large library of predefined operations
and objects to compute with. You can use the AXIOM library of con-
structors to create new objects dynamically of quite arbitrary complexity.
For example, you can make lists of matrices of fractions of polynomials
with complex floating point numbers as coefficients. Moreover, the library
provides a wealth of operations that allow you to create and manipulate
these objects.

For many applications, you need to interact with the interpreter and write
some AXIOM programs to tackle your application. AXIOM allows you
to write functions interactively, thereby effectively extending the system
library. Here we give a few simple examples, leaving the details to Chap-
ter 6.

We begin by looking at several ways that you can define the “factorial”
function in AXIOM. The first way is to give a piece-wise definition of the
function. This method is best for a general recurrence relation since the
pieces are gathered together and compiled into an efficient iterative func-
tion. Furthermore, enough previously computed values are automatically
saved so that a subsequent call to the function can pick up from where it
left off.

Define the value of fact at 0. fact(0) == 1

Type: Void

Define the value of fact(n) for
general n.

fact(n) == n*fact(n-1)

Type: Void

Ask for the value at 50. The
resulting function created by
AXIOM computes the value by
iteration.

fact(50)

Compiling function fact with type Integer -> Integer
Compiling function fact as a recurrence relation.

30414093201713378043612608166064768844377641568960512
000000000000

(3)

Type: PositiveInteger

A second definition uses an
if-then-else and recursion.

fac(n) == if n < 3 then n else n * fac(n - 1)

Type: Void

1.8. Writing Your Own Functions · 69

This function is less efficient
than the previous version since
each iteration involves a
recursive function call.

fac(50)

Compiling function fac with type Integer -> Integer

30414093201713378043612608166064768844377641568960512
000000000000

(5)

Type: PositiveInteger

A third version directly uses
iteration.

fa(n) == (a := 1; for i in 2..n repeat a := a*i; a)

Type: Void

This is the least
space-consumptive version.

fa(50)

Compiling function fa with type PositiveInteger ->
PositiveInteger

30414093201713378043612608166064768844377641568960512
000000000000

(7)

Type: PositiveInteger

A final version appears to
construct a large list and then
reduces over it with
multiplication.

f(n) == reduce(*,[i for i in 2..n])

Type: Void

In fact, the resulting
computation is optimized into
an efficient iteration loop
equivalent to that of the third
version.

f(50)

Compiling function f with type PositiveInteger ->
PositiveInteger

30414093201713378043612608166064768844377641568960512
000000000000

(9)

Type: PositiveInteger

The library version uses an
algorithm that is different from
the four above because it highly
optimizes the recurrence
relation definition of factorial.

factorial(50)

30414093201713378043612608166064768844377641568960512
000000000000

(10)

Type: PositiveInteger

You are not limited to one-line functions in AXIOM. If you place your
function definitions in .input files (see Section 4.1 on page 139), you can
have multi-line functions that use indentation for grouping.

Given n elements, diagonalMatrix creates an n by n matrix with those
elements down the diagonal. This function uses a permutation matrix
that interchanges the ith and jth rows of a matrix by which it is right-
multiplied.

70 · An Overview of AXIOM

This function definition shows a
style of definition that can be
used in .input files. Indentation
is used to create blocks:
sequences of expressions that
are evaluated in sequence except
as modified by control
statements such as
if-then-else and return.

permMat(n, i, j) ==
m := diagonalMatrix

[(if i = k or j = k then 0 else 1)
for k in 1..n]

m(i,j) := 1
m(j,i) := 1
m

Type: Void

This creates a four by four
matrix that interchanges the
second and third rows.

p := permMat(4,2,3)

Compiling function permMat with type (PositiveInteger
,PositiveInteger,PositiveInteger) -> Matrix
Integer




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 (12)

Type: Matrix Integer

Create an example matrix to
permute.

m := matrix [[4*i + j for j in 1..4] for i in 0..3]



1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16


 (13)

Type: Matrix Integer

Interchange the second and
third rows of m.

permMat(4,2,3) * m



1 2 3 4
9 10 11 12
5 6 7 8
13 14 15 16


 (14)

Type: Matrix Integer

A function can also be passed as an argument to another function, which
then applies the function or passes it off to some other function that
does. You often have to declare the type of a function that has functional
arguments.

This declares t to be a
two-argument function that
returns a Float. The first
argument is a function that
takes one Float argument and
returns a Float.

t : (Float -> Float, Float) -> Float

Type: Void

1.8. Writing Your Own Functions · 71

This is the definition of t. t(fun, x) == fun(x)**2 + sin(x)**2

Type: Void

We have not defined a cos in
the workspace. The one from
the AXIOM library will do.

t(cos, 5.2058)

Compiling function t with type ((Float -> Float),
Float) -> Float

1.0 (17)
Type: Float

Here we define our own
(user-defined) function.

cosinv(y) == cos(1/y)

Type: Void

Pass this function as an
argument to t.

t(cosinv, 5.2058)

Compiling function cosinv with type Float -> Float

1.739223724180051649254147684772932520785 (19)
Type: Float

AXIOM also has pattern matching capabilities for simplification of ex-
pressions and for defining new functions by rules. For example, suppose
that you want to apply regularly a transformation that groups together
products of radicals:

√
a
√

b 7→
√

ab, (∀a)(∀b)

Note that such a transformation is not generally correct. AXIOM never
uses it automatically.

Give this rule the name
groupSqrt.

groupSqrt := rule(sqrt(a) * sqrt(b) == sqrt(a*b))

%E
√

a
√

b= =%E
√

a b (20)
Type: RewriteRule(Integer, Integer, Expression Integer)

Here is a test expression. a := (sqrt(x) + sqrt(y) + sqrt(z))**4
(
(4 z + 4 y + 12 x)

√
y + (4 z + 12 y + 4 x)

√
x
) √

z+
(12 z + 4 y + 4 x)

√
x
√

y + z2 + (6 y + 6 x) z + y2 + 6 x y + x2 (21)

Type: Expression Integer

The rule groupSqrt
successfully simplifies the
expression.

groupSqrt a

(4 z + 4 y + 12 x)
√

y z + (4 z + 12 y + 4 x)
√

x z+
(12 z + 4 y + 4 x)

√
x y + z2 + (6 y + 6 x) z + y2 + 6 x y + x2 (22)

Type: Expression Integer

72 · An Overview of AXIOM

1.9
Polynomials

Polynomials are the commonly used algebraic types in symbolic compu-
tation. Interactive users of AXIOM generally only see one type of poly-
nomial: Polynomial(R). This type represents polynomials in any number
of unspecified variables over a particular coefficient domain R. This type
represents its coefficients sparsely: only terms with non-zero coefficients
are represented.

In building applications, many other kinds of polynomial representations
are useful. Polynomials may have one variable or multiple variables, the
variables can be named or unnamed, the coefficients can be stored sparsely
or densely. So-called “distributed multivariate polynomials” store poly-
nomials as coefficients paired with vectors of exponents. This type is par-
ticularly efficient for use in algorithms for solving systems of non-linear
polynomial equations.

The polynomial constructor
most familiar to the interactive
user is Polynomial.

(x**2 - x*y**3 +3*y)**2

x2 y6 − 6 x y4 − 2 x3 y3 + 9 y2 + 6 x2 y + x4 (1)
Type: Polynomial Integer

If you wish to restrict the
variables used,
UnivariatePolynomial provides
polynomials in one variable.

p: UP(x,INT) := (3*x-1)**2 * (2*x + 8)

18 x3 + 60 x2 − 46 x + 8 (2)
Type: UnivariatePolynomial(x, Integer)

The constructor
MultivariatePolynomial provides
polynomials in one or more
specified variables.

m: MPOLY([x,y],INT) := (x**2-x*y**3+3*y)**2

x4 − 2 y3 x3 +
(
y6 + 6 y

)
x2 − 6 y4 x + 9 y2 (3)

Type: MultivariatePolynomial([x, y], Integer)

You can change the way the
polynomial appears by
modifying the variable ordering
in the explicit list.

m :: MPOLY([y,x],INT)

x2 y6 − 6 x y4 − 2 x3 y3 + 9 y2 + 6 x2 y + x4 (4)
Type: MultivariatePolynomial([y, x], Integer)

The constructor
DistributedMultivariatePolynomial
provides polynomials in one or
more specified variables with
the monomials ordered
lexicographically.

m :: DMP([y,x],INT)

y6 x2 − 6 y4 x− 2 y3 x3 + 9 y2 + 6 y x2 + x4 (5)
Type: DistributedMultivariatePolynomial([y, x], Integer)

The constructor Homogeneous-
DistributedMultivariatePolynomial
is similar except that the
monomials are ordered by total
order refined by reverse
lexicographic order.

m :: HDMP([y,x],INT)

y6 x2 − 2 y3 x3 − 6 y4 x + x4 + 6 y x2 + 9 y2 (6)
Type: HomogeneousDistributedMultivariatePolynomial([y, x], Integer)

More generally, the domain constructor GeneralDistributedMultivariatePoly-
nomial allows the user to provide an arbitrary predicate to define his
own term ordering. These last three constructors are typically used in

1.9. Polynomials · 73

Gröbner basis applications and when a flat (that is, non-recursive) display
is wanted and the term ordering is critical for controlling the computation.

74 · An Overview of AXIOM

1.10
Limits

AXIOM’s limit function is usually used to evaluate limits of quotients
where the numerator and denominator both tend to zero or both tend to
infinity. To find the limit of an expression f as a real variable x tends to
a limit value a, enter limit(f, x=a). Use complexLimit if the variable
is complex. Additional information and examples of limits are in Section
8.6 on page 288.

You can take limits of functions
with parameters.

g := csc(a*x) / csch(b*x)

csc (a x)
csch (b x)

(1)

Type: Expression Integer

As you can see, the limit is
expressed in terms of the
parameters.

limit(g,x=0)

b

a
(2)

Type: Union(OrderedCompletion Expression Integer, ...)

A variable may also approach
plus or minus infinity:

h := (1 + k/x)**x

x + k

x

x

(3)

Type: Expression Integer

Use %plusInfinity and
%minusInfinity to denote ∞
and −∞.

limit(h,x=%plusInfinity)

ek (4)
Type: Union(OrderedCompletion Expression Integer, ...)

A function can be defined on
both sides of a particular value,
but may tend to different limits
as its variable approaches that
value from the left and from the
right.

limit(sqrt(y**2)/y,y = 0)

[leftHandLimit = −1, rightHandLimit = 1] (5)
Type: Union(Record(leftHandLimit: Union(OrderedCompletion Expression Integer,

"failed"), rightHandLimit: Union(OrderedCompletion Expression Integer,
"failed")), ...)

As x approaches 0 along the real
axis, exp(-1/x**2) tends to 0.

limit(exp(-1/x**2),x = 0)

0 (6)
Type: Union(OrderedCompletion Expression Integer, ...)

However, if x is allowed to
approach 0 along any path in
the complex plane, the limiting
value of exp(-1/x**2) depends
on the path taken because the
function has an essential
singularity at x=0. This is
reflected in the error message
returned by the function.

complexLimit(exp(-1/x**2),x = 0)

"failed" (7)
Type: Union("failed", ...)

1.10. Limits · 75

1.11
Series

AXIOM also provides power series. By default, AXIOM tries to com-
pute and display the first ten elements of a series. Use)set streams
calculate to change the default value to something else. For the pur-
poses of this book, we have used this system command to display fewer
than ten terms. For more information about working with series, see
Section 8.9 on page 295.

You can convert a functional
expression to a power series by
using the operation series. In
this example, sin(a*x) is
expanded in powers of (x - 0),
that is, in powers of x.

series(sin(a*x),x = 0)

a x− a3

6
x3 +

a5

120
x5 − a7

5040
x7 + O

(
x9

)
(1)

Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)

This expression expands
sin(a*x) in powers of (x -
%pi/4).

series(sin(a*x),x = %pi/4)

sin
(

a π

4

)
+ a cos

(
a π

4

) (
x− π

4

)
− a2 sin

(
a π
4

)

2

(
x− π

4

)2

−

a3 cos
(

a π
4

)

6

(
x− π

4

)3

+
a4 sin

(
a π
4

)

24

(
x− π

4

)4

+
a5 cos

(
a π
4

)

120
×

(
x− π

4

)5

− a6 sin
(

a π
4

)

720

(
x− π

4

)6

− a7 cos
(

a π
4

)

5040

(
x− π

4

)7

+

O

((
x− π

4

)8
)

(2)

Type: UnivariatePuiseuxSeries(Expression Integer, x, pi/4)

AXIOM provides Puiseux
series: series with rational
number exponents. The first
argument to series is an
in-place function that computes

the n th coefficient. (Recall that
the “+->” is an infix operator
meaning “maps to.”)

series(n +-> (-1)**((3*n - 4)/6)/factorial(n - 1/3),x =
0,4/3..,2)

x
4
3 − 1

6
x

10
3 + O

(
x4

)
(3)

Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)

Once you have created a power
series, you can perform
arithmetic operations on that
series. We compute the Taylor
expansion of 1/(1-x).

f := series(1/(1-x),x = 0)

1 + x + x2 + x3 + x4 + x5 + x6 + x7 + O
(
x8

)
(4)

Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)

Compute the square of the
series.

f ** 2

1 + 2 x + 3 x2 + 4 x3 + 5 x4 + 6 x5 + 7 x6 + 8 x7 + O
(
x8

)
(5)

Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)

76 · An Overview of AXIOM

The usual elementary functions
(log, exp, trigonometric
functions, and so on) are defined
for power series.

f := series(1/(1-x),x = 0)

1 + x + x2 + x3 + x4 + x5 + x6 + x7 + O
(
x8

)
(6)

Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)

g := log(f)

x +
1
2

x2 +
1
3

x3 +
1
4

x4 +
1
5

x5 +
1
6

x6 +
1
7

x7 +
1
8

x8 + O
(
x9

)
(7)

Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)

exp(g)

1 + x + x2 + x3 + x4 + x5 + x6 + x7 + O
(
x8

)
(8)

Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)

Here is a way to obtain
numerical approximations of e
from the Taylor series expansion
of exp(x). First create the
desired Taylor expansion.

f := taylor(exp(x))

1 + x +
1
2

x2 +
1
6

x3 +
1
24

x4 +
1

120
x5 +

1
720

x6 +
1

5040
x7 + O

(
x8

)
(9)

Type: UnivariateTaylorSeries(Expression Integer, x, 0)

Evaluate the series at the value
1.0. As you see, you get a
sequence of partial sums.

eval(f,1.0)

[1.0, 2.0, 2.5,
2.666666666666666666666666666666666666667,
2.708333333333333333333333333333333333333,
2.716666666666666666666666666666666666667,
2.718055555555555555555555555555555555556, . . .]

(10)

Type: Stream Expression Float

1.11. Series · 77

1.12
Derivatives

Use the AXIOM function D to differentiate an expression.

To find the derivative of an
expression f with respect to a
variable x, enter D(f, x).

f := exp exp x

eex
(1)

Type: Expression Integer

D(f, x)

ex eex
(2)

Type: Expression Integer

An optional third argument n in

D asks AXIOM for the n th

derivative of f. This finds the
fourth derivative of f with
respect to x.

D(f, x, 4)(
ex4 + 6 ex3 + 7 ex2 + ex

)
eex

(3)
Type: Expression Integer

You can also compute partial
derivatives by specifying the
order of differentiation.

g := sin(x**2 + y)

sin
(
y + x2

)
(4)

Type: Expression Integer

D(g, y)

cos
(
y + x2

)
(5)

Type: Expression Integer

D(g, [y, y, x, x])

4 x2 sin
(
y + x2

)
− 2 cos

(
y + x2

)
(6)

Type: Expression Integer

AXIOM can manipulate the derivatives (partial and iterated) of expres-
sions involving formal operators. All the dependencies must be explicit.

This returns 0 since F (so far)
does not explicitly depend on x.

D(F,x)

0 (7)
Type: Polynomial Integer

Suppose that we have F a function of x, y, and z, where x and y are
themselves functions of z.

Start by declaring that F, x, and
y are operators.

F := operator ’F; x := operator ’x; y := operator ’y

y (8)
Type: BasicOperator

78 · An Overview of AXIOM

You can use F, x, and y in
expressions.

a := F(x z, y z, z**2) + x y(z+1)

x (y (z + 1)) + F
(
x (z), y (z), z2

)
(9)

Type: Expression Integer

Differentiate formally with
respect to z. The formal
derivatives appearing in dadz
are not just formal symbols, but
do represent the derivatives of x,
y, and F.

dadz := D(a, z)

2 z F,3

(
x (z), y (z), z2

)
+ y, (z) F,2

(
x (z), y (z), z2

)
+

x, (z) F,1

(
x (z), y (z), z2

)
+ x, (y (z + 1)) y, (z + 1)

(10)

Type: Expression Integer

You can evaluate the above for
particular functional values of F,
x, and y. If x(z) is exp(z) and
y(z) is log(z+1), then this
evaluates dadz.

eval(eval(dadz, ’x, z +-> exp z), ’y, z +-> log(z+1))



(
2 z2 + 2 z

)
F,3

(
ez, log (z + 1), z2

)
+ F,2

(
ez, log (z + 1), z2

)

+(z + 1) ez F,1

(
ez, log (z + 1), z2

)
+ z + 1




z + 1
(11)

Type: Expression Integer

You obtain the same result by
first evaluating a and then
differentiating.

eval(eval(a, ’x, z +-> exp z), ’y, z +-> log(z+1))

F
(
ez, log (z + 1), z2

)
+ z + 2 (12)

Type: Expression Integer

D(%, z)



(
2 z2 + 2 z

)
F,3

(
ez, log (z + 1), z2

)
+ F,2

(
ez, log (z + 1), z2

)

+(z + 1) ez F,1

(
ez, log (z + 1), z2

)
+ z + 1




z + 1
(13)

Type: Expression Integer

1.12. Derivatives · 79

1.13
Integration

AXIOM has extensive library facilities for integration.

The first example is the integration of a fraction with denominator that
factors into a quadratic and a quartic irreducible polynomial. The usual
partial fraction approach used by most other computer algebra systems
either fails or introduces expensive unneeded algebraic numbers.

We use a factorization-free
algorithm.

integrate((x**2+2*x+1)/((x+1)**6+1),x)

arctan
(
x3 + 3 x2 + 3 x + 1

)

3
(1)

Type: Union(Expression Integer, ...)

When real parameters are present, the form of the integral can depend
on the signs of some expressions.

Rather than query the user or
make sign assumptions, AXIOM
returns all possible answers.

integrate(1/(x**2 + a),x)



log

((
x2 − a

) √−a + 2 a x

x2 + a

)

2
√−a

,

arctan

(
x
√

a

a

)

√
a




(2)

Type: Union(List Expression Integer, ...)

The integrate operation generally assumes that all parameters are real.
The only exception is when the integrand has complex valued quantities.

If the parameter is complex
instead of real, then the notion
of sign is undefined and there is
a unique answer. You can
request this answer by
“prepending” the word
“complex” to the command
name:

complexIntegrate(1/(x**2 + a),x)

log

(
x
√−a + a√−a

)
− log

(
x
√−a− a√−a

)

2
√−a

(3)

Type: Expression Integer

The following two examples illustrate the limitations of table-based ap-
proaches. The two integrands are very similar, but the answer to one of
them requires the addition of two new algebraic numbers.

This one is the easy one. The
next one looks very similar but
the answer is much more
complicated.

integrate(x**3 / (a+b*x)**(1/3),x)
(
120 b3 x3 − 135 a b2 x2 + 162 a2 b x− 243 a3

)
3
√

b x + a
2

440 b4
(4)

Type: Union(Expression Integer, ...)

80 · An Overview of AXIOM

Only an algorithmic approach is
guaranteed to find what new
constants must be added in
order to find a solution.

integrate(1 / (x**3 * (a+b*x)**(1/3)),x)



−2 b2 x2
√

3 log
(

3
√

a
3
√

b x + a
2
+ 3
√

a
2 3
√

b x + a + a
)
+

4 b2 x2
√

3 log
(

3
√

a
2 3
√

b x + a− a
)
+

12 b2 x2 arctan

(
2
√

3 3
√

a
2 3
√

b x + a + a
√

3
3 a

)
+

(12 b x− 9 a)
√

3 3
√

a
3
√

b x + a
2




18 a2 x2
√

3 3
√

a
(5)

Type: Union(Expression Integer, ...)

Some computer algebra systems use heuristics or table-driven approaches
to integration. When these systems cannot determine the answer to an
integration problem, they reply “I don’t know.” AXIOM uses a algo-
rithm for integration. that conclusively proves that an integral cannot be
expressed in terms of elementary functions.

When AXIOM returns an
integral sign, it has proved that
no answer exists as an
elementary function.

integrate(log(1 + sqrt(a*x + b)) / x,x)

∫ x log
(√

b + %V a + 1
)

%V
d%V (6)

Type: Union(Expression Integer, ...)

AXIOM can handle complicated mixed functions much beyond what you
can find in tables.

Whenever possible, AXIOM
tries to express the answer using
the functions present in the
integrand.

integrate((sinh(1+sqrt(x+b))+2*sqrt(x+b)) / (sqrt(x+b) *
(x + cosh(1+sqrt(x + b)))), x)

2 log


 −2 cosh

(√
x + b + 1

)
− 2 x

sinh
(√

x + b + 1
)
− cosh

(√
x + b + 1

)

− 2

√
x + b (7)

Type: Union(Expression Integer, ...)

A strong structure-checking
algorithm in AXIOM finds
hidden algebraic relationships
between functions.

integrate(tan(atan(x)/3),x)

8 log
(

3 tan
(

arctan(x)
3

)2 − 1
)
− 3 tan

(
arctan(x)

3

)2
+ 18 x tan

(
arctan(x)

3

)

18
(8)

Type: Union(Expression Integer, ...)

The discovery of this algebraic relationship is necessary for correct inte-
gration of this function. Here are the details:

1. If x = tan t and g = tan(t/3) then the following algebraic relation

1.13. Integration · 81

is true:
g3 − 3xg2 − 3g + x = 0

2. Integrate g using this algebraic relation; this produces:

(24g2 − 8) log(3g2 − 1) + (81x2 + 24)g2 + 72xg − 27x2 − 16
54g2 − 18

3. Rationalize the denominator, producing:

8 log(3g2 − 1)− 3g2 + 18xg + 16
18

Replace g by the initial definition g = tan(arctan(x)/3) to produce
the final result.

This is an example of a mixed
function where the algebraic
layer is over the transcendental
one.

integrate((x + 1) / (x*(x + log x) ** (3/2)), x)

−2
√

log (x) + x

log (x) + x
(9)

Type: Union(Expression Integer, ...)

While incomplete for
non-elementary functions,
AXIOM can handle some of
them.

integrate(exp(-x**2) * erf(x) / (erf(x)**3 - erf(x)**2 -
erf(x) + 1),x)

(erf (x)− 1)
√

π log
(

erf (x)− 1
erf (x) + 1

)
− 2

√
π

8 erf (x)− 8
(10)

Type: Union(Expression Integer, ...)

More examples of AXIOM’s integration capabilities are discussed in Sec-
tion 8.8 on page 292.

82 · An Overview of AXIOM

1.14
Differential
Equations

The general approach used in integration also carries over to the solution
of linear differential equations.

Let’s solve some differential
equations. Let y be the
unknown function in terms of x.

y := operator ’y

y (1)
Type: BasicOperator

Here we solve a third order
equation with polynomial
coefficients.

deq := x**3 * D(y x, x, 3) + x**2 * D(y x, x, 2) - 2 * x *
D(y x, x) + 2 * y x = 2 * x**4

x3 y,,, (x) + x2 y,, (x)− 2 x y, (x) + 2 y (x) = 2 x4 (2)
Type: Equation Expression Integer

solve(deq, y, x)
[
particular =

x5 − 10 x3 + 20 x2 + 4
15 x

,

basis =

[
2 x3 − 3 x2 + 1

x
,

x3 − 1
x

,
x3 − 3 x2 − 1

x

]] (3)

Type: Union(Record(particular: Expression Integer, basis: List Expression Integer),
...)

Here we find all the algebraic
function solutions of the
equation.

deq := (x**2 + 1) * D(y x, x, 2) + 3 * x * D(y x, x) + y x
= 0(

x2 + 1
)

y,, (x) + 3 x y, (x) + y (x) = 0 (4)
Type: Equation Expression Integer

solve(deq, y, x)

particular = 0, basis =


 1√

x2 + 1
,

log
(√

x2 + 1− x
)

√
x2 + 1





 (5)

Type: Union(Record(particular: Expression Integer, basis: List Expression Integer),
...)

Coefficients of differential equations can come from arbitrary constant
fields. For example, coefficients can contain algebraic numbers.

This example has solutions
whose logarithmic derivative is
an algebraic function of degree
two.

eq := 2*x**3 * D(y x,x,2) + 3*x**2 * D(y x,x) - 2 * y x

2 x3 y,, (x) + 3 x2 y, (x)− 2 y (x) (6)
Type: Expression Integer

1.14. Differential Equations · 83

solve(eq,y,x).basis

e

(
− 2√

x

)

, e

2√
x


 (7)

Type: List Expression Integer

Here’s another differential
equation to solve.

deq := D(y x, x) = y(x) / (x + y(x) * log y x)

y, (x) =
y (x)

y (x) log (y (x)) + x
(8)

Type: Equation Expression Integer

solve(deq, y, x)

y (x) log (y (x))2 − 2 x

2 y (x)
(9)

Type: Union(Expression Integer, ...)

Rather than attempting to get a closed form solution of a differential
equation, you instead might want to find an approximate solution in the
form of a series.

Let’s solve a system of nonlinear
first order equations and get a
solution in power series. Tell
AXIOM that x is also an
operator.

x := operator ’x

x (10)
Type: BasicOperator

Here are the two equations
forming our system.

eq1 := D(x(t), t) = 1 + x(t)**2

x, (t) = x (t)2 + 1 (11)
Type: Equation Expression Integer

eq2 := D(y(t), t) = x(t) * y(t)

y, (t) = x (t) y (t) (12)
Type: Equation Expression Integer

84 · An Overview of AXIOM

We can solve the system around
t = 0 with the initial conditions
x(0) = 0 and y(0) = 1. Notice
that since we give the unknowns
in the order [x, y], the answer
is a list of two series in the order
[series for x(t), series
for y(t)].

seriesSolve([eq2, eq1], [x, y], t = 0, [y(0) = 1, x(0) =
0])

Compiling function %BT with type List
UnivariateTaylorSeries(Expression Integer,t,0) ->
UnivariateTaylorSeries(Expression Integer,t,0)

Compiling function %BU with type List
UnivariateTaylorSeries(Expression Integer,t,0) ->
UnivariateTaylorSeries(Expression Integer,t,0)

[
t +

1
3

t3 +
2
15

t5 +
17
315

t7 + O
(
t8

)
, 1 +

1
2

t2 +
5
24

t4 +
61
720

t6+

O
(
t8

)] (13)

Type: List UnivariateTaylorSeries(Expression Integer, t, 0)

1.14. Differential Equations · 85

1.15
Solution of
Equations

AXIOM also has state-of-the-art algorithms for the solution of systems
of polynomial equations. When the number of equations and unknowns
is the same, and you have no symbolic coefficients, you can use solve for
real roots and complexSolve for complex roots. In each case, you tell
AXIOM how accurate you want your result to be. All operations in the
solve family return answers in the form of a list of solution sets, where
each solution set is a list of equations.

A system of two equations
involving a symbolic parameter
t.

S(t) == [x**2-2*y**2 - t,x*y-y-5*x + 5]

Type: Void

Find the real roots of S(19)
with rational arithmetic, correct
to within 1/1020.

solve(S(19),1/10**20)

Compiling function S with type PositiveInteger ->
List Polynomial Integer

[[
y = 5, x = −2451682632253093442511

295147905179352825856

]
,

[
y = 5, x =

2451682632253093442511
295147905179352825856

]] (2)

Type: List List Equation Polynomial Fraction Integer

Find the complex roots of S(19)
with floating point coefficients
to 20 digits accuracy in the
mantissa.

complexSolve(S(19),10.e-20)

[[y = 5.0, x = 8.306623862918074852561669055295290320373],
[y = 5.0, x = −8.306623862918074852561669055295290320373],
[y = −3.0 i, x = 1.0], [y = 3.0 i, x = 1.0]]

(3)

Type: List List Equation Polynomial Complex Float

If a system of equations has
symbolic coefficients and you
want a solution in radicals, try
radicalSolve.

radicalSolve(S(a),[x,y])

Compiling function S with type Variable a -> List
Polynomial Integer

[[
x = −√a + 50, y = 5

]
,

[
x =

√
a + 50, y = 5

]
,

[
x = 1, y =

√−a + 1
2

]
,

[
x = 1, y = −

√−a + 1
2

]] (4)

Type: List List Equation Expression Integer

For systems of equations with symbolic coefficients, you can apply solve,
listing the variables that you want AXIOM to solve for. For polynomial
equations, a solution cannot usually be expressed solely in terms of the
other variables. Instead, the solution is presented as a “triangular” system
of equations, where each polynomial has coefficients involving only the
succeeding variables. This is analogous to converting a linear system of

86 · An Overview of AXIOM

equations to “triangular form”.

A system of three equations in
five variables.

eqns := [x**2 - y + z,x**2*z + x**4 - b*y, y**2 *z - a -
b*x]

[
z − y + x2, x2 z − b y + x4, y2 z − b x− a

]
(5)

Type: List Polynomial Integer

Solve the system for unknowns
[x, y, z], reducing the solution to
triangular form.

solve(eqns,[x,y,z])
[[

x = −a

b
, y = 0, z = −a2

b2

]
,

[
x =

z3 + 2 b z2 + b2 z − a

b
,

y = z + b, z6 + 4 b z5 + 6 b2 z4 +
(
4 b3 − 2 a

)
z3+

(
b4 − 4 a b

)
z2 − 2 a b2 z − b3 + a2 = 0

]] (6)

Type: List List Equation Fraction Polynomial Integer

1.15. Solution of Equations · 87

1.16
System
Commands

We conclude our tour of AXIOM with a brief discussion of system com-
mands. System commands are special statements that start with a closing
parenthesis (“)”). They are used to control or display your AXIOM envi-
ronment, start the HyperDoc system, issue operating system commands
and leave AXIOM. For example,)system is used to issue commands to
the operating system from AXIOM. Here is a brief description of some
of these commands. For more information on specific commands, see
Appendix A.

Perhaps the most important user command is the)clear all command
that initializes your environment. Every section and subsection in this
book has an invisible)clear all that is read prior to the examples given
in the section.)clear all gives you a fresh, empty environment with
no user variables defined and the step number reset to 1. The)clear
command can also be used to selectively clear values and properties of
system variables.

Another useful system command is)read. A preferred way to develop
an application in AXIOM is to put your interactive commands into a
file, say my.input file. To get AXIOM to read this file, you use the
system command)read my.input. If you need to make changes to your
approach or definitions, go into your favorite editor, change my.input,
then)read my.input again.

Other system commands include:)history, to display previous input
and/or output lines;)display, to display properties and values of workspace
variables; and)what.

Issue)what to get a list of
AXIOM objects that contain a
given substring in their name.

)what operations integrate

Operations whose names satisfy the above pattern(s):

HermiteIntegrate algintegrate
complexIntegrate expintegrate
extendedIntegrate fintegrate
infieldIntegrate integrate
internalIntegrate internalIntegrate0
lazyGintegrate lazyIntegrate
lfintegrate limitedIntegrate
monomialIntegrate nagPolygonIntegrate
palgintegrate pmComplexintegrate
pmintegrate primintegrate
tanintegrate

To get more information about an operation such as
HermiteIntegrate , issue the command)display op
HermiteIntegrate

A useful system command is)undo. Sometimes while computing interac-

88 · An Overview of AXIOM

tively with AXIOM, you make a mistake and enter an incorrect definition
or assignment. Or perhaps you need to try one of several alternative
approaches, one after another, to find the best way to approach an appli-
cation. For this, you will find the undo facility of AXIOM helpful.

System command)undo n means “undo back to step n”; it restores the
values of user variables to those that existed immediately after input
expression n was evaluated. Similarly,)undo -n undoes changes caused
by the last n input expressions. Once you have done an)undo, you
can continue on from there, or make a change and redo all your input
expressions from the point of the)undo forward. The)undo is completely
general: it changes the environment like any user expression. Thus you
can)undo any previous undo.

Here is a sample dialogue between user and AXIOM.

“Let me define two mutually
dependent functions f and g
piece-wise.”

f(0) == 1; g(0) == 1

Type: Void

“Here is the general term for f.” f(n) == e/2*f(n-1) - x*g(n-1)

Type: Void

“And here is the general term
for g.”

g(n) == -x*f(n-1) + d/3*g(n-1)

Type: Void

“What is value of f(3)?” f(3)

Compiling function g with type Integer -> Polynomial
Fraction Integer

Compiling function g as a recurrence relation.
Compiling function g with type Integer -> Polynomial

Fraction Integer
Compiling function g as a recurrence relation.

+++ |*1;g;1;initial;AUX| redefined

+++ |*1;g;1;initial| redefined
Compiling function f with type Integer -> Polynomial

Fraction Integer
Compiling function f as a recurrence relation.

+++ |*1;f;1;initial| redefined

−x3 +
(

e +
1
3

d

)
x2 +

(
−1

4
e2 − 1

6
d e− 1

9
d2

)
x +

1
8

e3 (4)

Type: Polynomial Fraction Integer

1.16. System Commands · 89

“Hmm, I think I want to define
f differently. Undo to the
environment right after I defined
f.”

)undo 2

“Here is how I think I want f to
be defined instead.”

f(n) == d/3*f(n-1) - x*g(n-1)

1 old definition(s) deleted for function or rule f

Type: Void

Redo the computation from
expression 3 forward.

)undo)redo

“I want my old definition of f
after all. Undo the undo and
restore the environment to that
immediately after (4).”

)undo 4

“Check that the value of f(3) is
restored.”

f(3)

Compiling function g with type Integer -> Polynomial
Fraction Integer

Compiling function g as a recurrence relation.

+++ |*1;g;1;initial;AUX| redefined

+++ |*1;g;1;initial| redefined
Compiling function g with type Integer -> Polynomial

Fraction Integer
Compiling function g as a recurrence relation.

+++ |*1;g;1;initial;AUX| redefined

+++ |*1;g;1;initial| redefined
Compiling function f with type Integer -> Polynomial

Fraction Integer
Compiling function f as a recurrence relation.

+++ |*1;f;1;initial;AUX| redefined

+++ |*1;f;1;initial| redefined

−x3 +
(

e +
1
3

d

)
x2 +

(
−1

4
e2 − 1

6
d e− 1

9
d2

)
x +

1
8

e3 (6)

Type: Polynomial Fraction Integer

After you have gone off on several tangents, then backtracked to previous
points in your conversation using)undo, you might want to save all the
“correct” input commands you issued, disregarding those undone. The
system command)history)write mynew.input writes a clean straight-
line program onto the file mynew.input on your disk.

This concludes your tour of AXIOM. To disembark, issue the system
command)quit to leave AXIOM and return to the operating system.

90 · An Overview of AXIOM

CHAPTER 2

Using Types
and Modes

In this chapter we look at the key notion of type and its generalization
mode. We show that every AXIOM object has a type that determines
what you can do with the object. In particular, we explain how to use
types to call specific functions from particular parts of the library and
how types and modes can be used to create new objects from old. We
also look at Record and Union types and the special type Any. Finally, we
give you an idea of how AXIOM manipulates types and modes internally
to resolve ambiguities.

91

2.1
The Basic Idea

The AXIOM world deals with many kinds of objects. There are mathe-
matical objects such as numbers and polynomials, data structure objects
such as lists and arrays, and graphics objects such as points and graphic
images. Functions are objects too.

AXIOM organizes objects using the notion of domain of computation, or
simply domain. Each domain denotes a class of objects. The class of
objects it denotes is usually given by the name of the domain: Integer for
the integers, Float for floating-point numbers, and so on. The convention is
that the first letter of a domain name is capitalized. Similarly, the domain
Polynomial(Integer) denotes “polynomials with integer coefficients.” Also,
Matrix(Float) denotes “matrices with floating-point entries.”

Every basic AXIOM object belongs to a unique domain. The integer 3
belongs to the domain Integer and the polynomial x + 3 belongs to the
domain Polynomial(Integer). The domain of an object is also called its type.
Thus we speak of “the type Integer” and “the type Polynomial(Integer).”

After an AXIOM computation,
the type is displayed toward the
right-hand side of the page (or
screen).

-3

−3 (1)
Type: Integer

Here we create a rational
number but it looks like the last
result. The type however tells
you it is different. You cannot
identify the type of an object by
how AXIOM displays the
object.

-3/1

−3 (2)
Type: Fraction Integer

When a computation produces a
result of a simpler type, AXIOM
leaves the type unsimplified.
Thus no information is lost.

x + 3 - x

3 (3)
Type: Polynomial Integer

This seldom matters since
AXIOM retracts the answer to
the simpler type if it is
necessary.

factorial(%)

6 (4)
Type: Expression Integer

When you issue a positive
number, the type PositiveInteger
is printed. Surely, 3 also has
type Integer! The curious reader
may now have two questions.
First, is the type of an object
not unique? Second, how is
PositiveInteger related to Integer?
Read on!

3

3 (5)
Type: PositiveInteger

92 · Using Types and Modes

Any domain can be refined to a subdomain by a membership predicate.1

For example, the domain Integer can be refined to the subdomain Posi-
tiveInteger, the set of integers x such that x > 0, by giving the AXIOM
predicate x +-> x > 0. Similarly, AXIOM can define subdomains such
as “the subdomain of diagonal matrices,” “the subdomain of lists of length
two,” “the subdomain of monic irreducible polynomials in x,” and so on.
Trivially, any domain is a subdomain of itself.

While an object belongs to a unique domain, it can belong to any number
of subdomains. Any subdomain of the domain of an object can be used
as the type of that object. The type of 3 is indeed both Integer and
PositiveInteger as well as any other subdomain of integer whose predicate is
satisfied, such as “the prime integers,” “the odd positive integers between
3 and 17,” and so on.

2.1.1
Domain Constructors

In AXIOM, domains are objects. You can create them, pass them to
functions, and, as we’ll see later, test them for certain properties.

In AXIOM, you ask for a value of a function by applying its name to a
set of arguments.

To ask for “the factorial of 7”
you enter this expression to
AXIOM. This applies the
function factorial to the value
7 to compute the result.

factorial(7)

5040 (1)
Type: PositiveInteger

Enter the type Polynomial
(Integer) as an expression to
AXIOM. This looks much like a
function call as well. It is! The
result is appropriately stated to
be of type Domain, which
according to our usual
convention, denotes the class of
all domains.

Polynomial(Integer)

Polynomial Integer (2)
Type: Domain

The most basic operation involving domains is that of building a new
domain from a given one. To create the domain of “polynomials over the
integers,” AXIOM applies the function Polynomial to the domain Integer.
A function like Polynomial is called a domain constructor or, more simply,
a constructor. A domain constructor is a function that creates a domain.
An argument to a domain constructor can be another domain or, in gen-
eral, an arbitrary kind of object. Polynomial takes a single domain argu-
ment while SquareMatrix takes a positive integer as an argument to give
its dimension and a domain argument to give the type of its components.

1A predicate is a function that, when applied to an object of the domain, returns
either true or false.

2.1. The Basic Idea · 93

What kinds of domains can you use as the argument to Polynomial or
SquareMatrix or List? Well, the first two are mathematical in nature. You
want to be able to perform algebraic operations like “+” and “*” on
polynomials and square matrices, and operations such as determinant
on square matrices. So you want to allow polynomials of integers and
polynomials of square matrices with complex number coefficients and, in
general, anything that “makes sense.” At the same time, you don’t want
AXIOM to be able to build nonsense domains such as “polynomials of
strings!”

In contrast to algebraic structures, data structures can hold any kind
of object. Operations on lists such as insert, delete, and concat just
manipulate the list itself without changing or operating on its elements.
Thus you can build List over almost any datatype, including itself.

Create a complicated algebraic
domain.

List (List (Matrix (Polynomial (Complex (Fraction
(Integer))))))

List List Matrix Polynomial Complex Fraction Integer (3)
Type: Domain

Try to create a meaningless
domain.

Polynomial(String)

Polynomial String is not a valid type.

Evidently from our last example, AXIOM has some mechanism that tells
what a constructor can use as an argument. This brings us to the notion
of category. As domains are objects, they too have a domain. The domain
of a domain is a category. A category is simply a type whose members
are domains.

A common algebraic category is Ring, the class of all domains that are
“rings.” A ring is an algebraic structure with constants 0 and 1 and op-
erations “+”, “-”, and “*”. These operations are assumed “closed” with
respect to the domain, meaning that they take two objects of the do-
main and produce a result object also in the domain. The operations are
understood to satisfy certain “axioms,” certain mathematical principles
providing the algebraic foundation for rings. For example, the additive
inverse axiom for rings states:

Every element x has an additive inverse y such that x + y = 0.

The prototypical example of a domain that is a ring is the integers. Keep
them in mind whenever we mention Ring.

Many algebraic domain constructors such as Complex, Polynomial, Fraction,
take rings as arguments and return rings as values. You can use the infix

94 · Using Types and Modes

operator “has” to ask a domain if it belongs to a particular category.

All numerical types are rings.
Domain constructor Polynomial
builds “the ring of polynomials
over any other ring.”

Polynomial(Integer) has Ring

true (4)
Type: Boolean

Constructor List never produces
a ring.

List(Integer) has Ring

false (5)
Type: Boolean

The constructor Matrix(R) builds
“the domain of all matrices over
the ring R.” This domain is
never a ring since the operations
“+”, “-”, and “*” on matrices of
arbitrary shapes are undefined.

Matrix(Integer) has Ring

false (6)
Type: Boolean

Thus you can never build
polynomials over matrices.

Polynomial(Matrix(Integer))

Polynomial Matrix Integer is not a valid type.

Use SquareMatrix(n,R) instead.
For any positive integer n, it
builds “the ring of n by n
matrices over R.”

Polynomial(SquareMatrix(7,Complex(Integer)))

Polynomial SquareMatrix (7, Complex Integer) (7)
Type: Domain

Another common category is Field, the class of all fields. A field is a
ring with additional operations. For example, a field has commutative
multiplication and a closed operation “/” for the division of two elements.
Integer is not a field since, for example, 3/2 does not have an integer result.
The prototypical example of a field is the rational numbers, that is, the
domain Fraction(Integer). In general, the constructor Fraction takes a ring
as an argument and returns a field.2 Other domain constructors, such as
Complex, build fields only if their argument domain is a field.

The complex integers (often
called the “Gaussian integers”)
do not form a field.

Complex(Integer) has Field

false (8)
Type: Boolean

But fractions of complex
integers do.

Fraction(Complex(Integer)) has Field

true (9)
Type: Boolean

2Actually, the argument domain must have some additional properties so as to
belong to category IntegralDomain.

2.1. The Basic Idea · 95

The algebraically equivalent
domain of complex rational
numbers is a field since domain
constructor Complex produces a
field whenever its argument is a
field.

Complex(Fraction(Integer)) has Field

true (10)
Type: Boolean

The most basic category is Type. It denotes the class of all domains and
subdomains.3 Domain constructor List is able to build “lists of elements
from domain D” for arbitrary D simply by requiring that D belong to
category Type.

Now, you may ask, what exactly is a category? Like domains, categories
can be defined in the AXIOM language. A category is defined by three
components:

1. a name (for example, Ring), used to refer to the class of domains
that the category represents;

2. a set of operations, used to refer to the operations that the domains
of this class support (for example, “+”, “-”, and “*” for rings); and

3. an optional list of other categories that this category extends.

This last component is a new idea. And it is key to the design of AXIOM!
Because categories can extend one another, they form hierarchies. De-
tailed charts showing the category hierarchies in AXIOM are displayed in
the endpages of this book. There you see that all categories are extensions
of Type and that Field is an extension of Ring.

The operations supported by the domains of a category are called the
exports of that category because these are the operations made available
for system-wide use. The exports of a domain of a given category are
not only the ones explicitly mentioned by the category. Since a category
extends other categories, the operations of these other categories—and
all categories these other categories extend—are also exported by the
domains.

For example, polynomial domains belong to PolynomialCategory. This cat-
egory explicitly mentions some twenty-nine operations on polynomials,
but it extends eleven other categories (including Ring). As a result, the
current system has over one hundred operations on polynomials.

If a domain belongs to a category that extends, say, Ring, it is convenient
to say that the domain exports Ring. The name of the category thus
provides a convenient shorthand for the list of operations exported by
the category. Rather than listing operations such as “+” and “*” of Ring
each time they are needed, the definition of a type simply asserts that it

3Type does not denote the class of all types. The type of all categories is Category.
The type of Type itself is undefined.

96 · Using Types and Modes

exports category Ring.

The category name, however, is more than a shorthand. The name Ring, in
fact, implies that the operations exported by rings are required to satisfy
a set of “axioms” associated with the name Ring.4

Why is it not correct to assume that some type is a ring if it exports all
of the operations of Ring? Here is why. Some languages such as APL
denote the Boolean constants true and false by the integers 1 and 0
respectively, then use “+” and “*” to denote the logical operators or and
and. But with these definitions Boolean is not a ring since the additive
inverse axiom is violated.5 This alternative definition of Boolean can be
easily and correctly implemented in AXIOM, since Boolean simply does
not assert that it is of category Ring. This prevents the system from build-
ing meaningless domains such as Polynomial(Boolean) and then wrongfully
applying algorithms that presume that the ring axioms hold.

Enough on categories. To learn more about them, see Chapter 12. We
now return to our discussion of domains.

Domains export a set of operations to make them available for system-wide
use. Integer, for example, exports the operations “+” and “=” given by
the signatures “+”: (Integer,Integer) → Integer and “=”: (Integer,Integer)
→ Boolean, respectively. Each of these operations takes two Integer ar-
guments. The “+” operation also returns an Integer but “=” returns a
Boolean: true or false. The operations exported by a domain usually
manipulate objects of the domain—but not always.

The operations of a domain may actually take as arguments, and return as
values, objects from any domain. For example, Fraction (Integer) exports the
operations “/”: (Integer,Integer) → Fraction(Integer) and characteristic:
→ NonNegativeInteger.

Suppose all operations of a domain take as arguments and return as
values, only objects from other domains. This kind of domain is what
AXIOM calls a package.

A package does not designate a class of objects at all. Rather, a package
is just a collection of operations. Actually the bulk of the AXIOM library
of algorithms consists of packages. The facilities for factorization; inte-
gration; solution of linear, polynomial, and differential equations; compu-
tation of limits; and so on, are all defined in packages. Domains needed
by algorithms can be passed to a package as arguments or used by name if

4This subtle but important feature distinguishes AXIOM from other abstract
datatype designs.

5There is no inverse element a such that 1 + a = 0, or, in the usual terms: true
or a = false.

2.1. The Basic Idea · 97

they are not “variable.” Packages are useful for defining operations that
convert objects of one type to another, particularly when these types have
different parameterizations. As an example, the package PolynomialFunc-
tion2(R,S) defines operations that convert polynomials over a domain R to
polynomials over S. To convert an object from Polynomial(Integer) to Polyno-
mial(Float), AXIOM builds the package PolynomialFunctions2(Integer,Float) in
order to create the required conversion function. (This happens “behind
the scenes” for you: see Section 2.7 on page 113 for details on how to
convert objects.)

AXIOM categories, domains and packages and all their contained func-
tions are written in the AXIOM programming language and have been
compiled into machine code. This is what comprises the AXIOM library.
In the rest of this book we show you how to use these domains and their
functions and how to write your own functions.

98 · Using Types and Modes

2.2
Writing Types and
Modes

We have already seen in the last section several examples of types. Most
of these examples had either no arguments (for example, Integer) or one
argument (for example, Polynomial (Integer)). In this section we give details
about writing arbitrary types. We then define modes and discuss how to
write them. We conclude the section with a discussion on constructor
abbreviations.

When might you need to write a
type or mode? You need to do
so when you declare variables.

a : PositiveInteger

Type: Void

You need to do so when you
declare functions (Section 2.3 on
page 103),

f : Integer -> String

Type: Void

You need to do so when you
convert an object from one type
to another (Section 2.7 on page
113).

factor(2 :: Complex(Integer))

−i (1 + i)2 (3)
Type: Factored Complex Integer

(2 = 3)$Integer

false (4)
Type: Boolean

You need to do so when you
give computation target type
information (Section 2.9 on page
119).

(2 = 3)@Boolean

false (5)
Type: Boolean

2.2.1
Types with No
Arguments

A constructor with no arguments can be written either with or without
trailing opening and closing parentheses (“()”).

Boolean() is the same as Boolean Integer() is the same as Integer
String() is the same as String Void() is the same as Void

It is customary to omit the parentheses.

2.2.2
Types with One
Argument

A constructor with one argument can frequently be written with no paren-
theses. Types nest from right to left so that Complex Fraction Polynomial
Integer is the same as Complex (Fraction (Polynomial (Integer))). You need to
use parentheses to force the application of a constructor to the correct
argument, but you need not use any more than is necessary to remove
ambiguities.

2.2. Writing Types and Modes · 99

Here are some guidelines for using parentheses (they are possibly slightly
more restrictive than they need to be).

If the argument is an expression
like 2 + 3 then you must enclose
the argument in parentheses.

e : PrimeField(2 + 3)

Type: Void

If the type is to be used with
package calling then you must
enclose the argument in
parentheses.

content(2)$Polynomial(Integer)

2 (2)
Type: Integer

Alternatively, you can write the
type without parentheses then
enclose the whole type
expression with parentheses.

content(2)$(Polynomial Complex Fraction Integer)

2 (3)
Type: Complex Fraction Integer

If you supply computation
target type information (Section
2.9 on page 119) then you
should enclose the argument in
parentheses.

(2/3)@Fraction(Polynomial(Integer))

2
3

(4)

Type: Fraction Polynomial Integer

If the type itself has parentheses
around it and we are not in the
case of the first example above,
then the parentheses can usually
be omitted.

(2/3)@Fraction(Polynomial Integer)

2
3

(5)

Type: Fraction Polynomial Integer

If the type is used in a
declaration and the argument is
a single-word type, integer or
symbol, then the parentheses
can usually be omitted.

(d,f,g) : Complex Polynomial Integer

Type: Void

2.2.3
Types with More
Than One Argument

If a constructor has more than one argument, you must use parentheses.
Some examples are

UnivariatePolynomial(x, Float)
MultivariatePolynomial([z,w,r], Complex Float)

SquareMatrix(3, Integer)
FactoredFunctions2(Integer,Fraction Integer)

2.2.4
Modes

A mode is a type that possibly is a question mark (“?”) or contains one
in an argument position. For example, the following are all modes.

? Polynomial ?
Matrix Polynomial ? SquareMatrix(3,?)

Integer OneDimensionalArray(Float)

100 · Using Types and Modes

As is evident from these examples, a mode is a type with a part that is
not specified (indicated by a question mark). Only one “?” is allowed
per mode and it must appear in the most deeply nested argument that
is a type. Thus ?(Integer), Matrix(? (Polynomial)), SquareMatrix(?, Integer) and
SquareMatrix(?, ?) are all invalid. The question mark must take the place
of a domain, not data (for example, the integer that is the dimension
of a square matrix). This rules out, for example, the two SquareMatrix
expressions.

Modes can be used for declarations (Section 2.3 on page 103) and con-
versions (Section 2.7 on page 113). However, you cannot use a mode for
package calling or giving target type information.

2.2.5
Abbreviations

Every constructor has an abbreviation that you can freely substitute for
the constructor name. In some cases, the abbreviation is nothing more
than the capitalized version of the constructor name.

Aside from allowing types to be written more concisely, abbreviations
are used by AXIOM to name various system files for constructors (such
as library filenames, test input files and example files). Here are some
common abbreviations.

COMPLEX abbreviates Complex DFLOAT abbreviates DoubleFloat
EXPR abbreviates Expression FLOAT abbreviates Float
FRAC abbreviates Fraction INT abbreviates Integer
MATRIX abbreviates Matrix NNI abbreviates NonNegativeInteger
PI abbreviates PositiveInteger POLY abbreviates Polynomial
STRING abbreviates String UP abbreviates UnivariatePolynomial

You can combine both full constructor names and abbreviations in a type
expression. Here are some types using abbreviations.

POLY INT is the same as Polynomial(INT)
POLY(Integer) is the same as Polynomial(Integer)

POLY(Integer) is the same as Polynomial(INT)
FRAC(COMPLEX(INT)) is the same as Fraction Complex Integer
FRAC(COMPLEX(INT)) is the same as FRAC(Complex Integer)

There are several ways of finding the names of constructors and their ab-
breviations. For a specific constructor, use)abbreviation query. You
can also use the)what system command to see the names and abbrevi-
ations of constructors. For more information about)what, see Section

2.2. Writing Types and Modes · 101

A.28 on page 748.

)abbreviation query can be
abbreviated (no pun intended)
to)abb q.

)abb q Integer

INT abbreviates domain Integer

The)abbreviation query
command lists the constructor
name if you give the
abbreviation. Issue)abb q if
you want to see the names and
abbreviations of all AXIOM
constructors.

)abb q DMP

DMP abbreviates domain
DistributedMultivariatePolynomial

Issue this to see all packages
whose names contain the string
“ode”.

)what packages ode

---------------------- Packages ----------------------

Packages with names matching patterns:
ode

EXPRODE ExpressionSpaceODESolver
FCPAK1 FortranCodePackage1 GRAY GrayCode
LODEEF ElementaryFunctionLODESolver
NODE1 NonLinearFirstOrderODESolver
ODECONST ConstantLODE
ODEEF ElementaryFunctionODESolver
ODEINT ODEIntegration ODEPAL

PureAlgebraicLODE
ODERAT RationalLODE ODERED ReduceLODE
ODESYS SystemODESolver ODETOOLS ODETools
UTSODE UnivariateTaylorSeriesODESolver
UTSODETL UTSodetools

102 · Using Types and Modes

2.3
Declarations

A declaration is an expression used to restrict the type of values that can
be assigned to variables. A colon (“:”) is always used after a variable or
list of variables to be declared.

For a single variable, the syntax for declaration is

variableName : typeOrMode

For multiple variables, the syntax is

(variableName1, variableName2, ...variableNameN): typeOrMode

You can always combine a declaration with an assignment. When you
do, it is equivalent to first giving a declaration statement, then giving an
assignment. For more information on assignment, see Section 1.3.4 on
page 48 and Section 5.1 on page 150. To see how to declare your own
functions, see Section 6.4 on page 183.

This declares one variable to
have a type.

a : Integer

Type: Void

This declares several variables
to have a type.

(b,c) : Integer

Type: Void

a, b and c can only hold
integer values.

a := 45

45 (3)
Type: Integer

If a value cannot be converted
to a declared type, an error
message is displayed.

b := 4/5

Cannot convert right-hand side of assignment
4
-
5

to an object of the type Integer of the left-hand
side.

This declares a variable with a
mode.

n : Complex ?

Type: Void

2.3. Declarations · 103

This declares several variables
with a mode.

(p,q,r) : Matrix Polynomial ?

Type: Void

This complex object has integer
real and imaginary parts.

n := -36 + 9 * %i

−36 + 9 i (6)
Type: Complex Integer

This complex object has
fractional symbolic real and
imaginary parts.

n := complex(4/(x + y),y/x)

4
y + x

+
y

x
i (7)

Type: Complex Fraction Polynomial Integer

This matrix has entries that are
polynomials with integer
coefficients.

p := [[1,2],[3,4],[5,6]]



1 2
3 4
5 6


 (8)

Type: Matrix Polynomial Integer

This matrix has a single entry
that is a polynomial with
rational number coefficients.

q := [[x - 2/3]]
[

x− 2
3

]
(9)

Type: Matrix Polynomial Fraction Integer

This matrix has entries that are
polynomials with complex
integer coefficients.

r := [[1-%i*x,7*y+4*%i]]
[−i x + 1 7 y + 4 i

]
(10)

Type: Matrix Polynomial Complex Integer

Note the difference between this
and the next example. This is a
complex object with polynomial
real and imaginary parts.

f : COMPLEX POLY ? := (x + y*%i)**2

−y2 + x2 + 2 x y i (11)
Type: Complex Polynomial Integer

This is a polynomial with
complex integer coefficients.
The objects are convertible from
one to the other. See Section 2.7
on page 113 for more
information.

g : POLY COMPLEX ? := (x + y*%i)**2

−y2 + 2 i x y + x2 (12)
Type: Polynomial Complex Integer

104 · Using Types and Modes

2.4
Records

A Record is an object composed of one or more other objects, each of
which is referenced with a selector. Components can all belong to the
same type or each can have a different type.

The syntax for writing a Record type is

Record(selector1:type1, selector2:type2, ..., selectorN:typeN)

You must be careful if a selector has the same name as a variable in the
workspace. If this occurs, precede the selector name by a single quote.

Record components are implicitly ordered. All the components of a record
can be set at once by assigning the record a bracketed tuple of values of
the proper length (for example, r : Record(a: Integer, b: String)
:= [1, "two"]). To access a component of a record r, write the name
r, followed by a period, followed by a selector.

The object returned by this
computation is a record with
two components: a quotient
part and a remainder part.

u := divide(5,2)

[quotient = 2, remainder = 1] (1)
Type: Record(quotient: Integer, remainder: Integer)

This is the quotient part. u.quotient

2 (2)
Type: PositiveInteger

This is the remainder part. u.remainder

1 (3)
Type: PositiveInteger

You can use selector expressions
on the left-hand side of an
assignment to change
destructively the components of
a record.

u.quotient := 8978

8978 (4)
Type: PositiveInteger

The selected component
quotient has the value 8978,
which is what is returned by the
assignment. Check that the
value of u was modified.

u

[quotient = 8978, remainder = 1] (5)
Type: Record(quotient: Integer, remainder: Integer)

Selectors are evaluated. Thus
you can use variables that
evaluate to selectors instead of
the selectors themselves.

s := ’quotient

quotient (6)
Type: Variable quotient

2.4. Records · 105

Be careful! A selector could
have the same name as a
variable in the workspace. If
this occurs, precede the selector
name by a single quote, as in
u.’quotient.

divide(5,2).s

2 (7)
Type: PositiveInteger

Here we declare that the value
of bd has two components: a
string, to be accessed via name,
and an integer, to be accessed
via birthdayMonth.

bd : Record(name : String, birthdayMonth : Integer)

Type: Void

You must initially set the value
of the entire Record at once.

bd := ["Judith", 3]

[name = "Judith", birthdayMonth = 3] (9)
Type: Record(name: String, birthdayMonth: Integer)

Once set, you can change any of
the individual components.

bd.name := "Katie"

"Katie" (10)
Type: String

Records may be nested and the
selector names can be shared at
different levels.

r : Record(a : Record(b: Integer, c: Integer), b: Integer)

Type: Void

The record r has a b selector at
two different levels. Here is an
initial value for r.

r := [[1,2],3]

[a = [b = 1, c = 2], b = 3] (12)
Type: Record(a: Record(b: Integer, c: Integer), b: Integer)

This extracts the b component
from the a component of r.

r.a.b

1 (13)
Type: PositiveInteger

This extracts the b component
from r.

r.b

3 (14)
Type: PositiveInteger

You can also use spaces or
parentheses to refer to Record
components. This is the same as
r.a.

r(a)

[b = 1, c = 2] (15)
Type: Record(b: Integer, c: Integer)

This is the same as r.b. r b

3 (16)
Type: PositiveInteger

106 · Using Types and Modes

This is the same as r.b := 10. r(b) := 10

10 (17)
Type: PositiveInteger

Look at r to make sure it was
modified.

r

[a = [b = 1, c = 2], b = 10] (18)
Type: Record(a: Record(b: Integer, c: Integer), b: Integer)

2.4. Records · 107

2.5
Unions

Type Union is used for objects that can be of any of a specific finite set
of types. Two versions of unions are available, one with selectors (like
records) and one without.

2.5.1
Unions Without
Selectors

The declaration x : Union(Integer, String, Float) states that x can
have values that are integers, strings or “big” floats. If, for example, the
Union object is an integer, the object is said to belong to the Integer branch
of the Union.6

The syntax for writing a Union type without selectors is

Union(type1, type2, ..., typeN)

The types in a union without selectors must be distinct.

It is possible to create unions like Union(Integer, PositiveInteger) but they
are difficult to work with because of the overlap in the branch types. See
below for the rules AXIOM uses for converting something into a union
object.

The case infix operator returns a Boolean and can be used to determine
the branch in which an object lies.

This function displays a message
stating in which branch of the
Union the object (defined as x
above) lies.

sayBranch(x : Union(Integer,String,Float)) : Void ==
output

x case Integer => "Integer branch"
x case String => "String branch"
"Float branch"

Function declaration sayBranch : Union(Integer,String
,Float) -> Void has been added to workspace.

Type: Void

This tries sayBranch with an
integer.

sayBranch 1

Compiling function sayBranch with type Union(Integer,
String,Float) -> Void

Integer branch

Type: Void

This tries sayBranch with a
string.

sayBranch "hello"

String branch

Type: Void

6Note that we are being a bit careless with the language here. Technically, the type
of x is always Union(Integer, String, Float). If it belongs to the Integer branch, x may be
converted to an object of type Integer.

108 · Using Types and Modes

This tries sayBranch with a
floating-point number.

sayBranch 2.718281828

Float branch

Type: Void

There are two things of interest about this particular example to which
we would like to draw your attention.

1. AXIOM normally converts a result to the target value before passing
it to the function. If we left the declaration information out of
this function definition then the sayBranch call would have been
attempted with an Integer rather than a Union, and an error would
have resulted.

2. The types in a Union are searched in the order given. So if the type
were given as
sayBranch(x: Union(String,Integer,Float,Any)): Void

then the result would have been “String branch” because there is a
conversion from Integer to String.

Sometimes Union types can have extremely long names. AXIOM therefore
abbreviates the names of unions by printing the type of the branch first
within the Union and then eliding the remaining types with an ellipsis
(“...”).

Here the Integer branch is
displayed first. Use “::” to
create a Union object from an
object.

78 :: Union(Integer,String)

78 (5)
Type: Union(Integer, ...)

Here the String branch is
displayed first.

s := "string" :: Union(Integer,String)

"string" (6)
Type: Union(String, ...)

Use typeOf to see the full and
actual Union type.

typeOf s

Union (Integer , String) (7)
Type: Domain

A common operation that
returns a union is exquo which
returns the “exact quotient” if
the quotient is exact,...

three := exquo(6,2)

3 (8)
Type: Union(Integer, ...)

and "failed" if the quotient is
not exact.

exquo(5,2)

"failed" (9)
Type: Union("failed", ...)

2.5. Unions · 109

A union with a "failed" is
frequently used to indicate the
failure or lack of applicability of
an object. As another example,
assign an integer a variable r
declared to be a rational
number.

r: FRAC INT := 3

3 (10)
Type: Fraction Integer

The operation retractIfCan
tries to retract the fraction to
the underlying domain Integer.
It produces a union object. Here
it succeeds.

retractIfCan(r)

3 (11)
Type: Union(Integer, ...)

Assign it a rational number. r := 3/2

3
2

(12)

Type: Fraction Integer

Here the retraction fails. retractIfCan(r)

"failed" (13)
Type: Union("failed", ...)

2.5.2
Unions With
Selectors

Like records (Section 2.4 on page 105), you can write Union types with
selectors.

The syntax for writing a Union type with selectors is

Union(selector1:type1, selector2:type2, ..., selectorN:typeN)

You must be careful if a selector has the same name as a variable in the
workspace. If this occurs, precede the selector name by a single quote.
It is an error to use a selector that does not correspond to the branch
of the Union in which the element actually lies.

Be sure to understand the difference between records and unions with
selectors. Records can have more than one component and the selectors
are used to refer to the components. Unions always have one component
but the type of that one component can vary. An object of type Record(a:
Integer, b: Float, c: String) contains an integer and a float and a string. An
object of type Union(a: Integer, b: Float, c: String) contains an integer or a
float or a string.

Here is a version of the sayBranch function (cf. Section 2.5.1 on page
108) that works with a union with selectors. It displays a message stating
in which branch of the Union the object lies.

110 · Using Types and Modes

sayBranch(x:Union(i:Integer,s:String,f:Float)):Void==
output

x case i => "Integer branch"
x case s => "String branch"
"Float branch"

Note that case uses the selector name as its right-hand argument. If you
accidentally use the branch type on the right-hand side of case, false
will be returned.

Declare variable u to have a
union type with selectors.

u : Union(i : Integer, s : String)

Type: Void

Give an initial value to u. u := "good morning"

"good morning" (2)
Type: Union(s: String, ...)

Use case to determine in which
branch of a Union an object lies.

u case i

false (3)
Type: Boolean

u case s

true (4)
Type: Boolean

To access the element in a
particular branch, use the
selector.

u.s

"good morning" (5)
Type: String

2.5. Unions · 111

2.6
The “Any”
Domain

With the exception of objects of type Record, all AXIOM data structures
are homogenous, that is, they hold objects all of the same type. If you
need to get around this, you can use type Any. Using Any, for example,
you can create lists whose elements are integers, rational numbers, strings,
and even other lists.

Declare u to have type Any. u: Any

Type: Void

Assign a list of mixed type
values to u

u := [1, 7.2, 3/2, x**2, "wally"]
[
1, 7.2,

3
2
, x2, "wally"

]
(2)

Type: List Any

When we ask for the elements,
AXIOM displays these types.

u.1

1 (3)
Type: PositiveInteger

Actually, these objects belong to
Any but AXIOM automatically
converts them to their natural
types for you.

u.3

3
2

(4)

Type: Fraction Integer

Since type Any can be anything,
it can only belong to type Type.
Therefore it cannot be used in
algebraic domains.

v : Matrix(Any)

Daly Bug
Matrix Any is not a valid type.

Perhaps you are wondering how AXIOM internally represents objects of
type Any. An object of type Any consists not only a data part representing
its normal value, but also a type part (a badge) giving its type. For exam-
ple, the value 1 of type PositiveInteger as an object of type Any internally
looks like [1,PositiveInteger()].

112 · Using Types and Modes

2.7
Conversion Conversion is the process of changing an object of one type into an

object of another type. The syntax for conversion is:

object :: newType

By default, 3 has the type
PositiveInteger.

3

3 (1)
Type: PositiveInteger

We can change this into an
object of type Fraction Integer by
using “::”.

3 :: Fraction Integer

3 (2)
Type: Fraction Integer

A coercion is a special kind of conversion that AXIOM is allowed to do
automatically when you enter an expression. Coercions are usually some-
what safer than more general conversions. The AXIOM library contains
operations called coerce and convert. Only the coerce operations can
be used by the interpreter to change an object into an object of another
type unless you explicitly use a “::”.

By now you will be quite familiar with what types and modes look like.
It is useful to think of a type or mode as a pattern for what you want the
result to be.

Let’s start with a square matrix
of polynomials with complex
rational number coefficients.

m : SquareMatrix(2,POLY COMPLEX FRAC INT)

Type: Void

m := matrix [[x-3/4*%i,z*y**2+1/2],[3/7*%i*y**4 - x,12-
%i*9/5]]

[
x− 3

4 i y2 z + 1
2

3
7 i y4 − x 12− 9

5 i

]
(4)

Type: SquareMatrix(2, Polynomial Complex Fraction Integer)

We first want to interchange the
Complex and Fraction layers. We
do the conversion by doing the
interchange in the type
expression.

m1 := m :: SquareMatrix(2,POLY FRAC COMPLEX INT)
[

x− 3 i
4 y2 z + 1

2
3 i
7 y4 − x 60−9 i

5

]
(5)

Type: SquareMatrix(2, Polynomial Fraction Complex Integer)

2.7. Conversion · 113

Interchange the Polynomial and
the Fraction levels.

m2 := m1 :: SquareMatrix(2,FRAC POLY COMPLEX INT)
[

4 x−3 i
4

2 y2 z+1
2

3 i y4−7 x
7

60−9 i
5

]
(6)

Type: SquareMatrix(2, Fraction Polynomial Complex Integer)

Interchange the Polynomial and
the Complex levels.

m3 := m2 :: SquareMatrix(2,FRAC COMPLEX POLY INT)
[

4 x−3 i
4

2 y2 z+1
2

−7 x+3 y4 i
7

60−9 i
5

]
(7)

Type: SquareMatrix(2, Fraction Complex Polynomial Integer)

All the entries have changed types, although in comparing the last two
results only the entry in the lower left corner looks different. We did all
the intermediate steps to show you what AXIOM can do.

In fact, we could have combined
all these into one conversion.

m :: SquareMatrix(2,FRAC COMPLEX POLY INT)
[

4 x−3 i
4

2 y2 z+1
2

−7 x+3 y4 i
7

60−9 i
5

]
(8)

Type: SquareMatrix(2, Fraction Complex Polynomial Integer)

There are times when AXIOM is not be able to do the conversion in
one step. You may need to break up the transformation into several
conversions in order to get an object of the desired type.

We cannot move either Fraction or Complex above (or to the left of, de-
pending on how you look at it) SquareMatrix because each of these levels
requires that its argument type have commutative multiplication, whereas
SquareMatrix does not.7 The Integer level did not move anywhere because
it does not allow any arguments. We also did not move the SquareMatrix
part anywhere, but we could have.

Recall that m looks like this. m[
x− 3

4 i y2 z + 1
2

3
7 i y4 − x 12− 9

5 i

]
(9)

Type: SquareMatrix(2, Polynomial Complex Fraction Integer)

7Fraction requires that its argument belong to the category IntegralDomain and Com-
plex requires that its argument belong to CommutativeRing. See Section 2.1 on page 92
for a brief discussion of categories.

114 · Using Types and Modes

If we want a polynomial with
matrix coefficients rather than a
matrix with polynomial entries,
we can just do the conversion.

m :: POLY SquareMatrix(2,COMPLEX FRAC INT)
[

0 1
0 0

]
y2 z +

[
0 0

3
7 i 0

]
y4+

[
1 0
−1 0

]
x +

[
−3

4 i 1
2

0 12− 9
5 i

] (10)

Type: Polynomial SquareMatrix(2, Complex Fraction Integer)

We have not yet used modes for
any conversions. Modes are a
great shorthand for indicating
the type of the object you want.
Instead of using the long type
expression in the last example,
we could have simply said this.

m :: POLY ?
[

0 1
0 0

]
y2 z +

[
0 0

3
7 i 0

]
y4+

[
1 0
−1 0

]
x +

[
−3

4 i 1
2

0 12− 9
5 i

] (11)

Type: Polynomial SquareMatrix(2, Complex Fraction Integer)

We can also indicate more
structure if we want the entries
of the matrices to be fractions.

m :: POLY SquareMatrix(2,FRAC ?)
[

0 1
0 0

]
y2 z +

[
0 0
3 i
7 0

]
y4+

[
1 0
−1 0

]
x +

[
−3 i

4
1
2

0 60−9 i
5

] (12)

Type: Polynomial SquareMatrix(2, Fraction Complex Integer)

2.7. Conversion · 115

2.8
Subdomains
Again

A subdomain S of a domain D is a domain consisting of

1. those elements of D that satisfy some predicate (that is, a test that
returns true or false) and

2. a subset of the operations of D.

Every domain is a subdomain of itself, trivially satisfying the membership
test: true.

Currently, there are only two system-defined subdomains in AXIOM that
receive substantial use. PositiveInteger and NonNegativeInteger are subdo-
mains of Integer. An element x of NonNegativeInteger is an integer that is
greater than or equal to zero, that is, satisfies x >= 0. An element x of
PositiveInteger is a nonnegative integer that is, in fact, greater than zero,
that is, satisfies x > 0. Not all operations from Integer are available for
these subdomains. For example, negation and subtraction are not pro-
vided since the subdomains are not closed under those operations. When
you use an integer in an expression, AXIOM assigns to it the type that
is the most specific subdomain whose predicate is satisfied.

This is a positive integer. 5

5 (1)
Type: PositiveInteger

This is a nonnegative integer. 0

0 (2)
Type: NonNegativeInteger

This is neither of the above. -5

−5 (3)
Type: Integer

Furthermore, unless you are
assigning an integer to a
declared variable or using a
conversion, any integer result
has as type the most specific
subdomain.

(-2) - (-3)

1 (4)
Type: PositiveInteger

0 :: Integer

0 (5)
Type: Integer

x : NonNegativeInteger := 5

5 (6)
Type: NonNegativeInteger

116 · Using Types and Modes

When necessary, AXIOM converts an integer object into one belonging to
a less specific subdomain. For example, in 3-2, the arguments to “-” are
both elements of PositiveInteger, but this type does not provide a subtrac-
tion operation. Neither does NonNegativeInteger, so 3 and 2 are viewed as
elements of Integer, where their difference can be calculated. The result
is 1, which AXIOM then automatically assigns the type PositiveInteger.

Certain operations are very
sensitive to the subdomains to
which their arguments belong.
This is an element of
PositiveInteger.

2 ** 2

4 (7)
Type: PositiveInteger

This is an element of Fraction
Integer.

2 ** (-2)

1
4

(8)

Type: Fraction Integer

It makes sense then that this is
a list of elements of
PositiveInteger.

[10**i for i in 2..5]

[100, 1000, 10000, 100000] (9)
Type: List PositiveInteger

What should the type of [10**(i-1) for i in 2..5] be? On one hand,
i-1 is always an integer greater than zero as i ranges from 2 to 5 and so
10**i is also always a positive integer. On the other, i-1 is a very simple
function of i. AXIOM does not try to analyze every such function over
the index’s range of values to determine whether it is always positive or
nowhere negative. For an arbitrary AXIOM function, this analysis is not
possible.

So, to be consistent no such
analysis is done and we get this.

[10**(i-1) for i in 2..5]

[10, 100, 1000, 10000] (10)
Type: List Fraction Integer

To get a list of elements of
PositiveInteger instead, you have
two choices. You can use a
conversion.

[10**((i-1) :: PI) for i in 2..5]

Compiling function G82568 with type Integer ->
Boolean

Compiling function G82580 with type
NonNegativeInteger -> Boolean

[10, 100, 1000, 10000] (11)
Type: List PositiveInteger

Or you can use pretend. [10**((i-1) pretend PI) for i in 2..5]

[10, 100, 1000, 10000] (12)
Type: List PositiveInteger

The operation pretend is used to defeat the AXIOM type system. The

2.8. Subdomains Again · 117

expression object pretend D means “make a new object (without copy-
ing) of type D from object.” If object were an integer and you told
AXIOM to pretend it was a list, you would probably see a message about
a fatal error being caught and memory possibly being damaged. Lists do
not have the same internal representation as integers!

You use pretend at your peril.

Use pretend with great care!
AXIOM trusts you that the
value is of the specified type.

(2/3) pretend Complex Integer

2 + 3 i (13)
Type: Complex Integer

118 · Using Types and Modes

2.9
Package Calling
and Target Types

AXIOM works hard to figure out what you mean by an expression without
your having to qualify it with type information. Nevertheless, there are
times when you need to help it along by providing hints (or even orders!)
to get AXIOM to do what you want.

We saw in Section 2.3 on page 103 that declarations using types and
modes control the type of the results produced. For example, we can ei-
ther produce a complex object with polynomial real and imaginary parts
or a polynomial with complex integer coefficients, depending on the dec-
laration.

Package calling is how you tell AXIOM to use a particular function from
a particular part of the library.

Use the “/” from Fraction Integer
to create a fraction of two
integers.

2/3

2
3

(1)

Type: Fraction Integer

If we wanted a floating point
number, we can say “use the
“/” in Float.”

(2/3)$Float

0.66666666666666666667 (2)
Type: Float

Perhaps we actually wanted a
fraction of complex integers.

(2/3)$Fraction(Complex Integer)

2
3

(3)

Type: Fraction Complex Integer

In each case, AXIOM used the indicated operations, sometimes first need-
ing to convert the two integers into objects of an appropriate type. In
these examples, “/” is written as an infix operator.

To use package calling with an infix operator, use the following syntax:

(arg1 op arg1)$type

We used, for example, (2/3)$Float. The expression 2 + 3 + 4 is equiv-
alent to (2+3) + 4. Therefore in the expression (2 + 3 + 4)$Float the
second “+” comes from the Float domain. Can you guess whether the first
“+” comes from Integer or Float?8

8Float, because the package call causes AXIOM to convert (2 + 3) and 4 to type
Float. Before the sum is converted, it is given a target type (see below) of Float by
AXIOM and then evaluated. The target type causes the “+” from Float to be used.

2.9. Package Calling and Target Types · 119

For an operator written before its arguments, you must use parentheses
around the arguments (even if there is only one), and follow the closing
parenthesis by a “$” and then the type.

fun (arg1, arg1, ..., argN)$type

For example, to call the “minimum” function from DoubleFloat on two in-
tegers, you could write min(4,89)$DoubleFloat. Another use of package
calling is to tell AXIOM to use a library function rather than a function
you defined. We discuss this in Section 6.9 on page 191.

Sometimes rather than specifying where an operation comes from, you
just want to say what type the result should be. We say that you provide
a target type for the expression. Instead of using a “$”, use a “@” to specify
the requested target type. Otherwise, the syntax is the same. Note that
giving a target type is not the same as explicitly doing a conversion. The
first says “try to pick operations so that the result has such-and-such a
type.” The second says “compute the result and then convert to an object
of such-and-such a type.”

Sometimes it makes sense, as in
this expression, to say “choose
the operations in this expression
so that the final result is a
Float.”

(2/3)@Float

0.66666666666666666667 (4)
Type: Float

Here we used “@” to say that the target type of the left-hand side was
Float. In this simple case, there was no real difference between using “$”
and “@”. You can see the difference if you try the following.

This says to try to choose “+” so
that the result is a string.
AXIOM cannot do this.

(2 + 3)@String

An expression involving @ String actually evaluated
to one of type PositiveInteger . Perhaps you
should use :: String .

This says to get the “+” from
String and apply it to the two
integers. AXIOM also cannot do
this because there is no “+”
exported by String.

(2 + 3)$String

The function + is not implemented in String .

(By the way, the operation concat or juxtaposition is used to concatenate
two strings.)

When we have more than one operation in an expression, the difference
is even more evident. The following two expressions show that AXIOM
uses the target type to create different objects. The “+”, “*” and “**”
operations are all chosen so that an object of the correct final type is

120 · Using Types and Modes

created.

This says that the operations
should be chosen so that the
result is a Complex object.

((x + y * %i)**2)@(Complex Polynomial Integer)

−y2 + x2 + 2 x y i (5)
Type: Complex Polynomial Integer

This says that the operations
should be chosen so that the
result is a Polynomial object.

((x + y * %i)**2)@(Polynomial Complex Integer)

−y2 + 2 i x y + x2 (6)
Type: Polynomial Complex Integer

What do you think might
happen if we left off all target
type and package call
information in this last
example?

(x + y * %i)**2

−y2 + 2 i x y + x2 (7)
Type: Polynomial Complex Integer

We can convert it to Complex as
an afterthought. But this is
more work than just saying
making what we want in the
first place.

% :: Complex ?

−y2 + x2 + 2 x y i (8)
Type: Complex Polynomial Integer

Finally, another use of package calling is to qualify fully an operation that
is passed as an argument to a function.

Start with a small matrix of
integers.

h := matrix [[8,6],[-4,9]]
[

8 6
−4 9

]
(9)

Type: Matrix Integer

We want to produce a new
matrix that has for entries the
multiplicative inverses of the
entries of h. One way to do this
is by calling map with the inv
function from Fraction (Integer).

map(inv$Fraction(Integer),h)
[

1
8

1
6

−1
4

1
9

]
(10)

Type: Matrix Fraction Integer

We could have been a bit less
verbose and used abbreviations.

map(inv$FRAC(INT),h)
[

1
8

1
6

−1
4

1
9

]
(11)

Type: Matrix Fraction Integer

As it turns out, AXIOM is
smart enough to know what we
mean anyway. We can just say
this.

map(inv,h)
[

1
8

1
6

−1
4

1
9

]
(12)

Type: Matrix Fraction Integer

2.9. Package Calling and Target Types · 121

2.10
Resolving Types

In this section we briefly describe an internal process by which AXIOM
determines a type to which two objects of possibly different types can be
converted. We do this to give you further insight into how AXIOM takes
your input, analyzes it, and produces a result.

What happens when you enter x + 1 to AXIOM? Let’s look at what you
get from the two terms of this expression.

This is a symbolic object whose
type indicates the name.

x

x (1)
Type: Variable x

This is a positive integer. 1

1 (2)
Type: PositiveInteger

There are no operations in PositiveInteger that add positive integers to
objects of type Variable(x) nor are there any in Variable(x). Before it can
add the two parts, AXIOM must come up with a common type to which
both x and 1 can be converted. We say that AXIOM must resolve the
two types into a common type. In this example, the common type is
Polynomial(Integer).

Once this is determined, both
parts are converted into
polynomials, and the addition
operation from
Polynomial(Integer) is used to get
the answer.

x + 1

x + 1 (3)
Type: Polynomial Integer

AXIOM can always resolve two
types: if nothing resembling the
original types can be found,
then Any is be used. This is fine
and useful in some cases.

["string",3.14159]

["string", 3.14159] (4)
Type: List Any

122 · Using Types and Modes

In other cases objects of type
Any can’t be used by the
operations you specified.

"string" + 3.14159

There are 11 exposed and 5 unexposed library
operations named + having 2 argument(s) but none
was determined to be applicable. Use HyperDoc
Browse, or issue

)display op +
to learn more about the available operations.
Perhaps package-calling the operation or using
coercions on the arguments will allow you to apply
the operation.

Daly Bug
Cannot find a definition or applicable library

operation named + with argument type(s)
String
Float

Perhaps you should use "@" to indicate the
required return type, or "$" to specify which
version of the function you need.

Although this example was contrived, your expressions may need to be
qualified slightly to help AXIOM resolve the types involved. You may
need to declare a few variables, do some package calling, provide some
target type information or do some explicit conversions.

We suggest that you just enter the expression you want evaluated and
see what AXIOM does. We think you will be impressed with its ability
to “do what I mean.” If AXIOM is still being obtuse, give it some hints.
As you work with AXIOM, you will learn where it needs a little help to
analyze quickly and perform your computations.

2.10. Resolving Types · 123

2.11
Exposing
Domains and
Packages

In this section we discuss how AXIOM makes some operations available
to you while hiding others that are meant to be used by developers or only
in rare cases. If you are a new user of AXIOM, it is likely that everything
you need is available by default and you may want to skip over this section
on first reading.

Every domain and package in the AXIOM library is either exposed (mean-
ing that you can use its operations without doing anything special) or it
is hidden (meaning you have to either package call (see Section 2.9 on
page 119) the operations it contains or explicitly expose it to use the op-
erations). The initial exposure status for a constructor is set in the file
exposed.lsp (see the Installer’s Note for AXIOM if you need to know
the location of this file). Constructors are collected together in exposure
groups. Categories are all in the exposure group “categories” and the bulk
of the basic set of packages and domains that are exposed are in the ex-
posure group “basic.” Here is an abbreviated sample of the file (without
the Lisp parentheses):
basic

AlgebraicNumber AN
AlgebraGivenByStructuralConstants ALGSC
Any ANY
AnyFunctions1 ANY1
BinaryExpansion BINARY
Boolean BOOLEAN
CardinalNumber CARD
CartesianTensor CARTEN
Character CHAR
CharacterClass CCLASS
CliffordAlgebra CLIF
Color COLOR
Complex COMPLEX
ContinuedFraction CONTFRAC
DecimalExpansion DECIMAL
...

categories
AbelianGroup ABELGRP
AbelianMonoid ABELMON
AbelianMonoidRing AMR
AbelianSemiGroup ABELSG
Aggregate AGG
Algebra ALGEBRA
AlgebraicallyClosedField ACF
AlgebraicallyClosedFunctionSpace ACFS
ArcHyperbolicFunctionCategory AHYP
...

For each constructor in a group, the full name and the abbreviation is
given. There are other groups in exposed.lsp but initially only the con-
structors in exposure groups “basic” “categories” “naglink” and “anna”
are exposed.

124 · Using Types and Modes

As an interactive user of AXIOM, you do not need to modify this file.
Instead, use)set expose to expose, hide or query the exposure status
of an individual constructor or exposure group. The reason for having
exposure groups is to be able to expose or hide multiple constructors with
a single command. For example, you might group together into exposure
group “quantum” a number of domains and packages useful for quantum
mechanical computations. These probably should not be available to
every user, but you want an easy way to make the whole collection visible
to AXIOM when it is looking for operations to apply.

If you wanted to hide all the basic constructors available by default, you
would issue)set expose drop group basic. We do not recommend
that you do this. If, however, you discover that you have hidden all the
basic constructors, you should issue)set expose add group basic to
restore your default environment.

It is more likely that you would want to expose or hide individual construc-
tors. In Section 6.19 on page 224 we use several operations from Output-
Form, a domain usually hidden. To avoid package calling every operation
from OutputForm, we expose the domain and let AXIOM conclude that
those operations should be used. Use)set expose add constructor
and)set expose drop constructor to expose and hide a constructor,
respectively. You should use the constructor name, not the abbreviation.
The)set expose command guides you through these options.

If you expose a previously hidden constructor, AXIOM exhibits new be-
havior (that was your intention) though you might not expect the results
that you get. OutputForm is, in fact, one of the worst offenders in this
regard. This domain is meant to be used by other domains for creating
a structure that AXIOM knows how to display. It has functions like “+”
that form output representations rather than do mathematical calcula-
tions. Because of the order in which AXIOM looks at constructors when
it is deciding what operation to apply, OutputForm might be used instead
of what you expect.

This is a polynomial. x + x

2 x (1)
Type: Polynomial Integer

Expose OutputForm.)set expose add constructor OutputForm

OutputForm is now explicitly exposed in frame initial

2.11. Exposing Domains and Packages · 125

This is what we get when
OutputForm is automatically
available.

x + x

x + x (2)
Type: OutputForm

Hide OutputForm so we don’t
run into problems with any later
examples!

)set expose drop constructor OutputForm

OutputForm is now explicitly hidden in frame initial

Finally, exposure is done on a frame-by-frame basis. A frame (see Section
A.11 on page 734) is one of possibly several logical AXIOM workspaces
within a physical one, each having its own environment (for example, vari-
ables and function definitions). If you have several AXIOM workspace
windows on your screen, they are all different frames, automatically cre-
ated for you by HyperDoc. Frames can be manually created, made active
and destroyed by the)frame system command. They do not share expo-
sure information, so you need to use)set expose in each one to add or
drop constructors from view.

126 · Using Types and Modes

2.12
Commands for
Snooping

To conclude this chapter, we introduce you to some system commands
that you can use for getting more information about domains, packages,
categories, and operations. The most powerful AXIOM facility for getting
information about constructors and operations is the Browse component
of HyperDoc. This is discussed in Chapter 14.

Use the)what system command to see lists of system objects whose name
contain a particular substring (uppercase or lowercase is not significant).

Issue this to see a list of all
operations with “complex” in
their names.

)what operation complex

Operations whose names satisfy the above pattern(s):

complex
complex?
complexEigenvalues
complexEigenvectors
complexElementary
complexExpand
complexForm
complexIntegrate
complexLimit
complexNormalize
complexNumeric
complexNumericIfCan
complexRoots
complexSolve
complexZeros
createLowComplexityNormalBasis
createLowComplexityTable
doubleComplex?
drawComplex
drawComplexVectorField
fortranComplex
fortranDoubleComplex
pmComplexintegrate

To get more information about an operation such as
complexExpand , issue the command)display op
complexExpand

2.12. Commands for Snooping · 127

If you want to see all domains
with “matrix” in their names,
issue this.

)what domain matrix

---------------------- Domains -----------------------

Domains with names matching patterns:
matrix

DHMATRIX DenavitHartenbergMatrix
DPMM DirectProductMatrixModule
IMATRIX IndexedMatrix LSQM

LieSquareMatrix
M3D ThreeDimensionalMatrix
MATCAT- MatrixCategory& MATRIX Matrix
RMATCAT- RectangularMatrixCategory&
RMATRIX RectangularMatrix SMATCAT- SquareMatrix-

Category&
SQMATRIX SquareMatrix

Similarly, if you wish to see all
packages whose names contain
“gauss”, enter this.

)what package gauss

---------------------- Packages ----------------------

Packages with names matching patterns:
gauss

GAUSSFAC GaussianFactorizationPackage

This command shows all the
operations that Any provides.
Wherever “$” appears, it means
“Any”.

)show Any

Any is a domain constructor
Abbreviation for Any is ANY
This constructor is exposed in this frame.
Issue

)edit /users/axiom/development/src/algebra/any.spad to
see algebra source code for ANY

--------------------- Operations ---------------------
?=? : (%,%) -> Boolean coerce : % ->

OutputForm
dom : % -> SExpression domainOf : % ->

OutputForm
hash : % -> SingleInteger latex : % -> String
obj : % -> None objectOf : % ->

OutputForm
? =? : (%,%) -> Boolean
any : (SExpression,None) -> %
showTypeInOutput : Boolean -> String

This displays all operations with
the name complex.

)display operation complex

There is one exposed function called complex :
[1] (D1,D1) -> D from D if D has COMPCAT D1 and D1

has COMRING

128 · Using Types and Modes

Let’s analyze this output.

First we find out what some of
the abbreviations mean.

)abbreviation query COMPCAT

COMPCAT abbreviates category ComplexCategory

)abbreviation query COMRING

COMRING abbreviates category CommutativeRing

So if D1 is a commutative ring (such as the integers or floats) and D belongs
to ComplexCategory D1, then there is an operation called complex that
takes two elements of D1 and creates an element of D. The primary example
of a constructor implementing domains belonging to ComplexCategory is
Complex. See ‘Complex’ on page 383 for more information on that and see
Section 6.4 on page 183 for more information on function types.

2.12. Commands for Snooping · 129

CHAPTER 3

Using
HyperDoc

Figure 3.1: The HyperDoc root window page.

HyperDoc is the gateway to AXIOM. It’s both an on-line tutorial and an
on-line reference manual. It also enables you to use AXIOM simply by

131

using the mouse and filling in templates. HyperDoc is available to you if
you are running AXIOM under the X Window System.

Pages usually have active areas, marked in this font (bold face). As you
move the mouse pointer to an active area, the pointer changes from a
filled dot to an open circle. The active areas are usually linked to other
pages. When you click on an active area, you move to the linked page.

3.1
Headings

Most pages have a standard set of buttons at the top of the page. This
is what they mean:

Click on this to get help. The button only appears if there is
specific help for the page you are viewing. You can get general help
for HyperDoc by clicking the help button on the home page.

Click here to go back one page. By clicking on this button re-
peatedly, you can go back several pages and then take off in a new
direction.

Go back to the home page, that is, the page on which you started.
Use HyperDoc to explore, to make forays into new topics. Don’t
worry about how to get back. HyperDoc remembers where you
came from. Just click on this button to return.

From the root window (the one that is displayed when you start
the system) this button leaves the HyperDoc program, and it must
be restarted if you want to use it again. From any other HyperDoc
window, it just makes that one window go away. You must use
this button to get rid of a window. If you use the window manager
“Close” button, then all of HyperDoc goes away.

The buttons are not displayed if they are not applicable to the page you
are viewing. For example, there is no button on the top-level
menu.

3.2
Key Definitions

The following keyboard definitions are in effect throughout HyperDoc.
See Section 3.3 on page 133 and Section 3.4 on page 134 for some contex-
tual key definitions.

F1 Display the main help page.
F3 Same as , makes the window go away if you are not at the

top-level window or quits the HyperDoc facility if you are at the
top-level.

132 · Using HyperDoc

F5 Rereads the HyperDoc database, if necessary (for system developers).
F9 Displays this information about key definitions.
F12 Same as F3.
Up Arrow Scroll up one line.
Down Arrow Scroll down one line.
Page Up Scroll up one page.
Page Down Scroll down one page.

3.3
Scroll Bars

Whenever there is too much text to fit on a page, a scroll bar automatically
appears along the right side.

With a scroll bar, your page becomes an aperture, that is, a window into
a larger amount of text than can be displayed at one time. The scroll
bar lets you move up and down in the text to see different parts. It also
shows where the aperture is relative to the whole text. The aperture is
indicated by a strip on the scroll bar.

Move the cursor with the mouse to the “down-arrow” at the bottom of
the scroll bar and click. See that the aperture moves down one line. Do
it several times. Each time you click, the aperture moves down one line.
Move the mouse to the “up-arrow” at the top of the scroll bar and click.
The aperture moves up one line each time you click.

Next move the mouse to any position along the middle of the scroll bar
and click. HyperDoc attempts to move the top of the aperture to this
point in the text.

You cannot make the aperture go off the bottom edge. When the aperture
is about half the size of text, the lowest you can move the aperture is
halfway down.

To move up or down one screen at a time, use the PageUp and PageDown
keys on your keyboard. They move the visible part of the region up and
down one page each time you press them.

If the HyperDoc page does not contain an input area (see Section 3.4 on
page 134), you can also use the Home and ↑ and ↓ arrow keys to

navigate. When you press the Home key, the screen is positioned at the
very top of the page. Use the ↑ and ↓ arrow keys to move the screen
up and down one line at a time, respectively.

3.3. Scroll Bars · 133

3.4
Input Areas

Input areas are boxes where you can put data.

To enter characters, first move your mouse cursor to somewhere within
the HyperDoc page. Characters that you type are inserted in front of the
underscore. This means that when you type characters at your keyboard,
they go into this first input area.

The input area grows to accommodate as many characters as you type.
Use the Backspace key to erase characters to the left. To modify what
you type, use the right-arrow → and left-arrow keys ← and the keys
Insert , Delete , Home and End . These keys are found immedi-
ately on the right of the standard IBM keyboard.

If you press the Home key, the cursor moves to the beginning of the
line and if you press the End key, the cursor moves to the end of the
line. Pressing Ctrl – End deletes all the text from the cursor to the
end of the line.

A page may have more than one input area. Only one input area has
an underscore cursor. When you first see apage, the top-most input area
contains the cursor. To type information into another input area, use the
Enter or Tab key to move from one input area to another. To move
in the reverse order, use Shift – Tab .

You can also move from one input area to another using your mouse.
Notice that each input area is active. Click on one of the areas. As you
can see, the underscore cursor moves to that window.

3.5
Radio Buttons
and Toggles

Some pages have radio buttons and toggles. Radio buttons are a group
of buttons like those on car radios: you can select only one at a time.
Once you have selected a button, it appears to be inverted and contains
a checkmark. To change the selection, move the cursor with the mouse
to a different radio button and click.

A toggle is an independent button that displays some on/off state. When
“on”, the button appears to be inverted and contains a checkmark. When
“off”, the button is raised. Unlike radio buttons, you can set a group of
them any way you like. To change toggle the selection, move the cursor
with the mouse to the button and click.

134 · Using HyperDoc

3.6
Search Strings

A search string is used for searching some database. To learn about search
strings, we suggest that you bring up the HyperDoc glossary. To do this
from the top-level page of HyperDoc:

1. Click on Reference, bringing up the AXIOM Reference page.
2. Click on Glossary, bringing up the glossary.

The glossary has an input area at its bottom. We review the various kinds
of search strings you can enter to search the glossary.

The simplest search string is a word, for example, operation. A word
only matches an entry having exactly that spelling. Enter the word
operation into the input area above then click on Search. As you can
see, operation matches only one entry, namely with operation itself.

Normally matching is insensitive to whether the alphabetic characters of
your search string are in uppercase or lowercase. Thus operation and
OperAtion both have the same effect.

You will very often want to use the wildcard “*” in your search string so
as to match multiple entries in the list. The search key “*” matches every
entry in the list. You can also use “*” anywhere within a search string to
match an arbitrary substring. Try cat* for example: enter cat* into the
input area and click on Search. This matches several entries.

You use any number of wildcards in a search string as long as they are
not adjacent. Try search strings such as *dom*. As you see, this search
string matches domain, domain constructor, subdomain, and so on.

3.6.1
Logical Searches

For more complicated searches, you can use “and”, “or”, and “not” with
basic search strings; write logical expressions using these three opera-
tors just as in the AXIOM language. For example, domain or package
matches the two entries domain and package. Similarly, dom* and *con*
matches domain constructor and others. Also not *a* matches every
entry that does not contain the letter a somewhere.

Use parentheses for grouping. For example, dom* and (not *con*) matches
domain but not domain constructor.

There is no limit to how complex your logical expression can be. For
example,

a* or b* or c* or d* or e* and (not *a*)

is a valid expression.

3.6. Search Strings · 135

3.7
Example Pages

Many pages have AXIOM example commands. Each command has an
active “button” along the left margin. When you click on this button,
the output for the command is “pasted-in.” Click again on the button
and you see that the pasted-in output disappears.

Maybe you would like to run an example? To do so, just click on any part
of its text! When you do, the example line is copied into a new interactive
AXIOM buffer for this HyperDoc page.

Sometimes one example line cannot be run before you run an earlier one.
Don’t worry—HyperDoc automatically runs all the necessary lines in the
right order!

The new interactive AXIOM buffer disappears when you leave HyperDoc.
If you want to get rid of it beforehand, use the Cancel button of the X
Window manager or issue the AXIOM system command)close.

3.8
X Window
Resources for
HyperDoc

You can control the appearance of HyperDoc while running under Version
11 of the X Window System by placing the following resources in the file
.Xdefaults in your home directory. In what follows, font is any valid
X11 font name (for example, Rom14) and color is any valid X11 color
specification (for example, NavyBlue). For more information about fonts
and colors, refer to the X Window documentation for your system.

Axiom.hyperdoc.RmFont: font
This is the standard text font. The default value is "Rom14".

Axiom.hyperdoc.RmColor: color
This is the standard text color. The default value is "black".

Axiom.hyperdoc.ActiveFont: font
This is the font used for HyperDoc link buttons. The default value
is "Bld14".

Axiom.hyperdoc.ActiveColor: color
This is the color used for HyperDoc link buttons. The default value
is "black".

Axiom.hyperdoc.AxiomFont: font
This is the font used for active AXIOM commands.1 The default
value is "Bld14".

Axiom.hyperdoc.AxiomColor: color
This is the color used for active AXIOM commands.2 The default
value is "black".

Axiom.hyperdoc.BoldFont: font
1This was called Axiom.hyperdoc.SpadFont in early versions of AXIOM.
2This was called Axiom.hyperdoc.SpadColor in early versions of AXIOM.

136 · Using HyperDoc

This is the font used for bold face. The default value is "Bld14".
Axiom.hyperdoc.BoldColor: color

This is the color used for bold face. The default value is "black".
Axiom.hyperdoc.TtFont: font

This is the font used for AXIOM output in HyperDoc. This font
must be fixed-width. The default value is "Rom14".

Axiom.hyperdoc.TtColor: color
This is the color used for AXIOM output in HyperDoc. The default
value is "black".

Axiom.hyperdoc.EmphasizeFont: font
This is the font used for italics. The default value is "Itl14".

Axiom.hyperdoc.EmphasizeColor: color
This is the color used for italics. The default value is "black".

Axiom.hyperdoc.InputBackground: color
This is the color used as the background for input areas. The default
value is "black".

Axiom.hyperdoc.InputForeground: color
This is the color used as the foreground for input areas. The default
value is "white".

Axiom.hyperdoc.BorderColor: color
This is the color used for drawing border lines. The default value is
"black".

Axiom.hyperdoc.Background: color
This is the color used for the background of all windows. The default
value is "white".

3.8. X Window Resources for HyperDoc · 137

CHAPTER 4

Input Files
and Output
Styles

In this chapter we discuss how to collect AXIOM statements and com-
mands into files and then read the contents into the workspace. We also
show how to display the results of your computations in several differ-
ent styles including TEX, FORTRAN and monospace two-dimensional
format.1

The printed version of this book uses the AXIOM TEX output formatter.
When we demonstrate a particular output style, we will need to turn TEX
formatting off and the output style on so that the correct output is shown
in the text.

4.1
Input Files

In this section we explain what an input file is and why you would want
to know about it. We discuss where AXIOM looks for input files and
how you can direct it to look elsewhere. We also show how to read the
contents of an input file into the workspace and how to use the history
facility to generate an input file from the statements you have entered
directly into the workspace.

An input file contains AXIOM expressions and system commands. Any-
thing that you can enter directly to AXIOM can be put into an input file.

1TEX is a trademark of the American Mathematical Society.

139

This is how you save input functions and expressions that you wish to
read into AXIOM more than one time.

To read an input file into AXIOM, use the)read system command. For
example, you can read a file in a particular directory by issuing

)read /spad/src/input/matrix.input

The “.input” is optional; this also works:

)read /spad/src/input/matrix

What happens if you just enter)read matrix.input or even)read
matrix? AXIOM looks in your current working directory for input files
that are not qualified by a directory name. Typically, this directory is
the directory from which you invoked AXIOM. To change the current
working directory, use the)cd system command. The command)cd by
itself shows the current working directory. To change it to the src/input
subdirectory for user “babar”, issue

)cd /u/babar/src/input

AXIOM looks first in this directory for an input file. If it is not found,
it looks in the system’s directories, assuming you meant some input file
that was provided with AXIOM.

If you have the AXIOM history facility turned on (which it is by default),
you can save all the lines you have entered into the workspace by entering

)history)write
AXIOM tells you what input file to edit to see your statements. The file
is in your home directory or in the directory you specified with)cd.

In Section 5.2 on page 153 we discuss using indentation in input files to
group statements into blocks.

4.2
The axiom.input
File

When AXIOM starts up, it tries to read the input file axiom.input from
your home directory. It there is no axiom.input in your home directory,
it reads the copy located in its own src/input directory. The file usually
contains system commands to personalize your AXIOM environment. In
the remainder of this section we mention a few things that users frequently
place in their axiom.input files.

In order to have FORTRAN output always produced from your computa-
tions, place the system command)set output fortran on in axiom.input.
If you do not want to be prompted for confirmation when you issue the

140 · Input Files and Output Styles

)quit system command, place)set quit unprotected in axiom.input.
If you then decide that you do want to be prompted, issue)set quit
protected. This is the default setting so that new users do not leave
AXIOM inadvertently.2

To see the other system variables you can set, issue)set or use the
HyperDoc Settings facility to view and change AXIOM system variables.

4.3
Common Features
of Using Output
Formats

In this section we discuss how to start and stop the display of the different
output formats and how to send the output to the screen or to a file. To
fix ideas, we use FORTRAN output format for most of the examples.

You can use the)set output system command to toggle or redirect the
different kinds of output. The name of the kind of output follows “output”
in the command. The names are
fortran for FORTRAN output.
algebra for monospace two-dimensional mathematical output.
tex for TEX output.
script for IBM Script Formula Format output.

For example, issue)set output fortran on to turn on FORTRAN for-
mat and issue)set output fortran off to turn it off. By default,
algebra is on and all others are off. When output is started, it is sent
to the screen. To send the output to a file, give the file name without
directory or extension. AXIOM appends a file extension depending on
the kind of output being produced.

Issue this to redirect FORTRAN
output to, for example, the file
linalg.sfort.

)set output fortran linalg

FORTRAN output will be written to file linalg.sfort .

You must also turn on the
creation of FORTRAN output.
The above just says where it
goes if it is created.

)set output fortran on

In what directory is this output placed? It goes into the directory from
which you started AXIOM, or if you have used the)cd system command,
the one that you specified with)cd. You should use)cd before you send
the output to the file.

You can always direct output
back to the screen by issuing
this.

)set output fortran console

2The system command)pquit always prompts you for confirmation.

4.3. Common Features of Using Output Formats · 141

Let’s make sure FORTRAN
formatting is off so that nothing
we do from now on produces
FORTRAN output.

)set output fortran off

We also delete the demonstrated
output file we created.

)system rm linalg.sfort

You can abbreviate the words “on,” “off” and “console” to the mini-
mal number of characters needed to distinguish them. Because of this,
you cannot send output to files called on.sfort, off.sfort, of.sfort, con-
sole.sfort, consol.sfort and so on.

The width of the output on the page is set by)set output length for
all formats except FORTRAN. Use)set fortran fortlength to change
the FORTRAN line length from its default value of 72.

4.4
Monospace
Two-Dimensional
Mathematical
Format

This is the default output format for AXIOM. It is usually on when you
start the system.

If it is not, issue this.)set output algebra on

Since the printed version of this
book (as opposed to the
HyperDoc version) shows output
produced by the TEX output
formatter, let us temporarily
turn off TEX output.

)set output tex off

Here is an example of what it
looks like.

matrix [[i*x**i + j*%i*y**j for i in 1..2] for j in 3..4]

+ 3 3 2+
|3%i y + x 3%i y + 2x |

(1) | |
| 4 4 2|
+4%i y + x 4%i y + 2x + (0)

Type: Matrix Polynomial Complex Integer

Issue this to turn off this kind of
formatting.

)set output algebra off

Turn TEX output on again.)set output tex on

The characters used for the matrix brackets above are rather ugly. You
get this character set when you issue)set output characters plain.
This character set should be used when you are running on a machine
that does not support the IBM extended ASCII character set. If you
are running on an IBM workstation, for example, issue)set output

142 · Input Files and Output Styles

characters default to get better looking output.

4.5
TeX Format

AXIOM can produce TEX output for your expressions. The output is
produced using macros from the LATEX document preparation system by
Leslie Lamport.3 The printed version of this book was produced using
this formatter.

To turn on TEX output
formatting, issue this.

)set output tex on

Here is an example of its output.

matrix [[i*x**i + j*\%i*y**j for i in 1..2] for j in 3..4]

\[
\left[
\begin{array}{cc}
\displaystyle
{{3 \ i \ {y \sp 3}}+ x}&
\displaystyle
{{3 \ i \ {y \sp 3}}+{2 \ {x \sp 2}}}
\\
\displaystyle
{{4 \ i \ {y \sp 4}}+ x}&
\displaystyle
{{4 \ i \ {y \sp 4}}+{2 \ {x \sp 2}}}
\end{array}
\right] \leqno (3)
\]

This formats as
[

3 i y3 + x 3 i y3 + 2 x2

4 i y4 + x 4 i y4 + 2 x2

]

To turn TEX output formatting off, issue)set output tex off. The
LATEX macros in the output generated by AXIOM are all standard except
for the following definitions:

\def\csch{\mathop{\rm csch}\nolimits}

\def\erf{\mathop{\rm erf}\nolimits}

\def\zag#1#2{
{{\hfill \left. {#1} \right|}
\over
{\left| {#2} \right. \hfill}

}
}

3See Leslie Lamport, LaTeX: A Document Preparation System, Reading, Mas-
sachusetts: Addison-Wesley Publishing Company, Inc., 1986.

4.5. TeX Format · 143

4.6
IBM Script
Formula Format

AXIOM can produce IBM Script Formula Format output for your expres-
sions.

To turn IBM Script Formula
Format on, issue this.

)set output script on

Here is an example of its output.

matrix [[i*x**i + j*%i*y**j for i in 1..2] for j in 3..4]

.eq set blank @
:df.
<left lb <<<<3 @@ %i @@ <y sup 3>>+x> here <<3 @@ %i @@
<y sup 3>>+<2 @@ <x sup 2>>>> habove <<<4 @@ %i @@
<y sup 4>>+x> here <<4 @@ %i @@ <y sup 4>>+<2 @@
<x up 2>>>>> right rb>
:edf.

To turn IBM Script Formula
Format output formatting off,
issue this.

)set output script off

4.7
FORTRAN Format

In addition to turning FORTRAN output on and off and stating where
the output should be placed, there are many options that control the
appearance of the generated code. In this section we describe some of
the basic options. Issue)set fortran to see a full list with their current
settings.

The output FORTRAN expression usually begins in column 7. If the
expression needs more than one line, the ampersand character “&” is used
in column 6. Since some versions of FORTRAN have restrictions on
the number of lines per statement, AXIOM breaks long expressions into
segments with a maximum of 1320 characters (20 lines of 66 characters)
per segment. If you want to change this, say, to 660 characters, issue
the system command)set fortran explength 660. You can turn off
the line breaking by issuing)set fortran segment off. Various code
optimization levels are available.

FORTRAN output is produced
after you issue this.

)set output fortran on

For the initial examples, we set
the optimization level to 0,
which is the lowest level.

)set fortran optlevel 0

The output is usually in
columns 7 through 72, although
fewer columns are used in the
following examples so that the
output fits nicely on the page.

)set fortran fortlength 60

144 · Input Files and Output Styles

By default, the output goes to
the screen and is displayed
before the standard AXIOM
two-dimensional output. In this
example, an assignment to the
variable R1 was generated
because this is the result of step
1.

(x+y)**3

R1=y**3+3*x*y*y+3*x*x*y+x**3

y3 + 3 x y2 + 3 x2 y + x3 (1)
Type: Polynomial Integer

Here is an example that
illustrates the line breaking.

(x+y+z)**3

R2=z**3+(3*y+3*x)*z*z+(3*y*y+6*x*y+3*x*x)*z+y**3+3*x*y
&*y+3*x*x*y+x**3

z3 + (3 y + 3 x) z2 +
(
3 y2 + 6 x y + 3 x2

)
z + y3+

3 x y2 + 3 x2 y + x3
(2)

Type: Polynomial Integer

Note in the above examples that integers are generally converted to float-
ing point numbers, except in exponents. This is the default behavior but
can be turned off by issuing)set fortran ints2floats off. The rules
governing when the conversion is done are:

1. If an integer is an exponent, convert it to a floating point number
if it is greater than 32767 in absolute value, otherwise leave it as an
integer.

2. Convert all other integers in an expression to floating point numbers.

These rules only govern integers in expressions. Numbers generated by
AXIOM for DIMENSION statements are also integers.

To set the type of generated FORTRAN data, use one of the following:

)set fortran defaulttype REAL
)set fortran defaulttype INTEGER
)set fortran defaulttype COMPLEX
)set fortran defaulttype LOGICAL
)set fortran defaulttype CHARACTER

When temporaries are created,
they are given a default type of
REAL. Also, the REAL versions of
functions are used by default.

sin(x)

R3=DSIN(x)

sin (x) (3)
Type: Expression Integer

At optimization level 1, AXIOM
removes common
subexpressions.

)set fortran optlevel 1

4.7. FORTRAN Format · 145

(x+y+z)**3

T2=y*y
T3=x*x

R4=z**3+(3*y+3*x)*z*z+(3*T2+6*x*y+3*T3)*z+y**3+3*x*T2+
&3*T3*y+x**3

z3 + (3 y + 3 x) z2 +
(
3 y2 + 6 x y + 3 x2

)
z + y3+

3 x y2 + 3 x2 y + x3
(4)

Type: Polynomial Integer

This changes the precision to
DOUBLE. Substitute single for
double to return to single
precision.

)set fortran precision double

Complex constants display the
precision.

2.3 + 5.6*%i

R5=(2.3D0,5.6D0)

2.3 + 5.6 i (5)
Type: Complex Float

The function names that
AXIOM generates depend on
the chosen precision.

sin %e

R6=DSIN(DEXP(1))

sin (e) (6)
Type: Expression Integer

Reset the precision to single
and look at these two examples
again.

)set fortran precision single

2.3 + 5.6*%i

R7=(2.3,5.6)

2.3 + 5.6 i (7)
Type: Complex Float

sin %e

R8=SIN(EXP(1))

sin (e) (8)
Type: Expression Integer

Expressions that look like lists,
streams, sets or matrices cause
array code to be generated.

[x+1,y+1,z+1]

T1(1)=x+1
T1(2)=y+1
T1(3)=z+1
R9=T1

[x + 1, y + 1, z + 1] (9)
Type: List Polynomial Integer

146 · Input Files and Output Styles

A temporary variable is
generated to be the name of the
array. This may have to be
changed in your particular
application.

set[2,3,4,3,5]

T1(1)=2
T1(2)=3
T1(3)=4
T1(4)=5
R10=T1

{2, 3, 4, 5} (10)
Type: Set PositiveInteger

By default, the starting index
for generated FORTRAN arrays
is 0.

matrix [[2.3,9.7],[0.0,18.778]]

T1(1,1)=2.3
T1(1,2)=9.7
T1(2,1)=0.0
T1(2,2)=18.778
T1

[
2.3 9.7
0.0 18.778

]
(11)

Type: Matrix Float

To change the starting index for
generated FORTRAN arrays to
be 1, issue this. This value can
only be 0 or 1.

)set fortran startindex 1

Look at the code generated for
the matrix again.

matrix [[2.3,9.7],[0.0,18.778]]

T1(1,1)=2.3
T1(1,2)=9.7
T1(2,1)=0.0
T1(2,2)=18.778
T1

[
2.3 9.7
0.0 18.778

]
(12)

Type: Matrix Float

4.7. FORTRAN Format · 147

CHAPTER 5

Introduction
to the AXIOM
Interactive
Language

In this chapter we look at some of the basic components of the AXIOM
language that you can use interactively. We show how to create a block
of expressions, how to form loops and list iterations, how to modify the
sequential evaluation of a block and how to use if-then-else to evaluate
parts of your program conditionally. We suggest you first read the boxed
material in each section and then proceed to a more thorough reading of
the chapter.

149

5.1
Immediate and
Delayed
Assignments

A variable in AXIOM refers to a value. A variable has a name beginning
with an uppercase or lowercase alphabetic character, “%”, or “!”. Suc-
cessive characters (if any) can be any of the above, digits, or “?”. Case
is distinguished. The following are all examples of valid, distinct variable
names:

a tooBig? a1B2c3%!?
A %j numberOfPoints
beta6 %J numberofpoints

The “:=” operator is the immediate assignment operator. Use it to asso-
ciate a value with a variable.

The syntax for immediate assignment for a single variable is

variable := expression

The value returned by an immediate assignment is the value of
expression.

The right-hand side of the
expression is evaluated, yielding
1. This value is then assigned to
a.

a := 1

1 (1)
Type: PositiveInteger

The right-hand side of the
expression is evaluated, yielding
1. This value is then assigned to
b. Thus a and b both have the
value 1 after the sequence of
assignments.

b := a

1 (2)
Type: PositiveInteger

What is the value of b if a is
assigned the value 2?

a := 2

2 (3)
Type: PositiveInteger

As you see, the value of b is left
unchanged.

b

1 (4)
Type: PositiveInteger

This is what we mean when we say this kind of assignment is immedi-
ate; b has no dependency on a after the initial assignment. This is the
usual notion of assignment found in programming languages such as C,
PASCAL and FORTRAN.

AXIOM provides delayed assignment with “==”. This implements a de-
layed evaluation of the right-hand side and dependency checking.

150 · Introduction to the AXIOM Interactive Language

The syntax for delayed assignment is

variable == expression

The value returned by a delayed assignment is the unique value of Void.

Using a and b as above, these
are the corresponding delayed
assignments.

a == 1

Type: Void

b == a

Type: Void

The right-hand side of each
delayed assignment is left
unevaluated until the variables
on the left-hand sides are
evaluated. Therefore this
evaluation and . . .

a

Compiling body of rule a to compute value of type
PositiveInteger

1 (7)
Type: PositiveInteger

this evaluation seem the same as
before.

b

Compiling body of rule b to compute value of type
PositiveInteger

1 (8)
Type: PositiveInteger

If we change a to 2 a == 2

Compiled code for a has been cleared.
Compiled code for b has been cleared.
1 old definition(s) deleted for function or rule a

Type: Void

then a evaluates to 2, as
expected, but

a

Compiling body of rule a to compute value of type
PositiveInteger

+++ |*0;a;1;initial| redefined

2 (10)
Type: PositiveInteger

5.1. Immediate and Delayed Assignments · 151

the value of b reflects the change
to a.

b

Compiling body of rule b to compute value of type
PositiveInteger

+++ |*0;b;1;initial| redefined

2 (11)
Type: PositiveInteger

It is possible to set several variables at the same time by using a tuple of
variables and a tuple of expressions.1

The syntax for multiple immediate assignments is

(var1, var2, ..., varN) := (expr1, expr2, ..., exprN)

The value returned by an immediate assignment is the value of exprN .

This sets x to 1 and y to 2. (x,y) := (1,2)

2 (12)
Type: PositiveInteger

Multiple immediate assigments are parallel in the sense that the expres-
sions on the right are all evaluated before any assignments on the left are
made. However, the order of evaluation of these expressions is undefined.

You can use multiple immediate
assignment to swap the values
held by variables.

(x,y) := (y,x)

1 (13)
Type: PositiveInteger

x has the previous value of y. x

2 (14)
Type: PositiveInteger

y has the previous value of x. y

1 (15)
Type: PositiveInteger

There is no syntactic form for multiple delayed assignments. See the
discussion in Section 6.8 on page 190 about how AXIOM differentiates
between delayed assignments and user functions of no arguments.

1A tuple is a collection of things separated by commas, often surrounded by
parentheses.

152 · Introduction to the AXIOM Interactive Language

5.2
Blocks

A block is a sequence of expressions evaluated in the order that they
appear, except as modified by control expressions such as break, return,
iterate and if-then-else constructions. The value of a block is the
value of the expression last evaluated in the block.

To leave a block early, use “=>”. For example, i < 0 => x. The expression
before the “=>” must evaluate to true or false. The expression following
the “=>” is the return value for the block.

A block can be constructed in two ways:

1. the expressions can be separated by semicolons and the resulting
expression surrounded by parentheses, and

2. the expressions can be written on succeeding lines with each line
indented the same number of spaces (which must be greater than
zero). A block entered in this form is called a pile.

Only the first form is available if you are entering expressions directly to
AXIOM. Both forms are available in .input files.

The syntax for a simple block of expressions entered interactively is

(expression1; expression2; ...; expressionN)

The value returned by a block is the value of an “=>” expression, or
expressionN if no “=>” is encountered.

In .input files, blocks can also be written using piles. The examples
throughout this book are assumed to come from .input files.

In this example, we assign a
rational number to a using a
block consisting of three
expressions. This block is
written as a pile. Each
expression in the pile has the
same indentation, in this case
two spaces to the right of the
first line.

a :=
i := gcd(234,672)
i := 3*i**5 - i + 1
1 / i

1
23323

(1)

Type: Fraction Integer

Here is the same block written
on one line. This is how you are
required to enter it at the input
prompt.

a := (i := gcd(234,672); i := 3*i**5 - i + 1; 1 / i)

1
23323

(2)

Type: Fraction Integer

5.2. Blocks · 153

Blocks can be used to put
several expressions on one line.
The value returned is that of
the last expression.

(a := 1; b := 2; c := 3; [a,b,c])

[1, 2, 3] (3)
Type: List PositiveInteger

AXIOM gives you two ways of writing a block and the preferred way in
an .input file is to use a pile. Roughly speaking, a pile is a block whose
constituent expressions are indented the same amount. You begin a pile
by starting a new line for the first expression, indenting it to the right of
the previous line. You then enter the second expression on a new line,
vertically aligning it with the first line. And so on. If you need to enter an
inner pile, further indent its lines to the right of the outer pile. AXIOM
knows where a pile ends. It ends when a subsequent line is indented to
the left of the pile or the end of the file.

Blocks can be used to perform
several steps before an
assignment (immediate or
delayed) is made.

d :=
c := a**2 + b**2
sqrt(c * 1.3)

2.549509756796392415 (4)
Type: Float

Blocks can be used in the
arguments to functions. (Here h
is assigned 2.1 + 3.5.)

h := 2.1 +
1.0
3.5

5.6 (5)
Type: Float

Here the second argument to
eval is x = z, where the value
of z is computed in the first line
of the block starting on the
second line.

eval(x**2 - x*y**2,
z := %pi/2.0 - exp(4.1)
x = z

)

58.769491270567072878 y2 + 3453.853104201259382 (6)
Type: Polynomial Float

Blocks can be used in the
clauses of if-then-else
expressions (see Section 5.3 on
page 156).

if h > 3.1 then 1.0 else (z := cos(h); max(z,0.5))

1.0 (7)
Type: Float

This is the pile version of the
last block.

if h > 3.1 then
1.0

else
z := cos(h)
max(z,0.5)

1.0 (8)
Type: Float

154 · Introduction to the AXIOM Interactive Language

Blocks can be nested. a := (b := factorial(12); c := (d := eulerPhi(22);
factorial(d));b+c)

482630400 (9)
Type: PositiveInteger

This is the pile version of the
last block.

a :=
b := factorial(12)
c :=

d := eulerPhi(22)
factorial(d)

b+c

482630400 (10)
Type: PositiveInteger

Since c + d does equal 3628855,
a has the value of c and the last
line is never evaluated.

a :=
c := factorial 10
d := fibonacci 10
c + d = 3628855 => c
d

3628800 (11)
Type: PositiveInteger

5.2. Blocks · 155

5.3
if-then-else

Like many other programming languages, AXIOM uses the three key-
words if, then and else to form conditional expressions. The else part
of the conditional is optional. The expression between the if and then
keywords is a predicate: an expression that evaluates to or is convertible
to either true or false, that is, a Boolean.

The syntax for conditional expressions is

if predicate then expression1 else expression2

where the else expression2 part is optional. The value returned from a
conditional expression is expression1 if the predicate evaluates to true
and expression2 otherwise. If no else clause is given, the value is always
the unique value of Void.

An if-then-else expression always returns a value. If the else clause
is missing then the entire expression returns the unique value of Void. If
both clauses are present, the type of the value returned by if is obtained
by resolving the types of the values of the two clauses. See Section 2.10
on page 122 for more information.

The predicate must evaluate to, or be convertible to, an object of type
Boolean: true or false. By default, the equal sign “=” creates an equa-
tion.

This is an equation. In
particular, it is an object of type
Equation Polynomial Integer.

x + 1 = y

x + 1 = y (1)
Type: Equation Polynomial Integer

However, for predicates in if expressions, AXIOM places a default target
type of Boolean on the predicate and equality testing is performed. Thus
you need not qualify the “=” in any way. In other contexts you may need
to tell AXIOM that you want to test for equality rather than create an
equation. In those cases, use “@” and a target type of Boolean. See Section
2.9 on page 119 for more information.

The compound symbol meaning “not equal” in AXIOM is “∼=”. This
can be used directly without a package call or a target specification. The
expression a ∼= b is directly translated into not (a = b).

Many other functions have return values of type Boolean. These include
<, <=, >, >=, ∼= and member?. By convention, operations with names
ending in “?” return Boolean values.

The usual rules for piles are suspended for conditional expressions. In

156 · Introduction to the AXIOM Interactive Language

.input files, the then and else keywords can begin in the same column
as the corresponding if but may also appear to the right. Each of the
following styles of writing if-then-else expressions is acceptable:

if i>0 then output("positive") else output("nonpositive")

if i > 0 then output("positive")
else output("nonpositive")

if i > 0 then output("positive")
else output("nonpositive")

if i > 0
then output("positive")
else output("nonpositive")

if i > 0
then output("positive")
else output("nonpositive")

A block can follow the then or else keywords. In the following two
assignments to a, the then and else clauses each are followed by two-line
piles. The value returned in each is the value of the second line.

a :=
if i > 0 then

j := sin(i * pi())
exp(j + 1/j)

else
j := cos(i * 0.5 * pi())
log(abs(j)**5 + 1)

a :=
if i > 0

then
j := sin(i * pi())
exp(j + 1/j)

else
j := cos(i * 0.5 * pi())
log(abs(j)**5 + 1)

These are both equivalent to the following:

a :=
if i > 0 then (j := sin(i * pi()); exp(j + 1/j))
else (j := cos(i * 0.5 * pi()); log(abs(j)**5 + 1))

5.3. if-then-else · 157

5.4
Loops

A loop is an expression that contains another expression, called the loop
body, which is to be evaluated zero or more times. All loops contain the
repeat keyword and return the unique value of Void. Loops can contain
inner loops to any depth.

The most basic loop is of the form

repeat loopBody

Unless loopBody contains a break or return expression, the loop repeats
forever. The value returned by the loop is the unique value of Void.

5.4.1
Compiling vs.
Interpreting Loops

AXIOM tries to determine completely the type of every object in a loop
and then to translate the loop body to LISP or even to machine code.
This translation is called compilation.

If AXIOM decides that it cannot compile the loop, it issues a message
stating the problem and then the following message:

We will attempt to step through and interpret the code.

It is still possible that AXIOM can evaluate the loop but in interpret-code
mode. See Section 6.10 on page 193 where this is discussed in terms of
compiling versus interpreting functions.

5.4.2
return in Loops

A return expression is used to exit a function with a particular value.
In particular, if a return is in a loop within the function, the loop is
terminated whenever the return is evaluated.

Suppose we start with this. f() ==
i := 1
repeat

if factorial(i) > 1000 then return i
i := i + 1

Type: Void

When factorial(i) is big
enough, control passes from
inside the loop all the way
outside the function, returning
the value of i (or so we think).

f()

Compiling function f with type () -> Void

Type: Void

What went wrong? Isn’t it obvious that this function should return an
integer? Well, AXIOM makes no attempt to analyze the structure of a

158 · Introduction to the AXIOM Interactive Language

loop to determine if it always returns a value because, in general, this is
impossible. So AXIOM has this simple rule: the type of the function is
determined by the type of its body, in this case a block. The normal value
of a block is the value of its last expression, in this case, a loop. And the
value of every loop is the unique value of Void! So the return type of f is
Void.

There are two ways to fix this. The best way is for you to tell AXIOM
what the return type of f is. You do this by giving f a declaration f:
() -> Integer prior to calling for its value. This tells AXIOM: “trust
me—an integer is returned.” We’ll explain more about this in the next
chapter. Another clumsy way is to add a dummy expression as follows.

Since we want an integer, let’s
stick in a dummy final
expression that is an integer and
will never be evaluated.

f() ==
i := 1
repeat

if factorial(i) > 1000 then return i
i := i + 1

0

Compiled code for f has been cleared.
1 old definition(s) deleted for function or rule f

Type: Void

When we try f again we get
what we wanted. See Section
6.15 on page 210 for more
information.

f()

Compiling function f with type () ->
NonNegativeInteger

+++ |*0;f;1;initial| redefined

7 (4)
Type: PositiveInteger

5.4.3
break in Loops

The break keyword is often more useful in terminating a loop. A break
causes control to transfer to the expression immediately following the
loop. As loops always return the unique value of Void, you cannot return
a value with break. That is, break takes no argument.

This example is a modification
of the last example in the
previous section. Instead of
using return, we’ll use break.

f() ==
i := 1
repeat

if factorial(i) > 1000 then break
i := i + 1

i

Type: Void

5.4. Loops · 159

The loop terminates when
factorial(i) gets big enough,
the last line of the function
evaluates to the corresponding
“good” value of i, and the
function terminates, returning
that value.

f()

Compiling function f with type () -> PositiveInteger

+++ |*0;f;1;initial| redefined

7 (2)
Type: PositiveInteger

You can only use break to
terminate the evaluation of one
loop. Let’s consider a loop
within a loop, that is, a loop
with a nested loop. First, we
initialize two counter variables.

(i,j) := (1, 1)

1 (3)
Type: PositiveInteger

Nested loops must have multiple
break expressions at the
appropriate nesting level. How
would you rewrite this so (i +
j) > 10 is only evaluated once?

repeat
repeat

if (i + j) > 10 then break
j := j + 1

if (i + j) > 10 then break
i := i + 1

Type: Void

5.4.4
break vs. => in Loop
Bodies

Compare the following two loops:

i := 1 i := 1
repeat repeat
i := i + 1 i := i + 1
i > 3 => i if i > 3 then break
output(i) output(i)

In the example on the left, the values 2 and 3 for i are displayed but
then the “=>” does not allow control to reach the call to output again.
The loop will not terminate until you run out of space or interrupt the
execution. The variable i will continue to be incremented because the
“=>” only means to leave the block, not the loop.

In the example on the right, upon reaching 4, the break will be executed,
and both the block and the loop will terminate. This is one of the reasons
why both “=>” and break are provided. Using a while clause (see below)
with the “=>” lets you simulate the action of break.

5.4.5
More Examples of
break

Here we give four examples of repeat loops that terminate when a value
exceeds a given bound.

First, initialize i as the loop
counter.

i := 0

0 (1)
Type: NonNegativeInteger

160 · Introduction to the AXIOM Interactive Language

Here is the first loop. When the
square of i exceeds 100, the
loop terminates.

repeat
i := i + 1
if i**2 > 100 then break

Type: Void

Upon completion, i should have
the value 11.

i

11 (3)
Type: NonNegativeInteger

Do the same thing except use
“=>” instead an if-then
expression.

i := 0

0 (4)
Type: NonNegativeInteger

repeat
i := i + 1
i**2 > 100 => break

Type: Void
i

11 (6)
Type: NonNegativeInteger

As a third example, we use a
simple loop to compute n!.

(n, i, f) := (100, 1, 1)

1 (7)
Type: PositiveInteger

Use i as the iteration variable
and f to compute the factorial.

repeat
if i > n then break
f := f * i
i := i + 1

Type: Void

Look at the value of f. f

9332621544394415268169923885626670049071596826438162146
8592963895217599993229915608941463976156518286253697920
827223758251185210916864000000000000000000000000

(9)

Type: PositiveInteger

Finally, we show an example of
nested loops. First define a four
by four matrix.

m := matrix [[21,37,53,14], [8,-24,22,-16], [2,10,15,14],
[26,33,55,-13]]




21 37 53 14
8 −24 22 −16
2 10 15 14
26 33 55 −13


 (10)

Type: Matrix Integer

5.4. Loops · 161

Next, set row counter r and
column counter c to 1. Note: if
we were writing a function,
these would all be local
variables rather than global
workspace variables.

(r, c) := (1, 1)

1 (11)
Type: PositiveInteger

Also, let lastrow and lastcol
be the final row and column
index.

(lastrow, lastcol) := (nrows(m), ncols(m))

4 (12)
Type: PositiveInteger

Scan the rows looking for the
first negative element. We
remark that you can reformulate
this example in a better, more
concise form by using a for
clause with repeat. See Section
5.4.8 on page 164 for more
information.

repeat
if r > lastrow then break
c := 1
repeat

if c > lastcol then break
if elt(m,r,c) < 0 then
output [r, c, elt(m,r,c)]
r := lastrow
break -- don’t look any further

c := c + 1
r := r + 1

[2,2,- 24]

Type: Void

5.4.6
iterate in Loops

AXIOM provides an iterate expression that skips over the remainder of
a loop body and starts the next loop iteration.

We first initialize a counter. i := 0

0 (1)
Type: NonNegativeInteger

Display the even integers from 2
to 5.

repeat
i := i + 1
if i > 5 then break
if odd?(i) then iterate
output(i)

2
4

Type: Void

5.4.7
while Loops

The repeat in a loop can be modified by adding one or more while
clauses. Each clause contains a predicate immediately following the while
keyword. The predicate is tested before the evaluation of the body of the
loop. The loop body is evaluated whenever the predicates in a while
clause are all true.

162 · Introduction to the AXIOM Interactive Language

The syntax for a simple loop using while is

while predicate repeat loopBody

The predicate is evaluated before loopBody is evaluated. A while loop
terminates immediately when predicate evaluates to false or when a
break or return expression is evaluated in loopBody. The value returned
by the loop is the unique value of Void.

Here is a simple example of
using while in a loop. We first
initialize the counter.

i := 1

1 (1)
Type: PositiveInteger

The steps involved in computing
this example are (1) set i to 1,
(2) test the condition i < 1 and
determine that it is not true,
and (3) do not evaluate the loop
body and therefore do not
display "hello".

while i < 1 repeat
output "hello"
i := i + 1

Type: Void

If you have multiple predicates
to be tested use the logical and
operation to separate them.
AXIOM evaluates these
predicates from left to right.

(x, y) := (1, 1)

1 (3)
Type: PositiveInteger

while x < 4 and y < 10 repeat
output [x,y]
x := x + 1
y := y + 2

[1,1]
[2,3]
[3,5]

Type: Void

A break expression can be
included in a loop body to
terminate a loop even if the
predicate in any while clauses
are not false.

(x, y) := (1, 1)

1 (5)
Type: PositiveInteger

This loop has multiple while
clauses and the loop terminates
before any one of their
conditions evaluates to false.

while x < 4 while y < 10 repeat
if x + y > 7 then break
output [x,y]
x := x + 1
y := y + 2

[1,1]
[2,3]

Type: Void

5.4. Loops · 163

Here’s a different version of the
nested loops that looked for the
first negative element in a
matrix.

m := matrix [[21,37,53,14], [8,-24,22,-16], [2,10,15,14],
[26,33,55,-13]]




21 37 53 14
8 −24 22 −16
2 10 15 14
26 33 55 −13


 (7)

Type: Matrix Integer

Initialized the row index to 1
and get the number of rows and
columns. If we were writing a
function, these would all be
local variables.

r := 1

1 (8)
Type: PositiveInteger

(lastrow, lastcol) := (nrows(m), ncols(m))

4 (9)
Type: PositiveInteger

Scan the rows looking for the
first negative element.

while r <= lastrow repeat
c := 1 -- index of first column
while c <= lastcol repeat

if elt(m,r,c) < 0 then
output [r, c, elt(m,r,c)]
r := lastrow
break -- don’t look any further

c := c + 1
r := r + 1

[2,2,- 24]

Type: Void

5.4.8
for Loops

AXIOM provides the for and in keywords in repeat loops, allowing you
to iterate across all elements of a list, or to have a variable take on integral
values from a lower bound to an upper bound. We shall refer to these
modifying clauses of repeat loops as for clauses. These clauses can be
present in addition to while clauses. As with all other types of repeat
loops, break can be used to prematurely terminate the evaluation of the
loop.

The syntax for a simple loop using for is

for iterator repeat loopBody

The iterator has several forms. Each form has an end test which is
evaluated before loopBody is evaluated. A for loop terminates immedi-
ately when the end test succeeds (evaluates to true) or when a break
or return expression is evaluated in loopBody. The value returned by
the loop is the unique value of Void.

164 · Introduction to the AXIOM Interactive Language

5.4.9
for i in n..m repeat

If for is followed by a variable name, the in keyword and then an integer
segment of the form n..m, the end test for this loop is the predicate i >
m. The body of the loop is evaluated m-n+1 times if this number is greater
than 0. If this number is less than or equal to 0, the loop body is not
evaluated at all.

The variable i has the value n, n+1, ..., m for successive iterations of
the loop body. The loop variable is a local variable within the loop body:
its value is not available outside the loop body and its value and type
within the loop body completely mask any outer definition of a variable
with the same name.

This loop prints the values of
103, 113, and 123:

for i in 10..12 repeat output(i**3)

1000
1331
1728

Type: Void

Here is a sample list. a := [1,2,3]

[1, 2, 3] (2)
Type: List PositiveInteger

Iterate across this list, using “.”
to access the elements of a list
and the # operation to count
its elements.

for i in 1..#a repeat output(a.i)

1
2
3

Type: Void

This type of iteration is applicable to anything that uses “.”. You can
also use it with functions that use indices to extract elements.

Define m to be a matrix. m := matrix [[1,2],[4,3],[9,0]]



1 2
4 3
9 0


 (4)

Type: Matrix Integer

Display the rows of m. for i in 1..nrows(m) repeat output row(m,i)

[1,2]
[4,3]
[9,0]

Type: Void

You can use iterate with for-loops.

5.4. Loops · 165

Display the even integers in a
segment.

for i in 1..5 repeat
if odd?(i) then iterate
output(i)

2
4

Type: Void

See ‘Segment’ on page 559 for more information about segments.

5.4.10
for i in n..m by s
repeat

By default, the difference between values taken on by a variable in loops
such as for i in n..m repeat ... is 1. It is possible to supply another,
possibly negative, step value by using the by keyword along with for and
in. Like the upper and lower bounds, the step value following the by
keyword must be an integer. Note that the loop for i in 1..2 by 0
repeat output(i) will not terminate by itself, as the step value does
not change the index from its initial value of 1.

This expression displays the odd
integers between two bounds.

for i in 1..5 by 2 repeat output(i)

1
3
5

Type: Void

Use this to display the numbers
in reverse order.

for i in 5..1 by -2 repeat output(i)

5
3
1

Type: Void

5.4.11
for i in n.. repeat

If the value after the “..” is omitted, the loop has no end test. A po-
tentially infinite loop is thus created. The variable is given the successive
values n, n+1, n+2, ... and the loop is terminated only if a break or
return expression is evaluated in the loop body. However you may also
add some other modifying clause on the repeat (for example, a while
clause) to stop the loop.

This loop displays the integers
greater than or equal to 15 and
less than the first prime greater
than 15.

for i in 15.. while not prime?(i) repeat output(i)

15
16

Type: Void

166 · Introduction to the AXIOM Interactive Language

5.4.12
for x in l repeat

Another variant of the for loop has the form:

for x in list repeat loopBody

This form is used when you want to iterate directly over the elements of a
list. In this form of the for loop, the variable x takes on the value of each
successive element in l. The end test is most simply stated in English:
“are there no more x in l?”

If l is this list, l := [0,-5,3]

[0, −5, 3] (1)
Type: List Integer

display all elements of l, one
per line.

for x in l repeat output(x)

0
- 5
3

Type: Void

Since the list constructing expression expand [n..m] creates the list [n,
n+1, ..., m]2, you might be tempted to think that the loops
for i in n..m repeat output(i)

and
for x in expand [n..m] repeat output(x)

are equivalent. The second form first creates the list expand [n..m] (no
matter how large it might be) and then does the iteration. The first
form potentially runs in much less space, as the index variable i is simply
incremented once per loop and the list is not actually created. Using the
first form is much more efficient.

Of course, sometimes you really
want to iterate across a specific
list. This displays each of the
factors of 2400000.

for f in factors(factor(2400000)) repeat output(f)

[factor= 2,exponent= 8]
[factor= 3,exponent= 1]
[factor= 5,exponent= 5]

Type: Void

5.4.13
“Such that”
Predicates

A for loop can be followed by a “|” and then a predicate. The predicate
qualifies the use of the values from the iterator following the for. Think
of the vertical bar “|” as the phrase “such that.”

This loop expression prints out
the integers n in the given
segment such that n is odd.

for n in 0..4 | odd? n repeat output n

1
3

Type: Void

2This list is empty if n > m.

5.4. Loops · 167

A for loop can also be written

for iterator | predicate repeat loopBody

which is equivalent to:

for iterator repeat if predicate then loopBody else iterate

The predicate need not refer only to the variable in the for clause: any
variable in an outer scope can be part of the predicate.

In this example, the predicate
on the inner for loop uses i
from the outer loop and the j
from the for clause that it
directly modifies.

for i in 1..50 repeat
for j in 1..50 | factorial(i+j) < 25 repeat

output [i,j]

[1,1]
[1,2]
[1,3]
[2,1]
[2,2]
[3,1]

Type: Void

5.4.14
Parallel Iteration

The last example of the previous section gives an example of nested itera-
tion: a loop is contained in another loop. Sometimes you want to iterate
across two lists in parallel, or perhaps you want to traverse a list while
incrementing a variable.

The general syntax of a repeat loop is

iterator1 iterator2 ...iteratorN repeat loopBody

where each iterator is either a for or a while clause. The loop terminates
immediately when the end test of any iterator succeeds or when a break
or return expression is evaluated in loopBody. The value returned by
the loop is the unique value of Void.

Here we write a loop to iterate
across two lists, computing the
sum of the pairwise product of
elements. Here is the first list.

l := [1,3,5,7]

[1, 3, 5, 7] (1)
Type: List PositiveInteger

And the second. m := [100,200]

[100, 200] (2)
Type: List PositiveInteger

168 · Introduction to the AXIOM Interactive Language

The initial value of the sum
counter.

sum := 0

0 (3)
Type: NonNegativeInteger

The last two elements of l are
not used in the calculation
because m has two fewer
elements than l.

for x in l for y in m repeat
sum := sum + x*y

Type: Void

Display the “dot product.” sum

700 (5)
Type: NonNegativeInteger

Next, we write a loop to
compute the sum of the
products of the loop elements
with their positions in the loop.

l := [2,3,5,7,11,13,17,19,23,29,31,37]

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37] (6)
Type: List PositiveInteger

The initial sum. sum := 0

0 (7)
Type: NonNegativeInteger

Here looping stops when the list
l is exhausted, even though the
for i in 0.. specifies no
terminating condition.

for i in 0.. for x in l repeat sum := i * x

Type: Void

Display this weighted sum. sum

407 (9)
Type: NonNegativeInteger

When “|” is used to qualify any of the for clauses in a parallel iteration,
the variables in the predicates can be from an outer scope or from a for
clause in or to the left of a modified clause.

This is correct:

for i in 1..10 repeat
for j in 200..300 | odd? (i+j) repeat

output [i,j]

This is not correct since the variable j has not been defined outside the
inner loop.

for i in 1..10 | odd? (i+j) repeat -- wrong, j not defined
for j in 200..300 repeat

output [i,j]

5.4. Loops · 169

This example shows that it is
possible to mix several of the
forms of repeat modifying
clauses on a loop.

for i in 1..10
for j in 151..160 | odd? j
while i + j < 160 repeat
output [i,j]

[1,151]
[3,153]

Type: Void

Here are useful rules for composing loop expressions:

1. while predicates can only refer to variables that are global (or in
an outer scope) or that are defined in for clauses to the left of the
predicate.

2. A “such that” predicate (something following “|”) must directly
follow a for clause and can only refer to variables that are global
(or in an outer scope) or defined in the modified for clause or any
for clause to the left.

170 · Introduction to the AXIOM Interactive Language

5.5
Creating Lists and
Streams with
Iterators

All of what we did for loops in Section 5.4 on page 158 can be transformed
into expressions that create lists and streams. The repeat, break or
iterate words are not used but all the other ideas carry over. Before
we give you the general rule, here are some examples which give you the
idea.

This creates a simple list of the
integers from 1 to 10.

list := [i for i in 1..10]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] (1)
Type: List PositiveInteger

Create a stream of the integers
greater than or equal to 1.

stream := [i for i in 1..]

[1, 2, 3, 4, 5, 6, 7, . . .] (2)
Type: Stream PositiveInteger

This is a list of the prime
integers between 1 and 10,
inclusive.

[i for i in 1..10 | prime? i]

[2, 3, 5, 7] (3)
Type: List PositiveInteger

This is a stream of the prime
integers greater than or equal to
1.

[i for i in 1.. | prime? i]

[2, 3, 5, 7, 11, 13, 17, . . .] (4)
Type: Stream PositiveInteger

This is a list of the integers
between 1 and 10, inclusive,
whose squares are less than 700.

[i for i in 1..10 while i*i < 700]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] (5)
Type: List PositiveInteger

This is a stream of the integers
greater than or equal to 1 whose
squares are less than 700.

[i for i in 1.. while i*i < 700]

[1, 2, 3, 4, 5, 6, 7, . . .] (6)
Type: Stream PositiveInteger

Got the idea? Here is the general rule.

The general syntax of a collection is

[collectExpression iterator1 iterator2 ...iteratorN]

where each iteratori is either a for or a while clause. The loop termi-
nates immediately when the end test of any iteratori succeeds or when a
return expression is evaluated in collectExpression. The value returned
by the collection is either a list or a stream of elements, one for each
iteration of the collectExpression.

Be careful when you use while to create a stream. By default, AXIOM

5.5. Creating Lists and Streams with Iterators · 171

tries to compute and display the first ten elements of a stream. If the
while condition is not satisfied quickly, AXIOM can spend a long (pos-
sibly infinite) time trying to compute the elements. Use)set streams
calculate to change the default to something else. This also affects the
number of terms computed and displayed for power series. For the pur-
poses of this book, we have used this system command to display fewer
than ten terms.

Use nested iterators to create
lists of lists which can then be
given as an argument to
matrix.

matrix [[x**i+j for i in 1..3] for j in 10..12]



x + 10 x2 + 10 x3 + 10
x + 11 x2 + 11 x3 + 11
x + 12 x2 + 12 x3 + 12


 (7)

Type: Matrix Polynomial Integer

You can also create lists of
streams, streams of lists and
streams of streams. Here is a
stream of streams.

[[i/j for i in j+1..] for j in 1..]
[[

2, 3, 4, 5, 6, 7, 8, . . .

]
,

[
3
2
, 2,

5
2
, 3,

7
2
, 4,

9
2
, . . .

]
,

[
4
3
,

5
3
, 2,

7
3
,

8
3
, 3,

10
3

, . . .

]
,

[
5
4
,

3
2
,

7
4
, 2,

9
4
,

5
2
,

11
4

, . . .

]
,

[
6
5
,

7
5
,

8
5
,

9
5
, 2,

11
5

,
12
5

, . . .

]
,

[
7
6
,

4
3
,

3
2
,

5
3
,

11
6

, 2,
13
6

, . . .

]
,

[
8
7
,

9
7
,

10
7

,
11
7

,
12
7

,
13
7

, 2, . . .

]
, . . .

]

(8)

Type: Stream Stream Fraction Integer

You can use parallel iteration
across lists and streams to
create new lists.

[i/j for i in 3.. by 10 for j in 2..]
[
3
2
,

13
3

,
23
4

,
33
5

,
43
6

,
53
7

,
63
8

, . . .

]
(9)

Type: Stream Fraction Integer

Iteration stops if the end of a
list or stream is reached.

[i**j for i in 1..7 for j in 2..]

[1, 8, 81, 1024, 15625, 279936, 5764801] (10)
Type: Stream Integer

As with loops, you can combine
these modifiers to make very
complicated conditions.

[[[i,j] for i in 10..15 | prime? i] for j in 17..22 | j =
squareFreePart j]

[[[11, 17], [13, 17]], [[11, 19], [13, 19]], [[11, 21], [13, 21]],
[[11, 22], [13, 22]]] (11)

Type: List List List PositiveInteger

See ‘List’ on page 489 and ‘Stream’ on page 575 for more information on
creating and manipulating lists and streams, respectively.

172 · Introduction to the AXIOM Interactive Language

5.6
An Example:
Streams of Primes

We conclude this chapter with an example of the creation and manip-
ulation of infinite streams of prime integers. This might be useful for
experiments with numbers or other applications where you are using se-
quences of primes over and over again. As for all streams, the stream of
primes is only computed as far out as you need. Once computed, however,
all the primes up to that point are saved for future reference.

Two useful operations provided by the AXIOM library are prime? and
nextPrime. A straight-forward way to create a stream of prime numbers
is to start with the stream of positive integers [2,..] and filter out those
that are prime.

Create a stream of primes. primes : Stream Integer := [i for i in 2.. | prime? i]

[2, 3, 5, 7, 11, 13, 17, . . .] (1)
Type: Stream Integer

A more elegant way, however, is to use the generate operation from
Stream. Given an initial value a and a function f, generate constructs the
stream [a, f(a), f(f(a)), ...]. This function gives you the quickest
method of getting the stream of primes.

This is how you use generate
to generate an infinite stream of
primes.

primes := generate(nextPrime,2)

[2, 3, 5, 7, 11, 13, 17, . . .] (2)
Type: Stream Integer

Once the stream is generated,
you might only be interested in
primes starting at a particular
value.

smallPrimes := [p for p in primes | p > 1000]

[1009, 1013, 1019, 1021, 1031, 1033, 1039, . . .] (3)
Type: Stream Integer

Here are the first 11 primes
greater than 1000.

[p for p in smallPrimes for i in 1..11]

[1009, 1013, 1019, 1021, 1031, 1033, 1039, . . .] (4)
Type: Stream Integer

Here is a stream of primes
between 1000 and 1200.

[p for p in smallPrimes while p < 1200]

[1009, 1013, 1019, 1021, 1031, 1033, 1039, . . .] (5)
Type: Stream Integer

To get these expanded into a
finite stream, you call
complete on the stream.

complete %

[1009, 1013, 1019, 1021, 1031, 1033, 1039, . . .] (6)
Type: Stream Integer

Twin primes are consecutive
odd number pairs which are
prime. Here is the stream of
twin primes.

twinPrimes := [[p,p+2] for p in primes | prime?(p + 2)]

[[3, 5], [5, 7], [11, 13], [17, 19], [29, 31], [41, 43], [59, 61], . . .] (7)
Type: Stream List Integer

5.6. An Example: Streams of Primes · 173

Since we already have the
primes computed we can avoid
the call to prime? by using a
double iteration. This time we’ll
just generate a stream of the
first of the twin primes.

firstOfTwins:= [p for p in primes for q in rest primes |
q=p+2]

[3, 5, 11, 17, 29, 41, 59, . . .] (8)
Type: Stream Integer

Let’s try to compute the infinite stream of triplet primes, the set of primes
p such that [p,p+2,p+4] are primes. For example, [3,5,7] is a triple
prime. We could do this by a triple for iteration. A more economical
way is to use firstOfTwins. This time however, put a semicolon at the
end of the line.

Put a semicolon at the end so
that no elements are computed.

firstTriplets := [p for p in firstOfTwins for q in rest
firstOfTwins | q = p+2];

(9)
Type: Stream Integer

What happened? As you know, by default AXIOM displays the first ten
elements of a stream when you first display it. And, therefore, it needs
to compute them! If you want no elements computed, just terminate the
expression by a semicolon (“;”).3

Compute the first triplet prime. firstTriplets.1

3 (10)
Type: PositiveInteger

If you want to compute another, just ask for it. But wait a second! Given
three consecutive odd integers, one of them must be divisible by 3. Thus
there is only one triplet prime. But suppose that you did not know this
and wanted to know what was the tenth triplet prime.
firstTriples.10

To compute the tenth triplet prime, AXIOM first must compute the sec-
ond, the third, and so on. But since there isn’t even a second triplet prime,
AXIOM will compute forever. Nonetheless, this effort can produce a use-
ful result. After waiting a bit, hit Ctrl – c . The system responds as
follows.

>> System error:
Console interrupt.
You are being returned to the top level of
the interpreter.

Let’s say that you want to know how many primes have been computed.
Issue

3Why does this happen? The semi-colon prevents the display of the result of eval-
uating the expression. Since no stream elements are needed for display (or anything
else, so far), none are computed.

174 · Introduction to the AXIOM Interactive Language

numberOfComputedEntries primes

and, for this discussion, let’s say that the result is 2045.

How big is the 2045 th prime? primes.2045

17837 (11)
Type: PositiveInteger

What you have learned is that there are no triplet primes between 5
and 17837. Although this result is well known (some might even say
trivial), there are many experiments you could make where the result is
not known. What you see here is a paradigm for testing of hypotheses.
Here our hypothesis could have been: “there is more than one triplet
prime.” We have tested this hypothesis for 17837 cases. With streams,
you can let your machine run, interrupt it to see how far it has progressed,
then start it up and let it continue from where it left off.

5.6. An Example: Streams of Primes · 175

CHAPTER 6

User-Defined
Functions,
Macros and
Rules

In this chapter we show you how to write functions and macros, and we
explain how AXIOM looks for and applies them. We show some simple
one-line examples of functions, together with larger ones that are defined
piece-by-piece or through the use of piles.

177

6.1
Functions vs.
Macros

A function is a program to perform some computation. Most functions
have names so that it is easy to refer to them. A simple example of
a function is one named abs which computes the absolute value of an
integer.

This is a use of the “absolute
value” library function for
integers.

abs(-8)

8 (1)
Type: PositiveInteger

This is an unnamed function
that does the same thing, using
the “maps-to” syntax “+->”
that we discuss in Section 6.17
on page 218.

(x +-> if x < 0 then -x else x)(-8)

8 (2)
Type: PositiveInteger

Functions can be used alone or serve as the building blocks for larger
programs. Usually they return a value that you might want to use in the
next stage of a computation, but not always (for example, see ‘Exit’ on
page 409 and ‘Void’ on page 603). They may also read data from your
keyboard, move information from one place to another, or format and
display results on your screen.

In AXIOM, as in mathematics, functions are usually parameterized. Each
time you call (some people say apply or invoke) a function, you give values
to the parameters (variables). Such a value is called an argument of the
function. AXIOM uses the arguments for the computation. In this way
you get different results depending on what you “feed” the function.

Functions can have local variables or refer to global variables in the
workspace. AXIOM can often compile functions so that they execute
very efficiently. Functions can be passed as arguments to other functions.

Macros are textual substitutions. They are used to clarify the meaning of
constants or expressions and to be templates for frequently used expres-
sions. Macros can be parameterized but they are not objects that can be
passed as arguments to functions. In effect, macros are extensions to the
AXIOM expression parser.

178 · User-Defined Functions, Macros and Rules

6.2
Macros

A macro provides general textual substitution of an AXIOM expression
for a name. You can think of a macro as being a generalized abbreviation.
You can only have one macro in your workspace with a given name, no
matter how many arguments it has.

The two general forms for macros are

macro name == body
macro name(arg1,...) == body

where the body of the macro can be any AXIOM expression.

For example, suppose you
decided that you like to use df
for D. You define the macro df
like this.

macro df == D

Type: Void

Whenever you type df, the
system expands it to D.

df(x**2 + x + 1,x)

2 x + 1 (2)
Type: Polynomial Integer

Macros can be parameterized
and so can be used for many
different kinds of objects.

macro ff(x) == x**2 + 1

Type: Void

Apply it to a number, a symbol,
or an expression.

ff z

z2 + 1 (4)
Type: Polynomial Integer

Macros can also be nested, but
you get an error message if you
run out of space because of an
infinite nesting loop.

macro gg(x) == ff(2*x - 2/3)

Type: Void

This new macro is fine as it does
not produce a loop.

gg(1/w)

13 w2 − 24 w + 36
9 w2

(6)

Type: Fraction Polynomial Integer

This, however, loops since gg is
defined in terms of ff.

macro ff(x) == gg(-x)

Type: Void

6.2. Macros · 179

The body of a macro can be a
block.

macro next == (past := present; present := future; future
:= past + present)

Type: Void

Before entering next, we need
values for present and future.

present : Integer := 0

0 (9)
Type: Integer

future : Integer := 1

1 (10)
Type: Integer

Repeatedly evaluating next
produces the next Fibonacci
number.

next

1 (11)
Type: Integer

And the next one. next

2 (12)
Type: Integer

Here is the infinite stream of the
rest of the Fibonacci numbers.

[next for i in 1..]

[3, 5, 8, 13, 21, 34, 55, . . .] (13)
Type: Stream Integer

Bundle all the above lines into a
single macro.

macro fibStream ==
present : Integer := 1
future : Integer := 1
[next for i in 1..] where

macro next ==
past := present
present := future
future := past + present

Type: Void

Use concat to start with the
first two Fibonacci numbers.

concat([0,1],fibStream)

[0, 1, 2, 3, 5, 8, 13, . . .] (15)
Type: Stream Integer

An easier way to compute these
numbers is to use the library
operation fibonacci.

[fibonacci i for i in 1..]

[1, 1, 2, 3, 5, 8, 13, . . .] (16)
Type: Stream Integer

180 · User-Defined Functions, Macros and Rules

6.3
Introduction to
Functions

Each name in your workspace can refer to a single object. This may be
any kind of object including a function. You can use interactively any
function from the library or any that you define in the workspace. In the
library the same name can have very many functions, but you can have
only one function with a given name, although it can have any number
of arguments that you choose.

If you define a function in the workspace that has the same name and
number of arguments as one in the library, then your definition takes
precedence. In fact, to get the library function you must package-call it
(see Section 2.9 on page 119).

To use a function in AXIOM, you apply it to its arguments. Most func-
tions are applied by entering the name of the function followed by its
argument or arguments.

factor(12)

22 3 (1)
Type: Factored Integer

Some functions like “+” have
infix operators as names.

3 + 4

7 (2)
Type: PositiveInteger

The function “+” has two
arguments. When you give it
more than two arguments,
AXIOM groups the arguments
to the left. This expression is
equivalent to (1 + 2) + 7.

1 + 2 + 7

10 (3)
Type: PositiveInteger

All operations, including infix operators, can be written in prefix form,
that is, with the operation name followed by the arguments in parentheses.
For example, 2 + 3 can alternatively be written as +(2,3). But +(2,3,4)
is an error since “+” takes only two arguments.

Prefix operations are generally applied before the infix operation. Thus
factorial 3 + 1 means factorial(3) + 1 producing 7, and - 2 + 5
means (-2) + 5 producing 3. An example of a prefix operator is prefix
“-”. For example, - 2 + 5 converts to (- 2) + 5 producing the value
3. Any prefix function taking two arguments can be written in an infix
manner by putting an ampersand (“&”) before the name. Thus D(2*x,x)
can be written as 2*x &D x returning 2.

Every function in AXIOM is identified by a name and type.1 The type
of a function is always a mapping of the form Source → Target where

1An exception is an “anonymous function” discussed in Section 6.17 on page 218.

6.3. Introduction to Functions · 181

Source and Target are types. To enter a type from the keyboard, enter
the arrow by using a hyphen “-” followed by a greater-than sign “>”, e.g.
Integer -> Integer.

Let’s go back to “+”. There are many “+” functions in the AXIOM library:
one for integers, one for floats, another for rational numbers, and so on.
These “+” functions have different types and thus are different functions.
You’ve seen examples of this overloading before—using the same name
for different functions. Overloading is the rule rather than the exception.
You can add two integers, two polynomials, two matrices or two power
series. These are all done with the same function name but with different
functions.

182 · User-Defined Functions, Macros and Rules

6.4
Declaring the
Type of Functions

In Section 2.3 on page 103 we discussed how to declare a variable to
restrict the kind of values that can be assigned to it. In this section we
show how to declare a variable that refers to function objects.

A function is an object of type

Source → Type

where Source and Target can be any type. A common type for Source
is Tuple(T1, . . . , Tn), usually written (T1, . . . , Tn), to indicate a function
of n arguments.

If g takes an Integer, a Float and
another Integer, and returns a
String, the declaration is written
this way.

g: (Integer,Float,Integer) -> String

Type: Void

The types need not be written
fully; using abbreviations, the
above declaration is:

g: (INT,FLOAT,INT) -> STRING

Type: Void

It is possible for a function to
take no arguments. If h takes
no arguments but returns a
Polynomial Integer, any of the
following declarations is
acceptable.

h: () -> POLY INT

Type: Void

h: () -> Polynomial INT

Type: Void

h: () -> POLY Integer

Type: Void

Functions can also be declared when they are being defined. The syntax
for combined declaration/definition is:

functionName(parm1: parmType1, ..., parmN: parmTypeN):
functionReturnType

The following definition fragments show how this can be done for the

6.4. Declaring the Type of Functions · 183

functions g and h above.

g(arg1: INT, arg2: FLOAT, arg3: INT): STRING == ...

h(): POLY INT == ...

A current restriction on function declarations is that they must involve
fully specified types (that is, cannot include modes involving explicit or
implicit “?”). For more information on declaring things in general, see
Section 2.3 on page 103.

184 · User-Defined Functions, Macros and Rules

6.5
One-Line
Functions

As you use AXIOM, you will find that you will write many short functions
to codify sequences of operations that you often perform. In this section
we write some simple one-line functions.

This is a simple recursive
factorial function for positive
integers.

fac n == if n < 3 then n else n * fac(n-1)

Type: Void

fac 10

Compiling function fac with type Integer -> Integer

3628800 (2)
Type: PositiveInteger

This function computes 1 + 1/2
+ 1/3 + ... + 1/n.

s n == reduce(+,[1/i for i in 1..n])

Type: Void

s 50

Compiling function s with type PositiveInteger ->
Fraction Integer

13943237577224054960759
3099044504245996706400

(4)

Type: Fraction Integer

This function computes a
Mersenne number, several of
which are prime.

mersenne i == 2**i - 1

Type: Void

If you type mersenne, AXIOM
shows you the function
definition.

mersenne

mersenne i == 2i − 1 (6)
Type: FunctionCalled mersenne

Generate a stream of Mersenne
numbers.

[mersenne i for i in 1..]

Compiling function mersenne with type PositiveInteger
-> Integer

[1, 3, 7, 15, 31, 63, 127, . . .] (7)
Type: Stream Integer

Create a stream of those values
of i such that mersenne(i) is
prime.

mersenneIndex := [n for n in 1.. | prime?(mersenne(n))]

[2, 3, 5, 7, 13, 17, 19, . . .] (8)
Type: Stream PositiveInteger

6.5. One-Line Functions · 185

Finally, write a function that

returns the n th Mersenne
prime.

mersennePrime n == mersenne mersenneIndex(n)

Type: Void

mersennePrime 5

Compiling function mersennePrime with type
PositiveInteger -> Integer

8191 (10)
Type: PositiveInteger

186 · User-Defined Functions, Macros and Rules

6.6
Declared vs.
Undeclared
Functions

If you declare the type of a function, you can apply it to any data that
can be converted to the source type of the function.

Define f with type Integer →
Integer.

f(x: Integer): Integer == x + 1

Function declaration f : Integer -> Integer has been
added to workspace.

Type: Void

The function f can be applied to
integers, . . .

f 9

Compiling function f with type Integer -> Integer

10 (2)
Type: PositiveInteger

and to values that convert to
integers, . . .

f(-2.0)

−1 (3)
Type: Integer

but not to values that cannot be
converted to integers.

f(2/3)

Conversion failed in the compiled user function f .

Cannot convert from type Fraction Integer to Integer
for value

2
-
3

To make the function over a wide range of types, do not declare its type.

Give the same definition with no
declaration.

g x == x + 1

Type: Void

If x + 1 makes sense, you can
apply g to x.

g 9

Compiling function g with type PositiveInteger ->
PositiveInteger

10 (5)
Type: PositiveInteger

6.6. Declared vs. Undeclared Functions · 187

A version of g with different
argument types get compiled for
each new kind of argument
used.

g(2/3)

Compiling function g with type Fraction Integer ->
Fraction Integer

5
3

(6)

Type: Fraction Integer

Here x+1 for x = "axiom"
makes no sense.

g("axiom")

There are 11 exposed and 5 unexposed library
operations named + having 2 argument(s) but none
was determined to be applicable. Use HyperDoc
Browse, or issue

)display op +
to learn more about the available operations.
Perhaps package-calling the operation or using
coercions on the arguments will allow you to apply
the operation.

Cannot find a definition or applicable library
operation named + with argument type(s)

String
PositiveInteger

Perhaps you should use "@" to indicate the
required return type, or "$" to specify which
version of the function you need.

AXIOM will attempt to step through and interpret the
code.

There are 11 exposed and 5 unexposed library
operations named + having 2 argument(s) but none
was determined to be applicable. Use HyperDoc
Browse, or issue

)display op +
to learn more about the available operations.
Perhaps package-calling the operation or using
coercions on the arguments will allow you to apply
the operation.

Cannot find a definition or applicable library
operation named + with argument type(s)

String
PositiveInteger

Perhaps you should use "@" to indicate the
required return type, or "$" to specify which
version of the function you need.

As you will see in Chapter 12, AXIOM has a formal idea of categories for
what “makes sense.”

188 · User-Defined Functions, Macros and Rules

6.7
Functions vs.
Operations

A function is an object that you can create, manipulate, pass to, and
return from functions (for some interesting examples of library functions
that manipulate functions, see ‘MappingPackage1’ on page 496). Yet, we
often seem to use the term operation and function interchangeably in
AXIOM. What is the distinction?

First consider values and types associated with some variable n in your
workspace. You can make the declaration n : Integer, then assign n an
integer value. You then speak of the integer n. However, note that the
integer is not the name n itself, but the value that you assign to n.

Similarly, you can declare a variable f in your workspace to have type
Integer → Integer, then assign f, through a definition or an assignment of
an anonymous function. You then speak of the function f. However, the
function is not f, but the value that you assign to f.

A function is a value, in fact, some machine code for doing something.
Doing what? Well, performing some operation. Formally, an operation
consists of the constituent parts of f in your workspace, excluding the
value; thus an operation has a name and a type. An operation is what
domains and packages export. Thus Ring exports one operation “+”. Ev-
ery ring also exports this operation. Also, the author of every ring in the
system is obliged under contract (see Section 11.3 on page 651) to provide
an implementation for this operation.

This chapter is all about functions—how you create them interactively
and how you apply them to meet your needs. In Chapter 11 you will
learn how to create them for the AXIOM library. Then in Chapter 12,
you will learn about categories and exported operations.

6.7. Functions vs. Operations · 189

6.8
Delayed
Assignments vs.
Functions with No
Arguments

In Section 5.1 on page 150 we discussed the difference between immediate
and delayed assignments. In this section we show the difference between
delayed assignments and functions of no arguments.

A function of no arguments is
sometimes called a nullary
function.

sin24() == sin(24.0)

Type: Void

You must use the parentheses
(“()”) to evaluate it. Like a
delayed assignment, the
right-hand-side of a function
evaluation is not evaluated until
the left-hand-side is used.

sin24()

Compiling function sin24 with type () -> Float

−0.90557836200662384514 (2)
Type: Float

If you omit the parentheses, you
just get the function definition.

sin24

sin24 () == sin (24.0) (3)
Type: FunctionCalled sin24

You do not use the parentheses
“()” in a delayed assignment. . .

cos24 == cos(24.0)

Type: Void

nor in the evaluation. cos24

Compiling body of rule cos24 to compute value of type
Float

0.42417900733699697594 (5)
Type: Float

The only syntactic difference between delayed assignments and nullary
functions is that you use “()” in the latter case.

190 · User-Defined Functions, Macros and Rules

6.9
How AXIOM
Determines What
Function to Use

What happens if you define a function that has the same name as a
library function? Well, if your function has the same name and number
of arguments (we sometimes say arity) as another function in the library,
then your function covers up the library function. If you want then to
call the library function, you will have to package-call it. AXIOM can use
both the functions you write and those that come from the library. Let’s
do a simple example to illustrate this.

Suppose you (wrongly!) define
sin in this way.

sin x == 1.0

Type: Void

The value 1.0 is returned for
any argument.

sin 4.3

Compiling function sin with type Float -> Float

1.0 (2)
Type: Float

If you want the library
operation, we have to
package-call it (see Section 2.9
on page 119 for more
information).

sin(4.3)$Float

−0.91616593674945498404 (3)
Type: Float

sin(34.6)$Float

−0.042468034716950101543 (4)
Type: Float

Even worse, say we accidentally
used the same name as a library
function in the function.

sin x == sin x

Compiled code for sin has been cleared.
1 old definition(s) deleted for function or rule sin

Type: Void

Then AXIOM definitely does
not understand us.

sin 4.3

AXIOM cannot determine the type of sin because it
cannot analyze the non-recursive part, if that
exists. This may be remedied by declaring the
function.

Again, we could package-call the
inside function.

sin x == sin(x)$Float

1 old definition(s) deleted for function or rule sin

Type: Void

6.9. How AXIOM Determines What Function to Use · 191

sin 4.3

Compiling function sin with type Float -> Float

+++ |*1;sin;1;initial| redefined

−0.91616593674945498404 (7)
Type: Float

Of course, you are unlikely to make such obvious errors. It is more prob-
able that you would write a function and in the body use a function that
you think is a library function. If you had also written a function by that
same name, the library function would be invisible.

How does AXIOM determine what library function to call? It very much
depends on the particular example, but the simple case of creating the
polynomial x + 2/3 will give you an idea.

1. The x is analyzed and its default type is Variable(x).
2. The 2 is analyzed and its default type is PositiveInteger.
3. The 3 is analyzed and its default type is PositiveInteger.
4. Because the arguments to “/” are integers, AXIOM gives the expression

2/3 a default target type of Fraction(Integer).
5. AXIOM looks in PositiveInteger for “/”. It is not found.
6. AXIOM looks in Fraction(Integer) for “/”. It is found for arguments

of type Integer.
7. The 2 and 3 are converted to objects of type Integer (this is trivial)

and “/” is applied, creating an object of type Fraction(Integer).
8. No “+” for arguments of types Variable(x) and Fraction(Integer) are

found in either domain.
9. AXIOM resolves (see Section 2.10 on page 122) the types and gets

Polynomial (Fraction (Integer)).
10. The x and the 2/3 are converted to objects of this type and “+” is

applied, yielding the answer, an object of type Polynomial (Fraction
(Integer)).

192 · User-Defined Functions, Macros and Rules

6.10
Compiling vs.
Interpreting

When possible, AXIOM completely determines the type of every object
in a function, then translates the function definition to Common LISP or
to machine code (see next section). This translation, called compilation,
happens the first time you call the function and results in a computational
delay. Subsequent function calls with the same argument types use the
compiled version of the code without delay.

If AXIOM cannot determine the type of everything, the function may still
be executed but in interpret-code mode : each statement in the function
is analyzed and executed as the control flow indicates. This process is
slower than executing a compiled function, but it allows the execution of
code that may involve objects whose types change.

If AXIOM decides that it cannot compile the code, it issues a message
stating the problem and then the following message:

We will attempt to step through and interpret the code.

This is not a time to panic. Rather, it just means that what you gave
to AXIOM is somehow ambiguous: either it is not specific enough to
be analyzed completely, or it is beyond AXIOM’s present interactive
compilation abilities.

This function runs in
interpret-code mode, but it does
not compile.

varPolys(vars) ==
for var in vars repeat

output(1 :: UnivariatePolynomial(var,Integer))

Type: Void

For vars equal to [’x, ’y,
’z], this function displays 1
three times.

varPolys [’x,’y,’z]

Cannot compile conversion for types involving local
variables. In particular, could not compile the
expression involving :: UnivariatePolynomial(var,
Integer)

AXIOM will attempt to step through and interpret the
code.

1
1
1

Type: Void

6.10. Compiling vs. Interpreting · 193

The type of the argument to
output changes in each
iteration, so AXIOM cannot
compile the function. In this
case, even the inner loop by
itself would have a problem:

for var in [’x,’y,’z] repeat
output(1 :: UnivariatePolynomial(var,Integer))

Cannot compile conversion for types involving local
variables. In particular, could not compile the
expression involving :: UnivariatePolynomial(var,
Integer)

AXIOM will attempt to step through and interpret the
code.

1
1
1

Type: Void

Sometimes you can help a function to compile by using an extra conversion
or by using pretend. See Section 2.8 on page 116 for details.

When a function is compilable, you have the choice of whether it is
compiled to Common LISP and then interpreted by the Common LISP
interpreter or then further compiled from Common LISP to machine
code. The option is controlled via)set functions compile. Issue)set
functions compile on to compile all the way to machine code. With
the default setting)set functions compile off, AXIOM has its Com-
mon LISP code interpreted because the overhead of further compilation is
larger than the run-time of most of the functions our users have defined.
You may find that selectively turning this option on and off will give you
the best performance in your particular application. For example, if you
are writing functions for graphics applications where hundreds of points
are being computed, it is almost certainly true that you will get the best
performance by issuing)set functions compile on.

194 · User-Defined Functions, Macros and Rules

6.11
Piece-Wise
Function
Definitions

To move beyond functions defined in one line, we introduce in this section
functions that are defined piece-by-piece. That is, we say “use this defi-
nition when the argument is such-and-such and use this other definition
when the argument is that-and-that.”

6.11.1
A Basic Example

There are many other ways to define a factorial function for nonnegative
integers. You might say factorial of 0 is 1, otherwise factorial of n is n
times factorial of n-1. Here is one way to do this in AXIOM.

Here is the value for n = 0. fact(0) == 1

Type: Void

Here is the value for n > 0. The
vertical bar “|” means “such
that”.

fact(n | n > 0) == n * fact(n - 1)

Type: Void

What is the value for n = 3? fact(3)

Compiling function fact with type Integer -> Integer
Compiling function fact as a recurrence relation.

6 (3)
Type: PositiveInteger

What is the value for n = -3? fact(-3)

You did not define fact for argument -3 .

Now for a second definition.
Here is the value for n = 0.

facto(0) == 1

Type: Void

Give an error message if n < 0. facto(n | n < 0) == error "arguments to facto must be non-
negative"

Type: Void

Here is the value otherwise. facto(n) == n * facto(n - 1)

Type: Void

6.11. Piece-Wise Function Definitions · 195

What is the value for n = 7? facto(3)

Compiling function facto with type Integer -> Integer

6 (7)
Type: PositiveInteger

What is the value for n = -7? facto(-7)

Error signalled from user code in function facto:
arguments to facto must be non-negative

To see the current piece-wise
definition of a function, use
)display value.

)display value facto

Definition:
facto 0 == 1
facto (n | n < 0) ==

error(arguments to facto must be non-negative)
facto n == n facto(n - 1)

In general a piece-wise definition of a function consists of two or more
parts. Each part gives a “piece” of the entire definition. AXIOM collects
the pieces of a function as you enter them. When you ask for a value of
the function, it then “glues” the pieces together to form a function.

The two piece-wise definitions for the factorial function are examples of
recursive functions, that is, functions that are defined in terms of them-
selves. Here is an interesting doubly-recursive function. This function
returns the value 11 for all positive integer arguments.

Here is the first of two pieces. eleven(n | n < 1) == n + 11

Type: Void

And the general case. eleven(m) == eleven(eleven(m - 12))

Type: Void

Compute elevens, the infinite
stream of values of eleven.

elevens := [eleven(i) for i in 0..]

Compiling function eleven with type Integer ->
Integer

[11, 11, 11, 11, 11, 11, 11, . . .] (10)
Type: Stream Integer

196 · User-Defined Functions, Macros and Rules

What is the value at n = 200? elevens 200

11 (11)
Type: PositiveInteger

What is the AXIOM’s definition
of eleven?

)display value eleven

Definition:
eleven (m | m < 1) == m + 11
eleven m == eleven(eleven(m - 12))

6.11.2
Picking Up the Pieces

Here are the details about how AXIOM creates a function from its pieces.
AXIOM converts the i th piece of a function definition into a conditional
expression of the form: if predi then expressioni. If any new piece has
a predi that is identical2 to an earlier predj , the earlier piece is removed.
Otherwise, the new piece is always added at the end.

If there are n pieces to a function definition for f, the function defined
f is:

if pred1 then expression1 else
. . .

if predn then expressionn else
error "You did not define f for argument <arg>."

You can give definitions of any number of mutually recursive function
definitions, piece-wise or otherwise. No computation is done until you ask
for a value. When you do ask for a value, all the relevant definitions are
gathered, analyzed, and translated into separate functions and compiled.

Let’s recall the definition of
eleven from the previous
section.

eleven(n | n < 1) == n + 11

Type: Void

eleven(m) == eleven(eleven(m - 12))

Type: Void

A similar doubly-recursive function below produces -11 for all negative
positive integers. If you haven’t worked out why or how eleven works,
the structure of this definition gives a clue.

2after all variables are uniformly named

6.11. Piece-Wise Function Definitions · 197

This definition we write as a
block.

minusEleven(n) ==
n >= 0 => n - 11
minusEleven (5 + minusEleven(n + 7))

Type: Void

Define s(n) to be the sum of
plus and minus “eleven”
functions divided by n. Since 11
- 11 = 0, we define s(0) to be
1.

s(0) == 1

Type: Void

And the general term. s(n) == (eleven(n) + minusEleven(n))/n

Type: Void

What are the first ten values of
s?

[s(n) for n in 0..]

Compiling function eleven with type Integer ->
Integer

+++ |*1;eleven;1;initial| redefined
Compiling function minusEleven with type Integer ->

Integer
Compiling function s with type NonNegativeInteger ->

Fraction Integer

+++ |*1;s;1;initial| redefined

[1, 1, 1, 1, 1, 1, 1, . . .] (6)
Type: Stream Fraction Integer

AXIOM can create infinite streams in the positive direction (for example,
for index values 0,1, ...) or negative direction (for example, for index
values 0,-1,-2, ...). Here we would like a stream of values of s(n) that
is infinite in both directions. The function t(n) below returns the n th

term of the infinite stream [s(0), s(1), s(-1), s(2), s(-2), ...].
Its definition has three pieces.

Define the initial term. t(1) == s(0)

Type: Void

The even numbered terms are
the s(i) for positive i. We use
“quo” rather than “/” since we
want the result to be an integer.

t(n | even?(n)) == s(n quo 2)

Type: Void

198 · User-Defined Functions, Macros and Rules

Finally, the odd numbered
terms are the s(i) for negative
i. In piece-wise definitions, you
can use different variables to
define different pieces. AXIOM
will not get confused.

t(p) == s(- p quo 2)

Type: Void

Look at the definition of t. In
the first piece, the variable n
was used; in the second piece, p.
AXIOM always uses your last
variable to display your
definitions back to you.

)display value t

Definition:
t 1 == s(0)
t (p | even?(p)) == s(p quo 2)
t p == s(- p quo 2)

Create a series of values of s
applied to alternating positive
and negative arguments.

[t(i) for i in 1..]

Compiling function s with type Integer -> Fraction
Integer

Compiling function t with type PositiveInteger ->
Fraction Integer

[1, 1, 1, 1, 1, 1, 1, . . .] (10)
Type: Stream Fraction Integer

Evidently t(n) = 1 for all i.
Check it at n= 100.

t(100)

1 (11)
Type: Fraction Integer

6.11.3
Predicates

We have already seen some examples of predicates (Section 6.11.1 on
page 195). Predicates are Boolean-valued expressions and AXIOM uses
them for filtering collections (see Section 5.5 on page 171) and for placing
constraints on function arguments. In this section we discuss their latter
usage.

The simplest use of a predicate
is one you don’t see at all.

opposite ’right == ’left

Type: Void

Here is a longer way to give the
“opposite definition.”

opposite (x | x = ’left) == ’right

Type: Void

6.11. Piece-Wise Function Definitions · 199

Try it out. for x in [’right,’left,’inbetween] repeat output opposite
x

Compiling function opposite with type
OrderedVariableList [right,left,inbetween] ->
Symbol

left
right

The function opposite is not defined for the given
argument(s).

Explicit predicates tell AXIOM that the given function definition piece is
to be applied if the predicate evaluates to true for the arguments to the
function. You can use such “constant” arguments for integers, strings,
and quoted symbols. The Boolean values true and false can also be
used if qualified with “@” or “$” and Boolean. The following are all valid
function definition fragments using constant arguments.

a(1) == ...
b("unramified") == ...
c(’untested) == ...
d(true@Boolean) == ...

If a function has more than one argument, each argument can have its
own predicate. However, if a predicate involves two or more arguments,
it must be given after all the arguments mentioned in the predicate have
been given. You are always safe to give a single predicate at the end of
the argument list.

A function involving predicates
on two arguments.

inFirstHalfQuadrant(x | x > 0,y | y < x) == true

Type: Void

This is incorrect as it gives a
predicate on y before the
argument y is given.

inFirstHalfQuadrant(x | x > 0 and y < x,y) == true

1 old definition(s) deleted for function or rule
inFirstHalfQuadrant

Type: Void

It is always correct to write the
predicate at the end.

inFirstHalfQuadrant(x,y | x > 0 and y < x) == true

1 old definition(s) deleted for function or rule
inFirstHalfQuadrant

Type: Void

Here is the rest of the definition. inFirstHalfQuadrant(x,y) == false

Type: Void

200 · User-Defined Functions, Macros and Rules

Try it out. [inFirstHalfQuadrant(i,3) for i in 1..5]

Compiling function inFirstHalfQuadrant with type (
PositiveInteger,PositiveInteger) -> Boolean

[false, false, false, true, true] (7)
Type: List Boolean

Remark: Very old versions of AXIOM allowed predicates to be given
after a when keyword as in inFirstHalfQuadrant(x ,y) == true when
x >0 and y < x. This is no longer supported, is WRONG, and will cause
a syntax error or strange behavior.

6.11. Piece-Wise Function Definitions · 201

6.12
Caching
Previously
Computed Results

By default, AXIOM does not save the values of any function. You can
cause it to save values and not to recompute unnecessarily by using)set
functions cache. This should be used before the functions are defined
or, at least, before they are executed. The word following “cache” should
be 0 to turn off caching, a positive integer n to save the last n computed
values or “all” to save all computed values. If you then give a list of names
of functions, the caching only affects those functions. Use no list of names
or “all” when you want to define the default behavior for functions not
specifically mentioned in other)set functions cache statements. If
you give no list of names, all functions will have the caching behavior. If
you explicitly turn on caching for one or more names, you must explicitly
turn off caching for those names when you want to stop saving their values.

This causes the functions f and
g to have the last three
computed values saved.

)set functions cache 3 f g

function f will cache the last 3 values.
function g will cache the last 3 values.

This is a sample definition for f. f x == factorial(2**x)

Type: Void

A message is displayed stating
what f will cache.

f(4)

Compiling function f with type PositiveInteger ->
Integer

f will cache 3 most recently computed value(s).

+++ |*1;f;1;initial| redefined

20922789888000 (2)
Type: PositiveInteger

This causes all other functions
to have all computed values
saved by default.

)set functions cache all

In general, interpreter functions will cache all
values.

This causes all functions that
have not been specifically
cached in some way to have no
computed values saved.

)set functions cache 0

In general, functions will cache no returned values.

We also make f and g uncached.)set functions cache 0 f g

Caching for function f is turned off
Caching for function g is turned off

202 · User-Defined Functions, Macros and Rules

Be careful about caching functions that have side effects. Such a function
might destructively modify the elements of an array or issue a draw
command, for example. A function that you expect to execute every
time it is called should not be cached. Also, it is highly unlikely that a
function with no arguments should be cached.

You should also be careful about caching functions that depend on free
variables. See Section 6.16 on page 213 for an example.

6.12. Caching Previously Computed Results · 203

6.13
Recurrence
Relations

One of the most useful classes of function are those defined via a “recur-
rence relation.” A recurrence relation makes each successive value depend
on some or all of the previous values. A simple example is the ordinary
“factorial” function:

fact(0) == 1
fact(n | n > 0) == n * fact(n-1)

The value of fact(10) depends on the value of fact(9), fact(9) on
fact(8), and so on. Because it depends on only one previous value, it
is usually called a first order recurrence relation. You can easily imagine
a function based on two, three or more previous values. The Fibonacci
numbers are probably the most famous function defined by a second order
recurrence relation.

The library function fibonacci
computes Fibonacci numbers. It
is obviously optimized for speed.

[fibonacci(i) for i in 0..]

[0, 1, 1, 2, 3, 5, 8, . . .] (1)
Type: Stream Integer

Define the Fibonacci numbers
ourselves using a piece-wise
definition.

fib(1) == 1

Type: Void

fib(2) == 1

Type: Void

fib(n) == fib(n-1) + fib(n-2)

Type: Void

As defined, this recurrence relation is obviously doubly-recursive. To
compute fib(10), we need to compute fib(9) and fib(8). And to
fib(9), we need to compute fib(8) and fib(7). And so on. It seems
that to compute fib(10) we need to compute fib(9) once, fib(8) twice,
fib(7) three times. Look familiar? The number of function calls needed
to compute any second order recurrence relation in the obvious way is
exactly fib(n). These numbers grow! For example, if AXIOM actually
did this, then fib(500) requires more than 10104 function calls. And,
given all this, our definition of fib obviously could not be used to calculate
the five-hundredth Fibonacci number.

204 · User-Defined Functions, Macros and Rules

Let’s try it anyway. fib(500)

Compiling function fib with type Integer ->
PositiveInteger

Compiling function fib as a recurrence relation.

1394232245616978801397243828704072839500702565876973072
64108962948325571622863290691557658876222521294125 (5)

Type: PositiveInteger

Since this takes a short time to compute, it obviously didn’t do as many as
10104 operations! By default, AXIOM transforms any recurrence relation
it recognizes into an iteration. Iterations are efficient. To compute the
value of the n th term of a recurrence relation using an iteration requires
only n function calls.3

To turn off this special recurrence relation compilation, issue

)set functions recurrence off

To turn it back on, substitute “on” for “off”.

The transformations that AXIOM uses for fib caches the last two values.4

If, after computing a value for fib, you ask for some larger value, AXIOM
picks up the cached values and continues computing from there. See
Section 6.16 on page 213 for an example of a function definition that has
this same behavior. Also see Section 6.12 on page 202 for a more general
discussion of how you can cache function values.

Recurrence relations can be used for defining recurrence relations involv-
ing polynomials, rational functions, or anything you like. Here we com-
pute the infinite stream of Legendre polynomials.

The Legendre polynomial of
degree 0.

p(0) == 1

Type: Void

The Legendre polynomial of
degree 1.

p(1) == x

Type: Void

The Legendre polynomial of
degree n.

p(n) == ((2*n-1)*x*p(n-1) - (n-1)*p(n-2))/n

Type: Void

3If you compare the speed of our fib function to the library function, our version is
still slower. This is because the library fibonacci uses a “powering algorithm” with a
computing time proportional to log3(n) to compute fibonacci(n).

4For a more general k th order recurrence relation, AXIOM caches the last k values.

6.13. Recurrence Relations · 205

Compute the Legendre
polynomial of degree 6.

p(6)

Compiling function p with type Integer -> Polynomial
Fraction Integer

Compiling function p as a recurrence relation.

231
16

x6 − 315
16

x4 +
105
16

x2 − 5
16

(9)

Type: Polynomial Fraction Integer

206 · User-Defined Functions, Macros and Rules

6.14
Making Functions
from Objects

There are many times when you compute a complicated expression and
then wish to use that expression as the body of a function. AXIOM
provides an operation called function to do this. It creates a function
object and places it into the workspace. There are several versions, de-
pending on how many arguments the function has. The first argument to
function is always the expression to be converted into the function body,
and the second is always the name to be used for the function. For more
information, see ‘MakeFunction’ on page 494.

Start with a simple example of a
polynomial in three variables.

p := -x + y**2 - z**3

−z3 + y2 − x (1)
Type: Polynomial Integer

To make this into a function of
no arguments that simply
returns the polynomial, use the
two argument form of function.

function(p,’f0)

f0 (2)
Type: Symbol

To avoid possible conflicts (see
below), it is a good idea to quote
always this second argument.

f0

f0 () == −z3 + y2 − x (3)
Type: FunctionCalled f0

This is what you get when you
evaluate the function.

f0()

Compiling function f0 with type () -> Polynomial
Integer

−z3 + y2 − x (4)
Type: Polynomial Integer

To make a function in x, use a
version of function that takes
three arguments. The last
argument is the name of the
variable to use as the parameter.
Typically, this variable occurs in
the expression and, like the
function name, you should quote
it to avoid possible confusion.

function(p,’f1,’x)

f1 (5)
Type: Symbol

This is what the new function
looks like.

f1

f1 x == −z3 + y2 − x (6)
Type: FunctionCalled f1

This is the value of f1 at x = 3.
Notice that the return type of
the function is Polynomial
(Integer), the same as p.

f1(3)

Compiling function f1 with type PositiveInteger ->
Polynomial Integer

−z3 + y2 − 3 (7)
Type: Polynomial Integer

6.14. Making Functions from Objects · 207

To use x and y as parameters,
use the four argument form of
function.

function(p,’f2,’x,’y)

f2 (8)
Type: Symbol

f2

f2 (x, y) == −z3 + y2 − x (9)
Type: FunctionCalled f2

Evaluate f2 at x = 3 and y =
0. The return type of f2 is still
Polynomial(Integer) because the
variable z is still present and
not one of the parameters.

f2(3,0)

Compiling function f2 with type (PositiveInteger,
NonNegativeInteger) -> Polynomial Integer

−z3 − 3 (10)
Type: Polynomial Integer

Finally, use all three variables as
parameters. There is no five
argument form of function, so
use the one with three
arguments, the third argument
being a list of the parameters.

function(p,’f3,[’x,’y,’z])

f3 (11)
Type: Symbol

Evaluate this using the same
values for x and y as above, but
let z be -6. The result type of
f3 is Integer.

f3

f3 (x, y, z) == −z3 + y2 − x (12)
Type: FunctionCalled f3

f3(3,0,-6)

Compiling function f3 with type (PositiveInteger,
NonNegativeInteger,Integer) -> Integer

213 (13)
Type: PositiveInteger

The four functions we have defined via p have been undeclared. To de-
clare a function whose body is to be generated by function, issue the
declaration before the function is created.

g: (Integer, Integer) -> Float

Type: Void

D(sin(x-y)/cos(x+y),x)

−sin (y − x) sin (y + x) + cos (y − x) cos (y + x)
cos (y + x)2

(15)

Type: Expression Integer

208 · User-Defined Functions, Macros and Rules

function(%,’g,’x,’y)

g (16)
Type: Symbol

g

g (x, y) ==
−sin (y − x) sin (y + x) + cos (y − x) cos (y + x)

cos (y + x)2
(17)

Type: FunctionCalled g

It is an error to use g without the quote in the penultimate expression
since g had been declared but did not have a value. Similarly, since it is
common to overuse variable names like x, y, and so on, you avoid problems
if you always quote the variable names for function. In general, if x has
a value and you use x without a quote in a call to function, then AXIOM
does not know what you are trying to do.

What kind of object is allowable as the first argument to function? Let’s
use the Browse facility of HyperDoc to find out. At the main Browse
menu, enter the string function and then click on Operations. The ex-
posed operations called function all take an object whose type belongs to
category ConvertibleTo InputForm. What domains are those? Go back to the
main Browse menu, erase function, enter ConvertibleTo in the input
area, and click on categories on the Constructors line. At the bottom
of the page, enter InputForm in the input area following S =. Click on
Cross Reference and then on Domains. The list you see contains over
forty domains that belong to the category ConvertibleTo InputForm. Thus
you can use function for Integer, Float, String, Complex, Expression, and so
on.

6.14. Making Functions from Objects · 209

6.15
Functions Defined
with Blocks

You need not restrict yourself to functions that only fit on one line or are
written in a piece-wise manner. The body of the function can be a block,
as discussed in Section 5.2 on page 153.

Here is a short function that
swaps two elements of a list,
array or vector.

swap(m,i,j) ==
temp := m.i
m.i := m.j
m.j := temp

Type: Void

The significance of swap is that
it has a destructive effect on its
first argument.

k := [1,2,3,4,5]

[1, 2, 3, 4, 5] (2)
Type: List PositiveInteger

swap(k,2,4)

Compiling function swap with type (List
PositiveInteger,PositiveInteger,PositiveInteger)
-> PositiveInteger

2 (3)
Type: PositiveInteger

You see that the second and
fourth elements are
interchanged.

k

[1, 4, 3, 2, 5] (4)
Type: List PositiveInteger

Using this, we write a couple of
different sort functions. First, a
simple bubble sort. The
operation “#” returns the
number of elements in an
aggregate.

bubbleSort(m) ==
n := #m
for i in 1..(n-1) repeat

for j in n..(i+1) by -1 repeat
if m.j < m.(j-1) then swap(m,j,j-1)

m

Type: Void

Let this be the list we want to
sort.

m := [8,4,-3,9]

[8, 4, −3, 9] (6)
Type: List Integer

This is the result of sorting. bubbleSort(m)

Compiling function swap with type (List Integer,
Integer,Integer) -> Integer

Compiling function bubbleSort with type List Integer
-> List Integer

[−3, 4, 8, 9] (7)
Type: List Integer

210 · User-Defined Functions, Macros and Rules

Moreover, m is destructively
changed to be the sorted
version.

m

[−3, 4, 8, 9] (8)
Type: List Integer

This function implements an
insertion sort. The basic idea is
to traverse the list and insert
the i th element in its correct
position among the i-1 previous
elements. Since we start at the
beginning of the list, the list

elements before the i th element
have already been placed in
ascending order.

insertionSort(m) ==
for i in 2..#m repeat

j := i
while j > 1 and m.j < m.(j-1) repeat
swap(m,j,j-1)
j := j - 1

m

Type: Void

As with our bubble sort, this is
a destructive function.

m := [8,4,-3,9]

[8, 4, −3, 9] (10)
Type: List Integer

insertionSort(m)

Compiling function swap with type (List Integer,
NonNegativeInteger,Integer) -> Integer

Compiling function insertionSort with type List
Integer -> List Integer

[−3, 4, 8, 9] (11)
Type: List Integer

m

[−3, 4, 8, 9] (12)
Type: List Integer

Neither of the above functions is efficient for sorting large lists since they
reference elements by asking for the j th element of the structure m.

Here is a more efficient bubble
sort for lists.

bubbleSort2(m: List Integer): List Integer ==
null m => m
l := m
while not null (r := l.rest) repeat

r := bubbleSort2 r
x := l.first
if x < r.first then
l.first := r.first
r.first := x

l.rest := r
l := l.rest

m

Function declaration bubbleSort2 : List Integer ->
List Integer has been added to workspace.

Type: Void

6.15. Functions Defined with Blocks · 211

Try it out. bubbleSort2 [3,7,2]

Compiling function bubbleSort2 with type List Integer
-> List Integer

[7, 3, 2] (14)
Type: List Integer

This definition is both recursive and iterative, and is tricky! Unless you
are really curious about this definition, we suggest you skip immediately
to the next section.

Here are the key points in the definition. First notice that if you are sort-
ing a list with less than two elements, there is nothing to do: just return
the list. This definition returns immediately if there are zero elements,
and skips the entire while loop if there is just one element.

The second point to realize is that on each outer iteration, the bubble sort
ensures that the minimum element is propagated leftmost. Each iteration
of the while loop calls bubbleSort2 recursively to sort all but the first
element. When finished, the minimum element is either in the first or
second position. The conditional expression ensures that it comes first.
If it is in the second, then a swap occurs. In any case, the rest of the
original list must be updated to hold the result of the recursive call.

212 · User-Defined Functions, Macros and Rules

6.16
Free and Local
Variables

When you want to refer to a variable that is not local to your function,
use a “free” declaration. Variables declared to be free are assumed to
be defined globally in the workspace.

This is a global workspace
variable.

counter := 0

0 (1)
Type: NonNegativeInteger

This function refers to the
global counter.

f() ==
free counter
counter := counter + 1

Type: Void

The global counter is
incremented by 1.

f()

Compiling function f with type () ->
NonNegativeInteger

1 (3)
Type: PositiveInteger

counter

1 (4)
Type: NonNegativeInteger

Usually AXIOM can tell that you mean to refer to a global variable and
so free isn’t always necessary. However, for clarity and the sake of self-
documentation, we encourage you to use it.

Declare a variable to be “local” when you do not want to refer to a
global variable by the same name.

This function uses counter as a
local variable.

g() ==
local counter
counter := 7

Type: Void

Apply the function. g()

Compiling function g with type () -> PositiveInteger

7 (6)
Type: PositiveInteger

Check that the global value of
counter is unchanged.

counter

1 (7)
Type: NonNegativeInteger

6.16. Free and Local Variables · 213

Parameters to a function are local variables in the function. Even if you
issue a free declaration for a parameter, it is still local.

What happens if you do not declare that a variable x in the body of your
function is local or free? Well, AXIOM decides on this basis:

1. AXIOM scans your function line-by-line, from top-to-bottom. The
right-hand side of an assignment is looked at before the left-hand
side.

2. If x is referenced before it is assigned a value, it is a free (global)
variable.

3. If x is assigned a value before it is referenced, it is a local variable.

Set two global variables to 1. a := b := 1

1 (8)
Type: PositiveInteger

Refer to a before it is assigned a
value, but assign a value to b
before it is referenced.

h() ==
b := a + 1
a := b + a

Type: Void

Can you predict this result? h()

Compiling function h with type () -> PositiveInteger

3 (10)
Type: PositiveInteger

How about this one? [a, b]

[3, 1] (11)
Type: List PositiveInteger

What happened? In the first line of the function body for h, a is referenced
on the right-hand side of the assignment. Thus a is a free variable. The
variable b is not referenced in that line, but it is assigned a value. Thus
b is a local variable and is given the value a + 1 = 2. In the second line,
the free variable a is assigned the value b + awhich equals 2 + 1 = 3.
This is the value returned by the function. Since a was free in h, the
global variable a has value 3. Since b was local in h, the global variable
b is unchanged—it still has the value 1.

It is good programming practice always to declare global variables. How-
ever, by far the most common situation is to have local variables in your
functions. No declaration is needed for this situation, but be sure to
initialize their values.

214 · User-Defined Functions, Macros and Rules

Be careful if you use free variables and you cache the value of your function
(see Section 6.12 on page 202). Caching only checks if the values of the
function arguments are the same as in a function call previously seen. It
does not check if any of the free variables on which the function depends
have changed between function calls.

Turn on caching for p.)set fun cache all p

function p will cache all values.

Define p to depend on the free
variable N.

p(i,x) == (free N; reduce(+ , [(x-i)**n for n in 1..N]
))

Type: Void

Set the value of N. N := 1

1 (13)
Type: PositiveInteger

Evaluate p the first time. p(0, x)

Compiling function p with type (NonNegativeInteger,
Variable x) -> Polynomial Integer

p will cache all previously computed values.

x (14)
Type: Polynomial Integer

Change the value of N. N := 2

2 (15)
Type: PositiveInteger

Evaluate p the second time. p(0, x)

x (16)
Type: Polynomial Integer

If caching had been turned off, the second evaluation would have reflected
the changed value of N.

Turn off caching for p.)set fun cache 0 p

Caching for function p is turned off

AXIOM does not allow fluid variables, that is, variables bound by a func-
tion f that can be referenced by functions called by f.

Values are passed to functions by reference: a pointer to the value is
passed rather than a copy of the value or a pointer to a copy.

6.16. Free and Local Variables · 215

This is a global variable that is
bound to a record object.

r : Record(i : Integer) := [1]

[i = 1] (17)
Type: Record(i: Integer)

This function first modifies the
one component of its record
argument and then rebinds the
parameter to another record.

resetRecord rr ==
rr.i := 2
rr := [10]

Type: Void

Pass r as an argument to
resetRecord.

resetRecord r

Compiling function resetRecord with type Record(i:
Integer) -> Record(i: Integer)

[i = 10] (19)
Type: Record(i: Integer)

The value of r was changed by
the expression rr.i := 2 but
not by rr := [10].

r

[i = 2] (20)
Type: Record(i: Integer)

To conclude this section, we give an iterative definition of a function that
computes Fibonacci numbers. This definition approximates the definition
into which AXIOM transforms the recurrence relation definition of fib in
Section 6.13 on page 204.

Global variables past and
present are used to hold the
last computed Fibonacci
numbers.

past := present := 1

1 (21)
Type: PositiveInteger

Global variable index gives the
current index of present.

index := 2

2 (22)
Type: PositiveInteger

Here is a recurrence relation
defined in terms of these three
global variables.

fib(n) ==
free past, present, index
n < 3 => 1
n = index - 1 => past
if n < index-1 then

(past,present) := (1,1)
index := 2

while (index < n) repeat
(past,present) := (present, past+present)
index := index + 1

present

Type: Void

216 · User-Defined Functions, Macros and Rules

Compute the infinite stream of
Fibonacci numbers.

fibs := [fib(n) for n in 1..]

Compiling function fib with type PositiveInteger ->
PositiveInteger

+++ |*1;fib;1;initial| redefined

[1, 1, 2, 3, 5, 8, 13, . . .] (24)
Type: Stream PositiveInteger

What is the 1000th Fibonacci
number?

fibs 1000

4346655768693745643568852767504062580256466051737178040
2481729089536555417949051890403879840079255169295922593
0803226347752096896232398733224711616429964409065331879
38298969649928516003704476137795166849228875

(25)

Type: PositiveInteger

As an exercise, we suggest you write a function in an iterative style that
computes the value of the recurrence relation p(n) = p(n − 1) − 2 p(n −
2) + 4 p(n− 3) having the initial values p(1) = 1, p(2) = 3 and p(3) = 9.
How would you write the function using an element OneDimensionalArray
or Vector to hold the previously computed values?

6.16. Free and Local Variables · 217

6.17
Anonymous
Functions

An anonymous function is a function that is defined by giving a list of
parameters, the “maps-to” compound symbol “+->” (from the mathe-
matical symbol 7→), and by an expression involving the parameters, the
evaluation of which determines the return value of the function.

(parm1, parm2, ..., parmN) +-> expression

You can apply an anonymous function in several ways.

1. Place the anonymous function definition in parentheses directly fol-
lowed by a list of arguments.

2. Assign the anonymous function to a variable and then use the vari-
able name when you would normally use a function name.

3. Use “==” to use the anonymous function definition as the arguments
and body of a regular function definition.

4. Have a named function contain a declared anonymous function and
use the result returned by the named function.

6.17.1
Some Examples

Anonymous functions are particularly useful for defining functions “on
the fly.” That is, they are handy for simple functions that are used only
in one place. In the following examples, we show how to write some simple
anonymous functions.

This is a simple absolute value
function.

x +-> if x < 0 then -x else x

x 7→ if x < 0 then − x
else x

(1)

Type: AnonymousFunction

abs1 := %

x 7→ if x < 0 then − x
else x

(2)

Type: AnonymousFunction

This function returns true if the
absolute value of the first
argument is greater than the
absolute value of the second,
false otherwise.

(x,y) +-> abs1(x) > abs1(y)

(x, y) 7→ abs1 (y) < abs1 (x) (3)
Type: AnonymousFunction

We use the above function to
“sort” a list of integers.

sort(%,[3,9,-4,10,-3,-1,-9,5])

[10, −9, 9, 5, −4, −3, 3, −1] (4)
Type: List Integer

218 · User-Defined Functions, Macros and Rules

This function returns 1 if i + j
is even, -1 otherwise.

ev := ((i,j) +-> if even?(i+j) then 1 else -1)

(i, j) 7→ if even? (i + j) then 1
else − 1 (5)

Type: AnonymousFunction

We create a four-by-four matrix
containing 1 or -1 depending on
whether the row plus the
column index is even or not.

matrix([[ev(row,col) for row in 1..4] for col in 1..4])



1 −1 1 −1
−1 1 −1 1

1 −1 1 −1
−1 1 −1 1


 (6)

Type: Matrix Integer

This function returns true if a
polynomial in x has multiple
roots, false otherwise. It is
defined and applied in the same
expression.

(p +-> not one?(gcd(p,D(p,x))))(x**2+4*x+4)

true (7)
Type: Boolean

This and the next expression are
equivalent.

g(x,y,z) == cos(x + sin(y + tan(z)))

Type: Void

The one you use is a matter of
taste.

g == (x,y,z) +-> cos(x + sin(y + tan(z)))

1 old definition(s) deleted for function or rule g

Type: Void

6.17.2
Declaring
Anonymous
Functions

If you declare any of the arguments you must declare all of them. Thus,

(x: INT,y): FRAC INT +-> (x + 2*y)/(y - 1)

is not legal.

This is an example of a fully
declared anonymous function.
The output shown just indicates
that the object you created is a
particular kind of map, that is,
function.

(x: INT,y: INT): FRAC INT +-> (x + 2*y)/(y - 1)

theMap (...) (1)
Type: ((Integer, Integer) → Fraction Integer)

AXIOM allows you to declare
the arguments and not declare
the return type.

(x: INT,y: INT) +-> (x + 2*y)/(y - 1)

theMap (...) (2)
Type: ((Integer, Integer) → Fraction Integer)

The return type is computed from the types of the arguments and the
body of the function. You cannot declare the return type if you do not
declare the arguments. Therefore,

(x,y): FRAC INT +-> (x + 2*y)/(y - 1)

6.17. Anonymous Functions · 219

is not legal.

This and the next expression are
equivalent.

h(x: INT,y: INT): FRAC INT == (x + 2*y)/(y - 1)

Function declaration h : (Integer,Integer) ->
Fraction Integer has been added to workspace.

Type: Void

The one you use is a matter of
taste.

h == (x: INT,y: INT): FRAC INT +-> (x + 2*y)/(y - 1)

Function declaration h : (Integer,Integer) ->
Fraction Integer has been added to workspace.

1 old definition(s) deleted for function or rule h

Type: Void

When should you declare an anonymous function?

1. If you use an anonymous function and AXIOM can’t figure out what
you are trying to do, declare the function.

2. If the function has nontrivial argument types or a nontrivial return
type that AXIOM may be able to determine eventually, but you are
not willing to wait that long, declare the function.

3. If the function will only be used for arguments of specific types and
it is not too much trouble to declare the function, do so.

4. If you are using the anonymous function as an argument to another
function (such as map or sort), consider declaring the function.

5. If you define an anonymous function inside a named function, you
must declare the anonymous function.

This is an example of a named
function for integers that
returns a function.

addx x == ((y: Integer): Integer +-> x + y)

Type: Void

We define g to be a function
that adds 10 to its argument.

g := addx 10

Compiling function addx with type PositiveInteger ->
(Integer -> Integer)

theMap (...) (6)
Type: (Integer → Integer)

Try it out. g 3

13 (7)
Type: PositiveInteger

g(-4)

6 (8)
Type: PositiveInteger

220 · User-Defined Functions, Macros and Rules

An anonymous function cannot be recursive: since it does not have a
name, you cannot even call it within itself! If you place an anonymous
function inside a named function, the anonymous function must be de-
clared.

6.17. Anonymous Functions · 221

6.18
Example: A
Database

This example shows how you can use AXIOM to organize a database of
lineage data and then query the database for relationships.

The database is entered as
“assertions” that are really
pieces of a function definition.

children("albert") == ["albertJr","richard","diane"]

Type: Void

Each piece children(x) == y
means “the children of x are y”.

children("richard") == ["douglas","daniel","susan"]

Type: Void

This family tree thus spans four
generations.

children("douglas") == ["dougie","valerie"]

Type: Void

Say “no one else has children.” children(x) == []

Type: Void

We need some functions for
computing lineage. Start with
childOf.

childOf(x,y) == member?(x,children(y))

Type: Void

To find the parentOf someone,
you have to scan the database of
people applying children.

parentOf(x) ==
for y in people repeat

(if childOf(x,y) then return y)
"unknown"

Type: Void

And a grandparent of x is just a
parent of a parent of x.

grandParentOf(x) == parentOf parentOf x

Type: Void

The grandchildren of x are the
people y such that x is a
grandparent of y.

grandchildren(x) == [y for y in people | grandParentOf(y)
= x]

Type: Void

Suppose you want to make a list
of all great-grandparents. Well,
a great-grandparent is a
grandparent of a person who
has children.

greatGrandParents == [x for x in people |
reduce(or,[not empty? children(y) for y in

grandchildren(x)],false)]

Type: Void

222 · User-Defined Functions, Macros and Rules

Define descendants to include
the parent as well.

descendants(x) ==
kids := children(x)
null kids => [x]
concat(x,reduce(concat,[descendants(y)

for y in kids],[]))

Type: Void

Finally, we need a list of people.
Since all people are descendants
of “albert”, let’s say so.

people == descendants "albert"

Type: Void

We have used “==” to define the database and some functions to query
the database. But no computation is done until we ask for some infor-
mation. Then, once and for all, the functions are analyzed and compiled
to machine code for run-time efficiency. Notice that no types are given
anywhere in this example. They are not needed.

Who are the grandchildren of
“richard”?

grandchildren "richard"

Compiling function children with type String -> List
String

Compiling function descendants with type String ->
List String

Compiling body of rule people to compute value of
type List String

Compiling function childOf with type (String,String)
-> Boolean

Compiling function parentOf with type String ->
String

Compiling function grandParentOf with type String ->
String

Compiling function grandchildren with type String ->
List String

["dougie", "valerie"] (12)
Type: List String

Who are the
great-grandparents?

greatGrandParents

Compiling body of rule greatGrandParents to compute
value of type List String

["albert"] (13)
Type: List String

6.18. Example: A Database · 223

6.19
Example: A
Famous Triangle

In this example we write some functions that display Pascal’s triangle. It
demonstrates the use of piece-wise definitions and some output operations
you probably haven’t seen before.

To make these output
operations available, we have to
expose the domain OutputForm.
See Section 2.11 on page 124 for
more information about
exposing domains and packages.

)set expose add constructor OutputForm

OutputForm is now explicitly exposed in frame initial

Define the values along the first
row and any column i.

pascal(1,i) == 1

Type: Void

Define the values for when the
row and column index i are
equal. Repeating the argument
name indicates that the two
index values are equal.

pascal(n,n) == 1

Type: Void

pascal(i,j | 1 < i and i < j) ==
pascal(i-1,j-1)+pascal(i,j-1)

Type: Void

Now that we have defined the coefficients in Pascal’s triangle, let’s write
a couple of one-liners to display it.

First, define a function that

gives the n th row.

pascalRow(n) == [pascal(i,n) for i in 1..n]

Type: Void

Next, we write the function
displayRow to display the row,
separating entries by blanks and
centering.

displayRow(n) == output center blankSeparate pascalRow(n)

Type: Void

Here we have used three output operations. Operation output displays
the printable form of objects on the screen, center centers a printable
form in the width of the screen, and blankSeparate takes a list of print-
able forms and inserts a blank between successive elements.

224 · User-Defined Functions, Macros and Rules

Look at the result. for i in 1..7 repeat displayRow i

Compiling function pascal with type (Integer,Integer)
-> PositiveInteger

Compiling function pascalRow with type
PositiveInteger -> List PositiveInteger

Compiling function displayRow with type
PositiveInteger -> Void

1
1 1

1 2 1
1 3 3 1
1 4 6 4 1

1 5 10 10 5 1
1 6 15 20 15 6 1

Type: Void

Being purists, we find this less than satisfactory. Traditionally, elements
of Pascal’s triangle are centered between the left and right elements on
the line above.

To fix this misalignment, we go
back and redefine pascalRow
to right adjust the entries
within the triangle within a
width of four characters.

pascalRow(n) == [right(pascal(i,n),4) for i in 1..n]

Compiled code for pascalRow has been cleared.
Compiled code for displayRow has been cleared.
1 old definition(s) deleted for function or rule

pascalRow

Type: Void

Finally let’s look at our purely
reformatted triangle.

for i in 1..7 repeat displayRow i

Compiling function pascalRow with type
PositiveInteger -> List OutputForm

+++ |*1;pascalRow;1;initial| redefined
Compiling function displayRow with type

PositiveInteger -> Void

+++ |*1;displayRow;1;initial| redefined
1

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1
1 6 15 20 15 6 1

Type: Void

Unexpose OutputForm so we
don’t get unexpected results
later.

)set expose drop constructor OutputForm

OutputForm is now explicitly hidden in frame initial

6.19. Example: A Famous Triangle · 225

6.20
Example: Testing
for Palindromes

In this section we define a function pal? that tests whether its argument
is a palindrome, that is, something that reads the same backwards and
forwards. For example, the string “Madam I’m Adam” is a palindrome
(excluding blanks and punctuation) and so is the number 123454321.
The definition works for any datatype that has n components that are
accessed by the indices 1...n.

Here is the definition for pal?.
It is simply a call to an auxiliary
function called palAux?. We
are following the convention of
ending a function’s name with
“?” if the function returns a
Boolean value.

pal? s == palAux?(s,1,#s)

Type: Void

Here is palAux?. It works by
comparing elements that are
equidistant from the start and
end of the object.

palAux?(s,i,j) ==
j > i =>

(s.i = s.j) and palAux?(s,i+1,i-1)
true

Type: Void

Try pal? on some examples.
First, a string.

pal? "Oxford"

Compiling function palAux? with type (String,Integer,
Integer) -> Boolean

Compiling function pal? with type String -> Boolean

false (3)
Type: Boolean

A list of polynomials. pal? [4,a,x-1,0,x-1,a,4]

Compiling function palAux? with type (List Polynomial
Integer,Integer,Integer) -> Boolean

Compiling function pal? with type List Polynomial
Integer -> Boolean

true (4)
Type: Boolean

A list of integers from the
example in the last section.

pal? [1,6,15,20,15,6,1]

Compiling function palAux? with type (List
PositiveInteger,Integer,Integer) -> Boolean

Compiling function pal? with type List
PositiveInteger -> Boolean

true (5)
Type: Boolean

To use pal? on an integer, first
convert it to a string.

pal?(1441::String)

true (6)
Type: Boolean

226 · User-Defined Functions, Macros and Rules

Compute an infinite stream of
decimal numbers, each of which
is an obvious palindrome.

ones := [reduce(+,[10**j for j in 0..i]) for i in 1..]

[11, 111, 1111, 11111, 111111, 1111111, 11111111, . . .] (7)
Type: Stream PositiveInteger

How about their squares? squares := [x**2 for x in ones]

[121, 12321, 1234321, 123454321, 12345654321, 1234567654321,
123456787654321, 12345678987654321, 1234567900987654321, . . .] (8)

Type: Stream PositiveInteger

Well, let’s test them all! [pal?(x::String) for x in squares]

[true, true, true, true, true, true, true, true, true, . . .] (9)
Type: Stream Boolean

6.20. Example: Testing for Palindromes · 227

6.21
Rules and Pattern
Matching

A common mathematical formula is

log(x) + log(y) = log(xy) ∀x and y.

The presence of “∀” indicates that x and y can stand for arbitrary mathe-
matical expressions in the above formula. You can use such mathematical
formulas in AXIOM to specify “rewrite rules”. Rewrite rules are objects
in AXIOM that can be assigned to variables for later use, often for the
purpose of simplification. Rewrite rules look like ordinary function def-
initions except that they are preceded by the reserved word rule. For
example, a rewrite rule for the above formula is:
rule log(x) + log(y) == log(x * y)

Like function definitions, no action is taken when a rewrite rule is issued.
Think of rewrite rules as functions that take one argument. When a
rewrite rule A = B is applied to an argument f, its meaning is: “rewrite
every subexpression of f that matches A by B.” The left-hand side of a
rewrite rule is called a pattern; its right-side side is called its substitution.

Create a rewrite rule named
logrule. The generated symbol
beginning with a “%” is a
place-holder for any other terms
that might occur in the sum.

logrule := rule log(x) + log(y) == log(x * y)

log (y) + log (x) + %B= =log (x y) + %B (1)
Type: RewriteRule(Integer, Integer, Expression Integer)

Create an expression with
logarithms.

f := log sin x + log x

log (sin (x)) + log (x) (2)
Type: Expression Integer

Apply logrule to f. logrule f

log (x sin (x)) (3)
Type: Expression Integer

The meaning of our example rewrite rule is: “for all expressions x and
y, rewrite log(x) + log(y) by log(x * y).” Patterns generally have
both operation names (here, log and “+”) and variables (here, x and y).
By default, every operation name stands for itself. Thus log matches
only “log” and not any other operation such as sin. On the other hand,
variables do not stand for themselves. Rather, a variable denotes a pattern
variable that is free to match any expression whatsoever.

When a rewrite rule is applied, a process called pattern matching goes
to work by systematically scanning the subexpressions of the argument.
When a subexpression is found that “matches” the pattern, the subex-
pression is replaced by the right-hand side of the rule. The details of what
happens will be covered later.

The customary AXIOM notation for patterns is actually a shorthand for a

228 · User-Defined Functions, Macros and Rules

longer, more general notation. Pattern variables can be made explicit by
using a percent (“%”) as the first character of the variable name. To say
that a name stands for itself, you can prefix that name with a quote op-
erator (“’”). Although the current AXIOM parser does not let you quote
an operation name, this more general notation gives you an alternate way
of giving the same rewrite rule:

rule log(%x) + log(%y) == log(x * y)

This longer notation gives you patterns that the standard notation won’t
handle. For example, the rule

rule %f(c * ’x) == c*%f(x)

means “for all f and c, replace f(y) by c * f(x) when y is the product
of c and the explicit variable x.”

Thus the pattern can have several adornments on the names that appear
there. Normally, all these adornments are dropped in the substitution on
the right-hand side.

To summarize:

To enter a single rule in AXIOM, use the following syntax:

rule leftHandSide == rightHandSide

The leftHandSide is a pattern to be matched and the rightHandSide is
its substitution. The rule is an object of type RewriteRule that can be
assigned to a variable and applied to expressions to transform them.

Rewrite rules can be collected into rulesets so that a set of rules can be
applied at once. Here is another simplification rule for logarithms.

y log(x) = log(xy) ∀x and y.

If instead of giving a single rule following the reserved word rule you give
a “pile” of rules, you create what is called a ruleset. Like rules, rulesets
are objects in AXIOM and can be assigned to variables. You will find it
useful to group commonly used rules into input files, and read them in as
needed.

Create a ruleset named
logrules.

logrules := rule
log(x) + log(y) == log(x * y)
y * log x == log(x ** y)

{log (y) + log (x) + %C= =log (x y) + %C, y log (x)= =log (xy)} (4)
Type: Ruleset(Integer, Integer, Expression Integer)

6.21. Rules and Pattern Matching · 229

Again, create an expression f
containing logarithms.

f := a * log(sin x) - 2 * log x

a log (sin (x))− 2 log (x) (5)
Type: Expression Integer

Apply the ruleset logrules to f. logrules f

log
(

sin (x)a

x2

)
(6)

Type: Expression Integer

We have allowed pattern variables to match arbitrary expressions in the
above examples. Often you want a variable only to match expressions
satisfying some predicate. For example, we may want to apply the trans-
formation

y log(x) = log(xy)

only when y is an integer. The way to restrict a pattern variable y by a
predicate f(y) is by using a vertical bar “|”, which means “such that,”
in much the same way it is used in function definitions. You do this
only once, but at the earliest (meaning deepest and leftmost) part of the
pattern.

This restricts the logarithmic
rule to create integer exponents
only.

logrules2 := rule
log(x) + log(y) == log(x * y)
(y | integer? y) * log x == log(x ** y)

{log (y) + log (x) + %E= =log (x y) + %E, y log (x)= =log (xy)} (7)
Type: Ruleset(Integer, Integer, Expression Integer)

Compare this with the result of
applying the previous set of
rules.

f

a log (sin (x))− 2 log (x) (8)
Type: Expression Integer

logrules2 f

a log (sin (x)) + log
(

1
x2

)
(9)

Type: Expression Integer

You should be aware that you might need to apply a function like integer
within your predicate expression to actually apply the test function.

Here we use integer because n
has type Expression Integer but
even? is an operation defined
on integers.

evenRule := rule cos(x)**(n | integer? n and even? integer
n)==(1-sin(x)**2)**(n/2)

cos (x)n= =
(
−sin (x)2 + 1

)n
2 (10)

Type: RewriteRule(Integer, Integer, Expression Integer)

230 · User-Defined Functions, Macros and Rules

Here is the application of the
rule.

evenRule(cos(x)**2)

−sin (x)2 + 1 (11)
Type: Expression Integer

This is an example of some of
the usual identities involving
products of sines and cosines.

sinCosProducts == rule
sin(x) * sin(y) == (cos(x-y) - cos(x + y))/2
cos(x) * cos(y) == (cos(x-y) + cos(x+y))/2
sin(x) * cos(y) == (sin(x-y) + sin(x + y))/2

Type: Void

g := sin(a)*sin(b) + cos(b)*cos(a) + sin(2*a)*cos(2*a)

sin (a) sin (b) + cos (2 a) sin (2 a) + cos (a) cos (b) (13)
Type: Expression Integer

sinCosProducts g

Compiling body of rule sinCosProducts to compute
value of type Ruleset(Integer,Integer,Expression
Integer)

sin (4 a) + 2 cos (b− a)
2

(14)

Type: Expression Integer

Another qualification you will often want to use is to allow a pattern
to match an identity element. Using the pattern x + y, for example,
neither x nor y matches the expression 0. Similarly, if a pattern contains
a product x*y or an exponentiation x**y, then neither x or y matches 1.

If identical elements were
matched, pattern matching
would generally loop. Here is an
expansion rule for exponentials.

exprule := rule exp(a + b) == exp(a) * exp(b)

e(b+a)= =ea eb (15)
Type: RewriteRule(Integer, Integer, Expression Integer)

This rule would cause infinite
rewriting on this if either a or b
were allowed to match 0.

exprule exp x

ex (16)
Type: Expression Integer

There are occasions when you do want a pattern variable in a sum or
product to match 0 or 1. If so, prefix its name with a “?” whenever it
appears in a left-hand side of a rule. For example, consider the following
rule for the exponential integral:

∫ (
y + ex

x

)
dx =

∫
y

x
dx + Ei(x) ∀x and y.

This rule is valid for y = 0. One solution is to create a Ruleset with
two rules, one with and one without y. A better solution is to use an
“optional” pattern variable.

6.21. Rules and Pattern Matching · 231

Define rule eirule with a
pattern variable ?y to indicate
that an expression may or may
not occur.

eirule := rule integral((?y + exp x)/x,x) ==
integral(y/x,x) + Ei x

∫ x e%N + y

%N
d%N= =′integral

(
y

x
, x

)
+ ′Ei (x) (17)

Type: RewriteRule(Integer, Integer, Expression Integer)

Apply rule eirule to an integral
without this term.

eirule integral(exp u/u, u)

Ei (u) (18)
Type: Expression Integer

Apply rule eirule to an integral
with this term.

eirule integral(sin u + exp u/u, u)
∫ u

sin (%N) d%N + Ei (u) (19)

Type: Expression Integer

Here is one final adornment you will find useful. When matching a pattern
of the form x + y to an expression containing a long sum of the form a
+...+ b, there is no way to predict in advance which subset of the sum
matches x and which matches y. Aside from efficiency, this is generally
unimportant since the rule holds for any possible combination of matches
for x and y. In some situations, however, you may want to say which
pattern variable is a sum (or product) of several terms, and which should
match only a single term. To do this, put a prefix colon “:” before the
pattern variable that you want to match multiple terms.

The remaining rules involve
operators u and v.

u := operator ’u

u (20)
Type: BasicOperator

These definitions tell AXIOM
that u and v are formal
operators to be used in
expressions.

v := operator ’v

v (21)
Type: BasicOperator

First define myRule with no
restrictions on the pattern
variables x and y.

myRule := rule u(x + y) == u x + v y

u (y + x)= =′v (y) + ′u (x) (22)
Type: RewriteRule(Integer, Integer, Expression Integer)

Apply myRule to an expression. myRule u(a + b + c + d)

v (d + c + b) + u (a) (23)
Type: Expression Integer

Define myOtherRule to match
several terms so that the rule
gets applied recursively.

myOtherRule := rule u(:x + y) == u x + v y

u (y + x)= =′v (y) + ′u (x) (24)
Type: RewriteRule(Integer, Integer, Expression Integer)

232 · User-Defined Functions, Macros and Rules

Apply myOtherRule to the same
expression.

myOtherRule u(a + b + c + d)

v (c) + v (b) + v (a) + u (d) (25)
Type: Expression Integer

Summary of pattern variable adornments:

(x | predicate?(x)) means that the substutution s for x
must satisfy predicate?(s) = true.

?x means that x can match an identity
element (0 or 1).

:x means that x can match several terms
in a sum.

Here are some final remarks on pattern matching. Pattern matching
provides a very useful paradigm for solving certain classes of problems,
namely, those that involve transformations of one form to another and
back. However, it is important to recognize its limitations.

First, pattern matching slows down as the number of rules you have to
apply increases. Thus it is good practice to organize the sets of rules you
use optimally so that irrelevant rules are never included.

Second, careless use of pattern matching can lead to wrong answers. You
should avoid using pattern matching to handle hidden algebraic relation-
ships that can go undetected by other programs. As a simple example,
a symbol such as “J” can easily be used to represent the square root of
-1 or some other important algebraic quantity. Many algorithms branch
on whether an expression is zero or not, then divide by that expression
if it is not. If you fail to simplify an expression involving powers of J to
-1, algorithms may incorrectly assume an expression is non-zero, take a
wrong branch, and produce a meaningless result.

Pattern matching should also not be used as a substitute for a domain.
In AXIOM, objects of one domain are transformed to objects of other
domains using well-defined coerce operations. Pattern matching should
be used on objects that are all the same type. Thus if your application
can be handled by type Expression in AXIOM and you think you need
pattern matching, consider this choice carefully. You may well be better
served by extending an existing domain or by building a new domain of
objects for your application.

6.21. Rules and Pattern Matching · 233

CHAPTER 7

Graphics

Figure 7.1: Torus knot of type (15,17).

This chapter shows how to use the AXIOM graphics facilities under
the X Window System. AXIOM has two-dimensional and three-dimen-
sional drawing and rendering packages that allow the drawing, coloring,
transforming, mapping, clipping, and combining of graphic output from
AXIOM computations. This facility is particularly useful for investigating
problems in areas such as topology. The graphics package is capable of
plotting functions of one or more variables or plotting parametric surfaces
and curves. Various coordinate systems are also available, such as polar
and spherical.

A graph is displayed in a viewport window and it has a control-panel that
uses interactive mouse commands. PostScript and other output forms
are available so that AXIOM images can be printed or used by other

235

programs.1

7.1
Two-Dimensional
Graphics

The AXIOM two-dimensional graphics package provides the ability to
display

• curves defined by functions of a single real variable
• curves defined by parametric equations
• implicit non-singular curves defined by polynomial equations
• planar graphs generated from lists of point components.

These graphs can be modified by specifying various options, such as cal-
culating points in the polar coordinate system or changing the size of the
graph viewport window.

7.1.1
Plotting
Two-Dimensional
Functions of One
Variable

The first kind of two-dimensional graph is that of a curve defined by a
function y = f(x) over a finite interval of the x axis.

The general format for drawing a function defined by a formula f(x) is:

draw(f(x), x = a..b, options)

where a..b defines the range of x, and where options prescribes zero
or more options as described in Section 7.1.4 on page 243. An example
of an option is curveColor == bright red(). An alternative format
involving functions f and g is also available.

A simple way to plot a function is to use a formula. The first argument is
the formula. For the second argument, write the name of the independent
variable (here, x), followed by an “=”, and the range of values.

1PostScript is a trademark of Adobe Systems Incorporated, registered in the United
States.

236 · Graphics

Display this formula over the
range 0 ≤ x ≤ 6. AXIOM
converts your formula to a
compiled function so that the
results can be computed quickly
and efficiently.

draw(sin(tan(x)) - tan(sin(x)),x = 0..6)

Compiling function %B with type DoubleFloat ->
DoubleFloat

Graph data being transmitted to the viewport
manager...
AXIOM2D data being transmitted to the viewport
manager...

TwoDimensionalViewport: "(-DTAN(DSIN(x)))+DSIN(DTAN(x))" (1)
Type: TwoDimensionalViewport

Notice that AXIOM compiled the function before the graph was put on
the screen.

Here is the same graph on a
different interval. This time we
give the graph a title.

draw(sin(tan(x)) - tan(sin(x)),x = 10..16)

Compiling function %D with type DoubleFloat ->
DoubleFloat

Graph data being transmitted to the viewport
manager...
AXIOM2D data being transmitted to the viewport
manager...

TwoDimensionalViewport: "(-DTAN(DSIN(x)))+DSIN(DTAN(x))" (2)
Type: TwoDimensionalViewport

7.1. Two-Dimensional Graphics · 237

Once again the formula is converted to a compiled function before any
points were computed. If you want to graph the same function on several
intervals, it is a good idea to define the function first so that the function
has to be compiled only once.

This time we first define the
function.

f(x) == (x-1)*(x-2)*(x-3)

Type: Void

To draw the function, the first
argument is its name and the
second is just the range with no
independent variable.

draw(f, 0..4)

Compiling function f with type DoubleFloat ->
DoubleFloat

Graph data being transmitted to the viewport
manager...
AXIOM2D data being transmitted to the viewport
manager...

TwoDimensionalViewport: "AXIOM2D" (4)
Type: TwoDimensionalViewport

0.80 1.60 2.40 3.20 4.00

238 · Graphics

7.1.2
Plotting
Two-Dimensional
Parametric Plane
Curves

The second kind of two-dimensional graph is that of curves produced by
parametric equations. Let x = f(t) and y = g(t) be formulas or two
functions f and g as the parameter t ranges over an interval [a,b]. The
function curve takes the two functions f and g as its parameters.

The general format for drawing a two-dimensional plane curve defined
by parametric formulas x = f(t) and y = g(t) is:

draw(curve(f(t), g(t)), t = a..b, options)

where a..b defines the range of the independent variable t, and where
options prescribes zero or more options as described in Section ?.? on
page ???. An example of an option is curveColor == bright red().

Here’s an example:

Define a parametric curve using
a range involving %pi, AXIOM’s
way of saying π. For parametric
curves, AXIOM compiles two
functions, one for each of the
functions f and g.

draw(curve(sin(t)*sin(2*t)*sin(3*t),
sin(4*t)*sin(5*t)*sin(6*t)), t = 0..2*%pi)

Compiling function %F with type DoubleFloat ->
DoubleFloat

Compiling function %H with type DoubleFloat ->
DoubleFloat

Graph data being transmitted to the viewport
manager...
AXIOM2D data being transmitted to the viewport
manager...

TwoDimensionalViewport: "DSIN(t)*DSIN(2*t)*DSIN(3*t)" (1)
Type: TwoDimensionalViewport

7.1. Two-Dimensional Graphics · 239

The title may be an arbitrary
string and is an optional
argument to the draw
command.

draw(curve(cos(t), sin(t)), t = 0..2*%pi)

Compiling function %J with type DoubleFloat ->
DoubleFloat

Compiling function %L with type DoubleFloat ->
DoubleFloat

Graph data being transmitted to the viewport
manager...
AXIOM2D data being transmitted to the viewport
manager...

TwoDimensionalViewport: "cos t" (2)
Type: TwoDimensionalViewport

0.00 0.40 0.80-0.40-0.80

0.40

0.80

-0.40

-0.80

If you plan on plotting x = f(t), y = g(t) as t ranges over several
intervals, you may want to define functions f and g first, so that they
need not be recompiled every time you create a new graph. Here’s an
example:

As before, you can first define
the functions you wish to draw.

f(t:DFLOAT):DFLOAT == sin(3*t/4)

Function declaration f : DoubleFloat -> DoubleFloat
has been added to workspace.

Type: Void

AXIOM compiles them to map
DoubleFloat values to
DoubleFloat values.

g(t:DFLOAT):DFLOAT == sin(t)

Function declaration g : DoubleFloat -> DoubleFloat
has been added to workspace.

Type: Void

240 · Graphics

Give to curve the names of the
functions, then write the range
without the name of the
independent variable.

draw(curve(f,g),0..%pi)

Compiling function f with type DoubleFloat ->
DoubleFloat

+++ |*1;f;1;initial| redefined
Compiling function g with type DoubleFloat ->

DoubleFloat
Graph data being transmitted to the viewport
manager...
AXIOM2D data being transmitted to the viewport
manager...

TwoDimensionalViewport: "AXIOM2D" (5)
Type: TwoDimensionalViewport

0.20 0.40 0.60 0.80 1.00

Here is another look at the same
curve but over a different range.
Notice that f and g are not
recompiled. Also note that
AXIOM provides a default title
based on the first function
specified in curve.

draw(curve(f,g),-4*%pi..4*%pi)

Graph data being transmitted to the viewport
manager...
AXIOM2D data being transmitted to the viewport
manager...

TwoDimensionalViewport: "AXIOM2D" (6)
Type: TwoDimensionalViewport

7.1. Two-Dimensional Graphics · 241

7.1.3
Plotting Plane
Algebraic Curves

A third kind of two-dimensional graph is a non-singular “solution curve”
in a rectangular region of the plane. A solution curve is a curve defined by
a polynomial equation p(x,y) = 0. Non-singular means that the curve
is “smooth” in that it does not cross itself or come to a point (cusp).
Algebraically, this means that for any point (x,y) on the curve, that is, a
point such that p(x,y) = 0, the partial derivatives ∂p

∂x(x, y) and ∂p
∂y (x, y)

are not both zero.

The general format for drawing a non-singular solution curve given by
a polynomial of the form p(x,y) = 0 is:

draw(p(x,y) = 0, x, y, range == [a..b, c..d], options)

where the second and third arguments name the first and second inde-
pendent variables of p. A range option is always given to designate a
bounding rectangular region of the plane a ≤ x ≤ b, c ≤ y ≤ d. Zero or
more additional options as described in Section 7.1.4 on page 243 may
be given.

We require that the polynomial
has rational or integral
coefficients. Here is an algebraic
curve example (“Cartesian
ovals”):

p := ((x**2 + y**2 + 1) - 8*x)**2 - (8*(x**2 + y**2 + 1)-
4*x-1)

y4 +
(
2 x2 − 16 x− 6

)
y2 + x4 − 16 x3 + 58 x2 − 12 x− 6 (1)

Type: Polynomial Integer

The first argument is always
expressed as an equation of the
form p = 0 where p is a
polynomial.

draw(p = 0, x, y, range == [-1..11, -7..7])

Graph data being transmitted to the viewport
manager...
AXIOM2D data being transmitted to the viewport
manager...

TwoDimensionalViewport: "AXIOM2D" (2)
Type: TwoDimensionalViewport

2.19 4.37 6.56 8.74 10.93

2.39

4.78

7.18

-2.39

-4.78

-7.18

242 · Graphics

7.1.4
Two-Dimensional
Options

The draw commands take an optional list of options, such as title shown
above. Each option is given by the syntax: name == value. Here is a list
of the available options in the order that they are described below.

adaptive clip unit
clip curveColor range
toScale pointColor coordinates

The adaptive option turns adaptive plotting on or off. Adaptive plotting
uses an algorithm that traverses a graph and computes more points for
those parts of the graph with high curvature. The higher the curvature
of a region is, the more points the algorithm computes.

The adaptive option is
normally on. Here we turn it
off.

draw(sin(1/x),x=-2*%pi..2*%pi, adaptive == false)

Compiling function %N with type DoubleFloat ->
DoubleFloat

Graph data being transmitted to the viewport
manager...
AXIOM2D data being transmitted to the viewport
manager...

TwoDimensionalViewport: "sin 1/x" (1)
Type: TwoDimensionalViewport

7.1. Two-Dimensional Graphics · 243

The clip option turns clipping
on or off. If on, large values are
cut off according to
clipPointsDefault.

draw(tan(x),x=-2*%pi..2*%pi, clip == true)

Compiling function %P with type DoubleFloat ->
DoubleFloat

Graph data being transmitted to the viewport
manager...
AXIOM2D data being transmitted to the viewport
manager...

TwoDimensionalViewport: "tan x" (2)
Type: TwoDimensionalViewport

Option toScale does plotting to
scale if true or uses the entire
viewport if false. The default
can be determined using
drawToScale.

draw(sin(x),x=-%pi..%pi, toScale == true, unit ==
[1.0,1.0])

Compiling function %R with type DoubleFloat ->
DoubleFloat

Graph data being transmitted to the viewport
manager...
AXIOM2D data being transmitted to the viewport
manager...

TwoDimensionalViewport: "sin x" (3)
Type: TwoDimensionalViewport

1.00 2.00 3.00-1.00-2.00-3.00

1.00

2.00

3.00

-1.00

-2.00

-3.00

244 · Graphics

Option clip with a range sets
point clipping of a graph within
the ranges specified in the list
[x range,y range]. If only one
range is specified, clipping
applies to the y-axis.

draw(sec(x),x=-2*%pi..2*%pi, clip == [-2*%pi..2*%pi,-
%pi..%pi], unit == [1.0,1.0])

Compiling function %S with type DoubleFloat ->
DoubleFloat

Graph data being transmitted to the viewport
manager...
AXIOM2D data being transmitted to the viewport
manager...

TwoDimensionalViewport: "sec x" (4)
Type: TwoDimensionalViewport

0.00 2.00 4.00 6.00-2.00-4.00-6.00

1.00

2.00

3.00

-1.00

-2.00

-3.00

Option curveColor sets the
color of the graph curves or lines
to be the indicated palette color
(see Section 7.1.5 on page 248
and Section 7.1.6 on page 250).

draw(sin(x),x=-%pi..%pi, curveColor == bright red())

Compiling function with type DoubleFloat ->
DoubleFloat

Graph data being transmitted to the viewport
manager...
AXIOM2D data being transmitted to the viewport
manager...

TwoDimensionalViewport: "sin x" (5)
Type: TwoDimensionalViewport

7.1. Two-Dimensional Graphics · 245

Option pointColor sets the
color of the graph points to the
indicated palette color (see
Section 7.1.5 on page 248 and
Section 7.1.6 on page 250).

draw(sin(x),x=-%pi..%pi, pointColor == pastel yellow())

Compiling function %W with type DoubleFloat ->
DoubleFloat

Graph data being transmitted to the viewport
manager...
AXIOM2D data being transmitted to the viewport
manager...

TwoDimensionalViewport: "sin x" (6)
Type: TwoDimensionalViewport

Option unit sets the intervals at
which the axis units are plotted
according to the indicated steps
[x interval, y interval].

draw(curve(9*sin(3*t/4),8*sin(t)), t = -4*%pi..4*%pi, unit
== [2.0,1.0])

Compiling function %Y with type DoubleFloat ->
DoubleFloat

Compiling function %BA with type DoubleFloat ->
DoubleFloat

Graph data being transmitted to the viewport
manager...
AXIOM2D data being transmitted to the viewport
manager...

TwoDimensionalViewport: "9*DSIN((3*t)/4)" (7)
Type: TwoDimensionalViewport

0.00 4.00 8.00-4.00-8.00

2.00

4.00

6.00

8.00

-2.00

-4.00

-6.00

-8.00

246 · Graphics

Option range sets the range of
variables in a graph to be within
the ranges for solving plane
algebraic curve plots.

draw(y**2 + y - (x**3 - x) = 0, x, y, range == [-2..2,-
2..1], unit==[1.0,1.0])

Graph data being transmitted to the viewport
manager...
AXIOM2D data being transmitted to the viewport
manager...

TwoDimensionalViewport: "AXIOM2D" (8)
Type: TwoDimensionalViewport

1.00 2.00-1.00-2.00

1.00

-1.00

-2.00

A second example of a solution
plot.

draw(x**2 + y**2 = 1, x, y, range == [-3/2..3/2,-
3/2..3/2], unit==[0.5,0.5])

Graph data being transmitted to the viewport
manager...
AXIOM2D data being transmitted to the viewport
manager...

TwoDimensionalViewport: "AXIOM2D" (9)
Type: TwoDimensionalViewport

0.00 0.50 1.00 1.50-0.50-1.00-1.50

0.50

1.00

1.50

-0.50

-1.00

-1.50

7.1. Two-Dimensional Graphics · 247

Option coordinates indicates
the coordinate system in which
the graph is plotted. The
default is to use the Cartesian
coordinate system. For more
details, see Section ?.? on page
??? .

draw(curve(sin(5*t),t),t=0..2*%pi, coordinates == polar)

Compiling function %BC with type DoubleFloat ->
DoubleFloat

Compiling function %BE with type DoubleFloat ->
DoubleFloat

Graph data being transmitted to the viewport
manager...
AXIOM2D data being transmitted to the viewport
manager...

TwoDimensionalViewport: "sin 5*t" (10)
Type: TwoDimensionalViewport

7.1.5
Color

The domain Color provides operations for manipulating colors in two-di-
mensional graphs. Colors are objects of Color. Each color has a hue
and a weight. Hues are represented by integers that range from 1 to the
numberOfHues(), normally 27. Weights are floats and have the value
1.0 by default.

color (integer)
creates a color of hue integer and weight 1.0.

hue (color)
returns the hue of color as an integer.

red ()
, blue(), green(), and yellow() create colors of that hue with
weight 1.0.

color1 + color2 returns the color that results from additively combining
the indicated color1 and color2. Color addition is not commutative:
changing the order of the arguments produces different results.

integer * color changes the weight of color by integer without affecting its
hue. For example, red() + 3*yellow() produces a color closer to
yellow than to red. Color multiplication is not associative: changing

248 · Graphics

the order of grouping produces different results.

These functions can be used to
change the point and curve
colors for two- and
three-dimensional graphs. Use
the pointColor option for
points.

draw(x**2,x=-1..1,pointColor == green())

Compiling function %BG with type DoubleFloat ->
DoubleFloat

Graph data being transmitted to the viewport
manager...
AXIOM2D data being transmitted to the viewport
manager...

TwoDimensionalViewport: "x*x" (1)
Type: TwoDimensionalViewport

Use the curveColor option for
curves.

draw(x**2,x=-1..1,curveColor == color(13) + 2*blue())

Compiling function %BI with type DoubleFloat ->
DoubleFloat

Graph data being transmitted to the viewport
manager...
AXIOM2D data being transmitted to the viewport
manager...

TwoDimensionalViewport: "x*x" (2)
Type: TwoDimensionalViewport

7.1. Two-Dimensional Graphics · 249

7.1.6
Palette

Domain Palette is the domain of shades of colors: dark, dim, bright,
pastel, and light, designated by the integers 1 through 5, respectively.

Colors are normally “bright.” shade red()

3 (1)
Type: PositiveInteger

To change the shade of a color,
apply the name of a shade to it.

myFavoriteColor := dark blue()

[Hue: 22 Weight: 1.0] from the Dark palette (2)
Type: Palette

The expression shade(color)
returns the value of a shade of
color.

shade myFavoriteColor

1 (3)
Type: PositiveInteger

The expression hue(color)
returns its hue.

hue myFavoriteColor

Hue: 22 Weight: 1.0 (4)
Type: Color

Palettes can be used in
specifying colors in
two-dimensional graphs.

draw(x**2,x=-1..1,curveColor == dark blue())

Compiling function %BK with type DoubleFloat ->
DoubleFloat

Graph data being transmitted to the viewport
manager...
AXIOM2D data being transmitted to the viewport
manager...

TwoDimensionalViewport: "x*x" (5)
Type: TwoDimensionalViewport

250 · Graphics

7.1.7
Two-Dimensional
Control-Panel

Once you have created a viewport, move your mouse to the viewport and
click with your left mouse button to display a control-panel. The panel is
displayed on the side of the viewport closest to where you clicked. Each of
the buttons which toggle on and off show the current state of the graph.

Figure 7.2: Two-dimensional control-panel.

Transformations Object transformations are executed from the control-panel by mouse-
activated potentiometer windows.

Scale: To scale a graph, click on a mouse button within the Scale window
in the upper left corner of the control-panel. The axes along which
the scaling is to occur are indicated by setting the toggles above the
arrow. With X On and Y On appearing, both axes are selected and
scaling is uniform. If either is not selected, for example, if X Off
appears, scaling is non-uniform.

Translate: To translate a graph, click the mouse in the Translate win-
dow in the direction you wish the graph to move. This window is
located in the upper right corner of the control-panel. Along the top
of the Translate window are two buttons for selecting the direc-
tion of translation. Translation along both coordinate axes results
when X On and Y On appear or along one axis when one is on, for
example, X On and Y Off appear.

7.1. Two-Dimensional Graphics · 251

Messages The window directly below the transformation potentiometer windows is
used to display system messages relating to the viewport and the control-
panel. The following format is displayed:

[scaleX, scaleY] >graph< [translateX, translateY]

The two values to the left show the scale factor along the X and Y coor-
dinate axes. The two values to the right show the distance of translation
from the center in the X and Y directions. The number in the center
shows which graph in the viewport this data pertains to. When multiple
graphs exist in the same viewport, the graph must be selected (see “Mul-
tiple Graphs,” below) in order for its transformation data to be shown,
otherwise the number is 1.

Multiple Graphs The Graphs window contains buttons that allow the placement of two-
dimensional graphs into one of nine available slots in any other two-di-
mensional viewport. In the center of the window are numeral buttons
from one to nine that show whether a graph is displayed in the viewport.
Below each number button is a button showing whether a graph that
is present is selected for application of some transformation. When the
caret symbol is displayed, then the graph in that slot will be manipulated.
Initially, the graph for which the viewport is created occupies the first slot,
is displayed, and is selected.

Clear: The Clear button deselects every viewport graph slot. A graph
slot is reselected by selecting the button below its number.

Query: The Query button is used to display the scale and translate data
for the indicated graph. When this button is selected the message
“Click on the graph to query” appears. Select a slot number button
from the Graphs window. The scaling factor and translation offset
of the graph are then displayed in the message window.

Pick: The Pick button is used to select a graph to be placed or dropped
into the indicated viewport. When this button is selected, the mes-
sage “Click on the graph to pick” appears. Click on the slot with
the graph number of the desired graph. The graph information is
held waiting for you to execute a Drop in some other graph.

Drop: Once a graph has been picked up using the Pick button, the Drop
button places it into a new viewport slot. The message “Click on
the graph to drop” appears in the message window when the Drop
button is selected. By selecting one of the slot number buttons in
the Graphs window, the graph currently being held is dropped into
this slot and displayed.

252 · Graphics

Buttons
Axes turns the coordinate axes on or off.
Units turns the units along the x and y axis on or off.
Box encloses the area of the viewport graph in a bounding box, or re-

moves the box if already enclosed.
Pts turns on or off the display of points.
Lines turns on or off the display of lines connecting points.
PS writes the current viewport contents to a file axiom2D.ps or to a

name specified in the user’s .Xdefaults file. The file is placed in
the directory from which AXIOM or the viewAlone program was
invoked.

Reset resets the object transformation characteristics and attributes back
to their initial states.

Hide makes the control-panel disappear.
Quit queries whether the current viewport session should be terminated.

7.1.8
Operations for
Two-Dimensional
Graphics

Here is a summary of useful AXIOM operations for two-dimensional
graphics. Each operation name is followed by a list of arguments. Each
argument is written as a variable informally named according to the type
of the argument (for example, integer). If appropriate, a default value for
an argument is given in parentheses immediately following the name.

adaptive ([boolean(true)])
sets or indicates whether graphs are plotted according to the adap-
tive refinement algorithm.

axesColorDefault ([color(dark blue())])
sets or indicates the default color of the axes in a two-dimensional
graph viewport.

clipPointsDefault ([boolean(false)])
sets or indicates whether point clipping is to be applied as the de-
fault for graph plots.

drawToScale ([boolean(false)])
sets or indicates whether the plot of a graph is “to scale” or uses
the entire viewport space as the default.

lineColorDefault ([color(pastel yellow())])
sets or indicates the default color of the lines or curves in a two-di-
mensional graph viewport.

maxPoints ([integer(500)])
sets or indicates the default maximum number of possible points to
be used when constructing a two-dimensional graph.

7.1. Two-Dimensional Graphics · 253

minPoints ([integer(21)])
sets or indicates the default minimum number of possible points to
be used when constructing a two-dimensional graph.

pointColorDefault ([color(bright red())])
sets or indicates the default color of the points in a two-dimensional
graph viewport.

pointSizeDefault ([integer(5)])
sets or indicates the default size of the dot used to plot points in a
two-dimensional graph.

screenResolution ([integer(600)])
sets or indicates the default screen resolution constant used in set-
ting the computation limit of adaptively generated curve plots.

unitsColorDefault ([color(dim green())])
sets or indicates the default color of the unit labels in a two-dimen-
sional graph viewport.

viewDefaults ()
resets the default settings for the following attributes: point color,
line color, axes color, units color, point size, viewport upper left-
hand corner position, and the viewport size.

viewPosDefault ([list([100,100])])
sets or indicates the default position of the upper left-hand corner
of a two-dimensional viewport, relative to the display root window.
The upper left-hand corner of the display is considered to be at the
(0, 0) position.

viewSizeDefault ([list([200,200])])
sets or indicates the default size in which two dimensional viewport
windows are shown. It is defined by a width and then a height.

viewWriteAvailable ([list(["pixmap", "bitmap", "postscript",

ı̈mage")])
indicates the possible file types that can be created with the write
function.

viewWriteDefault ([list([])])
sets or indicates the default types of files, in addition to the data file,
that are created when a write function is executed on a viewport.

units (viewport, integer(1), string("off"))
turns the units on or off for the graph with index integer.

axes (viewport, integer(1), string("on"))
turns the axes on or off for the graph with index integer.

close (viewport)
closes viewport.

connect (viewport, integer(1), string("on"))

254 · Graphics

declares whether lines connecting the points are displayed or not.
controlPanel (viewport, string("off"))

declares whether the two-dimensional control-panel is automatically
displayed or not.

graphs (viewport)
returns a list describing the state of each graph. If the graph state
is not being used this is shown by "undefined", otherwise a de-
scription of the graph’s contents is shown.

graphStates (viewport)
displays a list of all the graph states available for viewport, giving
the values for every property.

key (viewport)
returns the process ID number for viewport.

move (viewport, integerx(viewPosDefault), integery(viewPosDefault))
moves viewport on the screen so that the upper left-hand corner of
viewport is at the position (x,y).

options (viewport)
returns a list of all the DrawOptions used by viewport.

points (viewport, integer(1), string("on"))
specifies whether the graph points for graph integer are to be dis-
played or not.

region (viewport, integer(1), string("off"))
declares whether graph integer is or is not to be displayed with a
bounding rectangle.

reset (viewport)
resets all the properties of viewport.

resize (viewport, integerwidth, integerheight)
resizes viewport with a new width and height.

scale (viewport, integern(1), integerx(0.9), integery(0.9))
scales values for the x and y coordinates of graph n.

show (viewport, integern(1), string("on"))
indicates if graph n is shown or not.

title (viewport, string("Axiom 2D"))
designates the title for viewport.

translate (viewport, integern(1), floatx(0.0), floaty(0.0))
causes graph n to be moved x and y units in the respective directions.

write (viewport, stringdirectory, [strings])
if no third argument is given, writes the data file onto the directory
with extension data. The third argument can be a single string or
a list of strings with some or all the entries "pixmap", "bitmap",
"postscript", and "image".

7.1. Two-Dimensional Graphics · 255

7.1.9
Addendum: Building
Two-Dimensional
Graphs

In this section we demonstrate how to create two-dimensional graphs from
lists of points and give an example showing how to read the lists of points
from a file.

Creating a Two-Dimensional
Viewport from a List of
Points

AXIOM creates lists of points in a two-dimensional viewport by utilizing
the GraphImage and TwoDimensionalViewport domains. In this example, the
makeGraphImage function takes a list of lists of points parameter, a
list of colors for each point in the graph, a list of colors for each line in
the graph, and a list of sizes for each point in the graph.

The following expressions create
a list of lists of points which will
be read by AXIOM and made
into a two-dimensional
viewport.

p1 := point [1,1]$(Point DFLOAT)

[1.0, 1.0] (1)
Type: Point DoubleFloat

p2 := point [0,1]$(Point DFLOAT)

[0.0, 1.0] (2)
Type: Point DoubleFloat

p3 := point [0,0]$(Point DFLOAT)

[0.0, 0.0] (3)
Type: Point DoubleFloat

p4 := point [1,0]$(Point DFLOAT)

[1.0, 0.0] (4)
Type: Point DoubleFloat

p5 := point [1,.5]$(Point DFLOAT)

[1.0, 0.5] (5)
Type: Point DoubleFloat

p6 := point [.5,0]$(Point DFLOAT)

[0.5, 0.0] (6)
Type: Point DoubleFloat

p7 := point [0,0.5]$(Point DFLOAT)

[0.0, 0.5] (7)
Type: Point DoubleFloat

p8 := point [.5,1]$(Point DFLOAT)

[0.5, 1.0] (8)
Type: Point DoubleFloat

256 · Graphics

p9 := point [.25,.25]$(Point DFLOAT)

[0.25, 0.25] (9)
Type: Point DoubleFloat

p10 := point [.25,.75]$(Point DFLOAT)

[0.25, 0.75] (10)
Type: Point DoubleFloat

p11 := point [.75,.75]$(Point DFLOAT)

[0.75, 0.75] (11)
Type: Point DoubleFloat

p12 := point [.75,.25]$(Point DFLOAT)

[0.75, 0.25] (12)
Type: Point DoubleFloat

Finally, here is the list. llp := [[p1,p2], [p2,p3], [p3,p4], [p4,p1], [p5,p6],
[p6,p7], [p7,p8], [p8,p5], [p9,p10], [p10,p11],
[p11,p12], [p12,p9]]

[[[1.0, 1.0], [0.0, 1.0]], [[0.0, 1.0], [0.0, 0.0]], [[0.0, 0.0], [1.0, 0.0]],
[[1.0, 0.0], [1.0, 1.0]], [[1.0, 0.5], [0.5, 0.0]], [[0.5, 0.0], [0.0, 0.5]],
[[0.0, 0.5], [0.5, 1.0]], [[0.5, 1.0], [1.0, 0.5]],
[[0.25, 0.25], [0.25, 0.75]], [[0.25, 0.75], [0.75, 0.75]],
[[0.75, 0.75], [0.75, 0.25]], [[0.75, 0.25], [0.25, 0.25]]]

(13)

Type: List List Point DoubleFloat

Now we set the point sizes for
all components of the graph.

size1 := 6::PositiveInteger

6 (14)
Type: PositiveInteger

size2 := 8::PositiveInteger

8 (15)
Type: PositiveInteger

size3 := 10::PositiveInteger

10 (16)
Type: PositiveInteger

lsize := [size1, size1, size1, size1, size2, size2, size2,
size2, size3, size3, size3, size3]

[6, 6, 6, 6, 8, 8, 8, 8, 10, 10, 10, 10] (17)
Type: List PositiveInteger

7.1. Two-Dimensional Graphics · 257

Here are the colors for the
points.

pc1 := pastel red()

[Hue: 1 Weight: 1.0] from the Pastel palette (18)
Type: Palette

pc2 := dim green()

[Hue: 14 Weight: 1.0] from the Dim palette (19)
Type: Palette

pc3 := pastel yellow()

[Hue: 11 Weight: 1.0] from the Pastel palette (20)
Type: Palette

lpc := [pc1, pc1, pc1, pc1, pc2, pc2, pc2, pc2, pc3, pc3,
pc3, pc3]

[[Hue: 1 Weight: 1.0] from the Pastel palette,
[Hue: 1 Weight: 1.0] from the Pastel palette,
[Hue: 1 Weight: 1.0] from the Pastel palette,
[Hue: 1 Weight: 1.0] from the Pastel palette,
[Hue: 14 Weight: 1.0] from the Dim palette,
[Hue: 14 Weight: 1.0] from the Dim palette,
[Hue: 14 Weight: 1.0] from the Dim palette,
[Hue: 14 Weight: 1.0] from the Dim palette,
[Hue: 11 Weight: 1.0] from the Pastel palette,
[Hue: 11 Weight: 1.0] from the Pastel palette,
[Hue: 11 Weight: 1.0] from the Pastel palette,
[Hue: 11 Weight: 1.0] from the Pastel palette]

(21)

Type: List Palette
Here are the colors for the lines. lc := [pastel blue(), light yellow(), dim green(), bright

red(), light green(), dim yellow(), bright blue(), dark
red(), pastel red(), light blue(), dim green(), light
yellow()]

[[Hue: 22 Weight: 1.0] from the Pastel palette,
[Hue: 11 Weight: 1.0] from the Light palette,
[Hue: 14 Weight: 1.0] from the Dim palette,
[Hue: 1 Weight: 1.0] from the Bright palette,
[Hue: 14 Weight: 1.0] from the Light palette,
[Hue: 11 Weight: 1.0] from the Dim palette,
[Hue: 22 Weight: 1.0] from the Bright palette,
[Hue: 1 Weight: 1.0] from the Dark palette,
[Hue: 1 Weight: 1.0] from the Pastel palette,
[Hue: 22 Weight: 1.0] from the Light palette,
[Hue: 14 Weight: 1.0] from the Dim palette,
[Hue: 11 Weight: 1.0] from the Light palette]

(22)

Type: List Palette

258 · Graphics

Now the GraphImage is created
according to the component
specifications indicated above.

g := makeGraphImage(llp,lpc,lc,lsize)$GRIMAGE

Graph data being transmitted to the viewport
manager...

Graph with12point lists (23)
Type: GraphImage

The makeViewport2D
function now creates a
TwoDimensionalViewport for this
graph according to the list of
options specified within the
brackets.

makeViewport2D(g,[title("Lines")])$VIEW2D

AXIOM2D data being transmitted to the viewport
manager...

TwoDimensionalViewport: "Lines" (24)
Type: TwoDimensionalViewport

This example demonstrates the
use of the GraphImage functions
component and appendPoint
in adding points to an empty
GraphImage.

g := graphImage()$GRIMAGE

Graph with0point lists (1)
Type: GraphImage

p1 := point [0,0]$(Point DFLOAT)

[0.0, 0.0] (2)
Type: Point DoubleFloat

p2 := point [.25,.25]$(Point DFLOAT)

[0.25, 0.25] (3)
Type: Point DoubleFloat

p3 := point [.5,.5]$(Point DFLOAT)

[0.5, 0.5] (4)
Type: Point DoubleFloat

p4 := point [.75,.75]$(Point DFLOAT)

[0.75, 0.75] (5)
Type: Point DoubleFloat

p5 := point [1,1]$(Point DFLOAT)

[1.0, 1.0] (6)
Type: Point DoubleFloat

component(g,p1)$GRIMAGE

Type: Void

7.1. Two-Dimensional Graphics · 259

component(g,p2)$GRIMAGE

Type: Void

appendPoint(g,p3)$GRIMAGE

Type: Void

appendPoint(g,p4)$GRIMAGE

Type: Void

appendPoint(g,p5)$GRIMAGE

Type: Void

g1 := makeGraphImage(g)$GRIMAGE

Graph data being transmitted to the viewport
manager...

Graph with2point lists (12)
Type: GraphImage

Here is the graph. makeViewport2D(g1,[title("Graph Points")])$VIEW2D

AXIOM2D data being transmitted to the viewport
manager...

TwoDimensionalViewport: "Graph Points"

260 · Graphics

PART III

Advanced
Problem
Solving and
Examples

CHAPTER 8

Advanced
Problem
Solving

In this chapter we describe techniques useful in solving advanced problems
with AXIOM.

263

8.1
Numeric
Functions

AXIOM provides two basic floating-point types: Float and DoubleFloat.
This section describes how to use numerical operations defined on these
types and the related complex types. As we mentioned in Chapter 1,
the Float type is a software implementation of floating-point numbers in
which the exponent and the significand may have any number of digits.
See ‘Float’ on page 427 for detailed information about this domain. The
DoubleFloat (see ‘DoubleFloat’ on page 404) is usually a hardware imple-
mentation of floating point numbers, corresponding to machine double
precision. The types Complex Float and Complex DoubleFloat are the cor-
responding software implementations of complex floating-point numbers.
In this section the term floating-point type means any of these four types.
The floating-point types implement the basic elementary functions. These
include (where “$” means DoubleFloat, Float, Complex DoubleFloat, or Com-
plex Float):

exp, log: $ -> $
sin, cos, tan, cot, sec, csc: $ -> $
sin, cos, tan, cot, sec, csc: $ -> $
asin, acos, atan, acot, asec, acsc: $ -> $
sinh, cosh, tanh, coth, sech, csch: $ -> $
asinh, acosh, atanh, acoth, asech, acsch: $ -> $
pi: () -> $
sqrt: $ -> $
nthRoot: ($, Integer) -> $
**: ($, Fraction Integer) -> $
**: ($,$) -> $

The handling of roots depends on whether the floating-point type is real or
complex: for the real floating-point types, DoubleFloat and Float, if a real
root exists the one with the same sign as the radicand is returned; for
the complex floating-point types, the principal value is returned. Also,
for real floating-point types the inverse functions produce errors if the
results are not real. This includes cases such as asin(1.2), log(-3.2),
sqrt(-1.1).

The default floating-point type
is Float so to evaluate functions
using Float or Complex Float, just
use normal decimal notation.

exp(3.1)

22.197951281441633405 (1)
Type: Float

exp(3.1 + 4.5 * %i)

−4.6792348860969899118− 21.699165928071731864 i (2)
Type: Complex Float

264 · Advanced Problem Solving

To evaluate functions using
DoubleFloat or Complex
DoubleFloat, a declaration or
conversion is required.

r: DFLOAT := 3.1; t: DFLOAT := 4.5; exp(r + t*%i)

−4.6792348860969906− 21.699165928071732 i (3)
Type: Complex DoubleFloat

exp(3.1::DFLOAT + 4.5::DFLOAT * %i)

−4.6792348860969906− 21.699165928071732 i (4)
Type: Complex DoubleFloat

A number of special functions are provided by the package DoubleFloat-
SpecialFunctions for the machine-precision floating-point types. The special
functions provided are listed below, where F stands for the types Double-
Float and Complex DoubleFloat. The real versions of the functions yield an
error if the result is not real.

Gamma: F -> F
Gamma(z) is the Euler gamma function, Γ(z), defined by

Γ(z) =
∫ ∞

0
tz−1e−tdt.

Beta: F -> F
Beta(u, v) is the Euler Beta function, B(u, v), defined by

B(u, v) =
∫ 1

0
tu−1(1− t)v−1dt.

This is related to Γ(z) by

B(u, v) =
Γ(u)Γ(v)
Γ(u + v)

.

logGamma: F -> F
logGamma(z) is the natural logarithm of Γ(z). This can often be com-
puted even if Γ(z) cannot.

digamma: F -> F
digamma(z), also called psi(z), is the function ψ(z), defined by

ψ(z) = Γ′(z)/Γ(z).

polygamma: (NonNegativeInteger, F) -> F
polygamma(n, z) is the n th derivative of ψ(z), written ψ(n)(z).

besselJ: (F,F) -> F
besselJ(v,z) is the Bessel function of the first kind, Jν(z). This function
satisfies the differential equation

z2w′′(z) + zw′(z) + (z2 − ν2)w(z) = 0.

8.1. Numeric Functions · 265

besselY: (F,F) -> F
besselY(v,z) is the Bessel function of the second kind, Yν(z). This
function satisfies the same differential equation as besselJ. The imple-
mentation simply uses the relation

Yν(z) =
Jν(z) cos(νπ)− J−ν(z)

sin(νπ)
.

besselI: (F,F) -> F
besselI(v,z) is the modified Bessel function of the first kind, Iν(z). This
function satisfies the differential equation

z2w′′(z) + zw′(z)− (z2 + ν2)w(z) = 0.

besselK: (F,F) -> F
besselK(v,z) is the modified Bessel function of the second kind, Kν(z).
This function satisfies the same differential equation as besselI. The im-
plementation simply uses the relation

Kν(z) = π
I−ν(z)− Iν(z)

2 sin(νπ)
.

airyAi: F -> F
airyAi(z) is the Airy function Ai(z). This function satisfies the differ-
ential equation w′′(z) − zw(z) = 0. The implementation simply uses the
relation

Ai(−z) =
1
3
√

z(J−1/3(
2
3
z3/2) + J1/3(

2
3
z3/2)).

airyBi: F -> F
airyBi(z) is the Airy function Bi(z). This function satisfies the same
differential equation as airyAi. The implementation simply uses the re-
lation

Bi(−z) =
1
3

√
3z(J−1/3(

2
3
z3/2)− J1/3(

2
3
z3/2)).

hypergeometric0F1: (F,F) -> F
hypergeometric0F1(c,z) is the hypergeometric function 0F1(; c; z).

The above special functions are
defined only for small
floating-point types. If you give
Float arguments, they are
converted to DoubleFloat by
AXIOM.

Gamma(0.5)**2

3.14159265358979 (5)
Type: DoubleFloat

a := 2.1; b := 1.1; besselI(a + %i*b, b*a + 1)

2.4894824175473689− 2.3658460381468345 i (6)
Type: Complex DoubleFloat

266 · Advanced Problem Solving

A number of additional operations may be used to compute numerical
values. These are special polynomial functions that can be evaluated
for values in any commutative ring R, and in particular for values in any
floating-point type. The following operations are provided by the package
OrthogonalPolynomialFunctions:

chebyshevT: (NonNegativeInteger, R) -> R
chebyshevT(n,z) is the n th Chebyshev polynomial of the first kind,
Tn(z). These are defined by

1− tz

1− 2tz + t2
=

∞∑

n=0

Tn(z)tn.

chebyshevU: (NonNegativeInteger, R) -> R
chebyshevU(n,z) is the n th Chebyshev polynomial of the second kind,
Un(z). These are defined by

1
1− 2tz + t2

=
∞∑

n=0

Un(z)tn.

hermiteH: (NonNegativeInteger, R) -> R
hermiteH(n,z) is the n th Hermite polynomial, Hn(z). These are defined
by

e2tz−t2 =
∞∑

n=0

Hn(z)
tn

n!
.

laguerreL: (NonNegativeInteger, R) -> R
laguerreL(n,z) is the n th Laguerre polynomial, Ln(z). These are de-
fined by

e−
tz

1−t

1− t
=

∞∑

n=0

Ln(z)
tn

n!
.

laguerreL: (NonNegativeInteger, NonNegativeInteger, R) -> R
laguerreL(m,n,z) is the associated Laguerre polynomial, Lm

n (z). This
is the m th derivative of Ln(z).

legendreP: (NonNegativeInteger, R) -> R
legendreP(n,z) is the n th Legendre polynomial, Pn(z). These are de-
fined by

1√
1− 2tz + t2

=
∞∑

n=0

Pn(z)tn.

8.1. Numeric Functions · 267

These operations require
non-negative integers for the
indices, but otherwise the
argument can be given as
desired.

[chebyshevT(i, z) for i in 0..5]
[
1, z, 2 z2 − 1, 4 z3 − 3 z, 8 z4 − 8 z2 + 1, 16 z5 − 20 z3 + 5 z

]
(7)

Type: List Polynomial Integer

The expression
chebyshevT(n,z) evaluates to

the n th Chebyshev polynomial
of the first kind.

chebyshevT(3, 5.0 + 6.0*%i)

−1675.0 + 918.0 i (8)
Type: Complex Float

chebyshevT(3, 5.0::DoubleFloat)

485.0 (9)
Type: DoubleFloat

The expression
chebyshevU(n,z) evaluates to

the n th Chebyshev polynomial
of the second kind.

[chebyshevU(i, z) for i in 0..5]
[
1, 2 z, 4 z2 − 1, 8 z3 − 4 z, 16 z4 − 12 z2 + 1, 32 z5 − 32 z3 + 6 z

]
(10)

Type: List Polynomial Integer

chebyshevU(3, 0.2)

−0.736 (11)
Type: Float

The expression hermiteH(n,z)

evaluates to the n th Hermite
polynomial.

[hermiteH(i, z) for i in 0..5]
[
1, 2 z, 4 z2 − 2, 8 z3 − 12 z, 16 z4 − 48 z2 + 12,

32 z5 − 160 z3 + 120 z
] (12)

Type: List Polynomial Integer

hermiteH(100, 1.0)

−0.1448706729337934088E93 (13)
Type: Float

The expression laguerreL(n,z)

evaluates to the n th Laguerre
polynomial.

[laguerreL(i, z) for i in 0..4]
[
1, −z + 1, z2 − 4 z + 2, −z3 + 9 z2 − 18 z + 6,

z4 − 16 z3 + 72 z2 − 96 z + 24
] (14)

Type: List Polynomial Integer

laguerreL(4, 1.2)

−13.0944 (15)
Type: Float

268 · Advanced Problem Solving

[laguerreL(j, 3, z) for j in 0..4]
[
−z3 + 9 z2 − 18 z + 6, −3 z2 + 18 z − 18, −6 z + 18, −6, 0

]
(16)

Type: List Polynomial Integer

laguerreL(1, 3, 2.1)

6.57 (17)
Type: Float

The expression legendreP(n,z)

evaluates to the n th Legendre
polynomial,

[legendreP(i,z) for i in 0..5]
[
1, z,

3
2

z2 − 1
2
,

5
2

z3 − 3
2

z,
35
8

z4 − 15
4

z2 +
3
8
,

63
8

z5 − 35
4

z3 +
15
8

z

] (18)

Type: List Polynomial Fraction Integer

legendreP(3, 3.0*%i)

−72.0 i (19)
Type: Complex Float

Finally, three number-theoretic polynomial operations may be evaluated.
The following operations are provided by the package NumberTheoreticPoly-
nomialFunctions. .

bernoulliB: (NonNegativeInteger, R) -> R
bernoulliB(n,z) is the n th Bernoulli polynomial, Bn(z). These are
defined by

tezt

et − 1
=

∞∑

n=0

Bn(z)
tn

n!
.

eulerE: (NonNegativeInteger, R) -> R
eulerE(n,z) is the n th Euler polynomial, En(z). These are defined by

2ezt

et + 1
=

∞∑

n=0

En(z)
tn

n!
.

cyclotomic: (NonNegativeInteger, R) -> R
cyclotomic(n,z) is the n th cyclotomic polynomial Φn(z). This is the
polynomial whose roots are precisely the primitive n th roots of unity.
This polynomial has degree given by the Euler totient function φ(n).

The expression
bernoulliB(n,z) evaluates to

the n th Bernoulli polynomial.

bernoulliB(3, z)

z3 − 3
2

z2 +
1
2

z (20)

Type: Polynomial Fraction Integer

8.1. Numeric Functions · 269

bernoulliB(3, 0.7 + 0.4 * %i)

−0.138− 0.116 i (21)
Type: Complex Float

The expression eulerE(n,z)

evaluates to the n th Euler
polynomial.

eulerE(3, z)

z3 − 3
2

z2 +
1
4

(22)

Type: Polynomial Fraction Integer

eulerE(3, 0.7 + 0.4 * %i)

−0.238− 0.316 i (23)
Type: Complex Float

The expression
cyclotomic(n,z) evaluates to

the n th cyclotomic polynomial.

cyclotomic(3, z)

z2 + z + 1 (24)
Type: Polynomial Integer

cyclotomic(3, (-1.0 + 0.0 * %i)**(2/3))

0.0 (25)
Type: Complex Float

Drawing complex functions in AXIOM is presently somewhat awkward
compared to drawing real functions. It is necessary to use the draw
operations that operate on functions rather than expressions.

This is the complex exponential
function (rotated interactively).
When this is displayed in color,
the height is the value of the
real part of the function and the
color is the imaginary part. Red
indicates large negative
imaginary values, green
indicates imaginary values near
zero and blue/violet indicates
large positive imaginary values.

draw((x,y)+-> real exp complex(x,y), -2..2, -2*%pi..2*%pi,
colorFunction == (x, y) +-> imag exp complex(x,y),
title=="exp(x+%i*y)", style=="smooth")

Transmitting data...

ThreeDimensionalViewport: "exp(x+" (26)
Type: ThreeDimensionalViewport

X

Y

Z

270 · Advanced Problem Solving

This is the complex arctangent
function. Again, the height is
the real part of the function
value but here the color
indicates the function value’s
phase. The position of the
branch cuts are clearly visible
and one can see that the
function is real only for a real
argument.

vp := draw((x,y) +-> real atan complex(x,y), -%pi..%pi,
-%pi..%pi, colorFunction==(x,y) +->argument atan
complex(x,y), title=="atan(x+%i*y)", style=="shade");
rotate(vp,-160,-45); vp

Transmitting data...

ThreeDimensionalViewport: "atan(x+" (27)
Type: ThreeDimensionalViewport

X

Y

Z

This is the complex Gamma
function.

draw((x,y) +-> max(min(real Gamma complex(x,y),4),-4),
-%pi..%pi, -%pi..%pi, style=="shade", colorFunction
== (x,y) +-> argument Gamma complex(x,y), title ==
"Gamma(x+%i*y)", var1Steps == 50, var2Steps== 50)

Transmitting data...

ThreeDimensionalViewport: "Gamma(x+" (28)
Type: ThreeDimensionalViewport

X Y

Z

8.1. Numeric Functions · 271

This shows the real Beta
function near the origin.

draw(Beta(x,y)/100, x=-1.6..1.7, y = -1.6..1.7,
style=="shade", title=="Beta(x,y)", var1Steps==40,
var2Steps==40)

Compiling function %A with type (DoubleFloat,
DoubleFloat) -> DoubleFloat

Transmitting data...

ThreeDimensionalViewport: "Beta(x,y)" (29)
Type: ThreeDimensionalViewport

X Y

Z

This is the Bessel function
Jα(x) for index α in the range
-6..4 and argument x in the
range 2..14.

draw((alpha,x) +-> min(max(besselJ(alpha, x+8), -6), 6),
-6..4, -6..6, title=="besselJ(alpha,x)", style=="shade",
var1Steps==40, var2Steps==40)

Transmitting data...

ThreeDimensionalViewport: "besselJ(alpha,x)" (30)
Type: ThreeDimensionalViewport

X Y

Z

272 · Advanced Problem Solving

This is the modified Bessel
function Iα(x) evaluated for
various real values of the index
α and fixed argument x = 5.

draw(besselI(alpha, 5), alpha = -12..12, unit==[5,20])

Compiling function %B with type DoubleFloat ->
DoubleFloat

Graph data being transmitted to the viewport
manager...
AXIOM2D data being transmitted to the viewport
manager...

TwoDimensionalViewport: "besselI(alpha,5)" (31)
Type: TwoDimensionalViewport

0.00 5.00 10.00-5.00-10.00

20.00

-20.00

-40.00

-60.00

This is similar to the last
example except the index α
takes on complex values in a 6 x
6 rectangle centered on the
origin.

draw((x,y) +-> real besselI(complex(x/20, y/20),5),
-60..60, -60..60, colorFunction == (x,y)+-
> argument besselI(complex(x/20,y/20),5),
title=="besselI(x+i*y,5)", style=="shade")

Transmitting data...

ThreeDimensionalViewport: "besselI(x+i*y,5)" (32)
Type: ThreeDimensionalViewport

X Y

Z

8.1. Numeric Functions · 273

8.2
Polynomial
Factorization

The AXIOM polynomial factorization facilities are available for all poly-
nomial types and a wide variety of coefficient domains. Here are some
examples.

8.2.1
Integer and Rational
Number Coefficients

Polynomials with integer
coefficients can be be factored.

v := (4*x**3+2*y**2+1)*(12*x**5-x**3*y+12)

−2 x3 y3 +
(
24 x5 + 24

)
y2 +

(
−4 x6 − x3

)
y + 48 x8 + 12 x5

+48 x3 + 12
(1)

Type: Polynomial Integer

factor v

−
(
x3 y − 12 x5 − 12

) (
2 y2 + 4 x3 + 1

)
(2)

Type: Factored Polynomial Integer

Also, AXIOM can factor
polynomials with rational
number coefficients.

w := (4*x**3+(2/3)*x**2+1)*(12*x**5-(1/2)*x**3+12)

48 x8 + 8 x7 − 2 x6 +
35
3

x5 +
95
2

x3 + 8 x2 + 12 (3)

Type: Polynomial Fraction Integer

factor w

48
(

x3 +
1
6

x2 +
1
4

) (
x5 − 1

24
x3 + 1

)
(4)

Type: Factored Polynomial Fraction Integer

8.2.2
Finite Field
Coefficients

Polynomials with coefficients in a finite field can be also be factored.

u : POLY(PF(19)) :=3*x**4+2*x**2+15*x+18

3 x4 + 2 x2 + 15 x + 18 (1)
Type: Polynomial PrimeField 19

These include the integers mod
p, where p is prime, and
extensions of these fields.

factor u

3 (x + 18)
(
x3 + x2 + 8 x + 13

)
(2)

Type: Factored Polynomial PrimeField 19

274 · Advanced Problem Solving

Convert this to have coefficients
in the finite field with 193

elements. See Section 8.11 on
page 316 for more information
about finite fields.

factor(u :: POLY FFX(PF 19,3))

3 (x + 18)
(
x + 5 %C2 + 3 %C + 13

) (
x + 16 %C2 + 14 %C + 13

)×(
x + 17 %C2 + 2 %C + 13

) (3)

Type: Factored Polynomial FiniteFieldExtension(PrimeField 19, 3)

8.2.3
Simple Algebraic
Extension Field
Coefficients

Polynomials with coefficients in simple algebraic extensions of the rational
numbers can be factored.

Here, aa and bb are symbolic
roots of polynomials.

aa := rootOf(aa**2+aa+1)

aa (1)
Type: AlgebraicNumber

p:=(x**3+aa**2*x+y)*(aa*x**2+aa*x+aa*y**2)**2

(−aa− 1) y5 +
(
(−aa− 1) x3 + aa x

)
y4 +

(
(−2 aa− 2) x2+

(−2 aa− 2) x
)

y3 +
(
(−2 aa− 2) x5 + (−2 aa− 2) x4 + 2 aa x3+

2 aa x2
)

y2 +
(
(−aa− 1) x4 + (−2 aa− 2) x3 + (−aa− 1) x2

)
y+

(−aa− 1) x7 + (−2 aa− 2) x6 − x5 + 2 aa x4 + aa x3

(2)

Type: Polynomial AlgebraicNumber

Note that the second argument
to factor can be a list of
algebraic extensions to factor
over.

factor(p,[aa])

(−aa− 1)
(
y + x3 + (−aa− 1) x

) (
y2 + x2 + x

)2
(3)

Type: Factored Polynomial AlgebraicNumber

This factors x**2+3 over the
integers.

factor(x**2+3)

x2 + 3 (4)
Type: Factored Polynomial Integer

Factor the same polynomial over
the field obtained by adjoining
aa to the rational numbers.

factor(x**2+3,[aa])

(x− 2 aa− 1) (x + 2 aa + 1) (5)
Type: Factored Polynomial AlgebraicNumber

Factor x**6+108 over the same
field.

factor(x**6+108,[aa])(
x3 − 12 aa− 6

) (
x3 + 12 aa + 6

)
(6)

Type: Factored Polynomial AlgebraicNumber

bb:=rootOf(bb**3-2)

bb (7)
Type: AlgebraicNumber

8.2. Polynomial Factorization · 275

factor(x**6+108,[bb])(
x2 − 3 bb x + 3 bb2

) (
x2 + 3 bb2

) (
x2 + 3 bb x + 3 bb2

)
(8)

Type: Factored Polynomial AlgebraicNumber

Factor again over the field
obtained by adjoining both aa
and bb to the rational numbers.

factor(x**6+108,[aa,bb])

(x + (−2 aa− 1) bb) (x + (−aa− 2) bb) (x + (−aa + 1) bb)×
(x + (aa− 1) bb) (x + (aa + 2) bb) (x + (2 aa + 1) bb) (9)

Type: Factored Polynomial AlgebraicNumber

8.2.4
Factoring Rational
Functions

Since fractions of polynomials form a field, every element (other than
zero) divides any other, so there is no useful notion of irreducible factors.
Thus the factor operation is not very useful for fractions of polynomials.

There is, instead, a specific
operation factorFraction that
separately factors the numerator
and denominator and returns a
fraction of the factored results.

factorFraction((x**2-4)/(y**2-4))

(x− 2) (x + 2)
(y − 2) (y + 2)

(1)

Type: Fraction Factored Polynomial Integer

You can also use map. This
expression applies the factor
operation to the numerator and
denominator.

map(factor,(x**2-4)/(y**2-4))

(x− 2) (x + 2)
(y − 2) (y + 2)

(2)

Type: Fraction Factored Polynomial Integer

276 · Advanced Problem Solving

8.3
Manipulating
Symbolic Roots of
a Polynomial

In this section we show you how to work with one root or all roots of
a polynomial. These roots are represented symbolically (as opposed to
being numeric approximations). See Section 8.5.2 on page 284 and Section
8.5.3 on page 286 for information about solving for the roots of one or
more polynomials.

8.3.1
Using a Single Root
of a Polynomial

Use rootOf to get a symbolic root of a polynomial: rootOf(p, x) returns
a root of p(x).

This creates an algebraic
number a.

a := rootOf(a**4+1,a)

a (1)
Type: Expression Integer

To find the algebraic relation
that defines a, use
definingPolynomial.

definingPolynomial a

a4 + 1 (2)
Type: Expression Integer

You can use a in any further
expression, including a nested
rootOf.

b := rootOf(b**2-a-1,b)

b (3)
Type: Expression Integer

Higher powers of the roots are
automatically reduced during
calculations.

a + b

b + a (4)
Type: Expression Integer

% ** 5(
10 a3 + 11 a2 + 2 a− 4

)
b + 15 a3 + 10 a2 + 4 a− 10 (5)

Type: Expression Integer

The operation zeroOf is similar
to rootOf, except that it may
express the root using radicals
in some cases.

rootOf(c**2+c+1,c)

c (6)
Type: Expression Integer

zeroOf(d**2+d+1,d)
√−3− 1

2
(7)

Type: Expression Integer

rootOf(e**5-2,e)

e (8)
Type: Expression Integer

8.3. Manipulating Symbolic Roots of a Polynomial · 277

zeroOf(f**5-2,f)
5
√

2 (9)
Type: Expression Integer

8.3.2
Using All Roots of a
Polynomial

Use rootsOf to get all symbolic roots of a polynomial: rootsOf(p, x)
returns a list of all the roots of p(x). If p(x) has a multiple root of order
n, then that root appears n times in the list.

Compute all the roots of x**4 +
1.

l := rootsOf(x**4+1,x)

[%x0, %x0 %x1, −%x0, −%x0 %x1] (1)
Type: List Expression Integer

As a side effect, the variables
%x0, %x1 and %x2 are bound to
the first three roots of x**4+1.

%x0**5

−%x0 (2)
Type: Expression Integer

Although they all satisfy x**4 +
1 = 0, %x0, %x1, and %x2 are
different algebraic numbers. To
find the algebraic relation that
defines each of them, use
definingPolynomial.

definingPolynomial %x0

%x04 + 1 (3)
Type: Expression Integer

definingPolynomial %x1

%x12 + 1 (4)
Type: Expression Integer

definingPolynomial %x2

−%x2 + %%var (5)
Type: Expression Integer

We can check that the sum and
product of the roots of x**4+1
are its trace and norm.

x3 := last l

−%x0 %x1 (6)
Type: Expression Integer

%x0 + %x1 + %x2 + x3

(−%x0 + 1) %x1 + %x0 + %x2 (7)
Type: Expression Integer

%x0 * %x1 * %x2 * x3

%x2 %x02 (8)
Type: Expression Integer

278 · Advanced Problem Solving

Corresponding to the pair of
operations rootOf/zeroOf in
Section 8.5.2 on page 284, there
is an operation zerosOf that,
like rootsOf, computes all the
roots of a given polynomial, but
which expresses some of them in
terms of radicals.

zerosOf(y**4+1,y)
[√−1 + 1√

2
,

√−1− 1√
2

,
−√−1− 1√

2
,
−√−1 + 1√

2

]
(9)

Type: List Expression Integer

As you see, only one implicit
algebraic number was created
(%y1), and its defining equation
is this. The other three roots
are expressed in radicals.

definingPolynomial %y1

%%var2 + 1 (10)
Type: Expression Integer

8.3. Manipulating Symbolic Roots of a Polynomial · 279

8.4
Computation of
Eigenvalues and
Eigenvectors

In this section we show you some of AXIOM’s facilities for computing
and manipulating eigenvalues and eigenvectors, also called characteristic
values and characteristic vectors, respectively.

Let’s first create a matrix with
integer entries.

m1 := matrix [[1,2,1],[2,1,-2],[1,-2,4]]



1 2 1
2 1 −2
1 −2 4


 (1)

Type: Matrix Integer

To get a list of the rational
eigenvalues, use the operation
eigenvalues.

leig := eigenvalues(m1)
[
5,

(
%E | %E2 −%E − 5

)]
(2)

Type: List Union(Fraction Polynomial Integer, SuchThat(Symbol, Polynomial
Integer))

Given an explicit eigenvalue,
eigenvector computes the
eigenvectors corresponding to it.

eigenvector(first(leig),m1)






0
−1

2
1





 (3)

Type: List Matrix Fraction Polynomial Fraction Integer

The operation eigenvectors returns a list of pairs of values and vectors.
When an eigenvalue is rational, AXIOM gives you the value explicitly;
otherwise, its minimal polynomial is given, (the polynomial of lowest de-
gree with the eigenvalues as roots), together with a parametric represen-
tation of the eigenvector using the eigenvalue. This means that if you ask
AXIOM to solve the minimal polynomial, then you can substitute these
roots into the parametric form of the corresponding eigenvectors.

You must be aware that unless
an exact eigenvalue has been
computed, the eigenvector may
be badly in error.

eigenvectors(m1)




eigval = 5, eigmult = 1, eigvec =







0
−1

2
1








,


eigval =

(
%F | %F 2 −%F − 5

)
, eigmult = 1, eigvec =







%F
2
1













(4)

Type: List Record(eigval: Union(Fraction Polynomial Integer, SuchThat(Symbol,
Polynomial Integer)), eigmult: NonNegativeInteger, eigvec: List Matrix
Fraction Polynomial Integer)

280 · Advanced Problem Solving

Another possibility is to use the
operation radicalEigenvectors
tries to compute explicitly the
eigenvectors in terms of radicals.

radicalEigenvectors(m1)




radval =

√
21 + 1

2
, radmult = 1, radvect =







√
21+1
2
2
1








,


radval =

−√21 + 1
2

, radmult = 1, radvect =







−√21+1
2
2
1








,


radval = 5, radmult = 1, radvect =







0
−1

2
1













(5)

Type: List Record(radval: Expression Integer, radmult: Integer, radvect: List Matrix
Expression Integer)

Alternatively, AXIOM can compute real or complex approximations to
the eigenvectors and eigenvalues using the operations realEigenvectors
or complexEigenvectors. They each take an additional argument ε to
specify the “precision” required. In the real case, this means that each
approximation will be within ±ε of the actual result. In the complex case,
this means that each approximation will be within ±ε of the actual result
in each of the real and imaginary parts.

The precision can be specified as
a Float if the results are desired
in floating-point notation, or as
Fraction Integer if the results are
to be expressed using rational
(or complex rational) numbers.

realEigenvectors(m1,1/1000)




outval = 5, outmult = 1, outvect =







0
−1

2
1








,


outval =

5717
2048

, outmult = 1, outvect =







5717
2048
2
1








,


outval = −3669

2048
, outmult = 1, outvect =






−3669

2048
2
1













(6)

Type: List Record(outval: Fraction Integer, outmult: Integer, outvect: List Matrix
Fraction Integer)

If an n by n matrix has n
distinct eigenvalues (and
therefore n eigenvectors) the
operation eigenMatrix gives
you a matrix of the
eigenvectors.

eigenMatrix(m1)



√
21+1
2

−√21+1
2 0

2 2 −1
2

1 1 1


 (7)

Type: Union(Matrix Expression Integer, ...)

8.4. Computation of Eigenvalues and Eigenvectors · 281

m2 := matrix [[-5,-2],[18,7]]
[−5 −2

18 7

]
(8)

Type: Matrix Integer

eigenMatrix(m2)

"failed" (9)
Type: Union("failed", ...)

If a symmetric matrix has a
basis of orthonormal
eigenvectors, then
orthonormalBasis computes a
list of these vectors.

m3 := matrix [[1,2],[2,1]]
[

1 2
2 1

]
(10)

Type: Matrix Integer

orthonormalBasis(m3)
[[− 1√

2
1√
2

]
,

[
1√
2

1√
2

]]
(11)

Type: List Matrix Expression Integer

282 · Advanced Problem Solving

8.5
Solution of Linear
and Polynomial
Equations

In this section we discuss the AXIOM facilities for solving systems of
linear equations, finding the roots of polynomials and solving systems
of polynomial equations. For a discussion of the solution of differential
equations, see Section 8.10 on page 308.

8.5.1
Solution of Systems
of Linear Equations

You can use the operation solve to solve systems of linear equations.

The operation solve takes two arguments, the list of equations and the
list of the unknowns to be solved for. A system of linear equations need
not have a unique solution.

To solve the linear system:

x + y + z = 8

3x − 2y + z = 0

x + 2y + 2z = 17

evaluate this expression.

solve([x+y+z=8,3*x-2*y+z=0,x+2*y+2*z=17],[x,y,z])

[[x = −1, y = 2, z = 7]] (1)
Type: List List Equation Fraction Polynomial Integer

Parameters are given as new variables starting with a percent sign and
“%” and the variables are expressed in terms of the parameters. If the
system has no solutions then the empty list is returned.

When you solve the linear
system

x + 2y + 3z = 2

2x + 3y + 4z = 2

3x + 4y + 5z = 2

with this expression you get a
solution involving a parameter.

solve([x+2*y+3*z=2,2*x+3*y+4*z=2,3*x+4*y+5*z=2],[x,y,z])

[[x = %K − 2, y = −2 %K + 2, z = %K]] (2)
Type: List List Equation Fraction Polynomial Integer

The system can also be presented as a matrix and a vector. The matrix
contains the coefficients of the linear equations and the vector contains
the numbers appearing on the right-hand sides of the equations. You may
input the matrix as a list of rows and the vector as a list of its elements.

To solve the system:

x + y + z = 8

3x − 2y + z = 0

x + 2y + 2z = 17

in matrix form you would
evaluate this expression.

solve([[1,1,1],[3,-2,1],[1,2,2]],[8,0,17])

[particular = [−1, 2, 7], basis = [[0, 0, 0]]] (3)
Type: Record(particular: Union(Vector Fraction Integer, "failed"), basis: List

Vector Fraction Integer)

The solutions are presented as a Record with two components: the com-
ponent particular contains a particular solution of the given system or the

8.5. Solution of Linear and Polynomial Equations · 283

item "failed" if there are no solutions, the component basis contains a
list of vectors that are a basis for the space of solutions of the correspond-
ing homogeneous system. If the system of linear equations does not have
a unique solution, then the basis component contains non-trivial vectors.

This happens when you solve
the linear system

x + 2y + 3z = 2

2x + 3y + 4z = 2

3x + 4y + 5z = 2

with this command.

solve([[1,2,3],[2,3,4],[3,4,5]],[2,2,2])

[particular = [−2, 2, 0], basis = [[1, −2, 1]]] (4)
Type: Record(particular: Union(Vector Fraction Integer, "failed"), basis: List

Vector Fraction Integer)

All solutions of this system are obtained by adding the particular solution
with a linear combination of the basis vectors.

When no solution exists then "failed" is returned as the particular com-
ponent, as follows:

solve([[1,2,3],[2,3,4],[3,4,5]],[2,3,2])

[particular = "failed", basis = [[1, −2, 1]]] (5)
Type: Record(particular: Union(Vector Fraction Integer, "failed"), basis: List

Vector Fraction Integer)

When you want to solve a system of homogeneous equations (that is, a
system where the numbers on the right-hand sides of the equations are
all zero) in the matrix form you can omit the second argument and use
the nullSpace operation.

This computes the solutions of
the following system of
equations:

x + 2y + 3z = 0

2x + 3y + 4z = 0

3x + 4y + 5z = 0

The result is given as a list of
vectors and these vectors form a
basis for the solution space.

nullSpace([[1,2,3],[2,3,4],[3,4,5]])

[[1, −2, 1]] (6)
Type: List Vector Integer

8.5.2
Solution of a Single
Polynomial Equation

AXIOM can solve polynomial equations producing either approximate or
exact solutions. Exact solutions are either members of the ground field
or can be presented symbolically as roots of irreducible polynomials.

284 · Advanced Problem Solving

This returns the one rational
root along with an irreducible
polynomial describing the other
solutions.

solve(x**3 = 8,x)[
x = 2, x2 + 2 x + 4 = 0

]
(1)

Type: List Equation Fraction Polynomial Integer

If you want solutions expressed
in terms of radicals you would
use this instead.

radicalSolve(x**3 = 8,x)[
x = −√−3− 1, x =

√−3− 1, x = 2
]

(2)

Type: List Equation Expression Integer

The solve command always returns a value but radicalSolve returns
only the solutions that it is able to express in terms of radicals.

If the polynomial equation has rational coefficients you can ask for ap-
proximations to its real roots by calling solve with a second argument
that specifies the “precision” ε. This means that each approximation will
be within ±ε of the actual result.

Notice that the type of second
argument controls the type of
the result.

solve(x**4 - 10*x**3 + 35*x**2 - 50*x + 25,.0001)

[x = 3.618011474609375, x = 1.381988525390625] (3)
Type: List Equation Polynomial Float

If you give a floating-point
precision you get a
floating-point result; if you give
the precision as a rational
number you get a rational
result.

solve(x**3-2,1/1000)
[
x =

2581
2048

]
(4)

Type: List Equation Polynomial Fraction Integer

If you want approximate
complex results you should use
the command complexSolve
that takes the same precision
argument ε.

complexSolve(x**3-2,.0001)

[x = 1.259918212890625,
x = −0.62989432795395613131− 1.091094970703125 i,
x = −0.62989432795395613131 + 1.091094970703125 i]

(5)

Type: List Equation Polynomial Complex Float

Each approximation will be
within ±ε of the actual result in
each of the real and imaginary
parts.

complexSolve(x**2-2*%i+1,1/100)
[
x = −13028925

16777216
− 325

256
i, x =

13028925
16777216

+
325
256

i

]
(6)

Type: List Equation Polynomial Complex Fraction Integer

Note that if you omit the “=” from the first argument AXIOM generates
an equation by equating the first argument to zero. Also, when only one
variable is present in the equation, you do not need to specify the variable
to be solved for, that is, you can omit the second argument.

8.5. Solution of Linear and Polynomial Equations · 285

AXIOM can also solve equations
involving rational functions.
Solutions where the
denominator vanishes are
discarded.

radicalSolve(1/x**3 + 1/x**2 + 1/x = 0,x)
[
x =

−√−3− 1
2

, x =
√−3− 1

2

]
(7)

Type: List Equation Expression Integer

8.5.3
Solution of Systems
of Polynomial
Equations

Given a system of equations of rational functions with exact coefficients:

p1(x1, . . . , xn)
...

pm(x1, . . . , xn)

AXIOM can find numeric or symbolic solutions. The system is first split
into irreducible components, then for each component, a triangular system
of equations is found that reduces the problem to sequential solution
of univariate polynomials resulting from substitution of partial solutions
from the previous stage.

q1(x1, . . . , xn)
...

qm(xn)

Symbolic solutions can be presented using “implicit” algebraic numbers
defined as roots of irreducible polynomials or in terms of radicals. AXIOM
can also find approximations to the real or complex roots of a system of
polynomial equations to any user-specified accuracy.

The operation solve for systems is used in a way similar to solve for
single equations. Instead of a polynomial equation, one has to give a list
of equations and instead of a single variable to solve for, a list of variables.
For solutions of single equations see Section 8.5.2 on page 284.

Use the operation solve if you
want implicitly presented
solutions.

solve([3*x**3 + y + 1,y**2 -4],[x,y])
[[

x = −1, y = 2
]
,

[
x2 − x + 1 = 0, y = 2

]
,

[
3 x3 − 1 = 0, y = −2

]]
(1)

Type: List List Equation Fraction Polynomial Integer

solve([x = y**2-19,y = z**2+x+3,z = 3*x],[x,y,z])
[[

x =
z

3
, y =

3 z2 + z + 9
3

, 9 z4 + 6 z3 + 55 z2 + 15 z − 90 = 0

]]
(2)

Type: List List Equation Fraction Polynomial Integer

286 · Advanced Problem Solving

Use radicalSolve if you want
your solutions expressed in
terms of radicals.

radicalSolve([3*x**3 + y + 1,y**2 -4],[x,y])
[[

x =
√−3 + 1

2
, y = 2

]
,

[
x =

−√−3 + 1
2

, y = 2

]
,

[
x =

−√−1
√

3− 1
2 3
√

3
, y = −2

]
,

[
x =

√−1
√

3− 1
2 3
√

3
, y = −2

]
,

[
x =

1
3
√

3
, y = −2

]
,

[
x = −1, y = 2

]]

(3)

Type: List List Equation Expression Integer

To get numeric solutions you only need to give the list of equations and the
precision desired. The list of variables would be redundant information
since there can be no parameters for the numerical solver.

If the precision is expressed as a
floating-point number you get
results expressed as floats.

solve([x**2*y - 1,x*y**2 - 2],.01)

[[y = 1.5859375, x = 0.79296875]] (4)
Type: List List Equation Polynomial Float

To get complex numeric
solutions, use the operation
complexSolve, which takes the
same arguments as in the real
case.

complexSolve([x**2*y - 1,x*y**2 - 2],1/1000)
[[

y =
1625
1024

, x =
1625
2048

]
,

[
y = −435445573689

549755813888
− 1407

1024
i, x = − 435445573689

1099511627776
− 1407

2048
i

]
,

[
y = −435445573689

549755813888
+

1407
1024

i, x = − 435445573689
1099511627776

+
1407
2048

i

]]
(5)

Type: List List Equation Polynomial Complex Fraction Integer

It is also possible to solve
systems of equations in rational
functions over the rational
numbers. Note that [x = 0.0,
a = 0.0] is not returned as a
solution since the denominator
vanishes there.

solve([x**2/a = a,a = a*x],.001)

[[x = 1.0, a = −1.0], [x = 1.0, a = 1.0]] (6)
Type: List List Equation Polynomial Float

When solving equations with
denominators, all solutions
where the denominator vanishes
are discarded.

radicalSolve([x**2/a + a + y**3 - 1,a*y + a + 1],[x,y])




x = −

√
−a4 + 2 a3 + 3 a2 + 3 a + 1

a2
, y =

−a− 1
a


,


x =

√
−a4 + 2 a3 + 3 a2 + 3 a + 1

a2
, y =

−a− 1
a







(7)

Type: List List Equation Expression Integer

8.5. Solution of Linear and Polynomial Equations · 287

8.6
Limits

To compute a limit, you must specify a functional expression, a variable,
and a limiting value for that variable. If you do not specify a direction,
AXIOM attempts to compute a two-sided limit.

Issue this to compute the limit

lim
x→1

x2 − 3x + 2

x2 − 1
.

limit((x**2 - 3*x + 2)/(x**2 - 1),x = 1)

−1
2

(1)

Type: Union(OrderedCompletion Fraction Polynomial Integer, ...)

Sometimes the limit when approached from the left is different from the
limit from the right and, in this case, you may wish to ask for a one-sided
limit. Also, if you have a function that is only defined on one side of a
particular value, you can compute a one-sided limit.

The function log(x) is only
defined to the right of zero, that
is, for x > 0. Thus, when
computing limits of functions
involving log(x), you probably
want a “right-hand” limit.

limit(x * log(x),x = 0,"right")

0 (2)
Type: Union(OrderedCompletion Expression Integer, ...)

When you do not specify
"right" or "left" as the
optional fourth argument, limit
tries to compute a two-sided
limit. Here the limit from the
left does not exist, as AXIOM
indicates when you try to take a
two-sided limit.

limit(x * log(x),x = 0)

[leftHandLimit = "failed", rightHandLimit = 0] (3)
Type: Union(Record(leftHandLimit: Union(OrderedCompletion Expression Integer,

"failed"), rightHandLimit: Union(OrderedCompletion Expression Integer,
"failed")), ...)

A function can be defined on both sides of a particular value, but tend
to different limits as its variable approaches that value from the left and
from the right. We can construct an example of this as follows: Since√

y2 is simply the absolute value of y, the function
√

y2/y is simply the
sign (+1 or -1) of the nonzero real number y. Therefore,

√
y2/y = −1 for

y < 0 and
√

y2/y = +1 for y > 0.

This is what happens when we
take the limit at y = 0. The
answer returned by AXIOM
gives both a “left-hand” and a
“right-hand” limit.

limit(sqrt(y**2)/y,y = 0)

[leftHandLimit = −1, rightHandLimit = 1] (4)
Type: Union(Record(leftHandLimit: Union(OrderedCompletion Expression Integer,

"failed"), rightHandLimit: Union(OrderedCompletion Expression Integer,
"failed")), ...)

Here is another example, this
time using a more complicated
function.

limit(sqrt(1 - cos(t))/t,t = 0)
[
leftHandLimit = − 1√

2
, rightHandLimit =

1√
2

]
(5)

Type: Union(Record(leftHandLimit: Union(OrderedCompletion Expression Integer,
"failed"), rightHandLimit: Union(OrderedCompletion Expression Integer,
"failed")), ...)

288 · Advanced Problem Solving

You can compute limits at infinity by passing either +∞ or −∞ as the
third argument of limit.

To do this, use the constants
%plusInfinity and
%minusInfinity.

limit(sqrt(3*x**2 + 1)/(5*x),x = %plusInfinity)
√

3
5

(6)

Type: Union(OrderedCompletion Expression Integer, ...)

limit(sqrt(3*x**2 + 1)/(5*x),x = %minusInfinity)

−
√

3
5

(7)

Type: Union(OrderedCompletion Expression Integer, ...)

You can take limits of functions
with parameters. As you can
see, the limit is expressed in
terms of the parameters.

limit(sinh(a*x)/tan(b*x),x = 0)
a

b
(8)

Type: Union(OrderedCompletion Expression Integer, ...)

When you use limit, you are taking the limit of a real function of a real
variable.

When you compute this,
AXIOM returns 0 because, as a
function of a real variable,
sin(1/z) is always between -1
and 1, so z * sin(1/z) tends to
0 as z tends to 0.

limit(z * sin(1/z),z = 0)

0 (9)
Type: Union(OrderedCompletion Expression Integer, ...)

However, as a function of a complex variable, sin(1/z) is badly behaved
near 0 (one says that sin(1/z) has an essential singularity at z = 0).

When viewed as a function of a
complex variable, z * sin(1/z)
does not approach any limit as z
tends to 0 in the complex plane.
AXIOM indicates this when we
call complexLimit.

complexLimit(z * sin(1/z),z = 0)

"failed" (10)
Type: Union("failed", ...)

You can also take complex limits at infinity, that is, limits of a function
of z as z approaches infinity on the Riemann sphere. Use the symbol
%infinity to denote “complex infinity.”

As above, to compute complex
limits rather than real limits,
use complexLimit.

complexLimit((2 + z)/(1 - z),z = %infinity)

−1 (11)
Type: OnePointCompletion Fraction Polynomial Integer

In many cases, a limit of a real
function of a real variable exists
when the corresponding
complex limit does not. This
limit exists.

limit(sin(x)/x,x = %plusInfinity)

0 (12)
Type: Union(OrderedCompletion Expression Integer, ...)

8.6. Limits · 289

But this limit does not. complexLimit(sin(x)/x,x = %infinity)

"failed" (13)
Type: Union("failed", ...)

290 · Advanced Problem Solving

8.7
Laplace
Transforms

AXIOM can compute some forward Laplace transforms, mostly of elemen-
tary functions not involving logarithms, although some cases of special
functions are handled.

To compute the forward Laplace
transform of F(t) with respect
to t and express the result as
f(s), issue the command
laplace(F(t), t, s).

laplace(sin(a*t)*cosh(a*t)-cos(a*t)*sinh(a*t), t, s)

4 a3

s4 + 4 a4
(1)

Type: Expression Integer

Here are some other non-trivial
examples.

laplace((exp(a*t) - exp(b*t))/t, t, s)

−log (s− a) + log (s− b) (2)
Type: Expression Integer

laplace(2/t * (1 - cos(a*t)), t, s)

log
(
s2 + a2

)
− 2 log (s) (3)

Type: Expression Integer

laplace(exp(-a*t) * sin(b*t) / b**2, t, s)

1
b s2 + 2 a b s + b3 + a2 b

(4)

Type: Expression Integer

laplace((cos(a*t) - cos(b*t))/t, t, s)

log
(
s2 + b2

)− log
(
s2 + a2

)

2
(5)

Type: Expression Integer

AXIOM also knows about a few
special functions.

laplace(exp(a*t+b)*Ei(c*t), t, s)

eb log
(

s+c−a
c

)

s− a
(6)

Type: Expression Integer

laplace(a*Ci(b*t) + c*Si(d*t), t, s)

a log
(

s2+b2

b2

)
+ 2 c arctan

(
d
s

)

2 s
(7)

Type: Expression Integer

When AXIOM does not know
about a particular transform, it
keeps it as a formal transform in
the answer.

laplace(sin(a*t) - a*t*cos(a*t) + exp(t**2), t, s)
(
s4 + 2 a2 s2 + a4

)
laplace

(
et2 , t, s

)
+ 2 a3

s4 + 2 a2 s2 + a4
(8)

Type: Expression Integer

8.7. Laplace Transforms · 291

8.8
Integration

Integration is the reverse process of differentiation, that is, an integral
of a function f with respect to a variable x is any function g such that
D(g,x) is equal to f.

The package
FunctionSpaceIntegration
provides the top-level
integration operation,
integrate, for integrating
real-valued elementary
functions.

integrate(cosh(a*x)*sinh(a*x), x)

sinh (a x)2 + cosh (a x)2

4 a
(1)

Type: Union(Expression Integer, ...)

Unfortunately, antiderivatives of
most functions cannot be
expressed in terms of
elementary functions.

integrate(log(1 + sqrt(a * x + b)) / x, x)

∫ x log
(√

b + %X a + 1
)

%X
d%X (2)

Type: Union(Expression Integer, ...)

Given an elementary function to integrate, AXIOM returns a formal in-
tegral as above only when it can prove that the integral is not elementary
and not when it cannot determine the integral. In this rare case it prints
a message that it cannot determine if an elementary integral exists.

Similar functions may have
antiderivatives that look quite
different because the form of the
antiderivative depends on the
sign of a constant that appears
in the function.

integrate(1/(x**2 - 2),x)

log
(

(x2+2)
√

2−4 x

x2−2

)

2
√

2
(3)

Type: Union(Expression Integer, ...)

integrate(1/(x**2 + 2),x)

arctan
(

x
√

2
2

)

√
2

(4)

Type: Union(Expression Integer, ...)

If the integrand contains parameters, then there may be several possible
antiderivatives, depending on the signs of expressions of the parameters.

In this case AXIOM returns a
list of answers that cover all the
possible cases. Here you use the
answer involving the square root
of a when a > 0 and the answer
involving the square root of -a
when a < 0.

integrate(x**2 / (x**4 - a**2), x)



log
(

(x2+a) √a−2 a x

x2−a

)
+ 2 arctan

(
x
√

a
a

)

4
√

a
,

log
(

(x2−a)
√−a+2 a x

x2+a

)
− 2 arctan

(
x
√−a
a

)

4
√−a




(5)

Type: Union(List Expression Integer, ...)

292 · Advanced Problem Solving

If the parameters and the variables of integration can be complex numbers
rather than real, then the notion of sign is not defined. In this case all
the possible answers can be expressed as one complex function. To get
that function, rather than a list of real functions, use complexIntegrate,
which is provided by the package FunctionSpaceComplexIntegration.

This operation is used for
integrating complex-valued
elementary functions.

complexIntegrate(x**2 / (x**4 - a**2), x)



√
4 a log

(
x
√−4 a + 2 a√−4 a

)
−√−4 a log

(
x
√

4 a + 2 a√
4 a

)
+

√−4 a log

(
x
√

4 a− 2 a√
4 a

)
−
√

4 a log

(
x
√−4 a− 2 a√−4 a

)




2
√−4 a

√
4 a

(6)

Type: Expression Integer

As with the real case,
antiderivatives for most
complex-valued functions
cannot be expressed in terms of
elementary functions.

complexIntegrate(log(1 + sqrt(a * x + b)) / x, x)

∫ x log
(√

b + %X a + 1
)

%X
d%X (7)

Type: Expression Integer

Sometimes integrate can involve symbolic algebraic numbers such as
those returned by rootOf. To see how to work with these strange gener-
ated symbols (such as %%a0), see Section 8.3.2 on page 278.

Definite integration is the process of computing the area between the
x-axis and the curve of a function f(x). The fundamental theorem of
calculus states that if f is continuous on an interval a..b and if there
exists a function g that is differentiable on a..b and such that D(g, x)
is equal to f, then the definite integral of f for x in the interval a..b is
equal to g(b) - g(a).

The package RationalFunction-
DefiniteIntegration provides the
top-level definite integration
operation, integrate, for
integrating real-valued rational
functions.

integrate((x**4 - 3*x**2 + 6)/(x**6-5*x**4+5*x**2+4), x =
1..2)

2 arctan (8) + 2 arctan (5) + 2 arctan (2) + 2 arctan
(

1
2

)
− π

2
(8)

Type: Union(f1: OrderedCompletion Expression Integer, ...)

AXIOM checks beforehand that the function you are integrating is defined
on the interval a..b, and prints an error message if it finds that this is
not case, as in the following example:

integrate(1/(x**2-2), x = 1..2)

>> Error detected within library code:
Pole in path of integration
You are being returned to the top level
of the interpreter.

8.8. Integration · 293

When parameters are present in the function, the function may or may
not be defined on the interval of integration.

If this is the case, AXIOM issues
a warning that a pole might lie
in the path of integration, and
does not compute the integral.

integrate(1/(x**2-a), x = 1..2)

potentialPole (9)
Type: Union(pole: potentialPole, ...)

If you know that you are using values of the parameter for which the
function has no pole in the interval of integration, use the string "noPole"
as a third argument to integrate:

The value here is, of course,
incorrect if sqrt(a) is between
1 and 2.

integrate(1/(x**2-a), x = 1..2, "noPole")


−log

(
(−4 a2−4 a) √a+a3+6 a2+a

a2−2 a+1

)
+ log

(
(−8 a2−32 a) √a+a3+24 a2+16 a

a2−8 a+16

)

4
√

a
,

−arctan
(

2
√−a
a

)
+ arctan

(√−a
a

)

√−a




(10)

Type: Union(f2: List OrderedCompletion Expression Integer, ...)

294 · Advanced Problem Solving

8.9
Working with
Power Series

AXIOM has very sophisticated facilities for working with power series. In-
finite series are represented by a list of the coefficients that have already
been determined, together with a function for computing the additional
coefficients if needed. The system command that determines how many
terms of a series is displayed is)set streams calculate. For the pur-
poses of this book, we have used this system command to display fewer
than ten terms. Series can be created from expressions, from functions
for the series coefficients, and from applications of operations on existing
series. The most general function for creating a series is called series,
although you can also use taylor, laurent and puiseux in situations
where you know what kind of exponents are involved.

For information about solving differential equations in terms of power
series, see Section 8.10.3 on page 314.

8.9.1
Creation of Power
Series
This is the easiest way to create
a power series. This tells
AXIOM that x is to be treated
as a power series, so functions of
x are again power series.

x := series ’x

x (1)
Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)

We didn’t say anything about the coefficients of the power series, so the
coefficients are general expressions over the integers. This allows us to in-
troduce denominators, symbolic constants, and other variables as needed.

Here the coefficients are integers
(note that the coefficients are
the Fibonacci numbers).

1/(1 - x - x**2)

1 + x + 2 x2 + 3 x3 + 5 x4 + 8 x5 + 13 x6 + 21 x7 + O
(
x8

)
(2)

Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)

This series has coefficients that
are rational numbers.

sin(x)

x− 1
6

x3 +
1

120
x5 − 1

5040
x7 + O

(
x9

)
(3)

Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)

When you enter this expression
you introduce the symbolic
constants sin(1) and cos(1).

sin(1 + x)

sin (1) + cos (1) x− sin (1)
2

x2 − cos (1)
6

x3 +
sin (1)

24
x4+

cos (1)
120

x5 − sin (1)
720

x6 − cos (1)
5040

x7 + O
(
x8

) (4)

Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)

8.9. Working with Power Series · 295

When you enter the expression
the variable a appears in the
resulting series expansion.

sin(a * x)

a x− a3

6
x3 +

a5

120
x5 − a7

5040
x7 + O

(
x9

)
(5)

Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)

You can also convert an
expression into a series
expansion. This expression
creates the series expansion of
1/log(y) about y = 1. For
details and more examples, see
Section 8.9.5 on page 300.

series(1/log(y),y = 1)

(y − 1)(−1) +
1
2
− 1

12
(y − 1) +

1
24

(y − 1)2 − 19
720

(y − 1)3+

3
160

(y − 1)4 − 863
60480

(y − 1)5 +
275

24192
(y − 1)6 + O

(
(y − 1)7

) (6)

Type: UnivariatePuiseuxSeries(Expression Integer, y, 1)

You can create power series with more general coefficients. You normally
accomplish this via a type declaration (see Section 2.3 on page 103). See
Section 8.9.4 on page 298 for some warnings about working with declared
series.

We declare that y is a
one-variable Taylor series (UTS
is the abbreviation for
UnivariateTaylorSeries) in the
variable z with FLOAT (that is,
floating-point) coefficients,
centered about 0. Then, by
assignment, we obtain the
Taylor expansion of exp(z) with
floating-point coefficients.

y : UTS(FLOAT,’z,0) := exp(z)

1.0 + z + 0.5 z2 + 0.16666666666666666667 z3+
0.041666666666666666667 z4 + 0.0083333333333333333334 z5+
0.0013888888888888888889 z6 + 0.0001984126984126984127 z7+
O

(
z8

)
(7)

Type: UnivariateTaylorSeries(Float, z, 0.0)

You can also create a power series by giving an explicit formula for its
n th coefficient. For details and more examples, see Section 8.9.6 on page
302.

To create a series about w = 0

whose n th Taylor coefficient is
1/n!, you can evaluate this
expression. This is the Taylor
expansion of exp(w) at w = 0.

series(1/factorial(n),n,w = 0)

1 + w +
1
2

w2 +
1
6

w3 +
1
24

w4 +
1

120
w5 +

1
720

w6 +
1

5040
w7

+O
(
w8

) (8)

Type: UnivariatePuiseuxSeries(Expression Integer, w, 0)

8.9.2
Coefficients of
Power Series

You can extract any coefficient from a power series—even one that hasn’t
been computed yet. This is possible because in AXIOM, infinite series are
represented by a list of the coefficients that have already been determined,
together with a function for computing the additional coefficients. (This
is known as lazy evaluation.) When you ask for a coefficient that hasn’t
yet been computed, AXIOM computes whatever additional coefficients it
needs and then stores them in the representation of the power series.

296 · Advanced Problem Solving

Here’s an example of how to
extract the coefficients of a
power series.

x := series(x)

x (1)
Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)

y := exp(x) * sin(x)

x + x2 +
1
3

x3 − 1
30

x5 − 1
90

x6 − 1
630

x7 + O
(
x9

)
(2)

Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)

This coefficient is readily
available.

coefficient(y,6)

− 1
90

(3)

Type: Expression Integer

But let’s get the fifteenth
coefficient of y.

coefficient(y,15)

− 1
10216206000

(4)

Type: Expression Integer

If you look at y then you see
that the coefficients up to order
15 have all been computed.

y

x + x2 +
1
3

x3 − 1
30

x5 − 1
90

x6 − 1
630

x7 +
1

22680
x9+

1
113400

x10 +
1

1247400
x11 − 1

97297200
x13 − 1

681080400
x14−

1
10216206000

x15 + O
(
x16

)

(5)

Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)

8.9.3
Power Series
Arithmetic

You can manipulate power series using the usual arithmetic operations
“+”, “-”, “*”, and “/”.

The results of these operations
are also power series.

x := series x

x (1)
Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)

(3 + x) / (1 + 7*x)

3− 20 x + 140 x2 − 980 x3 + 6860 x4 − 48020 x5 + 336140 x6−
2352980 x7 + O

(
x8

) (2)

Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)

8.9. Working with Power Series · 297

You can also compute f(x) **
g(x), where f(x) and g(x) are
two power series.

base := 1 / (1 - x)

1 + x + x2 + x3 + x4 + x5 + x6 + x7 + O
(
x8

)
(3)

Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)

expon := x * base

x + x2 + x3 + x4 + x5 + x6 + x7 + x8 + O
(
x9

)
(4)

Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)

base ** expon

1 + x2 +
3
2

x3 +
7
3

x4 +
43
12

x5 +
649
120

x6 +
241
30

x7 + O
(
x8

)
(5)

Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)

8.9.4
Functions on Power
Series

Once you have created a power series, you can apply transcendental func-
tions (for example, exp, log, sin, tan, cosh, etc.) to it.

To demonstrate this, we first
create the power series
expansion of the rational

function x2

1− 6x + x2 about x

= 0.

x := series ’x

x (1)
Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)

rat := x**2 / (1 - 6*x + x**2)

x2 + 6 x3 + 35 x4 + 204 x5 + 1189 x6 + 6930 x7 + 40391 x8+
235416 x9 + O

(
x10

) (2)

Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)

If you want to compute the
series expansion of

sin
(

x2

1− 6x + x2

)
you simply

compute the sine of rat.

sin(rat)

x2 + 6 x3 + 35 x4 + 204 x5 +
7133

6
x6 + 6927 x7 +

80711
2

x8+

235068 x9 + O
(
x10

) (3)

Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)

Warning: the type of the coefficients of a power series may affect the
kind of computations that you can do with that series. This can only
happen when you have made a declaration to specify a series domain
with a certain type of coefficient.

298 · Advanced Problem Solving

If you evaluate then you have
declared that y is a one variable
Taylor series (UTS is the
abbreviation for
UnivariateTaylorSeries) in the
variable y with FRAC INT (that
is, fractions of integer)
coefficients, centered about 0.

y : UTS(FRAC INT,y,0) := y

y (4)
Type: UnivariateTaylorSeries(Fraction Integer, y, 0)

You can now compute certain
power series in y, provided that
these series have rational
coefficients.

exp(y)

1 + y +
1
2

y2 +
1
6

y3 +
1
24

y4 +
1

120
y5 +

1
720

y6 +
1

5040
y7 + O

(
y8

)
(5)

Type: UnivariateTaylorSeries(Fraction Integer, y, 0)

You can get examples of such
series by applying
transcendental functions to
series in y that have no constant
terms.

tan(y**2)

y2 +
1
3

y6 + O
(
y8

)
(6)

Type: UnivariateTaylorSeries(Fraction Integer, y, 0)

cos(y + y**5)

1− 1
2

y2 +
1
24

y4 − 721
720

y6 + O
(
y8

)
(7)

Type: UnivariateTaylorSeries(Fraction Integer, y, 0)

Similarly, you can compute the
logarithm of a power series with
rational coefficients if the
constant coefficient is 1.

log(1 + sin(y))

y − 1
2

y2 +
1
6

y3 − 1
12

y4 +
1
24

y5 − 1
45

y6 +
61

5040
y7 + O

(
y8

)
(8)

Type: UnivariateTaylorSeries(Fraction Integer, y, 0)

If you wanted to apply, say, the operation exp to a power series with a
nonzero constant coefficient a0, then the constant coefficient of the result
would be ea0 , which is not a rational number. Therefore, evaluating exp(2
+ tan(y)) would generate an error message.

If you want to compute the Taylor expansion of exp(2 + tan(y)), you
must ensure that the coefficient domain has an operation exp defined for
it. An example of such a domain is Expression Integer, the type of formal
functional expressions over the integers.

When working with coefficients
of this type,

z : UTS(EXPR INT,z,0) := z

z (9)
Type: UnivariateTaylorSeries(Expression Integer, z, 0)

8.9. Working with Power Series · 299

this presents no problems. exp(2 + tan(z))

e2 + e2 z +
e2

2
z2 +

e2

2
z3 +

3 e2

8
z4 +

37 e2

120
z5 +

59 e2

240
z6+

137 e2

720
z7 + O

(
z8

) (10)

Type: UnivariateTaylorSeries(Expression Integer, z, 0)

Another way to create Taylor series whose coefficients are expressions over
the integers is to use taylor which works similarly to series.

This is equivalent to the
previous computation, except
that now we are using the
variable w instead of z.

w := taylor ’w

w (11)
Type: UnivariateTaylorSeries(Expression Integer, w, 0)

exp(2 + tan(w))

e2 + e2 w +
e2

2
w2 +

e2

2
w3 +

3 e2

8
w4 +

37 e2

120
w5 +

59 e2

240
w6+

137 e2

720
w7 + O

(
w8

) (12)

Type: UnivariateTaylorSeries(Expression Integer, w, 0)

8.9.5
Converting to Power
Series

The ExpressionToUnivariatePowerSeries package provides operations for com-
puting series expansions of functions.

Evaluate this to compute the
Taylor expansion of sin x about
x = 0. The first argument,
sin(x), specifies the function
whose series expansion is to be
computed and the second
argument, x = 0, specifies that
the series is to be expanded in
power of (x - 0), that is, in
power of x.

taylor(sin(x),x = 0)

x− 1
6

x3 +
1

120
x5 − 1

5040
x7 + O

(
x8

)
(1)

Type: UnivariateTaylorSeries(Expression Integer, x, 0)

Here is the Taylor expansion of
sin x about x = π

6
:

taylor(sin(x),x = %pi/6)

1
2

+
√

3
2

(
x− π

6

)
− 1

4

(
x− π

6

)2

−
√

3
12

(
x− π

6

)3

+
1
48

(
x− π

6

)4

+
√

3
240

(
x− π

6

)5

− 1
1440

(
x− π

6

)6

−
√

3
10080

(
x− π

6

)7

+

O

((
x− π

6

)8
)

(2)

Type: UnivariateTaylorSeries(Expression Integer, x, pi/6)

300 · Advanced Problem Solving

The function to be expanded into a series may have variables other than
the series variable.

For example, we may expand
tan(x*y) as a Taylor series in x

taylor(tan(x*y),x = 0)

y x +
y3

3
x3 +

2 y5

15
x5 +

17 y7

315
x7 + O

(
x8

)
(3)

Type: UnivariateTaylorSeries(Expression Integer, x, 0)

or as a Taylor series in y. taylor(tan(x*y),y = 0)

x y +
x3

3
y3 +

2 x5

15
y5 +

17 x7

315
y7 + O

(
y8

)
(4)

Type: UnivariateTaylorSeries(Expression Integer, y, 0)

A more interesting function is
text

et − 1
. When we expand this

function as a Taylor series in t

the n th order coefficient is the
n th Bernoulli polynomial
divided by n!.

bern := taylor(t*exp(x*t)/(exp(t) - 1),t = 0)

1 +
2 x− 1

2
t +

6 x2 − 6 x + 1
12

t2 +
2 x3 − 3 x2 + x

12
t3+

30 x4 − 60 x3 + 30 x2 − 1
720

t4 +
6 x5 − 15 x4 + 10 x3 − x

720
t5+

42 x6 − 126 x5 + 105 x4 − 21 x2 + 1
30240

t6+

6 x7 − 21 x6 + 21 x5 − 7 x3 + x

30240
t7 + O

(
t8

)

(5)

Type: UnivariateTaylorSeries(Expression Integer, t, 0)

Therefore, this and the next
expression produce the same
result.

factorial(6) * coefficient(bern,6)

42 x6 − 126 x5 + 105 x4 − 21 x2 + 1
42

(6)

Type: Expression Integer

bernoulliB(6,x)

x6 − 3 x5 +
5
2

x4 − 1
2

x2 +
1
42

(7)

Type: Polynomial Fraction Integer

Technically, a series with terms of negative degree is not considered to
be a Taylor series, but, rather, a Laurent series. If you try to compute
a Taylor series expansion of x

log x at x = 1 via taylor(x/log(x),x = 1)
you get an error message. The reason is that the function has a pole at
x = 1, meaning that its series expansion about this point has terms of
negative degree. A series with finitely many terms of negative degree is
called a Laurent series.

8.9. Working with Power Series · 301

You get the desired series
expansion by issuing this.

laurent(x/log(x),x = 1)

(x− 1)(−1) +
3
2

+
5
12

(x− 1)− 1
24

(x− 1)2 +
11
720

(x− 1)3−

11
1440

(x− 1)4 +
271

60480
(x− 1)5 − 13

4480
(x− 1)6 + O

(
(x− 1)7

) (8)

Type: UnivariateLaurentSeries(Expression Integer, x, 1)

Similarly, a series with terms of fractional degree is neither a Taylor se-
ries nor a Laurent series. Such a series is called a Puiseux series. The
expression laurent(sqrt(sec(x)),x = 3 * %pi/2) results in an error
message because the series expansion about this point has terms of frac-
tional degree.

However, this command
produces what you want.

puiseux(sqrt(sec(x)),x = 3 * %pi/2)

(
x− 3 π

2

)(− 1
2)

+
1
12

(
x− 3 π

2

) 3
2

+ O

((
x− 3 π

2

) 7
2

)
(9)

Type: UnivariatePuiseuxSeries(Expression Integer, x, (3*pi)/2)

Finally, consider the case of functions that do not have Puiseux ex-
pansions about certain points. An example of this is xx about x = 0.
puiseux(x**x,x=0) produces an error message because of the type of
singularity of the function at x = 0.

The general function series can
be used in this case. Notice that
the series returned is not,
strictly speaking, a power series
because of the log(x) in the
expansion.

series(x**x,x=0)

1 + log (x) x +
log (x)2

2
x2 +

log (x)3

6
x3 +

log (x)4

24
x4 +

log (x)5

120
x5

+
log (x)6

720
x6 +

log (x)7

5040
x7 + O

(
x8

)
(10)

Type: GeneralUnivariatePowerSeries(Expression Integer, x, 0)

The operation series returns the most general type of infinite series.
The user who is not interested in distinguishing between various types
of infinite series may wish to use this operation exclusively.

8.9.6
Power Series from
Formulas

The GenerateUnivariatePowerSeries package enables you to create power se-
ries from explicit formulas for their n th coefficients. In what follows, we
construct series expansions for certain transcendental functions by giving
formulas for their coefficients. You can also compute such series expan-
sions directly simply by specifying the function and the point about which

302 · Advanced Problem Solving

the series is to be expanded. See Section 8.9.5 on page 300 for more in-
formation.

Consider the Taylor expansion of ex about x = 0:

ex = 1 + x +
x2

2
+

x3

6
+ · · ·

=
∞∑

n=0

xn

n!

The n th Taylor coefficient is 1/n!.

This is how you create this
series in AXIOM.

series(n +-> 1/factorial(n),x = 0)

1 + x +
1
2

x2 +
1
6

x3 +
1
24

x4 +
1

120
x5 +

1
720

x6 +
1

5040
x7 + O

(
x8

)
(1)

Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)

The first argument specifies a formula for the n th coefficient by giving a
function that maps n to 1/n!. The second argument specifies that the
series is to be expanded in powers of (x - 0), that is, in powers of x.
Since we did not specify an initial degree, the first term in the series was
the term of degree 0 (the constant term). Note that the formula was given
as an anonymous function. These are discussed in Section 6.17 on page
218.

Consider the Taylor expansion of log x about x = 1:

log(x) = (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− · · ·

=
∞∑

n=1

(−1)n−1 (x− 1)n

n

If you were to evaluate the expression series(n +-> (-1)**(n-1) / n,
x = 1) you would get an error message because AXIOM would try to
calculate a term of degree 0 and therefore divide by 0.

Instead, evaluate this. The third
argument, 1.., indicates that
only terms of degree n = 1, ...
are to be computed.

series(n +-> (-1)**(n-1)/n,x = 1,1..)

(x− 1)− 1
2

(x− 1)2 +
1
3

(x− 1)3 − 1
4

(x− 1)4 +
1
5

(x− 1)5−
1
6

(x− 1)6 +
1
7

(x− 1)7 − 1
8

(x− 1)8 + O
(
(x− 1)9

) (2)

Type: UnivariatePuiseuxSeries(Expression Integer, x, 1)

Next consider the Taylor expansion of an odd function, say, sin(x):

sin(x) = x− x3

3!
+

x5

5!
− · · ·

8.9. Working with Power Series · 303

Here every other coefficient is zero and we would like to give an explicit
formula only for the odd Taylor coefficients.

This is one way to do it. The
third argument, 1.., specifies
that the first term to be
computed is the term of degree
1. The fourth argument, 2,
specifies that we increment by 2
to find the degrees of subsequent
terms, that is, the next term is
of degree 1 + 2, the next of
degree 1 + 2 + 2, etc.

series(n +-> (-1)**((n-1)/2)/factorial(n),x = 0,1..,2)

x− 1
6

x3 +
1

120
x5 − 1

5040
x7 + O

(
x9

)
(3)

Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)

The initial degree and the
increment do not have to be
integers. For example, this
expression produces a series

expansion of sin(x
1
3).

series(n +-> (-1)**((3*n-1)/2)/factorial(3*n),x =
0,1/3..,2/3)

x
1
3 − 1

6
x +

1
120

x
5
3 − 1

5040
x

7
3 + O

(
x3

)
(4)

Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)

While the increment must be
positive, the initial degree may
be negative. This yields the
Laurent expansion of csc(x) at
x = 0.

cscx := series(n +-> (-1)**((n-1)/2) * 2 * (2**n-1) *
bernoulli(numer(n+1)) / factorial(n+1), x=0, -1..,2)

x(−1) +
1
6

x +
7

360
x3 +

31
15120

x5 + O
(
x7

)
(5)

Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)

Of course, the reciprocal of this
power series is the Taylor
expansion of sin(x).

1/cscx

x− 1
6

x3 +
1

120
x5 − 1

5040
x7 + O

(
x9

)
(6)

Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)

As a final example, here is the
Taylor expansion of asin(x)
about x = 0.

asinx := series(n +-> binomial(n-1,(n-1)/2)/(n*2**(n-
1)),x=0,1..,2)

x +
1
6

x3 +
3
40

x5 +
5

112
x7 + O

(
x9

)
(7)

Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)

When we compute the sin of
this series, we get x (in the
sense that all higher terms
computed so far are zero).

sin(asinx)

x + O
(
x9

)
(8)

Type: UnivariatePuiseuxSeries(Expression Integer, x, 0)

As we discussed in Section 8.9.5 on page 300, you can also use the opera-
tions taylor, laurent and puiseux instead of series if you know ahead
of time what kind of exponents a series has. You can’t go wrong using
series, though.

304 · Advanced Problem Solving

8.9.7
Substituting
Numerical Values in
Power Series

Use eval to substitute a numerical value for a variable in a power series.
For example, here’s a way to obtain numerical approximations of %e from
the Taylor series expansion of exp(x).

First you create the desired
Taylor expansion.

f := taylor(exp(x))

1 + x +
1
2

x2 +
1
6

x3 +
1
24

x4 +
1

120
x5 +

1
720

x6 +
1

5040
x7 + O

(
x8

)
(1)

Type: UnivariateTaylorSeries(Expression Integer, x, 0)

Then you evaluate the series at
the value 1.0. The result is a
sequence of the partial sums.

eval(f,1.0)

[1.0, 2.0, 2.5, 2.6666666666666666667, 2.7083333333333333333,
2.7166666666666666667, 2.7180555555555555556, . . .] (2)

Type: Stream Expression Float

8.9.8
Example: Bernoulli
Polynomials and
Sums of Powers

AXIOM provides operations for computing definite and indefinite sums.

You can compute the sum of the
first ten fourth powers by
evaluating this. This creates a
list whose entries are m4 as m
ranges from 1 to 10, and then
computes the sum of the entries
of that list.

reduce(+,[m**4 for m in 1..10])

25333 (1)
Type: PositiveInteger

You can also compute a formula
for the sum of the first k fourth
powers, where k is an
unspecified positive integer.

sum4 := sum(m**4, m = 1..k)

6 k5 + 15 k4 + 10 k3 − k

30
(2)

Type: Fraction Polynomial Integer

This formula is valid for any
positive integer k. For instance,
if we replace k by 10, we obtain
the number we computed
earlier.

eval(sum4, k = 10)

25333 (3)
Type: Fraction Polynomial Integer

You can compute a formula for the sum of the first k n th powers in a simi-
lar fashion. Just replace the 4 in the definition of sum4 by any expression
not involving k. AXIOM computes these formulas using Bernoulli poly-
nomials; we use the rest of this section to describe this method.

First consider this function of t
and x.

f := t*exp(x*t) / (exp(t) - 1)

t e(t x)

et − 1
(4)

Type: Expression Integer

8.9. Working with Power Series · 305

Since the expressions involved
get quite large, we tell AXIOM
to show us only terms of degree
up to 5.

)set streams calculate 5

If we look at the Taylor
expansion of f(x, t) about t =
0, we see that the coefficients of
the powers of t are polynomials
in x.

ff := taylor(f,t = 0)

1 +
2 x− 1

2
t +

6 x2 − 6 x + 1
12

t2 +
2 x3 − 3 x2 + x

12
t3+

30 x4 − 60 x3 + 30 x2 − 1
720

t4 +
6 x5 − 15 x4 + 10 x3 − x

720
t5 + O

(
t6

)
(5)

Type: UnivariateTaylorSeries(Expression Integer, t, 0)

In fact, the n th coefficient in this series is essentially the n th Bernoulli
polynomial: the n th coefficient of the series is 1

n!Bn(x), where Bn(x) is the
n th Bernoulli polynomial. Thus, to obtain the n th Bernoulli polynomial,
we multiply the n th coefficient of the series ff by n!.

For example, the sixth Bernoulli
polynomial is this.

factorial(6) * coefficient(ff,6)

42 x6 − 126 x5 + 105 x4 − 21 x2 + 1
42

(6)

Type: Expression Integer

We derive some properties of
the function f(x,t). First we
compute f(x + 1,t) - f(x,t).

g := eval(f, x = x + 1) - f

t e(t x+t) − t e(t x)

et − 1
(7)

Type: Expression Integer

If we normalize g, we see that it
has a particularly simple form.

normalize(g)

t e(t x) (8)
Type: Expression Integer

From this it follows that the n th coefficient in the Taylor expansion of
g(x,t) at t = 0 is 1

(n−1) ! xn−1.

If you want to check this,
evaluate the next expression.

taylor(g,t = 0)

t + x t2 +
x2

2
t3 +

x3

6
t4 +

x4

24
t5 + O

(
t6

)
(9)

Type: UnivariateTaylorSeries(Expression Integer, t, 0)

However, since g(x,t) = f(x+1,t)-f(x,t), it follows that the n th co-
efficient is 1

n! (Bn(x + 1) − Bn(x)). Equating coefficients, we see that
1

(n−1) ! xn−1 = 1
n! (Bn(x + 1) − Bn(x)) and, therefore, xn−1 = 1

n (Bn(x +
1) − Bn(x)). Let’s apply this formula repeatedly, letting x vary between
two integers a and b, with a < b:

306 · Advanced Problem Solving

an−1 = 1
n(Bn(a + 1)−Bn(a))

(a + 1)n−1 = 1
n(Bn(a + 2)−Bn(a + 1))

(a + 2)n−1 = 1
n(Bn(a + 3)−Bn(a + 2))

...
(b− 1)n−1 = 1

n(Bn(b)−Bn(b− 1))
bn−1 = 1

n(Bn(b + 1)−Bn(b))

When we add these equations we find that the sum of the left-hand sides
is

∑b
m=a mn−1,the sum of the (n − 1)st powers from a to b. The sum of

the right-hand sides is a “telescoping series.” After cancellation, the sum
is simply 1

n (Bn(b + 1)−Bn(a)).

Replacing n by n + 1, we have shown that

b∑
m=a

mn =
1

n + 1
(Bn+1(b + 1)−Bn+1(a)).

Let’s use this to obtain the formula for the sum of fourth powers.

First we obtain the Bernoulli
polynomial B5.

B5 := factorial(5) * coefficient(ff,5)

6 x5 − 15 x4 + 10 x3 − x

6
(10)

Type: Expression Integer

To find the sum of the first k
4th powers, we multiply 1/5 by
B5(k + 1)−B5(1).

1/5 * (eval(B5, x = k + 1) - eval(B5, x = 1))

6 k5 + 15 k4 + 10 k3 − k

30
(11)

Type: Expression Integer

This is the same formula that
we obtained via sum(m**4, m =
1..k).

sum4

6 k5 + 15 k4 + 10 k3 − k

30
(12)

Type: Fraction Polynomial Integer

At this point you may want to do the same computation, but with an
exponent other than 4. For example, you might try to find a formula for
the sum of the first k 20th powers.

8.9. Working with Power Series · 307

8.10
Solution of
Differential
Equations

In this section we discuss AXIOM’s facilities for solving differential equa-
tions in closed-form and in series.

AXIOM provides facilities for closed-form solution of single differential
equations of the following kinds:

• linear ordinary differential equations, and
• non-linear first order ordinary differential equations when integrat-

ing factors can be found just by integration.

For a discussion of the solution of systems of linear and polynomial equa-
tions, see Section 8.5 on page 283.

8.10.1
Closed-Form
Solutions of Linear
Differential
Equations

A differential equation is an equation involving an unknown function and
one or more of its derivatives. The equation is called ordinary if deriva-
tives with respect to only one dependent variable appear in the equation
(it is called partial otherwise). The package ElementaryFunctionODESolver
provides the top-level operation solve for finding closed-form solutions of
ordinary differential equations.

To solve a differential equation, you must first create an operator for the
unknown function.

We let y be the unknown
function in terms of x.

y := operator ’y

y (1)
Type: BasicOperator

You then type the equation using D to create the derivatives of the un-
known function y(x) where x is any symbol you choose (the so-called
dependent variable).

This is how you enter the
equation y’’ + y’ + y = 0.

deq := D(y x, x, 2) + D(y x, x) + y x = 0

y,, (x) + y, (x) + y (x) = 0 (2)
Type: Equation Expression Integer

The simplest way to invoke the solve command is with three arguments.

• the differential equation,
• the operator representing the unknown function,
• the dependent variable.

308 · Advanced Problem Solving

So, to solve the above equation,
we enter this.

solve(deq, y, x)
[
particular = 0, basis =

[
cos

(
x
√

3
2

)
e(−

x
2), e(−

x
2) sin

(
x
√

3
2

)]]
(3)

Type: Union(Record(particular: Expression Integer, basis: List Expression Integer),
...)

Since linear ordinary differential equations have infinitely many solutions,
solve returns a particular solution fp and a basis f1, . . . , fn for the so-
lutions of the corresponding homogenuous equation. Any expression of
the form fp + c1f1 + . . . cnfn where the ci do not involve the dependent
variable is also a solution. This is similar to what you get when you solve
systems of linear algebraic equations.

A way to select a unique solution is to specify initial conditions: choose a
value a for the dependent variable and specify the values of the unknown
function and its derivatives at a. If the number of initial conditions is
equal to the order of the equation, then the solution is unique (if it exists
in closed form!) and solve tries to find it. To specify initial conditions to
solve, use an Equation of the form x = a for the third parameter instead
of the dependent variable, and add a fourth parameter consisting of the
list of values y(a), y’(a),

To find the solution of y’’ + y
= 0 satisfying y(0) = y’(0) =
1, do this.

deq := D(y x, x, 2) + y x

y,, (x) + y (x) (4)
Type: Expression Integer

You can omit the = 0 when you
enter the equation to be solved.

solve(deq, y, x = 0, [1, 1])

sin (x) + cos (x) (5)
Type: Union(Expression Integer, ...)

AXIOM is not limited to linear differential equations with constant co-
efficients. It can also find solutions when the coefficients are rational or
algebraic functions of the dependent variable. Furthermore, AXIOM is
not limited by the order of the equation.

AXIOM can solve the following
third order equations with
polynomial coefficients.

deq := x**3 * D(y x, x, 3) + x**2 * D(y x, x, 2) - 2 * x *
D(y x, x) + 2 * y x = 2 * x**4

x3 y,,, (x) + x2 y,, (x)− 2 x y, (x) + 2 y (x) = 2 x4 (6)
Type: Equation Expression Integer

8.10. Solution of Differential Equations · 309

solve(deq, y, x)
[
particular =

x5 − 10 x3 + 20 x2 + 4
15 x

,

basis =

[
2 x3 − 3 x2 + 1

x
,

x3 − 1
x

,
x3 − 3 x2 − 1

x

]] (7)

Type: Union(Record(particular: Expression Integer, basis: List Expression Integer),
...)

Here we are solving a
homogeneous equation.

deq := (x**9+x**3) * D(y x, x, 3) + 18 * x**8 * D(y x, x,
2) - 90 * x * D(y x, x) - 30 * (11 * x**6 - 3) * y x

(
x9 + x3

)
y,,, (x) + 18 x8 y,, (x)− 90 x y, (x) +

(
−330 x6 + 90

)
y (x) (8)

Type: Expression Integer

solve(deq, y, x)

particular = 0, basis =


 x

x6 + 1
,

x e(−
√

91 log(x))

x6 + 1
,

x e(
√

91 log(x))

x6 + 1





 (9)

Type: Union(Record(particular: Expression Integer, basis: List Expression Integer),
...)

On the other hand, and in contrast with the operation integrate, it can
happen that AXIOM finds no solution and that some closed-form solution
still exists. While it is mathematically complicated to describe exactly
when the solutions are guaranteed to be found, the following statements
are correct and form good guidelines for linear ordinary differential equa-
tions:

• If the coefficients are constants, AXIOM finds a complete basis of
solutions (i,e, all solutions).

• If the coefficients are rational functions in the dependent variable,
AXIOM at least finds all solutions that do not involve algebraic
functions.

Note that this last statement does not mean that AXIOM does not find
the solutions that are algebraic functions. It means that it is not guaran-
teed that the algebraic function solutions will be found.

This is an example where all the
algebraic solutions are found.

deq := (x**2 + 1) * D(y x, x, 2) + 3 * x * D(y x, x) + y x
= 0(

x2 + 1
)

y,, (x) + 3 x y, (x) + y (x) = 0 (10)
Type: Equation Expression Integer

310 · Advanced Problem Solving

solve(deq, y, x)

particular = 0, basis =


 1√

x2 + 1
,

log
(√

x2 + 1− x
)

√
x2 + 1





 (11)

Type: Union(Record(particular: Expression Integer, basis: List Expression Integer),
...)

8.10.2
Closed-Form
Solutions of
Non-Linear
Differential
Equations

This is an example that shows how to solve a non-linear first order or-
dinary differential equation manually when an integrating factor can be
found just by integration. At the end, we show you how to solve it directly.

Let’s solve the differential equation y’ = y / (x + y log y).

Using the notation m(x, y) +
n(x, y) y’ = 0, we have m =
-y and n = x + y log y.

m := -y

−y (1)
Type: Polynomial Integer

n := x + y * log y

y log (y) + x (2)
Type: Expression Integer

We first check for exactness,
that is, does dm/dy = dn/dx?

D(m, y) - D(n, x)

−2 (3)
Type: Expression Integer

This is not zero, so the equation is not exact. Therefore we must look for
an integrating factor: a function mu(x,y) such that d(mu m)/dy = d(mu
n)/dx. Normally, we first search for mu(x,y) depending only on x or only
on y.

Let’s search for such a mu(x)
first.

mu := operator ’mu

mu (4)
Type: BasicOperator

a := D(mu(x) * m, y) - D(mu(x) * n, x)

(−y log (y)− x) mu, (x)− 2 mu (x) (5)
Type: Expression Integer

8.10. Solution of Differential Equations · 311

If the above is zero for a
function mu that does not
depend on y, then mu(x) is an
integrating factor.

solve(a = 0, mu, x)
[
particular = 0, basis =

[
1

y2 log (y)2 + 2 x y log (y) + x2

]]
(6)

Type: Union(Record(particular: Expression Integer, basis: List Expression Integer),
...)

The solution depends on y, so there is no integrating factor that depends
on x only.

Let’s look for one that depends
on y only.

b := D(mu(y) * m, y) - D(mu(y) * n, x)

−y mu, (y)− 2 mu (y) (7)
Type: Expression Integer

sb := solve(b = 0, mu, y)
[
particular = 0, basis =

[
1
y2

]]
(8)

Type: Union(Record(particular: Expression Integer, basis: List Expression Integer),
...)

We’ve found one!

The above mu(y) is an
integrating factor. We must
multiply our initial equation
(that is, m and n) by the
integrating factor.

intFactor := sb.basis.1

1
y2

(9)

Type: Expression Integer

m := intFactor * m

−1
y

(10)

Type: Expression Integer

n := intFactor * n

y log (y) + x

y2
(11)

Type: Expression Integer

Let’s check for exactness. D(m, y) - D(n, x)

0 (12)
Type: Expression Integer

We must solve the exact equation, that is, find a function s(x,y) such
that ds/dx = m and ds/dy = n.

312 · Advanced Problem Solving

We start by writing s(x, y) =
h(y) + integrate(m, x) where
h(y) is an unknown function of
y. This guarantees that ds/dx =
m.

h := operator ’h

h (13)
Type: BasicOperator

sol := h y + integrate(m, x)

y h (y)− x

y
(14)

Type: Expression Integer

All we want is to find h(y) such
that ds/dy = n.

dsol := D(sol, y)

y2 h, (y) + x

y2
(15)

Type: Expression Integer

nsol := solve(dsol = n, h, y)
[
particular =

log (y)2

2
, basis = [1]

]
(16)

Type: Union(Record(particular: Expression Integer, basis: List Expression Integer),
...)

The above particular solution is
the h(y) we want, so we just
replace h(y) by it in the implicit
solution.

eval(sol, h y = nsol.particular)

y log (y)2 − 2 x

2 y
(17)

Type: Expression Integer

A first integral of the initial equation is obtained by setting this result
equal to an arbitrary constant.

Now that we’ve seen how to solve the equation “by hand,” we show you
how to do it with the solve operation.

First define y to be an operator. y := operator ’y

y (18)
Type: BasicOperator

Next we create the differential
equation.

deq := D(y x, x) = y(x) / (x + y(x) * log y x)

y, (x) =
y (x)

y (x) log (y (x)) + x
(19)

Type: Equation Expression Integer

Finally, we solve it. solve(deq, y, x)

y (x) log (y (x))2 − 2 x

2 y (x)
(20)

Type: Union(Expression Integer, ...)

8.10. Solution of Differential Equations · 313

8.10.3
Power Series
Solutions of
Differential
Equations

The command to solve differential equations in power series around a par-
ticular initial point with specific initial conditions is called seriesSolve.
It can take a variety of parameters, so we illustrate its use with some
examples.

Since the coefficients of some
solutions are quite large, we
reset the default to compute
only seven terms.

)set streams calculate 7

You can solve a single nonlinear equation of any order. For example,
we solve y’’’ = sin(y’’) * exp(y) + cos(x) subject to y(0) = 1,
y’(0) = 0, y’’(0) = 0.

We first tell AXIOM that the
symbol ’y denotes a new
operator.

y := operator ’y

y (1)
Type: BasicOperator

Enter the differential equation
using y like any system function.

eq := D(y(x), x, 3) - sin(D(y(x), x, 2))*exp(y(x)) =
cos(x)

y,,, (x)− ey(x) sin (y,, (x)) = cos (x) (2)
Type: Equation Expression Integer

Solve it around x = 0 with the
initial conditions y(0) = 1,
y’(0) = y’’(0) = 0.

seriesSolve(eq, y, x = 0, [1, 0, 0])

Compiling function %CJ with type List
UnivariateTaylorSeries(Expression Integer,x,0) ->
UnivariateTaylorSeries(Expression Integer,x,0)

1 +
1
6

x3 +
e

24
x4 +

e2 − 1
120

x5 +
e3 − 2 e

720
x6 +

e4 − 8 e2 + 4 e + 1
5040

x7

+O
(
x8

) (3)

Type: UnivariateTaylorSeries(Expression Integer, x, 0)

You can also solve a system of nonlinear first order equations. For exam-
ple, we solve a system that has tan(t) and sec(t) as solutions.

We tell AXIOM that x is also
an operator.

x := operator ’x

Compiled code for %CJ has been cleared.

x (4)
Type: BasicOperator

Enter the two equations forming
our system.

eq1 := D(x(t), t) = 1 + x(t)**2

x, (t) = x (t)2 + 1 (5)
Type: Equation Expression Integer

314 · Advanced Problem Solving

eq2 := D(y(t), t) = x(t) * y(t)

y, (t) = x (t) y (t) (6)
Type: Equation Expression Integer

Solve the system around t = 0
with the initial conditions x(0)
= 0 and y(0) = 1. Notice that
since we give the unknowns in
the order [x, y], the answer is
a list of two series in the order
[series for x(t), series
for y(t)].

seriesSolve([eq2, eq1], [x, y], t = 0, [y(0) = 1, x(0) =
0])

Compiling function %CL with type List
UnivariateTaylorSeries(Expression Integer,t,0) ->
UnivariateTaylorSeries(Expression Integer,t,0)

Compiling function %CM with type List
UnivariateTaylorSeries(Expression Integer,t,0) ->
UnivariateTaylorSeries(Expression Integer,t,0)

[
t +

1
3

t3 +
2
15

t5 +
17
315

t7 + O
(
t8

)
,

1 +
1
2

t2 +
5
24

t4 +
61
720

t6 + O
(
t8

)] (7)

Type: List UnivariateTaylorSeries(Expression Integer, t, 0)

The order in which we give the equations and the initial conditions has
no effect on the order of the solution.

8.10. Solution of Differential Equations · 315

8.11
Finite Fields

A finite field (also called a Galois field) is a finite algebraic structure
where one can add, multiply and divide under the same laws (for example,
commutativity, associativity or distributivity) as apply to the rational,
real or complex numbers. Unlike those three fields, for any finite field
there exists a positive prime integer p, called the characteristic, such
that p x = 0 for any element x in the finite field. In fact, the number
of elements in a finite field is a power of the characteristic and for each
prime p and positive integer n there exists exactly one finite field with pn

elements, up to isomorphism.1

When n = 1, the field has p elements and is called a prime field, discussed
in the next section. There are several ways of implementing extensions of
finite fields, and AXIOM provides quite a bit of freedom to allow you to
choose the one that is best for your application. Moreover, we provide op-
erations for converting among the different representations of extensions
and different extensions of a single field. Finally, note that you usually
need to package-call operations from finite fields if the operations do not
take as an argument an object of the field. See Section 2.9 on page 119
for more information on package-calling.

8.11.1
Modular Arithmetic
and Prime Fields

Let n be a positive integer. It is well known that you can get the same
result if you perform addition, subtraction or multiplication of integers
and then take the remainder on dividing by n as if you had first done
such remaindering on the operands, performed the arithmetic and then (if
necessary) done remaindering again. This allows us to speak of arithmetic
modulo n or, more simply mod n.

In AXIOM, you use IntegerMod
to do such arithmetic.

(a,b) : IntegerMod 12

Type: Void

(a, b) := (16, 7)

7 (2)
Type: IntegerMod 12

[a - b, a * b]

[9, 4] (3)
Type: List IntegerMod 12

1For more information about the algebraic structure and properties of finite fields,
see, for example, S. Lang, Algebra, Second Edition, New York: Addison-Wesley Pub-
lishing Company, Inc., 1984, ISBN 0 201 05487 6; or R. Lidl, H. Niederreiter, Finite
Fields, Encyclopedia of Mathematics and Its Applications, Vol. 20, Cambridge: Cam-
bridge Univ. Press, 1983, ISBN 0 521 30240 4.

316 · Advanced Problem Solving

If n is not prime, there is only a
limited notion of reciprocals and
division.

a / b

There are 11 exposed and 12 unexposed library
operations named / having 2 argument(s) but none
was determined to be applicable. Use HyperDoc
Browse, or issue

)display op /
to learn more about the available operations.
Perhaps package-calling the operation or using
coercions on the arguments will allow you to apply
the operation.

Cannot find a definition or applicable library
operation named / with argument type(s)

IntegerMod 12
IntegerMod 12

Perhaps you should use "@" to indicate the
required return type, or "$" to specify which
version of the function you need.

recip a

"failed" (4)
Type: Union("failed", ...)

Here 7 and 12 are relatively
prime, so 7 has a multiplicative
inverse modulo 12.

recip b

7 (5)
Type: Union(IntegerMod 12, ...)

If we take n to be a prime number p, then taking inverses and, therefore,
division are generally defined.

Use PrimeField instead of
IntegerMod for n prime.

c : PrimeField 11 := 8

8 (6)
Type: PrimeField 11

inv c

7 (7)
Type: PrimeField 11

You can also use 1/c and
c**(-1) for the inverse of c.

9/c

8 (8)
Type: PrimeField 11

PrimeField (abbreviation PF) checks if its argument is prime when you try to
use an operation from it. If you know the argument is prime (particularly
if it is large), InnerPrimeField (abbreviation IPF) assumes the argument has
already been verified to be prime. If you do use a number that is not

8.11. Finite Fields · 317

prime, you will eventually get an error message, most likely a division
by zero message. For computer science applications, the most important
finite fields are PrimeField 2 and its extensions.

In the following examples, we
work with the finite field with
p = 101 elements.

GF101 := PF 101

PrimeField 101 (9)
Type: Domain

Like many domains in AXIOM,
finite fields provide an operation
for returning a random element
of the domain.

x := random()$GF101

50 (10)
Type: PrimeField 101

y : GF101 := 37

37 (11)
Type: PrimeField 101

z := x/y

15 (12)
Type: PrimeField 101

z * y - x

0 (13)
Type: PrimeField 101

The element 2 is a primitive
element of this field,

pe := primitiveElement()$GF101

2 (14)
Type: PrimeField 101

in the sense that its powers
enumerate all nonzero elements.

[pe**i for i in 0..99]

[1, 2, 4, 8, 16, 32, 64, 27, 54, 7, 14, 28, 56, 11, 22, 44, 88, 75,
49, 98, 95, 89, 77, 53, 5, 10, 20, 40, 80, 59, 17, 34, 68, 35, 70,
39, 78, 55, 9, 18, 36, 72, 43, 86, 71, 41, 82, 63, 25, 50, 100, 99,
97, 93, 85, 69, 37, 74, 47, 94, 87, 73, 45, 90, 79, 57, 13, 26, 52,
3, 6, 12, 24, 48, 96, 91, 81, 61, 21, 42, 84, 67, 33, 66, 31, 62, 23,
46, 92, 83, 65, 29, 58, 15, 30, 60, 19, 38, 76, 51]

(15)

Type: List PrimeField 101

If every nonzero element is a
power of a primitive element,
how do you determine what the
exponent is? Use discreteLog.

ex := discreteLog(y)

56 (16)
Type: PositiveInteger

318 · Advanced Problem Solving

pe ** ex

37 (17)
Type: PrimeField 101

The order of a nonzero element
x is the smallest positive integer
t such xt = 1.

order y

25 (18)
Type: PositiveInteger

The order of a primitive element
is the defining p− 1.

order pe

100 (19)
Type: PositiveInteger

8.11.2
Extensions of Finite
Fields

When you want to work with an extension of a finite field in AXIOM,
you have three choices to make:

1. Do you want to generate an extension of the prime field (for example,
PrimeField 2) or an extension of a given field?

2. Do you want to use a representation that is particularly efficient
for multiplication, exponentiation and addition but uses a lot of
computer memory (a representation that models the cyclic group
structure of the multiplicative group of the field extension and uses
a Zech logarithm table), one that uses a normal basis for the vector
space structure of the field extension, or one that performs arith-
metic modulo an irreducible polynomial? The cyclic group repre-
sentation is only usable up to “medium” (relative to your machine’s
performance) sized fields. If the field is large and the normal basis
is relatively simple, the normal basis representation is more efficient
for exponentiation than the irreducible polynomial representation.

3. Do you want to provide a polynomial explicitly, a root of which
“generates” the extension in one of the three senses in (2), or do
you wish to have the polynomial generated for you?

This illustrates one of the most important features of AXIOM: you can
choose exactly the right data-type and representation to suit your appli-
cation best.

We first tell you what domain constructors to use for each case above,
and then give some examples.

Constructors that automatically generate extensions of the prime field:
FiniteField
FiniteFieldCyclicGroup
FiniteFieldNormalBasis

8.11. Finite Fields · 319

Constructors that generate extensions of an arbitrary field:
FiniteFieldExtension
FiniteFieldExtensionByPolynomial
FiniteFieldCyclicGroupExtension
FiniteFieldCyclicGroupExtensionByPolynomial
FiniteFieldNormalBasisExtension
FiniteFieldNormalBasisExtensionByPolynomial

Constructors that use a cyclic group representation:
FiniteFieldCyclicGroup
FiniteFieldCyclicGroupExtension
FiniteFieldCyclicGroupExtensionByPolynomial

Constructors that use a normal basis representation:
FiniteFieldNormalBasis
FiniteFieldNormalBasisExtension
FiniteFieldNormalBasisExtensionByPolynomial

Constructors that use an irreducible modulus polynomial representation:
FiniteField
FiniteFieldExtension
FiniteFieldExtensionByPolynomial

Constructors that generate a polynomial for you:
FiniteField
FiniteFieldExtension
FiniteFieldCyclicGroup
FiniteFieldCyclicGroupExtension
FiniteFieldNormalBasis
FiniteFieldNormalBasisExtension

Constructors for which you provide a polynomial:
FiniteFieldExtensionByPolynomial
FiniteFieldCyclicGroupExtensionByPolynomial
FiniteFieldNormalBasisExtensionByPolynomial

These constructors are discussed in the following sections where we collect
together descriptions of extension fields that have the same underlying
representation.2

If you don’t really care about all this detail, just use FiniteField. As your
knowledge of your application and its AXIOM implementation grows, you
can come back and choose an alternative constructor that may improve
the efficiency of your code. Note that the exported operations are almost

2For more information on the implementation aspects of finite fields, see J. Grab-
meier, A. Scheerhorn, Finite Fields in AXIOM, Technical Report, IBM Heidelberg
Scientific Center, 1992.

320 · Advanced Problem Solving

the same for all constructors of finite field extensions and include the
operations exported by PrimeField.

8.11.3
Irreducible Modulus
Polynomial
Representations

All finite field extension constructors discussed in this section use a repre-
sentation that performs arithmetic with univariate (one-variable) polyno-
mials modulo an irreducible polynomial. This polynomial may be given
explicitly by you or automatically generated. The ground field may be
the prime field or one you specify. See Section 8.11.2 on page 319 for
general information about finite field extensions.

For FiniteField (abbreviation FF) you provide a prime number p and an
extension degree n. This degree can be 1.

AXIOM uses the prime field
PrimeField(p), here PrimeField 2,
and it chooses an irreducible
polynomial of degree n, here 12,
over the ground field.

GF4096 := FF(2,12);

(1)
Type: Domain

The objects in the generated field extension are polynomials of degree at
most n−1 with coefficients in the prime field. The polynomial indetermi-
nate is automatically chosen by AXIOM and is typically something like
%A or %D. These (strange) variables are only for output display; there are
several ways to construct elements of this field.

The operation index enumerates the elements of the field extension and
accepts as argument the integers from 1 to pn.

The expression index(p) always
gives the indeterminate.

a := index(2)$GF4096

%CN (2)
Type: FiniteField(2, 12)

You can build polynomials in a
and calculate in GF4096.

b := a**12 - a**5 + a

%CN5 + %CN3 + %CN + 1 (3)
Type: FiniteField(2, 12)

b ** 1000

%CN10 + %CN9 + %CN7 + %CN5 + %CN4 + %CN3 + %CN (4)
Type: FiniteField(2, 12)

c := a/b

%CN11 + %CN8 + %CN7 + %CN5 + %CN4 + %CN3 + %CN2 (5)
Type: FiniteField(2, 12)

8.11. Finite Fields · 321

Among the available operations
are norm and trace.

norm c

1 (6)
Type: PrimeField 2

trace c

0 (7)
Type: PrimeField 2

Since any nonzero element is a power of a primitive element, how do we
discover what the exponent is?

The operation discreteLog
calculates the exponent and, if
it is called with only one
argument, always refers to the
primitive element returned by
primitiveElement.

dL := discreteLog a

1729 (8)
Type: PositiveInteger

g ** dL

g1729 (9)
Type: Polynomial Integer

FiniteFieldExtension (abbreviation FFX) is similar to FiniteField except that
the ground-field for FiniteFieldExtension is arbitrary and chosen by you.

In case you select the prime field
as ground field, there is
essentially no difference between
the constructed two finite field
extensions.

GF16 := FF(2,4);

(10)
Type: Domain

GF4096 := FFX(GF16,3);

(11)
Type: Domain

r := (random()$GF4096) ** 20

%CO %CP 2 + 1 (12)
Type: FiniteFieldExtension(FiniteField(2, 4), 3)

norm(r)

%CO2 + %CO + 1 (13)
Type: FiniteField(2, 4)

FiniteFieldExtensionByPolynomial (abbreviation FFP) is similar to FiniteField and
FiniteFieldExtension but is more general.

322 · Advanced Problem Solving

GF4 := FF(2,2);

(14)
Type: Domain

f :=
nextIrreduciblePoly(random(6)$FFPOLY(GF4))$FFPOLY(GF4)

?6 + ?5 + %CQ ?4 + %CQ + 1 (15)
Type: Union(SparseUnivariatePolynomial FiniteField(2, 2), ...)

For FFP you choose both the
ground field and the irreducible
polynomial used in the
representation. The degree of
the extension is the degree of
the polynomial.

GF4096 := FFP(GF4,f);

(16)
Type: Domain

discreteLog random()$GF4096

3387 (17)
Type: PositiveInteger

8.11.4
Cyclic Group
Representations

In every finite field there exist elements whose powers are all the nonzero
elements of the field. Such an element is called a primitive element.

In FiniteFieldCyclicGroup (abbreviation FFCG) the nonzero elements are rep-
resented by the powers of a fixed primitive element of the field (that is,
a generator of its cyclic multiplicative group). Multiplication (and hence
exponentiation) using this representation is easy. To do addition, we
consider our primitive element as the root of a primitive polynomial (an
irreducible polynomial whose roots are all primitive). See Section 8.11.7
on page 329 for examples of how to compute such a polynomial.

To use FiniteFieldCyclicGroup you
provide a prime number and an
extension degree.

GF81 := FFCG(3,4);

(1)
Type: Domain

AXIOM uses the prime field,
here PrimeField 3, as the ground
field and it chooses a primitive
polynomial of degree n, here 4,
over the prime field.

a := primitiveElement()$GF81

%CS1 (2)
Type: FiniteFieldCyclicGroup(3, 4)

You can calculate in GF81. b := a**12 - a**5 + a

%CS72 (3)
Type: FiniteFieldCyclicGroup(3, 4)

8.11. Finite Fields · 323

In this representation of finite
fields the discrete logarithm of
an element can be seen directly
in its output form.

b

%CS72 (4)
Type: FiniteFieldCyclicGroup(3, 4)

discreteLog b

72 (5)
Type: PositiveInteger

FiniteFieldCyclicGroupExtension (abbreviation FFCGX) is similar to FiniteField-
CyclicGroup except that the ground field for FiniteFieldCyclicGroupExtension is
arbitrary and chosen by you. In case you select the prime field as ground
field, there is essentially no difference between the constructed two finite
field extensions.

GF9 := FF(3,2);

(6)
Type: Domain

GF729 := FFCGX(GF9,3);

(7)
Type: Domain

r := (random()$GF729) ** 20

%CU420 (8)
Type: FiniteFieldCyclicGroupExtension(FiniteField(3, 2), 3)

trace(r)

0 (9)
Type: FiniteField(3, 2)

FiniteFieldCyclicGroupExtensionByPolynomial (abbreviation FFCGP) is similar
to FiniteFieldCyclicGroup and FiniteFieldCyclicGroupExtension but is more gen-
eral. For FiniteFieldCyclicGroupExtensionByPolynomial you choose both the
ground field and the irreducible polynomial used in the representation.
The degree of the extension is the degree of the polynomial.

GF3 := PrimeField 3;

(10)
Type: Domain

324 · Advanced Problem Solving

We use a utility operation to
generate an irreducible primitive
polynomial (see Section 8.11.7
on page 329). The polynomial
has one variable that is
“anonymous”: it displays as a
question mark.

f := createPrimitivePoly(4)$FFPOLY(GF3)

?4+? + 2 (11)
Type: SparseUnivariatePolynomial PrimeField 3

GF81 := FFCGP(GF3,f);

(12)
Type: Domain

Let’s look at a random element
from this field.

random()$GF81

%CS13 (13)
Type: FiniteFieldCyclicGroupExtensionByPolynomial(PrimeField 3, ?**4+?+2)

8.11.5
Normal Basis
Representations

Let K be a finite extension of degree n of the finite field F and let F have
q elements. An element x of K is said to be normal over F if the elements

1, xq, xq2
, . . . , xqn−1

form a basis of K as a vector space over F . Such a basis is called a normal
basis.3

If x is normal over F , its minimal polynomial is also said to be normal
over F . There exist normal bases for all finite extensions of arbitrary
finite fields.

In FiniteFieldNormalBasis (abbreviation FFNB), the elements of the finite field
are represented by coordinate vectors with respect to a normal basis.

You provide a prime p and an
extension degree n.

K := FFNB(3,8)

FiniteFieldNormalBasis (3, 8) (1)
Type: Domain

AXIOM uses the prime field PrimeField(p), here PrimeField 3, and it chooses
a normal polynomial of degree n, here 8, over the ground field. The re-
mainder class of the indeterminate is used as the normal element. The
polynomial indeterminate is automatically chosen by AXIOM and is typi-
cally something like %A or %D. These (strange) variables are only for output
display; there are several ways to construct elements of this field. The
output of the basis elements is something like %Aqi

.

3This agrees with the general definition of a normal basis because the n distinct
powers of the automorphism x 7→ xq constitute the Galois group of K/F .

8.11. Finite Fields · 325

a := normalElement()$K

%CV (2)
Type: FiniteFieldNormalBasis(3, 8)

You can calculate in K using a. b := a**12 - a**5 + a

2 %CV q7
+ %CV q5

+ %CV q (3)
Type: FiniteFieldNormalBasis(3, 8)

FiniteFieldNormalBasisExtension (abbreviation FFNBX) is similar to FiniteField-
NormalBasis except that the groundfield for FiniteFieldNormalBasisExtension is
arbitrary and chosen by you. In case you select the prime field as ground
field, there is essentially no difference between the constructed two finite
field extensions.

GF9 := FFNB(3,2);

(4)
Type: Domain

GF729 := FFNBX(GF9,3);

(5)
Type: Domain

r := random()$GF729

(2 %CW q + %CW) %CXq2
+ %CW %CXq (6)

Type: FiniteFieldNormalBasisExtension(FiniteFieldNormalBasis(3, 2), 3)

r + r**3 + r**9 + r**27

%CW %CXq2
+ 2 %CW q %CXq + %CW %CX (7)

Type: FiniteFieldNormalBasisExtension(FiniteFieldNormalBasis(3, 2), 3)

FiniteFieldNormalBasisExtensionByPolynomial (abbreviation FFNBP) is similar to
FiniteFieldNormalBasis and FiniteFieldNormalBasisExtension but is more general.
For FiniteFieldNormalBasisExtensionByPolynomial you choose both the ground
field and the irreducible polynomial used in the representation. The de-
gree of the extension is the degree of the polynomial.

GF3 := PrimeField 3;

(8)
Type: Domain

326 · Advanced Problem Solving

We use a utility operation to
generate an irreducible normal
polynomial (see Section 8.11.7
on page 329). The polynomial
has one variable that is
“anonymous”: it displays as a
question mark.

f := createNormalPoly(4)$FFPOLY(GF3)

?4 + 2 ?3 + 2 (9)
Type: SparseUnivariatePolynomial PrimeField 3

GF81 := FFNBP(GF3,f);

(10)
Type: Domain

Let’s look at a random element
from this field.

r := random()$GF81

2 %CY q (11)
Type: FiniteFieldNormalBasisExtensionByPolynomial(PrimeField 3,

?**4+2*?**3+2)

r * r**3 * r**9 * r**27

2 %CY q3
+ 2 %CY q2

+ 2 %CY q + 2 %CY (12)
Type: FiniteFieldNormalBasisExtensionByPolynomial(PrimeField 3,

?**4+2*?**3+2)
norm r

2 (13)
Type: PrimeField 3

8.11.6
Conversion
Operations for Finite
Fields

Let K be a finite field. K := PrimeField 3

PrimeField 3 (1)
Type: Domain

An extension field Km of degree m over K is a subfield of an extension
field Kn of degree n over K if and only if m divides n.

Kn

|
Km ⇐⇒ m|n
|
K

FiniteFieldHomomorphisms provides conversion operations between different

8.11. Finite Fields · 327

extensions of one fixed finite ground field and between different represen-
tations of these finite fields.

Let’s choose m and n, (m,n) := (4,8)

8 (2)
Type: PositiveInteger

build the field extensions, Km := FiniteFieldExtension(K,m)

FiniteFieldExtension (PrimeField 3, 4) (3)
Type: Domain

and pick two random elements
from the smaller field.

Kn := FiniteFieldExtension(K,n)

FiniteFieldExtension (PrimeField 3, 8) (4)
Type: Domain

a1 := random()$Km

2 %CZ3 + 2 %CZ2 + 2 %CZ (5)
Type: FiniteFieldExtension(PrimeField 3, 4)

b1 := random()$Km

%CZ3 + %CZ2 + 2 %CZ + 1 (6)
Type: FiniteFieldExtension(PrimeField 3, 4)

Since m divides n, Km is a
subfield of Kn.

a2 := a1 :: Kn

2 %DA6 (7)
Type: FiniteFieldExtension(PrimeField 3, 8)

Therefore we can convert the
elements of Km into elements of
Kn.

b2 := b1 :: Kn

2 %DA6 + 2 %DA4 + %DA2 + 1 (8)
Type: FiniteFieldExtension(PrimeField 3, 8)

To check this, let’s do some
arithmetic.

a1+b1 - ((a2+b2) :: Km)

0 (9)
Type: FiniteFieldExtension(PrimeField 3, 4)

a1*b1 - ((a2*b2) :: Km)

0 (10)
Type: FiniteFieldExtension(PrimeField 3, 4)

There are also conversions available for the situation, when Km and Kn

are represented in different ways (see Section 8.11.2 on page 319). For
example let’s choose Km where the representation is 0 plus the cyclic
multiplicative group and Kn with a normal basis representation.

328 · Advanced Problem Solving

Km := FFCGX(K,m)

FiniteFieldCyclicGroupExtension (PrimeField 3, 4) (11)
Type: Domain

Kn := FFNBX(K,n)

FiniteFieldNormalBasisExtension (PrimeField 3, 8) (12)
Type: Domain

(a1,b1) := (random()$Km,random()$Km)

%CS8 (13)
Type: FiniteFieldCyclicGroupExtension(PrimeField 3, 4)

a2 := a1 :: Kn

2 %DBq6
+ 2 %DBq2

(14)
Type: FiniteFieldNormalBasisExtension(PrimeField 3, 8)

b2 := b1 :: Kn

%DBq7
+ %DBq6

+ 2 %DBq4
+ %DBq3

+ %DBq2
+ 2 %DB (15)

Type: FiniteFieldNormalBasisExtension(PrimeField 3, 8)

Check the arithmetic again. a1+b1 - ((a2+b2) :: Km)

0 (16)
Type: FiniteFieldCyclicGroupExtension(PrimeField 3, 4)

a1*b1 - ((a2*b2) :: Km)

0 (17)
Type: FiniteFieldCyclicGroupExtension(PrimeField 3, 4)

8.11.7
Utility Operations
for Finite Fields

FiniteFieldPolynomialPackage (abbreviation FFPOLY) provides operations for
generating, counting and testing polynomials over finite fields. Let’s start
with a couple of definitions:

• A polynomial is primitive if its roots are primitive elements in an
extension of the coefficient field of degree equal to the degree of the
polynomial.

• A polynomial is normal over its coefficient field if its roots are lin-
early independent elements in an extension of the coefficient field of
degree equal to the degree of the polynomial.

In what follows, many of the generated polynomials have one “anony-
mous” variable. This indeterminate is displayed as a question mark (“?”).

8.11. Finite Fields · 329

To fix ideas, let’s use the field
with five elements for the first
few examples.

GF5 := PF 5;

(1)
Type: Domain

You can generate irreducible
polynomials of any (positive)
degree (within the storage
capabilities of the computer and
your ability to wait) by using
createIrreduciblePoly.

f := createIrreduciblePoly(8)$FFPOLY(GF5)

?8 + ?4 + 2 (2)
Type: SparseUnivariatePolynomial PrimeField 5

Does this polynomial have other
important properties? Use
primitive? to test whether it is
a primitive polynomial.

primitive?(f)$FFPOLY(GF5)

false (3)
Type: Boolean

Use normal? to test whether it
is a normal polynomial.

normal?(f)$FFPOLY(GF5)

false (4)
Type: Boolean

Note that this is actually a trivial case, because a normal polynomial of
degree n must have a nonzero term of degree n− 1. We will refer back to
this later.

To get a primitive polynomial of
degree 8 just issue this.

p := createPrimitivePoly(8)$FFPOLY(GF5)

?8 + ?3 + ?2+? + 2 (5)
Type: SparseUnivariatePolynomial PrimeField 5

primitive?(p)$FFPOLY(GF5)

true (6)
Type: Boolean

This polynomial is not normal, normal?(p)$FFPOLY(GF5)

false (7)
Type: Boolean

but if you want a normal one
simply write this.

n := createNormalPoly(8)$FFPOLY(GF5)

?8 + 4 ?7 + ?3 + 1 (8)
Type: SparseUnivariatePolynomial PrimeField 5

This polynomial is not
primitive!

primitive?(n)$FFPOLY(GF5)

false (9)
Type: Boolean

This could have been seen directly, as the constant term is 1 here, which
is not a primitive element up to the factor (-1) raised to the degree of the

330 · Advanced Problem Solving

polynomial.4

What about polynomials that are both primitive and normal? The exis-
tence of such a polynomial is by no means obvious. 5

If you really need one use either
createPrimitiveNormalPoly
or
createNormalPrimitivePoly.

createPrimitiveNormalPoly(8)$FFPOLY(GF5)

?8 + 4 ?7 + 2 ?5 + 2 (10)
Type: SparseUnivariatePolynomial PrimeField 5

If you want to obtain additional polynomials of the various types above
as given by the create... operations above, you can use the next...
operations. For instance, nextIrreduciblePoly yields the next monic
irreducible polynomial with the same degree as the input polynomial. By
“next” we mean “next in a natural order using the terms and coefficients.”
This will become more clear in the following examples.

This is the field with five
elements.

GF5 := PF 5;

(11)
Type: Domain

Our first example irreducible
polynomial, say of degree 3,
must be “greater” than this.

h := monomial(1,8)$SUP(GF5)

?8 (12)
Type: SparseUnivariatePolynomial PrimeField 5

You can generate it by doing
this.

nh := nextIrreduciblePoly(h)$FFPOLY(GF5)

?8 + 2 (13)
Type: Union(SparseUnivariatePolynomial PrimeField 5, ...)

Notice that this polynomial is
not the same as the one
createIrreduciblePoly.

createIrreduciblePoly(3)$FFPOLY(GF5)

?3+? + 1 (14)
Type: SparseUnivariatePolynomial PrimeField 5

You can step through all
irreducible polynomials of
degree 8 over the field with 5
elements by repeatedly issuing
this.

nh := nextIrreduciblePoly(nh)$FFPOLY(GF5)

?8 + 3 (15)
Type: Union(SparseUnivariatePolynomial PrimeField 5, ...)

You could also ask for the total
number of these.

numberOfIrreduciblePoly(5)$FFPOLY(GF5)

624 (16)
Type: PositiveInteger

4Cf. Lidl, R. & Niederreiter, H., Finite Fields, Encycl. of Math. 20, (Addison-
Wesley, 1983), p.90, Th. 3.18.

5The existence of such polynomials is proved in Lenstra, H. W. & Schoof, R. J.,
Primitive Normal Bases for Finite Fields, Math. Comp. 48, 1987, pp. 217-231.

8.11. Finite Fields · 331

We hope that “natural order” on polynomials is now clear: first we com-
pare the number of monomials of two polynomials (“more” is “greater”);
then, if necessary, the degrees of these monomials (lexicographically), and
lastly their coefficients (also lexicographically, and using the operation
lookup if our field is not a prime field). Also note that we make both
polynomials monic before looking at the coefficients: multiplying either
polynomial by a nonzero constant produces the same result.

The package
FiniteFieldPolynomialPackage also
provides similar operations for
primitive and normal
polynomials. With the
exception of the number of
primitive normal polynomials;
we’re not aware of any known
formula for this.

numberOfPrimitivePoly(3)$FFPOLY(GF5)

20 (17)
Type: PositiveInteger

Take these, m := monomial(1,1)$SUP(GF5)

? (18)
Type: SparseUnivariatePolynomial PrimeField 5

f := m**3 + 4*m**2 + m + 2

?3 + 4 ?2+? + 2 (19)
Type: SparseUnivariatePolynomial PrimeField 5

and then we have: f1 := nextPrimitivePoly(f)$FFPOLY(GF5)

?3 + 4 ?2 + 4 ? + 2 (20)
Type: Union(SparseUnivariatePolynomial PrimeField 5, ...)

What happened? nextPrimitivePoly(f1)$FFPOLY(GF5)

?3 + 2 ?2 + 3 (21)
Type: Union(SparseUnivariatePolynomial PrimeField 5, ...)

Well, for the ordering used in nextPrimitivePoly we use as first criterion
a comparison of the constant terms of the polynomials. Analogously, in
nextNormalPoly we first compare the monomials of degree 1 less than
the degree of the polynomials (which is nonzero, by an earlier remark).

f := m**3 + m**2 + 4*m + 1

?3 + ?2 + 4 ? + 1 (22)
Type: SparseUnivariatePolynomial PrimeField 5

f1 := nextNormalPoly(f)$FFPOLY(GF5)

?3 + ?2 + 4 ? + 3 (23)
Type: Union(SparseUnivariatePolynomial PrimeField 5, ...)

332 · Advanced Problem Solving

nextNormalPoly(f1)$FFPOLY(GF5)

?3 + 2 ?2 + 1 (24)
Type: Union(SparseUnivariatePolynomial PrimeField 5, ...)

We don’t have to restrict ourselves to prime fields.

Let’s consider, say, a field with
16 elements.

GF16 := FFX(FFX(PF 2,2),2);

(25)
Type: Domain

We can apply any of the
operations described above.

createIrreduciblePoly(5)$FFPOLY(GF16)

?5 + %DD (26)
Type: SparseUnivariatePolynomial

FiniteFieldExtension(FiniteFieldExtension(PrimeField 2, 2), 2)

AXIOM also provides operations
for producing random
polynomials of a given degree

random(5)$FFPOLY(GF16)

?5 + (%CQ %DD + 1) ?4 + ((%CQ + 1) %DD + 1) ?3+
(%CQ + 1) %DD ?2 + (%DD + 1) ? + (%CQ + 1) %DD + %CQ

(27)

Type: SparseUnivariatePolynomial
FiniteFieldExtension(FiniteFieldExtension(PrimeField 2, 2), 2)

or with degree between two
given bounds.

random(3,9)$FFPOLY(GF16)

?8 + (%CQ %DD + %CQ) ?7 + (%DD + %CQ + 1) ?6+
((%CQ + 1) %DD + 1) ?5 + ((%CQ + 1) %DD + %CQ) ?4+
(%CQ + 1) %DD ?3 + ((%CQ + 1) %DD + %CQ) ?2 + %DD ?

(28)

Type: SparseUnivariatePolynomial
FiniteFieldExtension(FiniteFieldExtension(PrimeField 2, 2), 2)

FiniteFieldPolynomialPackage2 (abbreviation FFPOLY2) exports an op-
eration rootOfIrreduciblePoly for finding one root of an irreducible
polynomial f in an extension field of the coefficient field. The degree of
the extension has to be a multiple of the degree of f. It is not checked
whether f actually is irreducible.

To illustrate this operation, we
fix a ground field GF

GF2 := PrimeField 2;

(29)
Type: Domain

and then an extension field. F := FFX(GF2,12)

FiniteFieldExtension (PrimeField 2, 12) (30)
Type: Domain

8.11. Finite Fields · 333

We construct an irreducible
polynomial over GF2.

f := createIrreduciblePoly(6)$FFPOLY(GF2)

?6+? + 1 (31)
Type: SparseUnivariatePolynomial PrimeField 2

We compute a root of f. root := rootOfIrreduciblePoly(f)$FFPOLY2(F,GF2)

%CN11 + %CN8 + %CN7 + %CN5 + %CN + 1 (32)
Type: FiniteFieldExtension(PrimeField 2, 12)

334 · Advanced Problem Solving

8.12
Primary
Decomposition of
Ideals

AXIOM provides a facility for the primary decomposition of polynomial
ideals over fields of characteristic zero. The algorithm works in essentially
two steps:

1. the problem is solved for 0-dimensional ideals by “generic” projec-
tion on the last coordinate

2. a “reduction process” uses localization and ideal quotients to reduce
the general case to the 0-dimensional one.

The AXIOM constructor PolynomialIdeals represents ideals with coefficients
in any field and supports the basic ideal operations, including intersection,
sum and quotient. IdealDecompositionPackage contains the specific opera-
tions for the primary decomposition and the computation of the radical
of an ideal with polynomial coefficients in a field of characteristic 0 with
an effective algorithm for factoring polynomials.

The following examples illustrate the capabilities of this facility.

First consider the ideal
generated by x2 + y2 − 1 (which
defines a circle in the
(x,y)-plane) and the ideal
generated by x2 − y2

(corresponding to the straight
lines x = y and x = -y.

(n,m) : List DMP([x,y],FRAC INT)

Type: Void

m := [x**2+y**2-1]
[
x2 + y2 − 1

]
(2)

Type: List DistributedMultivariatePolynomial([x, y], Fraction Integer)

n := [x**2-y**2]
[
x2 − y2

]
(3)

Type: List DistributedMultivariatePolynomial([x, y], Fraction Integer)

We find the equations defining
the intersection of the two loci.
This correspond to the sum of
the associated ideals.

id := ideal m + ideal n[
x2 − 1

2
, y2 − 1

2

]
(4)

Type: PolynomialIdeals(Fraction Integer, DirectProduct(2, NonNegativeInteger),
OrderedVariableList [x, y], DistributedMultivariatePolynomial([x, y], Fraction
Integer))

We can check if the locus
contains only a finite number of
points, that is, if the ideal is
zero-dimensional.

zeroDim? id

true (5)
Type: Boolean

8.12. Primary Decomposition of Ideals · 335

zeroDim?(ideal m)

false (6)
Type: Boolean

dimension ideal m

1 (7)
Type: PositiveInteger

We can find polynomial
relations among the generators
(f and g are the parametric
equations of the knot).

(f,g):DMP([x,y],FRAC INT)

Type: Void

f := x**2-1

x2 − 1 (9)
Type: DistributedMultivariatePolynomial([x, y], Fraction Integer)

g := x*(x**2-1)

x3 − x (10)
Type: DistributedMultivariatePolynomial([x, y], Fraction Integer)

relationsIdeal [f,g]
[
−%DF 2 + %DE3 + %DE2

]
|
[
%DE = x2 − 1, %DF = x3 − x

]
(11)

Type: SuchThat(List Polynomial Fraction Integer, List Equation Polynomial Fraction
Integer)

We can compute the primary
decomposition of an ideal.

l: List DMP([x,y,z],FRAC INT)

Type: Void

l:=[x**2+2*y**2,x*z**2-y*z,z**2-4]
[
x2 + 2 y2, x z2 − y z, z2 − 4

]
(13)

Type: List DistributedMultivariatePolynomial([x, y, z], Fraction Integer)

ld:=primaryDecomp ideal l
[[

x +
1
2

y, y2, z + 2
]
,

[
x− 1

2
y, y2, z − 2

]]
(14)

Type: List PolynomialIdeals(Fraction Integer, DirectProduct(3,
NonNegativeInteger), OrderedVariableList [x, y, z],
DistributedMultivariatePolynomial([x, y, z], Fraction Integer))

336 · Advanced Problem Solving

We can intersect back. reduce(intersect,ld)
[
x− 1

4
y z, y2, z2 − 4

]
(15)

Type: PolynomialIdeals(Fraction Integer, DirectProduct(3, NonNegativeInteger),
OrderedVariableList [x, y, z], DistributedMultivariatePolynomial([x, y, z],
Fraction Integer))

We can compute the radical of
every primary component.

reduce(intersect,[radical ld.i for i in 1..2])[
x, y, z2 − 4

]
(16)

Type: PolynomialIdeals(Fraction Integer, DirectProduct(3, NonNegativeInteger),
OrderedVariableList [x, y, z], DistributedMultivariatePolynomial([x, y, z],
Fraction Integer))

Their intersection is equal to the
radical of the ideal of l.

radical ideal l[
x, y, z2 − 4

]
(17)

Type: PolynomialIdeals(Fraction Integer, DirectProduct(3, NonNegativeInteger),
OrderedVariableList [x, y, z], DistributedMultivariatePolynomial([x, y, z],
Fraction Integer))

8.12. Primary Decomposition of Ideals · 337

8.13
Computation of
Galois Groups

As a sample use of AXIOM’s algebraic number facilities, we compute the
Galois group of the polynomial p(x) = x5 − 5x + 12.

p := x**5 - 5*x + 12

x5 − 5 x + 12 (1)
Type: Polynomial Integer

We would like to construct a polynomial f(x) such that the splitting field
of p(x) is generated by one root of f(x). First we construct a polynomial
r = r(x) such that one root of r(x) generates the field generated by two
roots of the polynomial p(x). (As it will turn out, the field generated by
two roots of p(x) is, in fact, the splitting field of p(x).)

From the proof of the primitive element theorem we know that if a and b
are algebraic numbers, then the field Q(a, b) is equal to Q(a+kb) for an ap-
propriately chosen integer k. In our case, we construct the minimal poly-
nomial of ai−aj , where ai and aj are two roots of p(x). We construct this
polynomial using resultant. The main result we need is the following: If
f(x) is a polynomial with roots ai . . . am and g(x) is a polynomial with
roots bi . . . bn, then the polynomial h(x) = resultant(f(y), g(x-y),
y) is a polynomial of degree m∗n with roots ai+bj , i = 1 . . .m, j = 1 . . . n.

For f(x) we use the polynomial
p(x). For g(x) we use the
polynomial −p(−x). Thus, the
polynomial we first construct is
resultant(p(y), -p(y-x), y).

q := resultant(eval(p,x,y),-eval(p,x,y-x),y)

x25 − 50 x21 − 2375 x17 + 90000 x15 − 5000 x13 + 2700000 x11+
250000 x9 + 18000000 x7 + 64000000 x5 (2)

Type: Polynomial Integer

The roots of q(x) are ai − aj , i ≤ 1, j ≤ 5. Of course, there are five pairs
(i, j) with i = j, so 0 is a 5-fold root of q(x).

Let’s get rid of this factor. q1 := exquo(q, x**5)

x20 − 50 x16 − 2375 x12 + 90000 x10 − 5000 x8 + 2700000 x6+
250000 x4 + 18000000 x2 + 64000000

(3)

Type: Union(Polynomial Integer, ...)

Factor the polynomial q1. factoredQ := factor q1
(
x10 − 10 x8 − 75 x6 + 1500 x4 − 5500 x2 + 16000

)
×(

x10 + 10 x8 + 125 x6 + 500 x4 + 2500 x2 + 4000
) (4)

Type: Factored Polynomial Integer

We see that q1 has two irreducible factors, each of degree 10. (The fact
that the polynomial q1 has two factors of degree 10 is enough to show
that the Galois group of p(x) is the dihedral group of order 10.6 Note that

6See McKay, Soicher, Computing Galois Groups over the Rationals, Journal of

338 · Advanced Problem Solving

the type of factoredQ is FR POLY INT, that is, Factored Polynomial Integer.
This is a special data type for recording factorizations of polynomials with
integer coefficients (see ‘Factored’ on page 414).

We can access the individual
factors using the operation
nthFactor.

r := nthFactor(factoredQ,1)

x10 − 10 x8 − 75 x6 + 1500 x4 − 5500 x2 + 16000 (5)
Type: Polynomial Integer

Consider the polynomial r = r(x). This is the minimal polynomial of the
difference of two roots of p(x). Thus, the splitting field of p(x) contains a
subfield of degree 10. We show that this subfield is, in fact, the splitting
field of p(x) by showing that p(x) factors completely over this field.

First we create a symbolic root
of the polynomial r(x). (We
replaced x by b in the
polynomial r so that our
symbolic root would be printed
as b.)

beta:AN := rootOf(eval(r,x,b))

b (6)
Type: AlgebraicNumber

We next tell AXIOM to view
p(x) as a univariate polynomial
in x with algebraic number
coefficients. This is
accomplished with this type
declaration.

p := p::UP(x,INT)::UP(x,AN)

x5 − 5 x + 12 (7)
Type: UnivariatePolynomial(x, AlgebraicNumber)

Number Theory 20, 273-281 (1983). We do not assume the results of this paper,
however, and we continue with the computation.

8.13. Computation of Galois Groups · 339

Factor p(x) over the field Q(β).
(This computation will take
some time!)

algFactors := factor(p,[beta])



x +

(
−85 b9 − 116 b8 + 780 b7 + 2640 b6 + 14895 b5 − 8820 b4

−127050 b3 − 327000 b2 − 405200 b + 2062400

)

1339200


 ·

(
x +

−17 b8 + 156 b6 + 2979 b4 − 25410 b2 − 14080
66960

)
·

(
x +

143 b8 − 2100 b6 − 10485 b4 + 290550 b2 − 334800 b− 960800
669600

)
·

(
x +

143 b8 − 2100 b6 − 10485 b4 + 290550 b2 + 334800 b− 960800
669600

)
·




x +

(
85 b9 − 116 b8 − 780 b7 + 2640 b6 − 14895 b5 − 8820 b4

+127050 b3 − 327000 b2 + 405200 b + 2062400

)

1339200




(8)

Type: Factored UnivariatePolynomial(x, AlgebraicNumber)

When factoring over number fields, it is important to specify the field
over which the polynomial is to be factored, as polynomials have different
factorizations over different fields. When you use the operation factor,
the field over which the polynomial is factored is the field generated by

1. the algebraic numbers that appear in the coefficients of the polyno-
mial, and

2. the algebraic numbers that appear in a list passed as an optional
second argument of the operation.

In our case, the coefficients of p are all rational integers and only beta
appears in the list, so the field is simply Q(β).

It was necessary to give the list
[beta] as a second argument of
the operation because otherwise
the polynomial would have been
factored over the field generated
by its coefficients, namely the
rational numbers.

factor(p)

x5 − 5 x + 12 (9)
Type: Factored UnivariatePolynomial(x, AlgebraicNumber)

We have shown that the splitting field of p(x) has degree 10. Since the
symmetric group of degree 5 has only one transitive subgroup of order 10,
we know that the Galois group of p(x) must be this group, the dihedral
group of order 10. Rather than stop here, we explicitly compute the
action of the Galois group on the roots of p(x).

340 · Advanced Problem Solving

First we assign the roots of p(x) as the values of five variables.

We can obtain an individual
root by negating the constant
coefficient of one of the factors
of p(x).

factor1 := nthFactor(algFactors,1)

x +

(
−85 b9 − 116 b8 + 780 b7 + 2640 b6 + 14895 b5 − 8820 b4

−127050 b3 − 327000 b2 − 405200 b + 2062400

)

1339200

(10)

Type: UnivariatePolynomial(x, AlgebraicNumber)

root1 := -coefficient(factor1,0)
(

85 b9 + 116 b8 − 780 b7 − 2640 b6 − 14895 b5 + 8820 b4

+127050 b3 + 327000 b2 + 405200 b− 2062400

)

1339200
(11)

Type: AlgebraicNumber

We can obtain a list of all the
roots in this way.

roots := [-coefficient(nthFactor(algFactors,i),0) for i in
1..5]




(
85 b9 + 116 b8 − 780 b7 − 2640 b6 − 14895 b5 + 8820 b4

+127050 b3 + 327000 b2 + 405200 b− 2062400

)

1339200
,

17 b8 − 156 b6 − 2979 b4 + 25410 b2 + 14080
66960

,

−143 b8 + 2100 b6 + 10485 b4 − 290550 b2 + 334800 b + 960800
669600

,

−143 b8 + 2100 b6 + 10485 b4 − 290550 b2 − 334800 b + 960800
669600

,

(
−85 b9 + 116 b8 + 780 b7 − 2640 b6 + 14895 b5 + 8820 b4

−127050 b3 + 327000 b2 − 405200 b− 2062400

)

1339200




(12)

Type: List AlgebraicNumber

The expression

- coefficient(nthFactor(algFactors, i), 0)}

is the i th root of p(x) and the elements of roots are the i th roots of
p(x) as i ranges from 1 to 5.

8.13. Computation of Galois Groups · 341

Assign the roots as the values of
the variables a1,...,a5.

(a1,a2,a3,a4,a5) :=
(roots.1,roots.2,roots.3,roots.4,roots.5)

(
−85 b9 + 116 b8 + 780 b7 − 2640 b6 + 14895 b5 + 8820 b4

−127050 b3 + 327000 b2 − 405200 b− 2062400

)

1339200
(13)

Type: AlgebraicNumber

Next we express the roots of r(x) as polynomials in beta. We could
obtain these roots by calling the operation factor: factor(r, [beta])
factors r(x) over Q(β). However, this is a lengthy computation and
we can obtain the roots of r(x) as differences of the roots a1,...,a5 of
p(x). Only ten of these differences are roots of r(x) and the other ten are
roots of the other irreducible factor of q1. We can determine if a given
value is a root of r(x) by evaluating r(x) at that particular value. (Of
course, the order in which factors are returned by the operation factor
is unimportant and may change with different implementations of the
operation. Therefore, we cannot predict in advance which differences are
roots of r(x) and which are not.)

Let’s look at four examples (two
are roots of r(x) and two are
not).

eval(r,x,a1 - a2)

0 (14)
Type: Polynomial AlgebraicNumber

eval(r,x,a1 - a3)



47905 b9 + 66920 b8 − 536100 b7 − 980400 b6 − 3345075 b5−
5787000 b4 + 75572250 b3 + 161688000 b2 − 184600000 b−
710912000




4464
(15)

Type: Polynomial AlgebraicNumber

eval(r,x,a1 - a4)

0 (16)
Type: Polynomial AlgebraicNumber

eval(r,x,a1 - a5)

405 b8 + 3450 b6 − 19875 b4 − 198000 b2 − 588000
31

(17)

Type: Polynomial AlgebraicNumber

Take one of the differences that was a root of r(x) and assign it to the
variable bb.

342 · Advanced Problem Solving

For example, if eval(r,x,a1 -
a4) returned 0, you would enter
this.

bb := a1 - a4(
85 b9 + 402 b8 − 780 b7 − 6840 b6 − 14895 b5 − 12150 b4+
127050 b3 + 908100 b2 + 1074800 b− 3984000

)

1339200
(18)

Type: AlgebraicNumber

Of course, if the difference is, in fact, equal to the root beta, you should
choose another root of r(x).

Automorphisms of the splitting field are given by mapping a generator of
the field, namely beta, to other roots of its minimal polynomial. Let’s
see what happens when beta is mapped to bb.

We compute the images of the
roots a1,...,a5 under this
automorphism:

aa1 := subst(a1,beta = bb)

−143 b8 + 2100 b6 + 10485 b4 − 290550 b2 + 334800 b + 960800
669600

(19)

Type: AlgebraicNumber

aa2 := subst(a2,beta = bb)
(
−85 b9 + 116 b8 + 780 b7 − 2640 b6 + 14895 b5 + 8820 b4−
127050 b3 + 327000 b2 − 405200 b− 2062400

)

1339200
(20)

Type: AlgebraicNumber

aa3 := subst(a3,beta = bb)
(

85 b9 + 116 b8 − 780 b7 − 2640 b6 − 14895 b5 + 8820 b4+
127050 b3 + 327000 b2 + 405200 b− 2062400

)

1339200
(21)

Type: AlgebraicNumber

aa4 := subst(a4,beta = bb)

−143 b8 + 2100 b6 + 10485 b4 − 290550 b2 − 334800 b + 960800
669600

(22)

Type: AlgebraicNumber

aa5 := subst(a5,beta = bb)

17 b8 − 156 b6 − 2979 b4 + 25410 b2 + 14080
66960

(23)

Type: AlgebraicNumber

Of course, the values aa1,...,aa5 are simply a permutation of the values
a1,...,a5.

8.13. Computation of Galois Groups · 343

Let’s find the value of aa1
(execute as many of the
following five commands as
necessary).

(aa1 = a1) :: Boolean

false (24)
Type: Boolean

(aa1 = a2) :: Boolean

false (25)
Type: Boolean

(aa1 = a3) :: Boolean

true (26)
Type: Boolean

(aa1 = a4) :: Boolean

false (27)
Type: Boolean

(aa1 = a5) :: Boolean

false (28)
Type: Boolean

Proceeding in this fashion, you can find the values of aa2,...aa5.7 You
have represented the automorphism beta -> bb as a permutation of the
roots a1,...,a5. If you wish, you can repeat this computation for all the
roots of r(x) and represent the Galois group of p(x) as a subgroup of the
symmetric group on five letters.

Here are two other problems that you may attack in a similar fashion:

1. Show that the Galois group of p(x) = x4 +2x3− 2x2− 3x+1 is the
dihedral group of order eight. (The splitting field of this polynomial
is the Hilbert class field of the quadratic field Q(

√
145).)

2. Show that the Galois group of p(x) = x6 + 108 has order 6 and
is isomorphic to S3, the symmetric group on three letters. (The
splitting field of this polynomial is the splitting field of x3 − 2.)

7Here you should use the Clef line editor. See Section 1.1.1 on page 45 for more
information about Clef.

344 · Advanced Problem Solving

8.14
Non-Associative
Algebras and
Modelling
Genetic Laws

Many algebraic structures of mathematics and AXIOM have a multiplica-
tion operation “*” that satisfies the associativity law a∗(b∗c) = (a∗b)∗c for
all a, b and c. The octonions (see ‘Octonion’ on page 511) are a well known
exception. There are many other interesting non-associative structures,
such as the class of Lie algebras.8 Lie algebras can be used, for example,
to analyse Lie symmetry algebras of partial differential equations. In this
section we show a different application of non-associative algebras, the
modelling of genetic laws.

The AXIOM library contains several constructors for creating non-assoc-
iative structures, ranging from the categories Monad, NonAssociativeRng,
and FramedNonAssociativeAlgebra, to the domains AlgebraGivenByStructural-
Constants and GenericNonAssociativeAlgebra. Furthermore, the package Al-
gebraPackage provides operations for analysing the structure of such algebras.9

Mendel’s genetic laws are often written in a form like

Aa×Aa =
1
4
AA +

1
2
Aa +

1
4
aa.

The implementation of general algebras in AXIOM allows us to use this
as the definition for multiplication in an algebra. Hence, it is possible to
study questions of genetic inheritance using AXIOM. To demonstrate this
more precisely, we discuss one example from a monograph of A. Wörz-
Busekros, where you can also find a general setting of this theory.10

We assume that there is an infinitely large random mating population.
Random mating of two gametes ai and aj gives zygotes aiaj , which pro-
duce new gametes. In classical Mendelian segregation we have aiaj =
1
2ai + 1

2aj . In general, we have

aiaj =
n∑

k=1

γk
i,j ak.

The segregation rates γi,j are the structural constants of an n-dimensional
algebra. This is provided in AXIOM by the constructor AlgebraGiven-
ByStructuralConstants (abbreviation ALGSC).

Consider two coupled autosomal loci with alleles A,a, B, and b, building
four different gametes a1 = AB, a2 = Ab, a3 = aB, and a4 = ab. The

8Two AXIOM implementations of Lie algebras are LieSquareMatrix and
FreeNilpotentLie.

9The interested reader can learn more about these aspects of the AXIOM library
from the paper “Computations in Algebras of Finite Rank,” by Johannes Grabmeier
and Robert Wisbauer, Technical Report, IBM Heidelberg Scientific Center, 1992.

10Wörz-Busekros, A., Algebras in Genetics, Springer Lectures Notes in Biomathe-
matics 36, Berlin e.a. (1980). In particular, see example 1.3.

8.14. Non-Associative Algebras and Modelling Genetic Laws · 345

zygotes aiaj produce gametes ai and aj with classical Mendelian segre-
gation. Zygote a1a4 undergoes transition to a2a3 and vice versa with
probability 0 ≤ θ ≤ 1

2 .

Define a list [(γk
i,j)1 ≤ k ≤ 4] of

four four-by-four matrices giving
the segregation rates. We use
the value 1/10 for θ.

segregationRates : List SquareMatrix(4,FRAC INT) :=
[matrix [[1, 1/2, 1/2, 9/20], [1/2, 0, 1/20, 0], [1/2,
1/20, 0, 0], [9/20, 0, 0, 0]], matrix [[0, 1/2, 0,
1/20], [1/2, 1, 9/20, 1/2], [0, 9/20, 0, 0], [1/20,
1/2, 0, 0]], matrix [[0, 0, 1/2, 1/20], [0, 0, 9/20,
0], [1/2, 9/20, 1, 1/2], [1/20, 0, 1/2, 0]], matrix [
[0, 0, 0, 9/20], [0, 0, 1/20, 1/2], [0, 1/20, 0, 1/2],
[9/20, 1/2, 1/2, 1]]]







1 1
2

1
2

9
20

1
2 0 1

20 0
1
2

1
20 0 0

9
20 0 0 0


,




0 1
2 0 1

20
1
2 1 9

20
1
2

0 9
20 0 0

1
20

1
2 0 0


,




0 0 1
2

1
20

0 0 9
20 0

1
2

9
20 1 1

2
1
20 0 1

2 0


,




0 0 0 9
20

0 0 1
20

1
2

0 1
20 0 1

2
9
20

1
2

1
2 1







(1)

Type: List SquareMatrix(4, Fraction Integer)

Choose the appropriate symbols
for the basis of gametes,

gametes := [’AB,’Ab,’aB,’ab]

[AB, Ab, aB, ab] (2)
Type: List OrderedVariableList [AB, Ab, aB, ab]

Define the algebra. A := ALGSC(FRAC INT, 4, gametes, segregationRates);

(3)
Type: Domain

What are the probabilities for
zygote a1a4 to produce the
different gametes?

a := basis()$A; a.1*a.4

9
20

ab +
1
20

aB +
1
20

Ab +
9
20

AB (4)

Type: AlgebraGivenByStructuralConstants(Fraction Integer, 4, [AB, Ab, aB, ab],
[MATRIX, MATRIX, MATRIX, MATRIX])

Elements in this algebra whose coefficients sum to one play a distinguished
role. They represent a population with the distribution of gametes re-
flected by the coefficients with respect to the basis of gametes.

Random mating of different populations x and y is described by their
product x ∗ y.

346 · Advanced Problem Solving

This product is commutative
only if the gametes are not
sex-dependent, as in our
example.

commutative?()$A

algebra is commutative

true (5)
Type: Boolean

In general, it is not associative. associative?()$A

algebra is not associative

false (6)
Type: Boolean

Random mating within a population x is described by x ∗ x. The next
generation is (x ∗ x) ∗ (x ∗ x).

Use decimal numbers to
compare the distributions more
easily.

x : ALGSC(DECIMAL, 4, gametes, segregationRates) :=
convert [3/10, 1/5, 1/10, 2/5]

0.4 ab + 0.1 aB + 0.2 Ab + 0.3 AB (7)
Type: AlgebraGivenByStructuralConstants(DecimalExpansion, 4, [AB, Ab, aB, ab],

[MATRIX, MATRIX, MATRIX, MATRIX])

To compute directly the gametic
distribution in the fifth
generation, we use
plenaryPower.

plenaryPower(x,5)

0.36561 ab + 0.13439 aB + 0.23439 Ab + 0.26561 AB (8)
Type: AlgebraGivenByStructuralConstants(DecimalExpansion, 4, [AB, Ab, aB, ab],

[MATRIX, MATRIX, MATRIX, MATRIX])

We now ask two questions: Does this distribution converge to an equilib-
rium state? What are the distributions that are stable?

This is an invariant of the
algebra and it is used to answer
the first question. The new
indeterminates describe a
symbolic distribution.

q := leftRankPolynomial()$GCNAALG(FRAC INT, 4, gametes,
segregationRates) :: UP(Y, POLY FRAC INT)

Y 3 +
(
−29

20
%x4− 29

20
%x3− 29

20
%x2− 29

20
%x1

)
Y 2+




9
20

%x42 +
(

9
10

%x3 +
9
10

%x2 +
9
10

%x1
)

%x4+

9
20

%x32 +
(

9
10

%x2 +
9
10

%x1
)

%x3+

9
20

%x22 +
9
10

%x1 %x2 +
9
20

%x12




Y

(9)

Type: UnivariatePolynomial(Y, Polynomial Fraction Integer)

8.14. Non-Associative Algebras and Modelling Genetic Laws · 347

Because the coefficient 9
20

has
absolute value less than 1, all
distributions do converge, by a
theorem of this theory.

factor(q :: POLY FRAC INT)

(Y −%x4−%x3−%x2−%x1)×(
Y − 9

20
%x4− 9

20
%x3− 9

20
%x2− 9

20
%x1

)
Y

(10)

Type: Factored Polynomial Fraction Integer

The second question is answered
by searching for idempotents in
the algebra.

cI := conditionsForIdempotents()$GCNAALG(FRAC INT, 4,
gametes, segregationRates)

[
9
10

%x1 %x4 +
(

1
10

%x2 + %x1
)

%x3 + %x1 %x2 + %x12 −%x1,

(
%x2 +

1
10

%x1
)

%x4 +
9
10

%x2 %x3 + %x22 + (%x1− 1) %x2,

(
%x3 +

1
10

%x1
)

%x4 + %x32 +
(

9
10

%x2 + %x1− 1
)

%x3,

%x42 +
(

%x3 + %x2 +
9
10

%x1− 1
)

%x4 +
1
10

%x2 %x3
]

(11)

Type: List Polynomial Fraction Integer

Solve these equations and look
at the first solution.

gbs:= groebnerFactorize cI; gbs.1
[
%x4 + %x3 + %x2 + %x1− 1,

(%x2 + %x1) %x3 + %x1 %x2 + %x12 −%x1
] (12)

Type: List Polynomial Fraction Integer

Further analysis using the package PolynomialIdeals shows that there is a
two-dimensional variety of equilibrium states and all other solutions are
contained in it.

Choose one equilibrium state by
setting two indeterminates to
concrete values.

sol := solve concat(gbs.1,[%x1-1/10,%x2-1/10])
[[

%x4 =
2
5
, %x3 =

2
5
, %x2 =

1
10

, %x1 =
1
10

]]
(13)

Type: List List Equation Fraction Polynomial Integer

e : A := represents reverse (map(rhs, sol.1) :: List FRAC
INT)

2
5

ab +
2
5

aB +
1
10

Ab +
1
10

AB (14)

Type: AlgebraGivenByStructuralConstants(Fraction Integer, 4, [AB, Ab, aB, ab],
[MATRIX, MATRIX, MATRIX, MATRIX])

348 · Advanced Problem Solving

Verify the result. e*e-e

0 (15)
Type: AlgebraGivenByStructuralConstants(Fraction Integer, 4, [AB, Ab, aB, ab],

[MATRIX, MATRIX, MATRIX, MATRIX])

8.14. Non-Associative Algebras and Modelling Genetic Laws · 349

CHAPTER 9

Some
Examples of
Domains and
Packages

In this chapter we show examples of many of the most commonly used
AXIOM domains and packages. The sections are organized by constructor
names.

351

9.1
AssociationList

The AssociationList constructor provides a general structure for associative
storage. This type provides association lists in which data objects can be
saved according to keys of any type. For a given association list, specific
types must be chosen for the keys and entries. You can think of the
representation of an association list as a list of records with key and entry
fields.

Association lists are a form of table and so most of the operations available
for Table are also available for AssociationList. They can also be viewed as
lists and can be manipulated accordingly.

This is a Record type with age
and gender fields.

Data := Record(monthsOld : Integer, gender : String)

Record (monthsOld : Integer , gender : String) (1)
Type: Domain

In this expression, al is declared
to be an association list whose
keys are strings and whose
entries are the above records.

al : AssociationList(String,Data)

Type: Void

The table operation is used to
create an empty association list.

al := table()

table() (3)
Type: AssociationList(String, Record(monthsOld: Integer, gender: String))

You can use assignment syntax
to add things to the association
list.

al."bob" := [407,"male"]$Data

[monthsOld = 407, gender = "male"] (4)
Type: Record(monthsOld: Integer, gender: String)

al."judith" := [366,"female"]$Data

[monthsOld = 366, gender = "female"] (5)
Type: Record(monthsOld: Integer, gender: String)

al."katie" := [24,"female"]$Data

[monthsOld = 24, gender = "female"] (6)
Type: Record(monthsOld: Integer, gender: String)

Perhaps we should have
included a species field.

al."smokie" := [200,"female"]$Data

[monthsOld = 200, gender = "female"] (7)
Type: Record(monthsOld: Integer, gender: String)

352 · Some Examples of Domains and Packages

Now look at what is in the
association list. Note that the
last-added (key, entry) pair is at
the beginning of the list.

al

table ("smokie" = [monthsOld = 200, gender = "female"],
"katie" = [monthsOld = 24, gender = "female"],
"judith" = [monthsOld = 366, gender = "female"],
"bob" = [monthsOld = 407, gender = "male"])

(8)

Type: AssociationList(String, Record(monthsOld: Integer, gender: String))

You can reset the entry for an
existing key.

al."katie" := [23,"female"]$Data

[monthsOld = 23, gender = "female"] (9)
Type: Record(monthsOld: Integer, gender: String)

Use delete! to destructively
remove an element of the
association list. Use delete to
return a copy of the association
list with the element deleted.
The second argument is the
index of the element to delete.

delete!(al,1)

table ("katie" = [monthsOld = 23, gender = "female"],
"judith" = [monthsOld = 366, gender = "female"],
"bob" = [monthsOld = 407, gender = "male"])

(10)

Type: AssociationList(String, Record(monthsOld: Integer, gender: String))

For more information about tables, see ‘Table’ on page 585. For more
information about lists, see ‘List’ on page 489. Issue the system command
)show AssociationList to display the full list of operations defined by
AssociationList.

9.1. AssociationList · 353

9.2
BalancedBinary-
Tree

BalancedBinaryTrees(S) is the domain of balanced binary trees with elements
of type S at the nodes. A binary tree is either empty or else consists of
a node having a value and two branches, each branch a binary tree. A
balanced binary tree is one that is balanced with respect its leaves. One
with 2k leaves is perfectly “balanced”: the tree has minimum depth, and
the left and right branch of every interior node is identical in shape.

Balanced binary trees are useful in algebraic computation for so-called
“divide-and-conquer” algorithms. Conceptually, the data for a problem
is initially placed at the root of the tree. The original data is then split
into two subproblems, one for each subtree. And so on. Eventually, the
problem is solved at the leaves of the tree. A solution to the original
problem is obtained by some mechanism that can reassemble the pieces.
In fact, an implementation of the Chinese Remainder Algorithm using
balanced binary trees was first proposed by David Y. Y. Yun at the IBM
T. J. Watson Research Center in Yorktown Heights, New York, in 1978.
It served as the prototype for polymorphic algorithms in AXIOM.

In what follows, rather than perform a series of computations with a single
expression, the expression is reduced modulo a number of integer primes,
a computation is done with modular arithmetic for each prime, and the
Chinese Remainder Algorithm is used to obtain the answer to the original
problem. We illustrate this principle with the computation of 122 = 144.

A list of moduli. lm := [3,5,7,11]

[3, 5, 7, 11] (1)
Type: List PositiveInteger

The expression modTree(n, lm)
creates a balanced binary tree
with leaf values n mod m for
each modulus m in lm.

modTree(12,lm)

[0, 2, 5, 1] (2)
Type: List Integer

Operation modTree does this
using operations on balanced
binary trees. We trace its steps.
Create a balanced binary tree t
of zeros with four leaves.

t := balancedBinaryTree(#lm, 0)

[[0, 0, 0], 0, [0, 0, 0]] (3)
Type: BalancedBinaryTree NonNegativeInteger

The leaves of the tree are set to
the individual moduli.

setleaves!(t,lm)

[[3, 0, 5], 0, [7, 0, 11]] (4)
Type: BalancedBinaryTree NonNegativeInteger

Use mapUp! to do a
bottom-up traversal of t, setting
each interior node to the
product of the values at the
nodes of its children.

mapUp!(t, *)

1155 (5)
Type: PositiveInteger

354 · Some Examples of Domains and Packages

The value at the node of every
subtree is the product of the
moduli of the leaves of the
subtree.

t

[[3, 15, 5], 1155, [7, 77, 11]] (6)
Type: BalancedBinaryTree NonNegativeInteger

Operation mapDown!(t,a,fn)
replaces the value v at each
node of t by fn(a,v).

mapDown!(t,12, rem)

[[0, 12, 2], 12, [5, 12, 1]] (7)
Type: BalancedBinaryTree NonNegativeInteger

The operation leaves returns
the leaves of the resulting tree.
In this case, it returns the list of
12 mod m for each modulus m.

leaves %

[0, 2, 5, 1] (8)
Type: List NonNegativeInteger

Compute the square of the
images of 12 modulo each m.

squares := [x**2 rem m for x in % for m in lm]

[0, 4, 4, 1] (9)
Type: List NonNegativeInteger

Call the Chinese Remainder
Algorithm to get the answer for
122.

chineseRemainder(%,lm)

144 (10)
Type: PositiveInteger

9.2. BalancedBinaryTree · 355

9.3
BasicOperator

A basic operator is an object that can be symbolically applied to a list
of arguments from a set, the result being a kernel over that set or an
expression. In addition to this section, please see ‘Expression’ on page 410
and ‘Kernel’ on page 457 for additional information and examples.

You create an object of type BasicOperator by using the operator opera-
tion. This first form of this operation has one argument and it must be
a symbol. The symbol should be quoted in case the name has been used
as an identifier to which a value has been assigned.

A frequent application of BasicOperator is the creation of an operator to
represent the unknown function when solving a differential equation.

Let y be the unknown function
in terms of x.

y := operator ’y

y (1)
Type: BasicOperator

This is how you enter the
equation y’’ + y’ + y = 0.

deq := D(y x, x, 2) + D(y x, x) + y x = 0

y,, (x) + y, (x) + y (x) = 0 (2)
Type: Equation Expression Integer

To solve the above equation,
enter this.

solve(deq, y, x)
[
particular = 0, basis =

[
cos

(
x
√

3
2

)
e(−

x
2), e(−

x
2) sin

(
x
√

3
2

)]]
(3)

Type: Union(Record(particular: Expression Integer, basis: List Expression Integer),
...)

See Section 8.10 on page 308 for this kind of use of BasicOperator.

Use the single argument form of operator (as above) when you intend
to use the operator to create functional expressions with an arbitrary
number of arguments

Nary means an arbitrary
number of arguments can be
used in the functional
expressions.

nary? y

true (4)
Type: Boolean

unary? y

false (5)
Type: Boolean

Use the two-argument form when you want to restrict the number of
arguments in the functional expressions created with the operator.

356 · Some Examples of Domains and Packages

This operator can only be used
to create functional expressions
with one argument.

opOne := operator(’opOne, 1)

opOne (6)
Type: BasicOperator

nary? opOne

false (7)
Type: Boolean

unary? opOne

true (8)
Type: Boolean

Use arity to learn the number
of arguments that can be used.
It returns "false" if the
operator is nary.

arity opOne

1 (9)
Type: Union(NonNegativeInteger, ...)

Use name to learn the name of
an operator.

name opOne

opOne (10)
Type: Symbol

Use is? to learn if an operator
has a particular name.

is?(opOne, ’z2)

false (11)
Type: Boolean

You can also use a string as the
name to be tested against.

is?(opOne, "opOne")

true (12)
Type: Boolean

You can attached named properties to an operator. These are rarely used
at the top-level of the AXIOM interactive environment but are used with
AXIOM library source code.

By default, an operator has no
properties.

properties y

table() (13)
Type: AssociationList(String, None)

The interface for setting and getting properties is somewhat awkward
because the property values are stored as values of type None.

Attach a property by using
setProperty.

setProperty(y, "use", "unknown function" :: None)

y (14)
Type: BasicOperator

9.3. BasicOperator · 357

properties y

table ("use" = NONE) (15)
Type: AssociationList(String, None)

We know the property value has
type String.

property(y, "use") :: None pretend String

"unknown function" (16)
Type: String

Use deleteProperty! to
destructively remove a property.

deleteProperty!(y, "use")

y (17)
Type: BasicOperator

properties y

table() (18)
Type: AssociationList(String, None)

358 · Some Examples of Domains and Packages

9.4
BinaryExpansion

All rational numbers have repeating binary expansions. Operations to
access the individual bits of a binary expansion can be obtained by con-
verting the value to RadixExpansion(2). More examples of expansions are
available in ‘DecimalExpansion’ on page 401, ‘HexadecimalExpansion’ on page
444, and ‘RadixExpansion’ on page 537.

The expansion (of type
BinaryExpansion) of a rational
number is returned by the
binary operation.

r := binary(22/7)

11.001 (1)
Type: BinaryExpansion

Arithmetic is exact. r + binary(6/7)

100 (2)
Type: BinaryExpansion

The period of the expansion can
be short or long . . .

[binary(1/i) for i in 102..106]
[
0.000000101,
0.000000100111110001000101100101111001110010010101001,
0.000000100111011,
0.000000100111,
0.00000010011010100100001110011111011001010110111100011

]
(3)

Type: List BinaryExpansion

or very long. binary(1/1007)

0.0000000001000001000101001001011110000011111100001011
111100101100011111010001001110010011001100011001001010101
111011010011000000001100001100111101110001101000101111010
010001111011000010101110111001110101011100110010100101110
000000111000111100100000010010010011011100101010011101000
110111011010111000100100000110010110110000001011001011111
000101000001010101011010110000011011011101001010111111101
011101010011001000010100110110001001100010001000010000110
00111010011110001

(4)

Type: BinaryExpansion

These numbers are bona fide
algebraic objects.

p := binary(1/4)*x**2 + binary(2/3)*x + binary(4/9)

0.01 x2 + 0.10 x + 0.011100 (5)
Type: Polynomial BinaryExpansion

q := D(p, x)

0.1 x + 0.10 (6)
Type: Polynomial BinaryExpansion

9.4. BinaryExpansion · 359

g := gcd(p, q)

x + 1.01 (7)
Type: Polynomial BinaryExpansion

360 · Some Examples of Domains and Packages

9.5
BinarySearchTree

BinarySearchTree(R) is the domain of binary trees with elements of type R,
ordered across the nodes of the tree. A non-empty binary search tree has
a value of type R, and right and left binary search subtrees. If a subtree
is empty, it is displayed as a period (“.”).

Define a list of values to be
placed across the tree. The
resulting tree has 8 at the root;
all other elements are in the left
subtree.

lv := [8,3,5,4,6,2,1,5,7]

[8, 3, 5, 4, 6, 2, 1, 5, 7] (1)
Type: List PositiveInteger

A convenient way to create a
binary search tree is to apply
the operation
binarySearchTree to a list of
elements.

t := binarySearchTree lv

[[[1, 2, .], 3, [4, 5, [5, 6, 7]]], 8, .] (2)
Type: BinarySearchTree PositiveInteger

Another approach is to first
create an empty binary search
tree of integers.

emptybst := empty()$BSTREE(INT)

[] (3)
Type: BinarySearchTree Integer

Insert the value 8. This
establishes 8 as the root of the
binary search tree. Values
inserted later that are less than
8 get stored in the left subtree,
others in the right subtree.

t1 := insert!(8,emptybst)

8 (4)
Type: BinarySearchTree Integer

Insert the value 3. This number
becomes the root of the left
subtree of t1. For optimal
retrieval, it is thus important to
insert the middle elements first.

insert!(3,t1)

[3, 8, .] (5)
Type: BinarySearchTree Integer

We go back to the original tree
t. The leaves of the binary
search tree are those which have
empty left and right subtrees.

leaves t

[1, 4, 5, 7] (6)
Type: List PositiveInteger

The operation split(k,t)
returns a record containing the
two subtrees: one with all
elements “less” than k, another
with elements “greater” than k.

split(3,t)

[less = [1, 2, .], greater = [[., 3, [4, 5, [5, 6, 7]]], 8, .]] (7)
Type: Record(less: BinarySearchTree PositiveInteger, greater: BinarySearchTree

PositiveInteger)

Define insertRoot to insert
new elements by creating a new
node.

insertRoot: (INT,BSTREE INT) -> BSTREE INT

Type: Void

The new node puts the inserted
value between its “less” tree and
“greater” tree.

insertRoot(x, t) ==
a := split(x, t)
node(a.less, x, a.greater)

Type: Void

9.5. BinarySearchTree · 361

Function buildFromRoot
builds a binary search tree from
a list of elements ls and the
empty tree emptybst.

buildFromRoot ls == reduce(insertRoot,ls,emptybst)

Type: Void

Apply this to the reverse of the
list lv.

rt := buildFromRoot reverse lv

Compiling function buildFromRoot with type List
PositiveInteger -> BinarySearchTree Integer

Compiling function insertRoot with type (Integer,
BinarySearchTree Integer) -> BinarySearchTree
Integer

[[[1, 2, .], 3, [4, 5, [5, 6, 7]]], 8, .] (11)
Type: BinarySearchTree Integer

Have AXIOM check that these
are equal.

(t = rt)@Boolean

true (12)
Type: Boolean

362 · Some Examples of Domains and Packages

9.6
CardinalNumber

The CardinalNumber domain can be used for values indicating the car-
dinality of sets, both finite and infinite. For example, the dimension
operation in the category VectorSpace returns a cardinal number.

The non-negative integers have a natural construction as cardinals

0 = #{ }, 1 = {0}, 2 = {0, 1}, ..., n = {i | 0 <= i < n}.

The fact that 0 acts as a zero for the multiplication of cardinals is equiv-
alent to the axiom of choice.

Cardinal numbers can be
created by conversion from
non-negative integers.

c0 := 0 :: CardinalNumber

0 (1)
Type: CardinalNumber

c1 := 1 :: CardinalNumber

1 (2)
Type: CardinalNumber

c2 := 2 :: CardinalNumber

2 (3)
Type: CardinalNumber

c3 := 3 :: CardinalNumber

3 (4)
Type: CardinalNumber

They can also be obtained as
the named cardinal Aleph(n).

A0 := Aleph 0

Aleph (0) (5)
Type: CardinalNumber

A1 := Aleph 1

Aleph (1) (6)
Type: CardinalNumber

The finite? operation tests
whether a value is a finite
cardinal, that is, a non-negative
integer.

finite? c2

true (7)
Type: Boolean

finite? A0

false (8)
Type: Boolean

9.6. CardinalNumber · 363

Similarly, the countable?
operation determines whether a
value is a countable cardinal,
that is, finite or Aleph(0).

countable? c2

true (9)
Type: Boolean

countable? A0

true (10)
Type: Boolean

countable? A1

false (11)
Type: Boolean

Arithmetic operations are defined on cardinal numbers as follows: If x =
#X and y = #Y then

x+y = #(X+Y) cardinality of the disjoint union
x-y = #(X-Y) cardinality of the relative complement
x*y = #(X*Y) cardinality of the Cartesian product
x**y = #(X**Y) cardinality of the set of maps from Y to X

Here are some arithmetic
examples.

[c2 + c2, c2 + A1]

[4, Aleph (1)] (12)
Type: List CardinalNumber

[c0*c2, c1*c2, c2*c2, c0*A1, c1*A1, c2*A1, A0*A1]

[0, 2, 4, 0, Aleph (1), Aleph (1), Aleph (1)] (13)
Type: List CardinalNumber

[c2**c0, c2**c1, c2**c2, A1**c0, A1**c1, A1**c2]

[1, 2, 4, 1, Aleph (1), Aleph (1)] (14)
Type: List CardinalNumber

Subtraction is a partial
operation: it is not defined
when subtracting a larger
cardinal from a smaller one, nor
when subtracting two equal
infinite cardinals.

[c2-c1, c2-c2, c2-c3, A1-c2, A1-A0, A1-A1]

[1, 0, "failed", Aleph (1), Aleph (1), "failed"] (15)
Type: List Union(CardinalNumber, "failed")

The generalized continuum hypothesis asserts that

2**Aleph i = Aleph(i+1)

and is independent of the axioms of set theory.1

1Goedel, The consistency of the continuum hypothesis, Ann. Math. Studies, Prince-
ton Univ. Press, 1940.

364 · Some Examples of Domains and Packages

The CardinalNumber domain
provides an operation to assert
whether the hypothesis is to be
assumed.

generalizedContinuumHypothesisAssumed true

true (16)
Type: Boolean

When the generalized
continuum hypothesis is
assumed, exponentiation to a
transfinite power is allowed.

[c0**A0, c1**A0, c2**A0, A0**A0, A0**A1, A1**A0, A1**A1]

[0, 1, Aleph (1), Aleph (1), Aleph (2), Aleph (1), Aleph (2)] (17)
Type: List CardinalNumber

Three commonly encountered cardinal numbers are

a = #Z countable infinity
c = #R the continuum
f = #{g|g : [0, 1] → R}

In this domain, these values are
obtained under the generalized
continuum hypothesis in this
way.

a := Aleph 0

Aleph (0) (18)
Type: CardinalNumber

c := 2**a

Aleph (1) (19)
Type: CardinalNumber

f := 2**c

Aleph (2) (20)
Type: CardinalNumber

9.6. CardinalNumber · 365

9.7
CartesianTensor

CartesianTensor(i0,dim,R) provides Cartesian tensors with components be-
longing to a commutative ring R. Tensors can be described as a general-
ization of vectors and matrices. This gives a concise tensor algebra for
multilinear objects supported by the CartesianTensor domain. You can form
the inner or outer product of any two tensors and you can add or subtract
tensors with the same number of components. Additionally, various forms
of traces and transpositions are useful.

The CartesianTensor constructor allows you to specify the minimum index
for subscripting. In what follows we discuss in detail how to manipulate
tensors.

Here we construct the domain of
Cartesian tensors of dimension 2
over the integers, with indices
starting at 1.

CT := CARTEN(i0 := 1, 2, Integer)

CartesianTensor (1, 2, Integer) (1)
Type: Domain

Forming tensors

Scalars can be converted to
tensors of rank zero.

t0: CT := 8

8 (2)
Type: CartesianTensor(1, 2, Integer)

rank t0

0 (3)
Type: NonNegativeInteger

Vectors (mathematical direct
products, rather than one
dimensional array structures)
can be converted to tensors of
rank one.

v: DirectProduct(2, Integer) := directProduct [3,4]

[3, 4] (4)
Type: DirectProduct(2, Integer)

Tv: CT := v

[3, 4] (5)
Type: CartesianTensor(1, 2, Integer)

Matrices can be converted to
tensors of rank two.

m: SquareMatrix(2, Integer) := matrix [[1,2],[4,5]]
[

1 2
4 5

]
(6)

Type: SquareMatrix(2, Integer)

Tm: CT := m
[

1 2
4 5

]
(7)

Type: CartesianTensor(1, 2, Integer)

366 · Some Examples of Domains and Packages

n: SquareMatrix(2, Integer) := matrix [[2,3],[0,1]]
[

2 3
0 1

]
(8)

Type: SquareMatrix(2, Integer)

Tn: CT := n
[

2 3
0 1

]
(9)

Type: CartesianTensor(1, 2, Integer)

In general, a tensor of rank k
can be formed by making a list
of rank k-1 tensors or,
alternatively, a k-deep nested
list of lists.

t1: CT := [2, 3]

[2, 3] (10)
Type: CartesianTensor(1, 2, Integer)

rank t1

1 (11)
Type: PositiveInteger

t2: CT := [t1, t1]
[

2 3
2 3

]
(12)

Type: CartesianTensor(1, 2, Integer)

t3: CT := [t2, t2]
[[

2 3
2 3

]
,

[
2 3
2 3

]]
(13)

Type: CartesianTensor(1, 2, Integer)

tt: CT := [t3, t3]; tt := [tt, tt]






[
2 3
2 3

] [
2 3
2 3

]

[
2 3
2 3

] [
2 3
2 3

]


,




[
2 3
2 3

] [
2 3
2 3

]

[
2 3
2 3

] [
2 3
2 3

]





 (14)

Type: CartesianTensor(1, 2, Integer)

rank tt

5 (15)
Type: PositiveInteger

Multiplication Given two tensors of rank k1 and k2, the outer product forms a new
tensor of rank k1+k2.

9.7. CartesianTensor · 367

Here
Tmn(i, j, k, l) = Tm(i, j) Tn(k, l).

Tmn := product(Tm, Tn)



[
2 3
0 1

] [
4 6
0 2

]

[
8 12
0 4

] [
10 15
0 5

]


 (16)

Type: CartesianTensor(1, 2, Integer)

The inner product (contract) forms a tensor of rank k1+k2-2. This
product generalizes the vector dot product and matrix-vector product by
summing component products along two indices.

Here we sum along the second
index of Tm and the first index
of Tv. Here
Tmv =

∑dim

j=1
Tm(i, j) Tv(j)

Tmv := contract(Tm,2,Tv,1)

[11, 32] (17)
Type: CartesianTensor(1, 2, Integer)

The multiplication operator “*” is scalar multiplication or an inner prod-
uct depending on the ranks of the arguments.

If either argument is rank zero
it is treated as scalar
multiplication. Otherwise, a*b
is the inner product summing
the last index of a with the first
index of b.

Tm*Tv

[11, 32] (18)
Type: CartesianTensor(1, 2, Integer)

This definition is consistent with
the inner product on matrices
and vectors.

Tmv = m * v

[11, 32] = [11, 32] (19)
Type: Equation CartesianTensor(1, 2, Integer)

Selecting Components

For tensors of low rank (that is,
four or less), components can be
selected by applying the tensor
to its indices.

t0()

8 (20)
Type: PositiveInteger

t1(1+1)

3 (21)
Type: PositiveInteger

t2(2,1)

2 (22)
Type: PositiveInteger

t3(2,1,2)

3 (23)
Type: PositiveInteger

368 · Some Examples of Domains and Packages

Tmn(2,1,2,1)

0 (24)
Type: NonNegativeInteger

A general indexing mechanism
is provided for a list of indices.

t0[]

8 (25)
Type: PositiveInteger

t1[2]

3 (26)
Type: PositiveInteger

t2[2,1]

2 (27)
Type: PositiveInteger

The general mechanism works
for tensors of arbitrary rank,
but is somewhat less efficient
since the intermediate index list
must be created.

t3[2,1,2]

3 (28)
Type: PositiveInteger

Tmn[2,1,2,1]

0 (29)
Type: NonNegativeInteger

Contraction A “contraction” between two tensors is an inner product, as we have
seen above. You can also contract a pair of indices of a single ten-
sor. This corresponds to a “trace” in linear algebra. The expression
contract(t,k1,k2) forms a new tensor by summing the diagonal given
by indices in position k1 and k2.

This is the tensor given by

xTmn =
∑dim

k=1
Tmn(k, k, i, j).

cTmn := contract(Tmn,1,2)
[

12 18
0 6

]
(30)

Type: CartesianTensor(1, 2, Integer)

Since Tmn is the outer product of
matrix m and matrix n, the
above is equivalent to this.

trace(m) * n
[

12 18
0 6

]
(31)

Type: SquareMatrix(2, Integer)

9.7. CartesianTensor · 369

In this and the next few
examples, we show all possible
contractions of Tmn and their
matrix algebra equivalents.

contract(Tmn,1,2) = trace(m) * n
[

12 18
0 6

]
=

[
12 18
0 6

]
(32)

Type: Equation CartesianTensor(1, 2, Integer)

contract(Tmn,1,3) = transpose(m) * n
[

2 7
4 11

]
=

[
2 7
4 11

]
(33)

Type: Equation CartesianTensor(1, 2, Integer)

contract(Tmn,1,4) = transpose(m) * transpose(n)
[

14 4
19 5

]
=

[
14 4
19 5

]
(34)

Type: Equation CartesianTensor(1, 2, Integer)

contract(Tmn,2,3) = m * n
[

2 5
8 17

]
=

[
2 5
8 17

]
(35)

Type: Equation CartesianTensor(1, 2, Integer)

contract(Tmn,2,4) = m * transpose(n)
[

8 2
23 5

]
=

[
8 2
23 5

]
(36)

Type: Equation CartesianTensor(1, 2, Integer)

contract(Tmn,3,4) = trace(n) * m
[

3 6
12 15

]
=

[
3 6
12 15

]
(37)

Type: Equation CartesianTensor(1, 2, Integer)

Transpositions You can exchange any desired pair of indices using the transpose oper-
ation.

Here the indices in positions one
and three are exchanged, that is,
tTmn(i, j, k, l) = Tmn(k, j, i, l).

tTmn := transpose(Tmn,1,3)



[
2 3
8 12

] [
4 6
10 15

]

[
0 1
0 4

] [
0 2
0 5

]


 (38)

Type: CartesianTensor(1, 2, Integer)

370 · Some Examples of Domains and Packages

If no indices are specified, the
first and last index are
exchanged.

transpose Tmn



[
2 8
0 0

] [
4 10
0 0

]

[
3 12
1 4

] [
6 15
2 5

]


 (39)

Type: CartesianTensor(1, 2, Integer)

This is consistent with the
matrix transpose.

transpose Tm = transpose m
[

1 4
2 5

]
=

[
1 4
2 5

]
(40)

Type: Equation CartesianTensor(1, 2, Integer)

If a more complicated reordering of the indices is required, then the rein-
dex operation can be used. This operation allows the indices to be arbi-
trarily permuted.

This defines rTmn(i, j, k, l) =
Tmn(i, l, j, k).

rTmn := reindex(Tmn, [1,4,2,3])



[
2 0
4 0

] [
3 1
6 2

]

[
8 0
10 0

] [
12 4
15 5

]


 (41)

Type: CartesianTensor(1, 2, Integer)

Arithmetic

Tensors of equal rank can be
added or subtracted so
arithmetic expressions can be
used to produce new tensors.

tt := transpose(Tm)*Tn - Tn*transpose(Tm)
[−6 −16

2 6

]
(42)

Type: CartesianTensor(1, 2, Integer)

Tv*(tt+Tn)

[−4, −11] (43)
Type: CartesianTensor(1, 2, Integer)

reindex(product(Tn,Tn),[4,3,2,1])+3*Tn*product(Tm,Tm)



[
46 84
174 212

] [
57 114
228 285

]

[
18 24
57 63

] [
17 30
63 76

]


 (44)

Type: CartesianTensor(1, 2, Integer)

Specific Tensors Two specific tensors have properties which depend only on the dimension.

9.7. CartesianTensor · 371

The Kronecker delta satisfies

delta(i, j) =

{
1 if i = j

0 if i 6= j

delta: CT := kroneckerDelta()
[

1 0
0 1

]
(45)

Type: CartesianTensor(1, 2, Integer)

This can be used to reindex via
contraction.

contract(Tmn, 2, delta, 1) = reindex(Tmn, [1,3,4,2])



[
2 4
3 6

] [
0 0
1 2

]

[
8 10
12 15

] [
0 0
4 5

]


 =




[
2 4
3 6

] [
0 0
1 2

]

[
8 10
12 15

] [
0 0
4 5

]




(46)

Type: Equation CartesianTensor(1, 2, Integer)

The Levi Civita symbol
determines the sign of a
permutation of indices.

epsilon:CT := leviCivitaSymbol()
[

0 1
−1 0

]
(47)

Type: CartesianTensor(1, 2, Integer)

Here we have:

epsilon(i1, . . . , idim) =





+1 if i1, . . . , idim is an even permutation of
i0, . . . , i0 + dim− 1

−1 if i1, . . . , idim is an odd permutation of
i0, . . . , i0 + dim− 1

0 if i1, . . . , idim is not a permutation of
i0, . . . , i0 + dim− 1

This property can be used to
form determinants.

contract(epsilon*Tm*epsilon, 1,2) = 2 * determinant m

−6 = −6 (48)
Type: Equation CartesianTensor(1, 2, Integer)

Properties of the
CartesianTensor domain

GradedModule(R,E) denotes “E-graded R-module”, that is, a collection of
R-modules indexed by an abelian monoid E. An element g of G[s] for
some specific s in E is said to be an element of G with degree s. Sums
are defined in each module G[s] so two elements of G can be added if
they have the same degree. Morphisms can be defined and composed by
degree to give the mathematical category of graded modules.

GradedAlgebra(R,E) denotes “E-graded R-algebra.” A graded algebra is a
graded module together with a degree preserving R-bilinear map, called
the product.

372 · Some Examples of Domains and Packages

degree(product(a,b))= degree(a) + degree(b)

product(r*a,b) = product(a,r*b) = r*product(a,b)
product(a1+a2,b) = product(a1,b) + product(a2,b)
product(a,b1+b2) = product(a,b1) + product(a,b2)
product(a,product(b,c)) = product(product(a,b),c)

The domain CartesianTensor(i0, dim, R) belongs to the category GradedAlge-
bra(R, NonNegativeInteger). The non-negative integer degree is the tensor
rank and the graded algebra product is the tensor outer product. The
graded module addition captures the notion that only tensors of equal
rank can be added.

If V is a vector space of dimension dim over R, then the tensor module
T[k](V) is defined as

T[0](V) = R
T[k](V) = T[k-1](V) * V

where “*” denotes the R-module tensor product. CartesianTensor(i0,dim,R)
is the graded algebra in which the degree k module is T[k](V).

Tensor Calculus It should be noted here that often tensors are used in the context of
tensor-valued manifold maps. This leads to the notion of covariant and
contravariant bases with tensor component functions transforming in spe-
cific ways under a change of coordinates on the manifold. This is no more
directly supported by the CartesianTensor domain than it is by the Vector
domain. However, it is possible to have the components implicitly repre-
sent component maps by choosing a polynomial or expression type for the
components. In this case, it is up to the user to satisfy any constraints
which arise on the basis of this interpretation.

9.7. CartesianTensor · 373

9.8
Character

The members of the domain Character are values representing letters, nu-
merals and other text elements. For more information on related topics,
see ‘CharacterClass’ on page 376 and ‘String’ on page 577.

Characters can be obtained
using String notation.

chars := [char "a", char "A", char "X", char "8", char
"+"]

[a, A, X, 8, +] (1)
Type: List Character

Certain characters are available
by name. This is the blank
character.

space()

(2)
Type: Character

This is the quote that is used in
strings.

quote()

" (3)
Type: Character

This is the escape character that
allows quotes and other
characters within strings.

escape()

(4)
Type: Character

Characters are represented as
integers in a machine-dependent
way. The integer value can be
obtained using the ord
operation. It is always true that
char(ord c) = c and ord(char
i) = i, provided that i is in the
range 0..size()$Character-1.

[ord c for c in chars]

[97, 65, 88, 56, 43] (5)
Type: List Integer

The lowerCase operation
converts an upper case letter to
the corresponding lower case
letter. If the argument is not an
upper case letter, then it is
returned unchanged.

[upperCase c for c in chars]

[A, A, X, 8, +] (6)
Type: List Character

Likewise, the upperCase
operation converts lower case
letters to upper case.

[lowerCase c for c in chars]

[a, a, x, 8, +] (7)
Type: List Character

A number of tests are available
to determine whether characters
belong to certain families.

[alphabetic? c for c in chars]

[true, true, true, false, false] (8)
Type: List Boolean

[upperCase? c for c in chars]

[false, true, true, false, false] (9)
Type: List Boolean

374 · Some Examples of Domains and Packages

[lowerCase? c for c in chars]

[true, false, false, false, false] (10)
Type: List Boolean

[digit? c for c in chars]

[false, false, false, true, false] (11)
Type: List Boolean

[hexDigit? c for c in chars]

[true, true, false, true, false] (12)
Type: List Boolean

[alphanumeric? c for c in chars]

[true, true, true, true, false] (13)
Type: List Boolean

9.8. Character · 375

9.9
CharacterClass

The CharacterClass domain allows classes of characters to be defined and
manipulated efficiently.

Character classes can be created
by giving either a string or a list
of characters.

cl1 := charClass [char "a", char "e", char "i", char "o",
char "u", char "y"]

"aeiouy" (1)
Type: CharacterClass

cl2 := charClass "bcdfghjklmnpqrstvwxyz"

"bcdfghjklmnpqrstvwxyz" (2)
Type: CharacterClass

A number of character classes
are predefined for convenience.

digit()

"0123456789" (3)
Type: CharacterClass

hexDigit()

"0123456789ABCDEFabcdef" (4)
Type: CharacterClass

upperCase()

"ABCDEFGHIJKLMNOPQRSTUVWXYZ" (5)
Type: CharacterClass

lowerCase()

"abcdefghijklmnopqrstuvwxyz" (6)
Type: CharacterClass

alphabetic()

"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" (7)
Type: CharacterClass

alphanumeric()

"0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"

(8)

Type: CharacterClass

You can quickly test whether a
character belongs to a class.

member?(char "a", cl1)

true (9)
Type: Boolean

member?(char "a", cl2)

false (10)
Type: Boolean

376 · Some Examples of Domains and Packages

Classes have the usual set
operations because the
CharacterClass domain belongs
to the category
FiniteSetAggregate(Character).

intersect(cl1, cl2)

"y" (11)
Type: CharacterClass

union(cl1,cl2)

"abcdefghijklmnopqrstuvwxyz" (12)
Type: CharacterClass

difference(cl1,cl2)

"aeiou" (13)
Type: CharacterClass

intersect(complement(cl1),cl2)

"bcdfghjklmnpqrstvwxz" (14)
Type: CharacterClass

You can modify character
classes by adding or removing
characters.

insert!(char "a", cl2)

"abcdfghjklmnpqrstvwxyz" (15)
Type: CharacterClass

remove!(char "b", cl2)

"acdfghjklmnpqrstvwxyz" (16)
Type: CharacterClass

For more information on related topics, see ‘Character’ on page 374 and
‘String’ on page 577. Issue the system command)show CharacterClass
to display the full list of operations defined by CharacterClass.

9.9. CharacterClass · 377

9.10
CliffordAlgebra

CliffordAlgebra(n,K,Q) defines a vector space of dimension 2n over the field
K with a given quadratic form Q. If {e1, . . . , en} is a basis for Kn then

{ 1
ei for 1 ≤ i ≤ n

ei1 ei2 for 1 ≤ i1 < i2 ≤ n
. . .

e1 e2 · · · en }
is a basis for the Clifford algebra. The algebra is defined by the relations

ei ei = Q(ei)
ei ej = −ej ei for i 6= j

Examples of Clifford Algebras are gaussians (complex numbers), quater-
nions, exterior algebras and spin algebras.

9.10.1
The Complex
Numbers as a
Clifford Algebra

This is the field over which we
will work, rational functions
with integer coefficients.

K := Fraction Polynomial Integer

Fraction Polynomial Integer (1)
Type: Domain

We use this matrix for the
quadratic form.

m := matrix [[-1]]
[−1

]
(2)

Type: Matrix Integer

We get complex arithmetic by
using this domain.

C := CliffordAlgebra(1, K, quadraticForm m)

CliffordAlgebra (1, Fraction Polynomial Integer , MATRIX) (3)
Type: Domain

Here is i, the usual square root
of -1.

i: C := e(1)

e1 (4)
Type: CliffordAlgebra(1, Fraction Polynomial Integer, MATRIX)

Here are some examples of the
arithmetic.

x := a + b * i

a + b e1 (5)
Type: CliffordAlgebra(1, Fraction Polynomial Integer, MATRIX)

y := c + d * i

c + d e1 (6)
Type: CliffordAlgebra(1, Fraction Polynomial Integer, MATRIX)

378 · Some Examples of Domains and Packages

See ‘Complex’ on page 383 for
examples of AXIOM’s
constructor implementing
complex numbers.

x * y

−b d + a c + (a d + b c) e1 (7)
Type: CliffordAlgebra(1, Fraction Polynomial Integer, MATRIX)

9.10.2
The Quaternion
Numbers as a
Clifford Algebra

This is the field over which we
will work, rational functions
with integer coefficients.

K := Fraction Polynomial Integer

Fraction Polynomial Integer (1)
Type: Domain

We use this matrix for the
quadratic form.

m := matrix [[-1,0],[0,-1]]
[−1 0

0 −1

]
(2)

Type: Matrix Integer

The resulting domain is the
quaternions.

H := CliffordAlgebra(2, K, quadraticForm m)

CliffordAlgebra (2, Fraction Polynomial Integer , MATRIX) (3)
Type: Domain

We use Hamilton’s notation for
i,j,k.

i: H := e(1)

e1 (4)
Type: CliffordAlgebra(2, Fraction Polynomial Integer, MATRIX)

j: H := e(2)

e2 (5)
Type: CliffordAlgebra(2, Fraction Polynomial Integer, MATRIX)

k: H := i * j

e1 e2 (6)
Type: CliffordAlgebra(2, Fraction Polynomial Integer, MATRIX)

x := a + b * i + c * j + d * k

a + b e1 + c e2 + d e1 e2 (7)
Type: CliffordAlgebra(2, Fraction Polynomial Integer, MATRIX)

y := e + f * i + g * j + h * k

e + f e1 + g e2 + h e1 e2 (8)
Type: CliffordAlgebra(2, Fraction Polynomial Integer, MATRIX)

9.10. CliffordAlgebra · 379

x + y

e + a + (f + b) e1 + (g + c) e2 + (h + d) e1 e2 (9)
Type: CliffordAlgebra(2, Fraction Polynomial Integer, MATRIX)

x * y

−d h− c g − b f + a e + (c h− d g + a f + b e) e1+
(−b h + a g + d f + c e) e2 + (a h + b g − c f + d e) e1 e2

(10)

Type: CliffordAlgebra(2, Fraction Polynomial Integer, MATRIX)

See ‘Quaternion’ on page 535 for
examples of AXIOM’s
constructor implementing
quaternions.

y * x

−d h− c g − b f + a e + (−c h + d g + a f + b e) e1+
(b h + a g − d f + c e) e2 + (a h− b g + c f + d e) e1 e2

(11)

Type: CliffordAlgebra(2, Fraction Polynomial Integer, MATRIX)

9.10.3
The Exterior Algebra
on a Three Space

This is the field over which we
will work, rational functions
with integer coefficients.

K := Fraction Polynomial Integer

Fraction Polynomial Integer (1)
Type: Domain

If we chose the three by three
zero quadratic form, we obtain
the exterior algebra on
e(1),e(2),e(3).

Ext := CliffordAlgebra(3, K, quadraticForm 0)

CliffordAlgebra (3, Fraction Polynomial Integer , MATRIX) (2)
Type: Domain

This is a three dimensional
vector algebra. We define i, j, k
as the unit vectors.

i: Ext := e(1)

e1 (3)
Type: CliffordAlgebra(3, Fraction Polynomial Integer, MATRIX)

j: Ext := e(2)

e2 (4)
Type: CliffordAlgebra(3, Fraction Polynomial Integer, MATRIX)

k: Ext := e(3)

e3 (5)
Type: CliffordAlgebra(3, Fraction Polynomial Integer, MATRIX)

Now it is possible to do
arithmetic.

x := x1*i + x2*j + x3*k

x1 e1 + x2 e2 + x3 e3 (6)
Type: CliffordAlgebra(3, Fraction Polynomial Integer, MATRIX)

380 · Some Examples of Domains and Packages

y := y1*i + y2*j + y3*k

y1 e1 + y2 e2 + y3 e3 (7)
Type: CliffordAlgebra(3, Fraction Polynomial Integer, MATRIX)

x + y

(y1 + x1) e1 + (y2 + x2) e2 + (y3 + x3) e3 (8)
Type: CliffordAlgebra(3, Fraction Polynomial Integer, MATRIX)

x * y + y * x

0 (9)
Type: CliffordAlgebra(3, Fraction Polynomial Integer, MATRIX)

On an n space, a grade p form
has a dual n-p form. In
particular, in three space the
dual of a grade two element
identifies e1*e2->e3,
e2*e3->e1, e3*e1->e2.

dual2 a == coefficient(a,[2,3]) * i + coefficient(a,[3,1]) *
j + coefficient(a,[1,2]) * k

Type: Void

The vector cross product is then
given by this.

dual2(x*y)

Compiling function dual2 with type CliffordAlgebra(3,
Fraction Polynomial Integer,MATRIX) ->
CliffordAlgebra(3,Fraction Polynomial Integer,
MATRIX)

(x2 y3− x3 y2) e1 + (−x1 y3 + x3 y1) e2 + (x1 y2− x2 y1) e3 (11)
Type: CliffordAlgebra(3, Fraction Polynomial Integer, MATRIX)

9.10.4
The Dirac Spin
Algebra

In this section we will work over
the field of rational numbers.

K := Fraction Integer

Fraction Integer (1)
Type: Domain

We define the quadratic form to
be the Minkowski space-time
metric.

g := matrix [[1,0,0,0], [0,-1,0,0], [0,0,-1,0], [0,0,0,-
1]]




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 (2)

Type: Matrix Integer

9.10. CliffordAlgebra · 381

We obtain the Dirac spin
algebra used in Relativistic
Quantum Field Theory.

D := CliffordAlgebra(4,K, quadraticForm g)

CliffordAlgebra (4, Fraction Integer , MATRIX) (3)
Type: Domain

The usual notation for the basis
is γ with a superscript. For
AXIOM input we will use
gam(i):

gam := [e(i)$D for i in 1..4]

[e1, e2, e3, e4] (4)
Type: List CliffordAlgebra(4, Fraction Integer, MATRIX)

There are various contraction identities of the form

g(l,t)*gam(l)*gam(m)*gam(n)*gam(r)*gam(s)*gam(t) =
2*(gam(s)gam(m)gam(n)gam(r) + gam(r)*gam(n)*
gam(m)*gam(s))

where a sum over l and t is implied.

Verify this identity for
particular values of m,n,r,s.

m := 1; n:= 2; r := 3; s := 4;

(5)
Type: PositiveInteger

lhs := reduce(+, [reduce(+, [
g(l,t)*gam(l)*gam(m)*gam(n)*gam(r)*gam(s)*gam(t) for l
in 1..4]) for t in 1..4])

−4 e1 e2 e3 e4 (6)
Type: CliffordAlgebra(4, Fraction Integer, MATRIX)

rhs := 2*(gam s * gam m*gam n*gam r + gam r*gam n*gam
m*gam s)

−4 e1 e2 e3 e4 (7)
Type: CliffordAlgebra(4, Fraction Integer, MATRIX)

382 · Some Examples of Domains and Packages

9.11
Complex

The Complex constructor implements complex objects over a commutative
ring R. Typically, the ring R is Integer, Fraction Integer, Float or DoubleFloat.
R can also be a symbolic type, like Polynomial Integer. For more informa-
tion about the numerical and graphical aspects of complex numbers, see
Section 8.1 on page 264.

Complex objects are created by
the complex operation.

a := complex(4/3,5/2)

4
3

+
5
2

i (1)

Type: Complex Fraction Integer

b := complex(4/3,-5/2)

4
3
− 5

2
i (2)

Type: Complex Fraction Integer

The standard arithmetic
operations are available.

a + b

8
3

(3)

Type: Complex Fraction Integer

a - b

5 i (4)
Type: Complex Fraction Integer

a * b

289
36

(5)

Type: Complex Fraction Integer

If R is a field, you can also
divide the complex objects.

a / b

−161
289

+
240
289

i (6)

Type: Complex Fraction Integer

Use a conversion (Section 2.7 on
page 113) to view the last
object as a fraction of complex
integers.

% :: Fraction Complex Integer

−15 + 8 i

15 + 8 i
(7)

Type: Fraction Complex Integer

The predefined macro %i is
defined to be complex(0,1).

3.4 + 6.7 * %i

3.4 + 6.7 i (8)
Type: Complex Float

9.11. Complex · 383

You can also compute the
conjugate and norm of a
complex number.

conjugate a

4
3
− 5

2
i (9)

Type: Complex Fraction Integer
norm a

289
36

(10)

Type: Fraction Integer

The real and imag operations
are provided to extract the real
and imaginary parts,
respectively.

real a

4
3

(11)

Type: Fraction Integer
imag a

5
2

(12)

Type: Fraction Integer

The domain Complex Integer is
also called the Gaussian
integers. If R is the integers (or,
more generally, a
EuclideanDomain), you can
compute greatest common
divisors.

gcd(13 - 13*%i,31 + 27*%i)

5 + i (13)
Type: Complex Integer

You can also compute least
common multiples.

lcm(13 - 13*%i,31 + 27*%i)

143− 39 i (14)
Type: Complex Integer

You can factor Gaussian
integers.

factor(13 - 13*%i)

−(1 + i) (2 + 3 i) (3 + 2 i) (15)
Type: Factored Complex Integer

factor complex(2,0)

−i (1 + i)2 (16)
Type: Factored Complex Integer

384 · Some Examples of Domains and Packages

9.12
Continued-
Fraction

Continued fractions have been a fascinating and useful tool in mathe-
matics for well over three hundred years. AXIOM implements continued
fractions for fractions of any Euclidean domain. In practice, this usu-
ally means rational numbers. In this section we demonstrate some of the
operations available for manipulating both finite and infinite continued
fractions. It may be helpful if you review ‘Stream’ on page 575 to remind
yourself of some of the operations with streams.

The ContinuedFraction domain is a field and therefore you can add, sub-
tract, multiply and divide the fractions.

The continuedFraction
operation converts its fractional
argument to a continued
fraction.

c := continuedFraction(314159/100000)

3 +
1|
|7 +

1|
|15

+
1|
|1 +

1|
|25

+
1|
|1 +

1|
|7 +

1|
|4 (1)

Type: ContinuedFraction Integer

This display is a compact form of the bulkier

3 +
1

7 +
1

15 +
1

1 +
1

25 +
1

1 +
1

7 +
1
4

You can write any rational number in a similar form. The fraction will
be finite and you can always take the “numerators” to be 1. That is, any
rational number can be written as a simple, finite continued fraction of
the form

a1 +
1

a2 +
1

a3 +
1

. . . an−1 +
1
an

The ai are called partial
quotients and the operation
partialQuotients creates a
stream of them.

partialQuotients c

[3, 7, 15, 1, 25, 1, 7, . . .] (2)
Type: Stream Integer

By considering more and more
of the fraction, you get the
convergents. For example, the
first convergent is a1, the second
is a1 + 1/a2 and so on.

convergents c
[
3,

22
7

,
333
106

,
355
113

,
9208
2931

,
9563
3044

,
76149
24239

, . . .

]
(3)

Type: Stream Fraction Integer

9.12. ContinuedFraction · 385

Since this is a finite continued
fraction, the last convergent is
the original rational number, in
reduced form. The result of
approximants is always an
infinite stream, though it may
just repeat the “last” value.

approximants c
[
3,

22
7

,
333
106

,
355
113

,
9208
2931

,
9563
3044

,
76149
24239

, . . .

]
(4)

Type: Stream Fraction Integer

Inverting c only changes the
partial quotients of its fraction
by inserting a 0 at the beginning
of the list.

pq := partialQuotients(1/c)

[0, 3, 7, 15, 1, 25, 1, . . .] (5)
Type: Stream Integer

Do this to recover the original
continued fraction from this list
of partial quotients. The
three-argument form of the
continuedFraction operation
takes an element which is the
whole part of the fraction, a
stream of elements which are
the numerators of the fraction,
and a stream of elements which
are the denominators of the
fraction.

continuedFraction(first pq,repeating [1],rest pq)

1|
|3 +

1|
|7 +

1|
|15

+
1|
|1 +

1|
|25

+
1|
|1 +

1|
|7 + . . . (6)

Type: ContinuedFraction Integer

The streams need not be finite
for continuedFraction. Can
you guess which irrational
number has the following
continued fraction? See the end
of this section for the answer.

z:=continuedFraction(3,repeating [1],repeating [3,6])

3 +
1|
|3 +

1|
|6 +

1|
|3 +

1|
|6 +

1|
|3 +

1|
|6 +

1|
|3 + . . . (7)

Type: ContinuedFraction Integer

In 1737 Euler discovered the infinite continued fraction expansion

e− 1
2

=
1

1 +
1

6 +
1

10 +
1

14 + · · ·
We use this expansion to compute rational and floating point approxima-
tions of e.2

By looking at the above
expansion, we see that the whole
part is 0 and the numerators are
all equal to 1. This constructs
the stream of denominators.

dens:Stream Integer := cons(1,generate((x+->x+4),6))

[1, 6, 10, 14, 18, 22, 26, . . .] (8)
Type: Stream Integer

2For this and other interesting expansions, see C. D. Olds, Continued Fractions,
New Mathematical Library, (New York: Random House, 1963), pp. 134–139.

386 · Some Examples of Domains and Packages

Therefore this is the continued
fraction expansion for (e−1)/2.

cf := continuedFraction(0,repeating [1],dens)

1|
|1 +

1|
|6 +

1|
|10

+
1|
|14

+
1|
|18

+
1|
|22

+
1|
|26

+ . . . (9)

Type: ContinuedFraction Integer

These are the rational number
convergents.

ccf := convergents cf
[
0, 1,

6
7
,

61
71

,
860
1001

,
15541
18089

,
342762
398959

, . . .

]
(10)

Type: Stream Fraction Integer

You can get rational convergents
for e by multiplying by 2 and
adding 1.

eConvergents := [2*e + 1 for e in ccf]
[
1, 3,

19
7

,
193
71

,
2721
1001

,
49171
18089

,
1084483
398959

, . . .

]
(11)

Type: Stream Fraction Integer

You can also compute the
floating point approximations to
these convergents.

eConvergents :: Stream Float

[1.0, 3.0, 2.7142857142857142857, 2.7183098591549295775,
2.7182817182817182817, 2.7182818287356957267,
2.7182818284585634113, . . .]

(12)

Type: Stream Float

Compare this to the value of e
computed by the exp operation
in Float.

exp 1.0

2.7182818284590452354 (13)
Type: Float

In about 1658, Lord Brouncker established the following expansion for
4/π.

1 +
1

2 +
9

2 +
25

2 +
49

2 +
81

2 + · · ·
Let’s use this expansion to
compute rational and floating
point approximations for π.

cf := continuedFraction(1,[(2*i+1)**2 for i in
0..],repeating [2])

1 +
1|
|2 +

9|
|2 +

25|
|2 +

49|
|2 +

81|
|2 +

121|
|2 +

169|
|2 + . . . (14)

Type: ContinuedFraction Integer

ccf := convergents cf
[
1,

3
2
,

15
13

,
105
76

,
315
263

,
3465
2578

,
45045
36979

, . . .

]
(15)

Type: Stream Fraction Integer

9.12. ContinuedFraction · 387

piConvergents := [4/p for p in ccf]
[
4,

8
3
,

52
15

,
304
105

,
1052
315

,
10312
3465

,
147916
45045

, . . .

]
(16)

Type: Stream Fraction Integer

As you can see, the values are
converging to π =
3.14159265358979323846..., but
not very quickly.

piConvergents :: Stream Float

[4.0, 2.6666666666666666667, 3.4666666666666666667,
2.8952380952380952381, 3.3396825396825396825,
2.9760461760461760462, 3.2837384837384837385, . . .]

(17)

Type: Stream Float

You need not restrict yourself to
continued fractions of integers.
Here is an expansion for a
quotient of Gaussian integers.

continuedFraction((- 122 + 597*%i)/(4 - 4*%i))

−90 + 59 i +
1|

|1− 2 i
+

1|
|−1 + 2 i

(18)

Type: ContinuedFraction Complex Integer

This is an expansion for a
quotient of polynomials in one
variable with rational number
coefficients.

r : Fraction UnivariatePolynomial(x,Fraction Integer)

Type: Void

r := ((x - 1) * (x - 2)) / ((x-3) * (x-4))

x2 − 3 x + 2
x2 − 7 x + 12

(20)

Type: Fraction UnivariatePolynomial(x, Fraction Integer)

continuedFraction r

1 +
1|∣∣∣1

4 x− 9
8

+
1|∣∣∣16

3 x− 40
3

(21)

Type: ContinuedFraction UnivariatePolynomial(x, Fraction Integer)

To conclude this section, we give you evidence that

z = 3 +
1|
|3 +

1|
|6 +

1|
|3 +

1|
|6 +

1|
|3 +

1|
|6 +

1|
|3 +

1|
|6 +

1|
|3 +

1|
|6 + ...

is the expansion of
√

11.

[i*i for i in convergents(z) :: Stream Float]

[9.0, 11.111111111111111111, 10.99445983379501385,
11.000277777777777778, 10.999986076398799786,
11.000000697929731039, 10.999999965015834446, . . .]

(22)

Type: Stream Float

388 · Some Examples of Domains and Packages

9.13
CycleIndicators

This section is based upon the paper J. H. Redfield, “The Theory of
Group-Reduced Distributions”, American J. Math.,49 (1927) 433-455,
and is an application of group theory to enumeration problems. It is
a development of the work by P. A. MacMahon on the application of
symmetric functions and Hammond operators to combinatorial theory.

The theory is based upon the power sum symmetric functions si which
are the sum of the i th powers of the variables. The cycle index of a
permutation is an expression that specifies the sizes of the cycles of a
permutation, and may be represented as a partition. A partition of a non-
negative integer n is a collection of positive integers called its parts whose
sum is n. For example, the partition (32 2 12) will be used to represent
s2
3s2s

2
1 and will indicate that the permutation has two cycles of length 3,

one of length 2 and two of length 1. The cycle index of a permutation
group is the sum of the cycle indices of its permutations divided by the
number of permutations. The cycle indices of certain groups are provided.

We first expose something from
the library.

)expose EVALCYC

EvaluateCycleIndicators is now explicitly exposed in

The operation complete
returns the cycle index of the
symmetric group of order n for
argument n. Alternatively, it is

the n th complete homogeneous
symmetric function expressed in
terms of power sum symmetric
functions.

complete 1

(1) (1)
Type: SymmetricPolynomial Fraction Integer

complete 2

1
2

(2) +
1
2

(
12

)
(2)

Type: SymmetricPolynomial Fraction Integer

complete 3

1
3

(3) +
1
2

(2 1) +
1
6

(
13

)
(3)

Type: SymmetricPolynomial Fraction Integer

9.13. CycleIndicators · 389

complete 7

1
7

(7) +
1
6

(6 1) +
1
10

(5 2) +
1
10

(
5 12

)
+

1
12

(4 3)+

1
8

(4 2 1) +
1
24

(
4 13

)
+

1
18

(
32 1

)
+

1
24

(
3 22

)
+

1
12

(
3 2 12

)

+
1
72

(
3 14

)
+

1
48

(
23 1

)
+

1
48

(
22 13

)
+

1
240

(
2 15

)
+

1
5040

(
17

)

(4)

Type: SymmetricPolynomial Fraction Integer

The operation elementary

computes the n th elementary
symmetric function for
argument n.

elementary 7

1
7

(7)− 1
6

(6 1)− 1
10

(5 2) +
1
10

(
5 12

)
− 1

12
(4 3) +

1
8

(4 2 1)

− 1
24

(
4 13

)
+

1
18

(
32 1

)
+

1
24

(
3 22

)
− 1

12

(
3 2 12

)

+
1
72

(
3 14

)
− 1

48

(
23 1

)
+

1
48

(
22 13

)
− 1

240

(
2 15

)
+

1
5040

(
17

)

(5)

Type: SymmetricPolynomial Fraction Integer

The operation alternating
returns the cycle index of the
alternating group having an
even number of even parts in
each cycle partition.

alternating 7

2
7

(7) +
1
5

(
5 12

)
+

1
4

(4 2 1) +
1
9

(
32 1

)
+

1
12

(
3 22

)
+

1
36

(
3 14

)
+

1
24

(
22 13

)
+

1
2520

(
17

) (6)

Type: SymmetricPolynomial Fraction Integer

The operation cyclic returns
the cycle index of the cyclic
group.

cyclic 7

6
7

(7) +
1
7

(
17

)
(7)

Type: SymmetricPolynomial Fraction Integer

The operation dihedral is the
cycle index of the dihedral
group.

dihedral 7

3
7

(7) +
1
2

(
23 1

)
+

1
14

(
17

)
(8)

Type: SymmetricPolynomial Fraction Integer

The operation graphs for
argument n returns the cycle
index of the group of
permutations on the edges of
the complete graph with n
nodes induced by applying the
symmetric group to the nodes.

graphs 5

1
6

(6 3 1) +
1
5

(
52

)
+

1
4

(
42 2

)
+

1
6

(
33 1

)
+

1
8

(
24 12

)
+

1
12

(
23 14

)
+

1
120

(
110

) (9)

Type: SymmetricPolynomial Fraction Integer

390 · Some Examples of Domains and Packages

The cycle index of a direct product of two groups is the product of the
cycle indices of the groups. Redfield provided two operations on two
cycle indices which will be called “cup” and “cap” here. The cup of
two cycle indices is a kind of scalar product that combines monomials
for permutations with the same cycles. The cap operation provides the
sum of the coefficients of the result of the cup operation which will be an
integer that enumerates what Redfield called group-reduced distributions.

We can, for example, represent complete 2 * complete 2 as the set of
objects a a b b and complete 2 * complete 1 * complete 1 as c c
d e.

This integer is the number of
different sets of four pairs.

cap(complete 2**2, complete 2*complete 1**2)

4 (10)
Type: Fraction Integer

For example,

a a b b a a b b a a b b a a b b
c c d e c d c e c e c d d e c c

This integer is the number of
different sets of four pairs no
two pairs being equal.

cap(elementary 2**2, complete 2*complete 1**2)

2 (11)
Type: Fraction Integer

For example,

a a b b a a b b
c d c e c e c d

In this case the configurations enumerated are easily constructed, how-
ever the theory merely enumerates them providing little help in actually
constructing them.

Here are the number of 6-pairs,
first from a a a b b c, second
from d d e e f g.

cap(complete 3*complete 2*complete 1,complete
2**2*complete 1**2)

24 (12)
Type: Fraction Integer

Here it is again, but with no
equal pairs.

cap(elementary 3*elementary 2*elementary 1,complete
2**2*complete 1**2)

8 (13)
Type: Fraction Integer

cap(complete 3*complete 2*complete 1,elementary
2**2*elementary 1**2)

8 (14)
Type: Fraction Integer

9.13. CycleIndicators · 391

The number of 6-triples, first
from a a a b b c, second from
d d e e f g, third from h h i
i j j.

eval(cup(complete 3*complete 2*complete 1, cup(complete
2**2*complete 1**2,complete 2**3)))

1500 (15)
Type: Fraction Integer

The cycle index of vertices of a
square is dihedral 4.

square:=dihedral 4

1
4

(4) +
3
8

(
22

)
+

1
4

(
2 12

)
+

1
8

(
14

)
(16)

Type: SymmetricPolynomial Fraction Integer

The number of different squares
with 2 red vertices and 2 blue
vertices.

cap(complete 2**2,square)

2 (17)
Type: Fraction Integer

The number of necklaces with 3
red beads, 2 blue beads and 2
green beads.

cap(complete 3*complete 2**2,dihedral 7)

18 (18)
Type: Fraction Integer

The number of graphs with 5
nodes and 7 edges.

cap(graphs 5,complete 7*complete 3)

4 (19)
Type: Fraction Integer

The cycle index of rotations of
vertices of a cube.

s(x) == powerSum(x)

Type: Void

cube:=(1/24)*(s 1**8+9*s 2**4 + 8*s 3**2*s 1**2+6*s 4**2)

Compiling function s with type PositiveInteger ->
SymmetricPolynomial Fraction Integer

1
4

(
42

)
+

1
3

(
32 12

)
+

3
8

(
24

)
+

1
24

(
18

)
(21)

Type: SymmetricPolynomial Fraction Integer

The number of cubes with 4 red
vertices and 4 blue vertices.

cap(complete 4**2,cube)

7 (22)
Type: Fraction Integer

The number of labeled graphs
with degree sequence 2 2 2 1 1
with no loops or multiple edges.

cap(complete 2**3*complete 1**2,wreath(elementary
4,elementary 2))

7 (23)
Type: Fraction Integer

392 · Some Examples of Domains and Packages

Again, but with loops allowed
but not multiple edges.

cap(complete 2**3*complete 1**2,wreath(elementary
4,complete 2))

17 (24)
Type: Fraction Integer

Again, but with multiple edges
allowed, but not loops

cap(complete 2**3*complete 1**2,wreath(complete
4,elementary 2))

10 (25)
Type: Fraction Integer

Again, but with both multiple
edges and loops allowed

cap(complete 2**3*complete 1**2,wreath(complete 4,complete
2))

23 (26)
Type: Fraction Integer

Having constructed a cycle index for a configuration we are at liberty
to evaluate the si components any way we please. For example we can
produce enumerating generating functions. This is done by providing a
function f on an integer i to the value required of si, and then evaluating
eval(f, cycleindex).

x: ULS(FRAC INT,’x,0) := ’x

x (27)
Type: UnivariateLaurentSeries(Fraction Integer, x, 0)

ZeroOrOne: INT -> ULS(FRAC INT, ’x, 0)

Type: Void

Integers: INT -> ULS(FRAC INT, ’x, 0)

Type: Void

For the integers 0 and 1, or two
colors.

ZeroOrOne n == 1+x**n

Type: Void

ZeroOrOne 5

Compiling function ZeroOrOne with type Integer ->
UnivariateLaurentSeries(Fraction Integer,x,0)

1 + x5 (31)
Type: UnivariateLaurentSeries(Fraction Integer, x, 0)

9.13. CycleIndicators · 393

For the integers 0, 1, 2, ...
we have this.

Integers n == 1/(1-x**n)

Type: Void

Integers 5

Compiling function Integers with type Integer ->
UnivariateLaurentSeries(Fraction Integer,x,0)

1 + x5 + O
(
x8

)
(33)

Type: UnivariateLaurentSeries(Fraction Integer, x, 0)

The coefficient of xn is the
number of graphs with 5 nodes
and n edges.

eval(ZeroOrOne, graphs 5)

1 + x + 2 x2 + 4 x3 + 6 x4 + 6 x5 + 6 x6 + 4 x7 + O
(
x8

)
(34)

Type: UnivariateLaurentSeries(Fraction Integer, x, 0)

The coefficient of xn is the
number of necklaces with n red
beads and n-8 green beads.

eval(ZeroOrOne,dihedral 8)

1 + x + 4 x2 + 5 x3 + 8 x4 + 5 x5 + 4 x6 + x7 + O
(
x8

)
(35)

Type: UnivariateLaurentSeries(Fraction Integer, x, 0)

The coefficient of xn is the
number of partitions of n into 4
or fewer parts.

eval(Integers,complete 4)

1 + x + 2 x2 + 3 x3 + 5 x4 + 6 x5 + 9 x6 + 11 x7 + O
(
x8

)
(36)

Type: UnivariateLaurentSeries(Fraction Integer, x, 0)

The coefficient of xn is the
number of partitions of n into 4
boxes containing ordered
distinct parts.

eval(Integers,elementary 4)

x6 + x7 + 2 x8 + 3 x9 + 5 x10 + 6 x11 + 9 x12 + 11 x13 + O
(
x14

)
(37)

Type: UnivariateLaurentSeries(Fraction Integer, x, 0)

The coefficient of xn is the
number of different cubes with n
red vertices and 8-n green ones.

eval(ZeroOrOne,cube)

1 + x + 3 x2 + 3 x3 + 7 x4 + 3 x5 + 3 x6 + x7 + O
(
x8

)
(38)

Type: UnivariateLaurentSeries(Fraction Integer, x, 0)

The coefficient of xn is the
number of different cubes with
integers on the vertices whose
sum is n.

eval(Integers,cube)

1 + x + 4 x2 + 7 x3 + 21 x4 + 37 x5 + 85 x6 + 151 x7 + O
(
x8

)
(39)

Type: UnivariateLaurentSeries(Fraction Integer, x, 0)

The coefficient of xn is the
number of graphs with 5 nodes
and with integers on the edges
whose sum is n. In other words,
the enumeration is of
multigraphs with 5 nodes and n
edges.

eval(Integers,graphs 5)

1 + x + 3 x2 + 7 x3 + 17 x4 + 35 x5 + 76 x6 + 149 x7 + O
(
x8

)
(40)

Type: UnivariateLaurentSeries(Fraction Integer, x, 0)

394 · Some Examples of Domains and Packages

Graphs with 15 nodes
enumerated with respect to
number of edges.

eval(ZeroOrOne ,graphs 15)

1 + x + 2 x2 + 5 x3 + 11 x4 + 26 x5 + 68 x6 + 177 x7 + O
(
x8

)
(41)

Type: UnivariateLaurentSeries(Fraction Integer, x, 0)

Necklaces with 7 green beads, 8
white beads, 5 yellow beads and
10 red beads.

cap(dihedral 30,complete 7*complete 8*complete 5*complete
10)

49958972383320 (42)
Type: Fraction Integer

The operation SFunction is the S-function or Schur function of a parti-
tion written as a descending list of integers expressed in terms of power
sum symmetric functions.

In this case the argument
partition represents a tableau
shape. For example 3,2,2,1
represents a tableau with three
boxes in the first row, two boxes
in the second and third rows,
and one box in the fourth row.
SFunction [3,2,2,1] counts
the number of different tableaux
of shape 3, 2, 2, 1 filled with
objects with an ascending order
in the columns and a
non-descending order in the
rows.

sf3221:= SFunction [3,2,2,1]

1
12

(6 2)− 1
12

(
6 12

)
− 1

16

(
42

)
+

1
12

(4 3 1) +
1
24

(
4 14

)
−

1
36

(
32 2

)
+

1
36

(
32 12

)
− 1

24

(
3 22 1

)
− 1

36

(
3 2 13

)
−

1
72

(
3 15

)
− 1

192

(
24

)
+

1
48

(
23 12

)
+

1
96

(
22 14

)
−

1
144

(
2 16

)
+

1
576

(
18

)

(43)

Type: SymmetricPolynomial Fraction Integer

This is the number filled with a
a b b c c d d.

cap(sf3221,complete 2**4)

3 (44)
Type: Fraction Integer

The configurations enumerated above are:

a a b a a c a a d
b c b b b b
c d c d c c
d d d

This is the number of tableaux
filled with 1..8.

cap(sf3221, powerSum 1**8)

70 (45)
Type: Fraction Integer

The coefficient of xn is the
number of column strict reverse
plane partitions of n of shape 3
2 2 1.

eval(Integers, sf3221)

x9 + 3 x10 + 7 x11 + 14 x12 + 27 x13 + 47 x14 + O
(
x15

)
(46)

Type: UnivariateLaurentSeries(Fraction Integer, x, 0)

The smallest is

9.13. CycleIndicators · 395

0 0 0
1 1
2 2
3

396 · Some Examples of Domains and Packages

9.14
DeRhamComplex

The domain constructor DeRhamComplex creates the class of differential
forms of arbitrary degree over a coefficient ring. The De Rham com-
plex constructor takes two arguments: a ring, coefRing, and a list of
coordinate variables.

This is the ring of coefficients. coefRing := Integer

Integer (1)
Type: Domain

These are the coordinate
variables.

lv : List Symbol := [x,y,z]

[x, y, z] (2)
Type: List Symbol

This is the De Rham complex of
Euclidean three-space using
coordinates x, y and z.

der := DERHAM(coefRing,lv)

DeRhamComplex (Integer , [x, y, z]) (3)
Type: Domain

This complex allows us to describe differential forms having expressions of
integers as coefficients. These coefficients can involve any number of vari-
ables, for example, f(x,t,r,y,u,z). As we’ve chosen to work with ordi-
nary Euclidean three-space, expressions involving these forms are treated
as functions of x, y and z with the additional arguments t, r and u
regarded as symbolic constants.

Here are some examples of
coefficients.

R := Expression coefRing

Expression Integer (4)
Type: Domain

f : R := x**2*y*z-5*x**3*y**2*z**5

−5 x3 y2 z5 + x2 y z (5)
Type: Expression Integer

g : R := z**2*y*cos(z)-7*sin(x**3*y**2)*z**2

−7 z2 sin
(
x3 y2

)
+ y z2 cos (z) (6)

Type: Expression Integer

h : R :=x*y*z-2*x**3*y*z**2

−2 x3 y z2 + x y z (7)
Type: Expression Integer

We now define the
multiplicative basis elements for
the exterior algebra over R.

dx : der := generator(1)

dx (8)
Type: DeRhamComplex(Integer, [x, y, z])

9.14. DeRhamComplex · 397

dy : der := generator(2)

dy (9)
Type: DeRhamComplex(Integer, [x, y, z])

dz : der := generator(3)

dz (10)
Type: DeRhamComplex(Integer, [x, y, z])

This is an alternative way to
give the above assignments.

[dx,dy,dz] := [generator(i)$der for i in 1..3]

[dx, dy, dz] (11)
Type: List DeRhamComplex(Integer, [x, y, z])

Now we define some one-forms. alpha : der := f*dx + g*dy + h*dz
(
−2 x3 y z2 + x y z

)
dz +

(
−7 z2 sin

(
x3 y2

)
+ y z2 cos (z)

)
dy

+
(
−5 x3 y2 z5 + x2 y z

)
dx

(12)

Type: DeRhamComplex(Integer, [x, y, z])

beta : der := cos(tan(x*y*z)+x*y*z)*dx + x*dy

x dy + cos (tan (x y z) + x y z) dx (13)
Type: DeRhamComplex(Integer, [x, y, z])

A well-known theorem states
that the composition of
exteriorDifferential with
itself is the zero map for
continuous forms. Let’s verify
this theorem for alpha.

exteriorDifferential alpha;

(14)
Type: DeRhamComplex(Integer, [x, y, z])

We suppressed the lengthy
output of the last expression,
but nevertheless, the
composition is zero.

exteriorDifferential %

0 (15)
Type: DeRhamComplex(Integer, [x, y, z])

Now we check that
exteriorDifferential is a
“graded derivation” D, that is, D
satisfies:

D(ab) = D(a)b+(−1)degree(a)aD(b)

gamma := alpha * beta
(
2 x4 y z2 − x2 y z

)
dy dz +

(
2 x3 y z2 − x y z

)
·

cos (tan (x y z) + x y z) dx dz+

((
7 z2 sin

(
x3 y2

)
− y z2 cos (z)

)
cos (tan (x y z) + x y z)

−5 x4 y2 z5 + x3 y z
)

dx dy

(16)

Type: DeRhamComplex(Integer, [x, y, z])

398 · Some Examples of Domains and Packages

We try this for the one-forms
alpha and beta.

exteriorDifferential(gamma)
- (exteriorDifferential(alpha)*beta - alpha *
exteriorDifferential(beta))

0 (17)
Type: DeRhamComplex(Integer, [x, y, z])

Now we define some “basic
operators” (see ‘Operator’ on
page 516).

a : BOP := operator(’a)

a (18)
Type: BasicOperator

b : BOP := operator(’b)

b (19)
Type: BasicOperator

c : BOP := operator(’c)

c (20)
Type: BasicOperator

We also define some
indeterminate one- and
two-forms using these operators.

sigma := a(x,y,z) * dx + b(x,y,z) * dy + c(x,y,z) * dz

c (x, y, z) dz + b (x, y, z) dy + a (x, y, z) dx (21)
Type: DeRhamComplex(Integer, [x, y, z])

theta := a(x,y,z) * dx * dy + b(x,y,z) * dx * dz +
c(x,y,z) * dy * dz

c (x, y, z) dy dz + b (x, y, z) dx dz + a (x, y, z) dx dy (22)
Type: DeRhamComplex(Integer, [x, y, z])

This allows us to get formal
definitions for the “gradient” . . .

totalDifferential(a(x,y,z))$der

a,3 (x, y, z) dz + a,2 (x, y, z) dy + a,1 (x, y, z) dx (23)
Type: DeRhamComplex(Integer, [x, y, z])

the “curl” . . . exteriorDifferential sigma

(c,2 (x, y, z)− b,3 (x, y, z)) dy dz+
(c,1 (x, y, z)− a,3 (x, y, z)) dx dz+
(b,1 (x, y, z)− a,2 (x, y, z)) dx dy

(24)

Type: DeRhamComplex(Integer, [x, y, z])

and the “divergence.” exteriorDifferential theta

(c,1 (x, y, z)− b,2 (x, y, z) + a,3 (x, y, z)) dx dy dz (25)
Type: DeRhamComplex(Integer, [x, y, z])

9.14. DeRhamComplex · 399

Note that the De Rham complex
is an algebra with unity. This
element 1 is the basis for
elements for zero-forms, that is,
functions in our space.

one : der := 1

1 (26)
Type: DeRhamComplex(Integer, [x, y, z])

To convert a function to a
function lying in the De Rham
complex, multiply the function
by “one.”

g1 : der := a([x,t,y,u,v,z,e]) * one

a (x, t, y, u, v, z, e) (27)
Type: DeRhamComplex(Integer, [x, y, z])

A current limitation of AXIOM
forces you to write functions
with more than four arguments
using square brackets in this
way.

h1 : der := a([x,y,x,t,x,z,y,r,u,x]) * one

a (x, y, x, t, x, z, y, r, u, x) (28)
Type: DeRhamComplex(Integer, [x, y, z])

Now note how the system keeps
track of where your coordinate
functions are located in
expressions.

exteriorDifferential g1

a,6 (x, t, y, u, v, z, e) dz + a,3 (x, t, y, u, v, z, e) dy+
a,1 (x, t, y, u, v, z, e) dx

(29)

Type: DeRhamComplex(Integer, [x, y, z])

exteriorDifferential h1

a,6 (x, y, x, t, x, z, y, r, u, x) dz+
(a,7 (x, y, x, t, x, z, y, r, u, x) + a,2 (x, y, x, t, x, z, y, r, u, x))·

dy +




a,10 (x, y, x, t, x, z, y, r, u, x)+
a,5 (x, y, x, t, x, z, y, r, u, x)+
a,3 (x, y, x, t, x, z, y, r, u, x)+
a,1 (x, y, x, t, x, z, y, r, u, x)


 dx

(30)

Type: DeRhamComplex(Integer, [x, y, z])

In this example of Euclidean
three-space, the basis for the De
Rham complex consists of the
eight forms: 1, dx, dy, dz,
dx*dy, dx*dz, dy*dz, and
dx*dy*dz.

coefficient(gamma, dx*dy)
(
7 z2 sin

(
x3 y2

)
− y z2 cos (z)

)
cos (tan (x y z) + x y z)−

5 x4 y2 z5 + x3 y z
(31)

Type: Expression Integer

coefficient(gamma, one)

0 (32)
Type: Expression Integer

coefficient(g1,one)

a (x, t, y, u, v, z, e) (33)
Type: Expression Integer

400 · Some Examples of Domains and Packages

9.15
Decimal-
Expansion

All rationals have repeating decimal expansions. Operations to access
the individual digits of a decimal expansion can be obtained by con-
verting the value to RadixExpansion(10). More examples of expansions are
available in ‘BinaryExpansion’ on page 359, ‘HexadecimalExpansion’ on page
444, and ‘RadixExpansion’ on page 537. Issue the system command)show
DecimalExpansion to display the full list of operations defined by Deci-
malExpansion.

The operation decimal is used
to create this expansion of type
DecimalExpansion.

r := decimal(22/7)

3.142857 (1)
Type: DecimalExpansion

Arithmetic is exact. r + decimal(6/7)

4 (2)
Type: DecimalExpansion

The period of the expansion can
be short or long . . .

[decimal(1/i) for i in 350..354]
[
0.00285714, 0.002849, 0.0028409,
0.00283286118980169971671388101983,
0.00282485875706214689265536723163841807909604519774011299435

] (3)

Type: List DecimalExpansion

or very long. decimal(1/2049)

0.0004880429477794045876037091264031234748657881893606
637384089799902391410444119082479258174719375305026842362
127867252318204001952171791117618350414836505612493899463
152757442654953635919960956564177647632991703269887750122
010736944851146900927281600780868716447047340165934602244
997559785261102977061981454367984382625671059053196681307
9551

(4)

Type: DecimalExpansion

These numbers are bona fide
algebraic objects.

p := decimal(1/4)*x**2 + decimal(2/3)*x + decimal(4/9)

0.25 x2 + 0.6 x + 0.4 (5)
Type: Polynomial DecimalExpansion

q := differentiate(p, x)

0.5 x + 0.6 (6)
Type: Polynomial DecimalExpansion

g := gcd(p, q)

x + 1.3 (7)
Type: Polynomial DecimalExpansion

9.15. DecimalExpansion · 401

9.16
Distributed-
Multivariate-
Polynomial

DistributedMultivariatePolynomial and HomogeneousDistributedMultivariatePoly-
nomial, abbreviated DMP and HDMP, respectively, are very similar to Multi-
variatePolynomial except that they are represented and displayed in a non-
recursive manner.

(d1,d2,d3) : DMP([z,y,x],FRAC INT)

Type: Void

The constructor DMP orders its
monomials lexicographically
while HDMP orders them by
total order refined by reverse
lexicographic order.

d1 := -4*z + 4*y**2*x + 16*x**2 + 1

−4 z + 4 y2 x + 16 x2 + 1 (2)
Type: DistributedMultivariatePolynomial([z, y, x], Fraction Integer)

d2 := 2*z*y**2 + 4*x + 1

2 z y2 + 4 x + 1 (3)
Type: DistributedMultivariatePolynomial([z, y, x], Fraction Integer)

d3 := 2*z*x**2 - 2*y**2 - x

2 z x2 − 2 y2 − x (4)
Type: DistributedMultivariatePolynomial([z, y, x], Fraction Integer)

These constructors are mostly
used in Gröbner basis
calculations.

groebner [d1,d2,d3]
[
z − 1568

2745
x6 − 1264

305
x5 +

6
305

x4 +
182
549

x3 − 2047
610

x2 − 103
2745

x− 2857
10980

,

y2 +
112
2745

x6 − 84
305

x5 − 1264
305

x4 − 13
549

x3 +
84
305

x2 +
1772
2745

x +
2

2745
,

x7 +
29
4

x6 − 17
16

x4 − 11
8

x3 +
1
32

x2 +
15
16

x +
1
4

]

(5)

Type: List DistributedMultivariatePolynomial([z, y, x], Fraction Integer)

(n1,n2,n3) : HDMP([z,y,x],FRAC INT)

Type: Void

(n1,n2,n3) := (d1,d2,d3)

2 z x2 − 2 y2 − x (7)
Type: HomogeneousDistributedMultivariatePolynomial([z, y, x], Fraction Integer)

402 · Some Examples of Domains and Packages

Note that we get a different
Gröbner basis when we use the
HDMP polynomials, as expected.

groebner [n1,n2,n3]
[
y4 + 2 x3 − 3

2
x2 +

1
2

z − 1
8
,

x4 +
29
4

x3 − 1
8

y2 − 7
4

z x− 9
16

x− 1
4
, z y2 + 2 x +

1
2
,

y2 x + 4 x2 − z +
1
4
, z x2 − y2 − 1

2
x, z2 − 4 y2 + 2 x2 − 1

4
z − 3

2
x

]

(8)

Type: List HomogeneousDistributedMultivariatePolynomial([z, y, x], Fraction
Integer)

GeneralDistributedMultivariatePolynomial is somewhat more flexible in the
sense that as well as accepting a list of variables to specify the vari-
able ordering, it also takes a predicate on exponent vectors to specify the
term ordering. With this polynomial type the user can experiment with
the effect of using completely arbitrary term orderings. This flexibility is
mostly important for algorithms such as Gröbner basis calculations which
can be very sensitive to term ordering.

For more information on related topics, see Section 1.9 on page 73, Section
2.7 on page 113, ‘Polynomial’ on page 529, ‘UnivariatePolynomial’ on page
594, and ‘MultivariatePolynomial’ on page 508. Issue the system command
)show DistributedMultivariatePolynomial to display the full list of
operations defined by DistributedMultivariatePolynomial.

9.16. DistributedMultivariatePolynomial · 403

9.17
DoubleFloat

AXIOM provides two kinds of floating point numbers. The domain Float
(abbreviation FLOAT) implements a model of arbitrary precision floating
point numbers. The domain DoubleFloat (abbreviation DFLOAT) is intended
to make available hardware floating point arithmetic in AXIOM. The ac-
tual model of floating point DoubleFloat that provides is system-dependent.
For example, on the IBM system 370 AXIOM uses IBM double precision
which has fourteen hexadecimal digits of precision or roughly sixteen dec-
imal digits. Arbitrary precision floats allow the user to specify the pre-
cision at which arithmetic operations are computed. Although this is an
attractive facility, it comes at a cost. Arbitrary-precision floating-point
arithmetic typically takes twenty to two hundred times more time than
hardware floating point.

The usual arithmetic and elementary functions are available for Double-
Float. Use)show DoubleFloat to get a list of operations or the HyperDoc
Browse facility to get more extensive documentation about DoubleFloat.

By default, floating point
numbers that you enter into
AXIOM are of type Float.

2.71828

2.71828 (1)
Type: Float

You must therefore tell AXIOM that you want to use DoubleFloat values
and operations. The following are some conservative guidelines for getting
AXIOM to use DoubleFloat.

To get a value of type
DoubleFloat, use a target with
“@”, . . .

2.71828@DoubleFloat

2.71828 (2)
Type: DoubleFloat

a conversion, . . . 2.71828 :: DoubleFloat

2.71828 (3)
Type: DoubleFloat

or an assignment to a declared
variable. It is more efficient if
you use a target rather than an
explicit or implicit conversion.

eApprox : DoubleFloat := 2.71828

2.71828 (4)
Type: DoubleFloat

You also need to declare
functions that work with
DoubleFloat.

avg : List DoubleFloat -> DoubleFloat

Type: Void

404 · Some Examples of Domains and Packages

avg l ==
empty? l => 0 :: DoubleFloat
reduce(+,l) / #l

Type: Void

avg []

Compiling function avg with type List DoubleFloat ->
DoubleFloat

0.0 (7)
Type: DoubleFloat

avg [3.4,9.7,-6.8]

2.1 (8)
Type: DoubleFloat

Use package-calling for
operations from DoubleFloat
unless the arguments themselves
are already of type DoubleFloat.

cos(3.1415926)$DoubleFloat

−0.999999999999999 (9)
Type: DoubleFloat

cos(3.1415926 :: DoubleFloat)

−0.999999999999999 (10)
Type: DoubleFloat

By far, the most common usage of DoubleFloat is for functions to be
graphed. For more information about AXIOM’s numerical and graph-
ical facilities, see Section 7 on page 235, Section 8.1 on page 264, and
‘Float’ on page 427.

9.17. DoubleFloat · 405

9.18
EqTable

The EqTable domain provides tables where the keys are compared using
eq?. Keys are considered equal only if they are the same instance of a
structure. This is useful if the keys are themselves updatable structures.
Otherwise, all operations are the same as for type Table. See ‘Table’ on
page 585 for general information about tables. Issue the system command
)show EqTable to display the full list of operations defined by EqTable.

The operation table is here
used to create a table where the
keys are lists of integers.

e: EqTable(List Integer, Integer) := table()

table() (1)
Type: EqTable(List Integer, Integer)

These two lists are equal
according to “=”, but not
according to eq?.

l1 := [1,2,3]

[1, 2, 3] (2)
Type: List PositiveInteger

l2 := [1,2,3]

[1, 2, 3] (3)
Type: List PositiveInteger

Because the two lists are not
eq?, separate values can be
stored under each.

e.l1 := 111

111 (4)
Type: PositiveInteger

e.l2 := 222

222 (5)
Type: PositiveInteger

e.l1

111 (6)
Type: PositiveInteger

406 · Some Examples of Domains and Packages

9.19
Equation

The Equation domain provides equations as mathematical objects. These
are used, for example, as the input to various solve operations.

Equations are created using the
equals symbol, “=”.

eq1 := 3*x + 4*y = 5

4 y + 3 x = 5 (1)
Type: Equation Polynomial Integer

eq2 := 2*x + 2*y = 3

2 y + 2 x = 3 (2)
Type: Equation Polynomial Integer

The left- and right-hand sides of
an equation are accessible using
the operations lhs and rhs.

lhs eq1

4 y + 3 x (3)
Type: Polynomial Integer

rhs eq1

5 (4)
Type: Polynomial Integer

Arithmetic operations are
supported and operate on both
sides of the equation.

eq1 + eq2

6 y + 5 x = 8 (5)
Type: Equation Polynomial Integer

eq1 * eq2

8 y2 + 14 x y + 6 x2 = 15 (6)
Type: Equation Polynomial Integer

2*eq2 - eq1

x = 1 (7)
Type: Equation Polynomial Integer

Equations may be created for
any type so the arithmetic
operations will be defined only
when they make sense. For
example, exponentiation is not
defined for equations involving
non-square matrices.

eq1**2

16 y2 + 24 x y + 9 x2 = 25 (8)
Type: Equation Polynomial Integer

Note that an equals symbol is
also used to test for equality of
values in certain contexts. For
example, x+1 and y are unequal
as polynomials.

if x+1 = y then "equal" else "unequal"

"unequal" (9)
Type: String

9.19. Equation · 407

eqpol := x+1 = y

x + 1 = y (10)
Type: Equation Polynomial Integer

If an equation is used where a
Boolean value is required, then
it is evaluated using the equality
test from the operand type.

if eqpol then "equal" else "unequal"

"unequal" (11)
Type: String

If one wants a Boolean value
rather than an equation, all one
has to do is ask!

eqpol::Boolean

false (12)
Type: Boolean

408 · Some Examples of Domains and Packages

9.20
Exit

A function that does not return directly to its caller has Exit as its return
type. The operation error is an example of one which does not return to
its caller. Instead, it causes a return to top-level.

n := 0

0 (1)
Type: NonNegativeInteger

The function gasp is given
return type Exit since it is
guaranteed never to return a
value to its caller.

gasp(): Exit ==
free n
n := n + 1
error "Oh no!"

Function declaration gasp : () -> Exit has been added
to workspace.

Type: Void

The return type of half is
determined by resolving the
types of the two branches of the
if.

half(k) ==
if odd? k then gasp()
else k quo 2

Type: Void

Because gasp has the return
type Exit, the type of if in half
is resolved to be Integer.

half 4

Compiling function gasp with type () -> Exit
Compiling function half with type PositiveInteger ->

Integer

2 (4)
Type: PositiveInteger

half 3

Error signalled from user code in function gasp:
Oh no!

n

1 (5)
Type: NonNegativeInteger

For functions which return no value at all, use Void. See Section 6 on
page 177 and ‘Void’ on page 603 for more information. Issue the system
command)show Exit to display the full list of operations defined by
Exit.

9.20. Exit · 409

9.21
Expression

Expression is a constructor that creates domains whose objects can have
very general symbolic forms. Here are some examples:

This is an object of type
Expression Integer.

sin(x) + 3*cos(x)**2

sin (x) + 3 cos (x)2 (1)
Type: Expression Integer

This is an object of type
Expression Float.

tan(x) - 3.45*x

tan (x)− 3.45 x (2)
Type: Expression Float

This object contains symbolic
function applications, sums,
products, square roots, and a
quotient.

(tan sqrt 7 - sin sqrt 11)**2 / (4 - cos(x - y))

−tan
(√

7
)2

+ 2 sin
(√

11
)

tan
(√

7
)
− sin

(√
11

)2

cos (y − x)− 4
(3)

Type: Expression Integer

As you can see, Expression actually takes an argument domain. The coeffi-
cients of the terms within the expression belong to the argument domain.
Integer and Float, along with Complex Integer and Complex Float are the most
common coefficient domains.

The choice of whether to use a
Complex coefficient domain or
not is important since AXIOM
can perform some simplifications
on real-valued objects

log(exp x)@Expression(Integer)

x (4)
Type: Expression Integer

... which are not valid on
complex ones.

log(exp x)@Expression(Complex Integer)

log (ex) (5)
Type: Expression Complex Integer

Many potential coefficient
domains, such as
AlgebraicNumber, are not
usually used because Expression
can subsume them.

sqrt 3 + sqrt(2 + sqrt(-5))
√√−5 + 2 +

√
3 (6)

Type: AlgebraicNumber

% :: Expression Integer
√√−5 + 2 +

√
3 (7)

Type: Expression Integer

Note that we sometimes talk about “an object of type Expression.” This is
not really correct because we should say, for example, “an object of type
Expression Integer” or “an object of type Expression Float.” By a similar
abuse of language, when we refer to an “expression” in this section we
will mean an object of type Expression R for some domain R.

410 · Some Examples of Domains and Packages

The AXIOM documentation contains many examples of the use of Expression.
For the rest of this section, we’ll give you some pointers to those examples
plus give you some idea of how to manipulate expressions.

It is important for you to know that Expression creates domains that have
category Field. Thus you can invert any non-zero expression and you
shouldn’t expect an operation like factor to give you much information.
You can imagine expressions as being represented as quotients of “mul-
tivariate” polynomials where the “variables” are kernels (see ‘Kernel’ on
page 457). A kernel can either be a symbol such as x or a symbolic
function application like sin(x + 4). The second example is actually a
nested kernel since the argument to sin contains the kernel x.

height mainKernel sin(x + 4)

2 (8)
Type: PositiveInteger

Actually, the argument to sin is an expression, and so the structure of
Expression is recursive. ‘Kernel’ on page 457 demonstrates how to extract
the kernels in an expression.

Use the HyperDoc Browse facility to see what operations are applicable
to expression. At the time of this writing, there were 262 operations with
147 distinct name in Expression Integer. For example, numer and denom
extract the numerator and denominator of an expression.

e := (sin(x) - 4)**2 / (1 - 2*y*sqrt(- y))

−sin (x)2 + 8 sin (x)− 16
2 y

√−y − 1
(9)

Type: Expression Integer
numer e

−sin (x)2 + 8 sin (x)− 16 (10)
Type: SparseMultivariatePolynomial(Integer, Kernel Expression Integer)

denom e

2 y
√−y − 1 (11)

Type: SparseMultivariatePolynomial(Integer, Kernel Expression Integer)

Use D to compute partial
derivatives.

D(e, x)

(4 y cos (x) sin (x)− 16 y cos (x))
√−y − 2 cos (x) sin (x) + 8 cos (x)

4 y
√−y + 4 y3 − 1

(12)

Type: Expression Integer

9.21. Expression · 411

See Section 1.12 on page 78 for
more examples of expressions
and derivatives.

D(e, [x, y], [1, 2])



((
−2304 y7 + 960 y4

)
cos (x) sin (x)

+
(
9216 y7 − 3840 y4

)
cos (x)

) √−y

+
(
−960 y9 + 2160 y6 − 180 y3 − 3

)
cos (x) sin (x)

+
(
3840 y9 − 8640 y6 + 720 y3 + 12

)
cos (x)




((
256 y12 − 1792 y9 + 1120 y6 − 112 y3 + 1

) √−y

−1024 y11 + 1792 y8 − 448 y5 + 16 y2

) (13)

Type: Expression Integer

See Section 1.10 on page 75 and Section 1.11 on page 76 for more examples
of expressions and calculus. Differential equations involving expressions
are discussed in Section 8.10 on page 308. Chapter 8 has many advanced
examples: see Section 8.8 on page 292 for a discussion of AXIOM’s inte-
gration facilities.

When an expression involves no “symbol kernels” (for example, x), it may
be possible to numerically evaluate the expression.

If you suspect the evaluation
will create a complex number,
use complexNumeric.

complexNumeric(cos(2 - 3*%i))

−4.1896256909688072301 + 9.109227893755336598 i (14)
Type: Complex Float

If you know it will be real, use
numeric.

numeric(tan 3.8)

0.77355609050312607286 (15)
Type: Float

The numeric operation will display an error message if the evaluation
yields a calue with an non-zero imaginary part. Both of these operations
have an optional second argument n which specifies that the accuracy of
the approximation be up to n decimal places.

When an expression involves no “symbolic application” kernels, it may
be possible to convert it a polynomial or rational function in the variables
that are present.

e2 := cos(x**2 - y + 3)

cos
(
y − x2 − 3

)
(16)

Type: Expression Integer

e3 := asin(e2) - %pi/2

−y + x2 + 3 (17)
Type: Expression Integer

412 · Some Examples of Domains and Packages

e3 :: Polynomial Integer

−y + x2 + 3 (18)
Type: Polynomial Integer

This also works for the
polynomial types where specific
variables and their ordering are
given.

e3 :: DMP([x, y], Integer)

x2 − y + 3 (19)
Type: DistributedMultivariatePolynomial([x, y], Integer)

Finally, a certain amount of simplication takes place as expressions are
constructed.

sin %pi

0 (20)
Type: Expression Integer

cos(%pi / 4)
√

2
2

(21)

Type: Expression Integer

For simplications that involve
multiple terms of the expression,
use simplify.

tan(x)**6 + 3*tan(x)**4 + 3*tan(x)**2 + 1

tan (x)6 + 3 tan (x)4 + 3 tan (x)2 + 1 (22)
Type: Expression Integer

simplify %

1
cos (x)6

(23)

Type: Expression Integer

See Section 6.21 on page 228 for examples of how to write your own
rewrite rules for expressions.

9.21. Expression · 413

9.22
Factored

Factored creates a domain whose objects are kept in factored form as long
as possible. Thus certain operations like “*” (multiplication) and gcd are
relatively easy to do. Others, such as addition, require somewhat more
work, and the result may not be completely factored unless the argument
domain R provides a factor operation. Each object consists of a unit
and a list of factors, where each factor consists of a member of R (the
base), an exponent, and a flag indicating what is known about the base.
A flag may be one of "nil", "sqfr", "irred" or "prime", which mean
that nothing is known about the base, it is square-free, it is irreducible,
or it is prime, respectively. The current restriction to factored objects of
integral domains allows simplification to be performed without worrying
about multiplication order.

9.22.1
Decomposing
Factored Objects

In this section we will work with
a factored integer.

g := factor(4312)

23 72 11 (1)
Type: Factored Integer

Let’s begin by decomposing g
into pieces. The only possible
units for integers are 1 and -1.

unit(g)

1 (2)
Type: PositiveInteger

There are three factors. numberOfFactors(g)

3 (3)
Type: PositiveInteger

We can make a list of the bases,
. . .

[nthFactor(g,i) for i in 1..numberOfFactors(g)]

[2, 7, 11] (4)
Type: List Integer

and the exponents, . . . [nthExponent(g,i) for i in 1..numberOfFactors(g)]

[3, 2, 1] (5)
Type: List Integer

and the flags. You can see that
all the bases (factors) are prime.

[nthFlag(g,i) for i in 1..numberOfFactors(g)]

["prime", "prime", "prime"] (6)
Type: List Union("nil", "sqfr", "irred", "prime")

414 · Some Examples of Domains and Packages

A useful operation for pulling
apart a factored object into a
list of records of the components
is factorList.

factorList(g)

[[flg = "prime", fctr = 2, xpnt = 3],
[flg = "prime", fctr = 7, xpnt = 2],
[flg = "prime", fctr = 11, xpnt = 1]]

(7)

Type: List Record(flg: Union("nil", "sqfr", "irred", "prime"), fctr: Integer, xpnt:
Integer)

If you don’t care about the
flags, use factors.

factors(g)

[[factor = 2, exponent = 3],
[factor = 7, exponent = 2],
[factor = 11, exponent = 1]]

(8)

Type: List Record(factor: Integer, exponent: Integer)

Neither of these operations
returns the unit.

first(%).factor

2 (9)
Type: PositiveInteger

9.22.2
Expanding Factored
Objects

Recall that we are working with
this factored integer.

g := factor(4312)

23 72 11 (1)
Type: Factored Integer

To multiply out the factors with
their multiplicities, use expand.

expand(g)

4312 (2)
Type: PositiveInteger

If you would like, say, the
distinct factors multiplied
together but with multiplicity
one, you could do it this way.

reduce(*,[t.factor for t in factors(g)])

154 (3)
Type: PositiveInteger

9.22.3
Arithmetic with
Factored Objects

We’re still working with this
factored integer.

g := factor(4312)

23 72 11 (1)
Type: Factored Integer

9.22. Factored · 415

We’ll also define this factored
integer.

f := factor(246960)

24 32 5 73 (2)
Type: Factored Integer

Operations involving
multiplication and division are
particularly easy with factored
objects.

f * g

27 32 5 75 11 (3)
Type: Factored Integer

f**500

22000 31000 5500 71500 (4)
Type: Factored Integer

gcd(f,g)

23 72 (5)
Type: Factored Integer

lcm(f,g)

24 32 5 73 11 (6)
Type: Factored Integer

If we use addition and
subtraction things can slow
down because we may need to
compute greatest common
divisors.

f + g

23 72 641 (7)
Type: Factored Integer

f - g

23 72 619 (8)
Type: Factored Integer

Test for equality with 0 and 1
by using zero? and one?,
respectively.

zero?(factor(0))

true (9)
Type: Boolean

zero?(g)

false (10)
Type: Boolean

one?(factor(1))

true (11)
Type: Boolean

416 · Some Examples of Domains and Packages

one?(f)

false (12)
Type: Boolean

Another way to get the zero and
one factored objects is to use
package calling (see Section 2.9
on page 119).

0$Factored(Integer)

0 (13)
Type: Factored Integer

1$Factored(Integer)

1 (14)
Type: Factored Integer

9.22.4
Creating New
Factored Objects

The map operation is used to iterate across the unit and bases of a
factored object. See ‘FactoredFunctions2’ on page 419 for a discussion of
map.

The following four operations
take a base and an exponent
and create a factored object.
They differ in handling the flag
component.

nilFactor(24,2)

242 (1)
Type: Factored Integer

This factor has no associated
information.

nthFlag(%,1)

"nil" (2)
Type: Union("nil", ...)

This factor is asserted to be
square-free.

sqfrFactor(30,2)

302 (3)
Type: Factored Integer

This factor is asserted to be
irreducible.

irreducibleFactor(13,10)

1310 (4)
Type: Factored Integer

This factor is asserted to be
prime.

primeFactor(11,5)

115 (5)
Type: Factored Integer

A partial inverse to factorList
is makeFR.

h := factor(-720)

−24 32 5 (6)
Type: Factored Integer

9.22. Factored · 417

The first argument is the unit
and the second is a list of
records as returned by
factorList.

h - makeFR(unit(h),factorList(h))

0 (7)
Type: Factored Integer

9.22.5
Factored Objects
with Variables

Some of the operations available
for polynomials are also
available for factored
polynomials.

p := (4*x*x-12*x+9)*y*y + (4*x*x-12*x+9)*y + 28*x*x - 84*x
+ 63(

4 x2 − 12 x + 9
)

y2 +
(
4 x2 − 12 x + 9

)
y + 28 x2 − 84 x + 63 (1)

Type: Polynomial Integer

fp := factor(p)

(2 x− 3)2
(
y2 + y + 7

)
(2)

Type: Factored Polynomial Integer

You can differentiate with
respect to a variable.

D(p,x)

(8 x− 12) y2 + (8 x− 12) y + 56 x− 84 (3)
Type: Polynomial Integer

D(fp,x)

4 (2 x− 3)
(
y2 + y + 7

)
(4)

Type: Factored Polynomial Integer

numberOfFactors(%)

3 (5)
Type: PositiveInteger

418 · Some Examples of Domains and Packages

9.23
Factored-
Functions2

The FactoredFunctions2 package implements one operation, map, for ap-
plying an operation to every base in a factored object and to the unit.

double(x) == x + x

Type: Void

f := factor(720)

24 32 5 (2)
Type: Factored Integer

Actually, the map operation
used in this example comes from
Factored itself, since double
takes an integer argument and
returns an integer result.

map(double,f)

Compiling function double with type Integer ->
Integer

2 44 62 10 (3)
Type: Factored Integer

If we want to use an operation
that returns an object that has
a type different from the
operation’s argument, the map
in Factored cannot be used and
we use the one in
FactoredFunctions2.

makePoly(b) == x + b

Type: Void

In fact, the “2” in the name of
the package means that we
might be using factored objects
of two different types.

g := map(makePoly,f)

Compiling function makePoly with type Integer ->
Polynomial Integer

(x + 1) (x + 2)4 (x + 3)2 (x + 5) (5)
Type: Factored Polynomial Integer

It is important to note that both versions of map destroy any information
known about the bases (the fact that they are prime, for instance).

The flags for each base are set
to “nil” in the object returned
by map.

nthFlag(g,1)

"nil" (6)
Type: Union("nil", ...)

For more information about factored objects and their use, see ‘Factored’
on page 414 and Section 8.13 on page 338.

9.23. FactoredFunctions2 · 419

9.24
File

The File(S) domain provides a basic interface to read and write values of
type S in files.

Before working with a file, it
must be made accessible to
AXIOM with the open
operation.

ifile:File List Integer:=open("/tmp/jazz1","output")

"/tmp/jazz1" (1)
Type: File List Integer

The open function arguments are a FileName and a String specifying the
mode. If a full pathname is not specified, the current default directory
is assumed. The mode must be one of "input" or "output". If it is not
specified, "input" is assumed. Once the file has been opened, you can
read or write data.

The operations read! and
write! are provided.

write!(ifile, [-1,2,3])

[−1, 2, 3] (2)
Type: List Integer

write!(ifile, [10,-10,0,111])

[10, −10, 0, 111] (3)
Type: List Integer

write!(ifile, [7])

[7] (4)
Type: List Integer

You can change from writing to
reading (or vice versa) by
reopening a file.

reopen!(ifile, "input")

"/tmp/jazz1" (5)
Type: File List Integer

read! ifile

[−1, 2, 3] (6)
Type: List Integer

read! ifile

[10, −10, 0, 111] (7)
Type: List Integer

The read! operation can cause
an error if one tries to read
more data than is in the file. To
guard against this possibility
the readIfCan! operation
should be used.

readIfCan! ifile

[7] (8)
Type: Union(List Integer, ...)

420 · Some Examples of Domains and Packages

readIfCan! ifile

"failed" (9)
Type: Union("failed", ...)

You can find the current mode
of the file, and the file’s name.

iomode ifile

"input" (10)
Type: String

name ifile

"/tmp/jazz1" (11)
Type: FileName

When you are finished with a
file, you should close it.

close! ifile

"/tmp/jazz1" (12)
Type: File List Integer

)system rm /tmp/jazz1

A limitation of the underlying LISP system is that not all values can be
represented in a file. In particular, delayed values containing compiled
functions cannot be saved.

For more information on related topics, see ‘TextFile’ on page 588, ‘KeyedAc-
cessFile’ on page 460, ‘Library’ on page 474, and ‘FileName’ on page 422. Is-
sue the system command)show File to display the full list of operations
defined by File.

9.24. File · 421

9.25
FileName

The FileName domain provides an interface to the computer’s file system.
Functions are provided to manipulate file names and to test properties of
files.

The simplest way to use file names in the AXIOM interpreter is to rely
on conversion to and from strings. The syntax of these strings depends
on the operating system.

fn: FileName

Type: Void

On AIX, this is a proper file
syntax:

fn := "/spad/src/input/fname.input"

"/spad/src/input/fname.input" (2)
Type: FileName

Although it is very convenient to be able to use string notation for file
names in the interpreter, it is desirable to have a portable way of creating
and manipulating file names from within programs.

A measure of portability is
obtained by considering a file
name to consist of three parts:
the directory, the name, and the
extension.

directory fn

"/spad/src/input" (3)
Type: String

name fn

"fname" (4)
Type: String

extension fn

"input" (5)
Type: String

The meaning of these three parts depends on the operating system. For
example, on CMS the file "SPADPROF INPUT M" would have directory "M",
name "SPADPROF" and extension "INPUT".

It is possible to create a
filename from its parts.

fn := filename("/u/smwatt/work", "fname", "input")

"/u/smwatt/work/fname.input" (6)
Type: FileName

When writing programs, it is
helpful to refer to directories via
variables.

objdir := "/tmp"

"/tmp" (7)
Type: String

422 · Some Examples of Domains and Packages

fn := filename(objdir, "table", "spad")

"/tmp/table.spad" (8)
Type: FileName

If the directory or the extension
is given as an empty string, then
a default is used. On AIX, the
defaults are the current
directory and no extension.

fn := filename("", "letter", "")

"letter" (9)
Type: FileName

Three tests provide information about names in the file system.

The exists? operation tests
whether the named file exists.

exists? "/etc/passwd"

true (10)
Type: Boolean

The operation readable? tells
whether the named file can be
read. If the file does not exist,
then it cannot be read.

readable? "/etc/passwd"

true (11)
Type: Boolean

readable? "/etc/security/passwd"

false (12)
Type: Boolean

readable? "/ect/passwd"

false (13)
Type: Boolean

Likewise, the operation
writable? tells whether the
named file can be written. If the
file does not exist, the test is
determined by the properties of
the directory.

writable? "/etc/passwd"

false (14)
Type: Boolean

writable? "/dev/null"

true (15)
Type: Boolean

writable? "/etc/DoesNotExist"

false (16)
Type: Boolean

writable? "/tmp/DoesNotExist"

true (17)
Type: Boolean

9.25. FileName · 423

The new operation constructs the name of a new writable file. The
argument sequence is the same as for filename, except that the name
part is actually a prefix for a constructed unique name.

The resulting file is in the
specified directory with the
given extension, and the same
defaults are used.

fn := new(objdir, "xxx", "yy")

"/tmp/xxx82222.yy" (18)
Type: FileName

424 · Some Examples of Domains and Packages

9.26
FlexibleArray

The FlexibleArray domain constructor creates one-dimensional arrays of
elements of the same type. Flexible arrays are an attempt to provide a
data type that has the best features of both one-dimensional arrays (fast,
random access to elements) and lists (flexibility). They are implemented
by a fixed block of storage. When necessary for expansion, a new, larger
block of storage is allocated and the elements from the old storage area
are copied into the new block.

Flexible arrays have available most of the operations provided by OneDi-
mensionalArray (see ‘OneDimensionalArray’ on page 514 and ‘Vector’ on page
601). Since flexible arrays are also of category ExtensibleLinearAggregate,
they have operations concat!, delete!, insert!, merge!, remove!, re-
moveDuplicates!, and select!. In addition, the operations physical-
Length and physicalLength! provide user-control over expansion and
contraction.

A convenient way to create a
flexible array is to apply the
operation flexibleArray to a
list of values.

flexibleArray [i for i in 1..6]

[1, 2, 3, 4, 5, 6] (1)
Type: FlexibleArray PositiveInteger

Create a flexible array of six
zeroes.

f : FARRAY INT := new(6,0)

[0, 0, 0, 0, 0, 0] (2)
Type: FlexibleArray Integer

For i = 1 . . . 6, set the i th

element to i. Display f.
for i in 1..6 repeat f.i := i; f

[1, 2, 3, 4, 5, 6] (3)
Type: FlexibleArray Integer

Initially, the physical length is
the same as the number of
elements.

physicalLength f

6 (4)
Type: PositiveInteger

Add an element to the end of f. concat!(f,11)

[1, 2, 3, 4, 5, 6, 11] (5)
Type: FlexibleArray Integer

See that its physical length has
grown.

physicalLength f

10 (6)
Type: PositiveInteger

Make f grow to have room for
15 elements.

physicalLength!(f,15)

[1, 2, 3, 4, 5, 6, 11] (7)
Type: FlexibleArray Integer

9.26. FlexibleArray · 425

Concatenate the elements of f
to itself. The physical length
allows room for three more
values at the end.

concat!(f,f)

[1, 2, 3, 4, 5, 6, 11, 1, 2, 3, 4, 5, 6, 11] (8)
Type: FlexibleArray Integer

Use insert! to add an element
to the front of a flexible array.

insert!(22,f,1)

[22, 1, 2, 3, 4, 5, 6, 11, 1, 2, 3, 4, 5, 6, 11] (9)
Type: FlexibleArray Integer

Create a second flexible array
from f consisting of the elements
from index 10 forward.

g := f(10..)

[2, 3, 4, 5, 6, 11] (10)
Type: FlexibleArray Integer

Insert this array at the front of
f.

insert!(g,f,1)

[2, 3, 4, 5, 6, 11, 22, 1, 2, 3, 4, 5, 6, 11, 1, 2, 3, 4, 5, 6, 11] (11)
Type: FlexibleArray Integer

Merge the flexible array f into g
after sorting each in place.

merge!(sort! f, sort! g)

[1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 11,
11, 11, 11, 22] (12)

Type: FlexibleArray Integer

Remove duplicates in place. removeDuplicates! f

[1, 2, 3, 4, 5, 6, 11, 22] (13)
Type: FlexibleArray Integer

Remove all odd integers. select!(i +-> even? i,f)

[2, 4, 6, 22] (14)
Type: FlexibleArray Integer

All these operations have
shrunk the physical length of f.

physicalLength f

8 (15)
Type: PositiveInteger

To force AXIOM not to shrink
flexible arrays call the
shrinkable operation with the
argument false. You must
package call this operation. The
previous value is returned.

shrinkable(false)$FlexibleArray(Integer)

true (16)
Type: Boolean

426 · Some Examples of Domains and Packages

9.27
Float

AXIOM provides two kinds of floating point numbers. The domain Float
(abbreviation FLOAT) implements a model of arbitrary precision floating
point numbers. The domain DoubleFloat (abbreviation DFLOAT) is intended
to make available hardware floating point arithmetic in AXIOM. The ac-
tual model of floating point that DoubleFloat provides is system-dependent.
For example, on the IBM system 370 AXIOM uses IBM double precision
which has fourteen hexadecimal digits of precision or roughly sixteen dec-
imal digits. Arbitrary precision floats allow the user to specify the pre-
cision at which arithmetic operations are computed. Although this is an
attractive facility, it comes at a cost. Arbitrary-precision floating-point
arithmetic typically takes twenty to two hundred times more time than
hardware floating point.

For more information about AXIOM’s numeric and graphic facilities, see
Section 7 on page 235, Section 8.1 on page 264, and ‘DoubleFloat’ on page
404.

9.27.1
Introduction to Float

Scientific notation is supported for input and output of floating point
numbers. A floating point number is written as a string of digits contain-
ing a decimal point optionally followed by the letter “E”, and then the
exponent.

We begin by doing some
calculations using arbitrary
precision floats. The default
precision is twenty decimal
digits.

1.234

1.234 (1)
Type: Float

A decimal base for the exponent
is assumed, so the number
1.234E2 denotes 1.234 · 102.

1.234E2

123.4 (2)
Type: Float

The normal arithmetic
operations are available for
floating point numbers.

sqrt(1.2 + 2.3 / 3.4 ** 4.5)

1.0996972790671286226 (3)
Type: Float

9.27.2
Conversion
Functions
You can use conversion (Section
2.7 on page 113) to go back and
forth between Integer, Fraction
Integer and Float, as
appropriate.

i := 3 :: Float

3.0 (1)
Type: Float

9.27. Float · 427

i :: Integer

3 (2)
Type: Integer

i :: Fraction Integer

3 (3)
Type: Fraction Integer

Since you are explicitly asking
for a conversion, you must take
responsibility for any loss of
exactness.

r := 3/7 :: Float

0.42857142857142857143 (4)
Type: Float

r :: Fraction Integer

3
7

(5)

Type: Fraction Integer

This conversion cannot be
performed: use truncate or
round if that is what you
intend.

r :: Integer

Cannot convert from type Float to Integer for value
0.4285714285 7142857143

The operations truncate and
round truncate . . .

truncate 3.6

3.0 (6)
Type: Float

and round to the nearest
integral Float respectively.

round 3.6

4.0 (7)
Type: Float

truncate(-3.6)

−3.0 (8)
Type: Float

round(-3.6)

−4.0 (9)
Type: Float

The operation fractionPart
computes the fractional part of
x, that is, x - truncate x.

fractionPart 3.6

0.6 (10)
Type: Float

428 · Some Examples of Domains and Packages

The operation digits allows the
user to set the precision. It
returns the previous value it was
using.

digits 40

20 (11)
Type: PositiveInteger

sqrt 0.2

0.4472135954999579392818347337462552470881 (12)
Type: Float

pi()$Float

3.141592653589793238462643383279502884197 (13)
Type: Float

The precision is only limited by
the computer memory available.
Calculations at 500 or more
digits of precision are not
difficult.

digits 500

40 (14)
Type: PositiveInteger

pi()$Float

3.1415926535897932384626433832795028841971693993751058
209749445923078164062862089986280348253421170679821480
865132823066470938446095505822317253594081284811174502
841027019385211055596446229489549303819644288109756659
334461284756482337867831652712019091456485669234603486
104543266482133936072602491412737245870066063155881748
815209209628292540917153643678925903600113305305488204
665213841469519415116094330572703657595919530921861173
819326117931051185480744623799627495673518857527248912
279381830119491

(15)

Type: Float

Reset digits to its default value. digits 20

500 (16)
Type: PositiveInteger

Numbers of type Float are represented as a record of two integers, namely,
the mantissa and the exponent where the base of the exponent is binary.
That is, the floating point number (m,e) represents the number m · 2e.
A consequence of using a binary base is that decimal numbers can not, in
general, be represented exactly.

9.27. Float · 429

9.27.3
Output Functions

A number of operations exist for specifying how numbers of type Float are
to be displayed. By default, spaces are inserted every ten digits in the
output for readability.3

Output spacing can be modified
with the outputSpacing
operation. This inserts no
spaces and then displays the
value of x.

outputSpacing 0; x := sqrt 0.2

(1) 0.44721359549995793928 (0)
Type: Float

Issue this to have the spaces
inserted every 5 digits.

outputSpacing 5; x

(2) 0.44721 35954 99957 93928 (0)
Type: Float

By default, the system displays
floats in either fixed format or
scientific format, depending on
the magnitude of the number.

y := x/10**10

(3) 0.44721 35954 99957 93928 E -10 (0)
Type: Float

A particular format may be
requested with the operations
outputFloating and
outputFixed.

outputFloating(); x

(4) 0.44721 35954 99957 93928 E 0 (0)
Type: Float

outputFixed(); y

(5) 0.00000 00000 44721 35954 99957 93928 (0)
Type: Float

Additionally, you can ask for n
digits to be displayed after the
decimal point.

outputFloating 2; y

(6) 0.45 E -10 (0)
Type: Float

outputFixed 2; x

(7) 0.45 (0)
Type: Float

This resets the output printing
to the default behavior.

outputGeneral()

Type: Void

3Note that you cannot include spaces in the input form of a floating point number,
though you can use underscores.

430 · Some Examples of Domains and Packages

9.27.4
An Example:
Determinant of a
Hilbert Matrix

Consider the problem of computing the determinant of a 10 by 10 Hilbert
matrix. The (i,j) th entry of a Hilbert matrix is given by 1/(i+j+1).

First do the computation using
rational numbers to obtain the
exact result.

a: Matrix Fraction Integer := matrix [[1/(i+j+1) for j in
0..9] for i in 0..9]




1 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
17

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
17

1
18

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
17

1
18

1
19




(1)

Type: Matrix Fraction Integer

This version of determinant
uses Gaussian elimination.

d:= determinant a

1
46206893947914691316295628839036278726983680000000000

(2)

Type: Fraction Integer

d :: Float

0.21641792264314918691E − 52 (3)
Type: Float

Now use hardware floats. Note
that a semicolon (;) is used to
prevent the display of the
matrix.

b: Matrix DoubleFloat := matrix [[1/(i+j+1$DoubleFloat)
for j in 0..9] for i in 0..9];

(4)
Type: Matrix DoubleFloat

The result given by hardware
floats is correct only to four
significant digits of precision. In
the jargon of numerical analysis,
the Hilbert matrix is said to be
“ill-conditioned.”

determinant b

2.1643677945721411e− 53 (5)
Type: DoubleFloat

Now repeat the computation at
a higher precision using Float.

digits 40

20 (6)
Type: PositiveInteger

9.27. Float · 431

c: Matrix Float := matrix [[1/(i+j+1$Float) for j in 0..9]
for i in 0..9];

(7)
Type: Matrix Float

determinant c

0.2164179226431491869060594983622617436159E − 52 (8)
Type: Float

Reset digits to its default value. digits 20

40 (9)
Type: PositiveInteger

432 · Some Examples of Domains and Packages

9.28
Fraction

The Fraction domain implements quotients. The elements must belong to
a domain of category IntegralDomain: multiplication must be commutative
and the product of two non-zero elements must not be zero. This allows
you to make fractions of most things you would think of, but don’t expect
to create a fraction of two matrices! The abbreviation for Fraction is FRAC.

Use “/” to create a fraction. a := 11/12

11
12

(1)

Type: Fraction Integer

b := 23/24

23
24

(2)

Type: Fraction Integer

The standard arithmetic
operations are available.

3 - a*b**2 + a + b/a

313271
76032

(3)

Type: Fraction Integer

Extract the numerator and
denominator by using numer
and denom, respectively.

numer(a)

11 (4)
Type: PositiveInteger

denom(b)

24 (5)
Type: PositiveInteger

Operations like max, min, negative?, positive? and zero? are all
available if they are provided for the numerators and denominators. See
‘Integer’ on page 445 for examples.

Don’t expect a useful answer from factor, gcd or lcm if you apply them
to fractions.

r := (x**2 + 2*x + 1)/(x**2 - 2*x + 1)

x2 + 2 x + 1
x2 − 2 x + 1

(6)

Type: Fraction Polynomial Integer

Since all non-zero fractions are
invertible, these operations have
trivial definitions.

factor(r)

x2 + 2 x + 1
x2 − 2 x + 1

(7)

Type: Factored Fraction Polynomial Integer

9.28. Fraction · 433

Use map to apply factor to the
numerator and denominator,
which is probably what you
mean.

map(factor,r)

(x + 1)2

(x− 1)2
(8)

Type: Fraction Factored Polynomial Integer

Other forms of fractions are
available. Use
continuedFraction to create a
continued fraction.

continuedFraction(7/12)

1|
|1 +

1|
|1 +

1|
|2 +

1|
|2 (9)

Type: ContinuedFraction Integer

Use partialFraction to create
a partial fraction. See
‘ContinuedFraction’ on page 385
and ‘PartialFraction’ on page 525
for additional information and
examples.

partialFraction(7,12)

1− 3
22

+
1
3

(10)

Type: PartialFraction Integer

Use conversion to create
alternative views of fractions
with objects moved in and out
of the numerator and
denominator.

g := 2/3 + 4/5*%i

2
3

+
4
5

i (11)

Type: Complex Fraction Integer

Conversion is discussed in detail
in Section 2.7 on page 113.

g :: FRAC COMPLEX INT

10 + 12 i

15
(12)

Type: Fraction Complex Integer

434 · Some Examples of Domains and Packages

9.29
FullPartial-
Fraction-
Expansion

The domain FullPartialFractionExpansion implements factor-free conversion
of quotients to full partial fractions.

Our examples will all involve
quotients of univariate
polynomials with rational
number coefficients.

Fx := FRAC UP(x, FRAC INT)

Fraction UnivariatePolynomial (x , Fraction Integer) (1)
Type: Domain

Here is a simple-looking rational
function.

f : Fx := 36 / (x**5-2*x**4-2*x**3+4*x**2+x-2)

36
x5 − 2 x4 − 2 x3 + 4 x2 + x− 2

(2)

Type: Fraction UnivariatePolynomial(x, Fraction Integer)

We use fullPartialFraction to
convert it to an object of type
FullPartialFractionExpansion.

g := fullPartialFraction f

4
x− 2

− 4
x + 1

+
∑

%A2 − 1 = 0

−3 %A− 6
(x−%A)2

(3)

Type: FullPartialFractionExpansion(Fraction Integer, UnivariatePolynomial(x,
Fraction Integer))

Use a coercion to change it back
into a quotient.

g :: Fx

36
x5 − 2 x4 − 2 x3 + 4 x2 + x− 2

(4)

Type: Fraction UnivariatePolynomial(x, Fraction Integer)

Full partial fractions
differentiate faster than rational
functions.

g5 := D(g, 5)

− 480
(x− 2)6

+
480

(x + 1)6
+

∑

%A2 − 1 = 0

2160 %A + 4320
(x−%A)7

(5)

Type: FullPartialFractionExpansion(Fraction Integer, UnivariatePolynomial(x,
Fraction Integer))

f5 := D(f, 5)


−544320 x10 + 4354560 x9 − 14696640 x8 + 28615680 x7

−40085280 x6 + 46656000 x5 − 39411360 x4 + 18247680 x3

−5870880 x2 + 3317760 x + 246240







x20 − 12 x19 + 53 x18 − 76 x17 − 159 x16 + 676 x15 − 391 x14

−1596 x13 + 2527 x12 + 1148 x11 − 4977 x10 + 1372 x9 + 4907 x8

−3444 x7 − 2381 x6 + 2924 x5 + 276 x4 − 1184 x3 + 208 x2

+192 x− 64




(6)

Type: Fraction UnivariatePolynomial(x, Fraction Integer)

9.29. FullPartialFractionExpansion · 435

We can check that the two forms
represent the same function.

g5::Fx - f5

0 (7)
Type: Fraction UnivariatePolynomial(x, Fraction Integer)

Here are some examples that are
more complicated.

f : Fx := (x**5 * (x-1)) / ((x**2 + x + 1)**2 * (x-2)**3)

x6 − x5

x7 − 4 x6 + 3 x5 + 9 x3 − 6 x2 − 4 x− 8
(8)

Type: Fraction UnivariatePolynomial(x, Fraction Integer)

g := fullPartialFraction f

1952
2401

x− 2
+

464
343

(x− 2)2
+

32
49

(x− 2)3
+

∑

%A2 + %A + 1 = 0

− 179
2401 %A + 135

2401

x−%A
+

∑

%A2 + %A + 1 = 0

37
1029 %A + 20

1029

(x−%A)2

(9)

Type: FullPartialFractionExpansion(Fraction Integer, UnivariatePolynomial(x,
Fraction Integer))

g :: Fx - f

0 (10)
Type: Fraction UnivariatePolynomial(x, Fraction Integer)

f : Fx := (2*x**7-7*x**5+26*x**3+8*x) / (x**8-
5*x**6+6*x**4+4*x**2-8)

2 x7 − 7 x5 + 26 x3 + 8 x

x8 − 5 x6 + 6 x4 + 4 x2 − 8
(11)

Type: Fraction UnivariatePolynomial(x, Fraction Integer)

g := fullPartialFraction f

∑

%A2 − 2 = 0

1
2

x−%A
+

∑

%A2 − 2 = 0

1
(x−%A)3

+

∑

%A2 + 1 = 0

1
2

x−%A

(12)

Type: FullPartialFractionExpansion(Fraction Integer, UnivariatePolynomial(x,
Fraction Integer))

436 · Some Examples of Domains and Packages

g :: Fx - f

0 (13)
Type: Fraction UnivariatePolynomial(x, Fraction Integer)

f:Fx := x**3 / (x**21 + 2*x**20 + 4*x**19 + 7*x**18 +
10*x**17 + 17*x**16 + 22*x**15 + 30*x**14 + 36*x**13
+ 40*x**12 + 47*x**11 + 46*x**10 + 49*x**9 + 43*x**8 +
38*x**7 + 32*x**6 + 23*x**5 + 19*x**4 + 10*x**3 + 7*x**2
+ 2*x + 1)

x3




x21 + 2 x20 + 4 x19 + 7 x18 + 10 x17 + 17 x16 + 22 x15+
30 x14 + 36 x13 + 40 x12 + 47 x11 + 46 x10 + 49 x9 + 43 x8+
38 x7 + 32 x6 + 23 x5 + 19 x4 + 10 x3 + 7 x2 + 2 x + 1




(14)

Type: Fraction UnivariatePolynomial(x, Fraction Integer)

g := fullPartialFraction f

∑

%A2 + 1 = 0

1
2 %A

x−%A
+

∑

%A2 + %A + 1 = 0

1
9 %A− 19

27

x−%A
+

∑

%A2 + %A + 1 = 0

1
27 %A− 1

27

(x−%A)2
+

∑

%A5 + %A2 + 1 = 0




− 96556567040
912390759099 %A4 + 420961732891

912390759099 %A3

− 59101056149
912390759099 %A2 − 373545875923

912390759099 %A

+529673492498
912390759099




x−%A
+

∑

%A5 + %A2 + 1 = 0




− 5580868
94070601 %A4 − 2024443

94070601 %A3

+ 4321919
94070601 %A2 − 84614

1542141 %A

− 5070620
94070601




(x−%A)2
+

∑

%A5 + %A2 + 1 = 0




1610957
94070601 %A4 + 2763014

94070601 %A3−
2016775
94070601 %A2 + 266953

94070601 %A + 4529359
94070601




(x−%A)3

(15)

Type: FullPartialFractionExpansion(Fraction Integer, UnivariatePolynomial(x,
Fraction Integer))

9.29. FullPartialFractionExpansion · 437

This verification takes much
longer than the conversion to
partial fractions.

g :: Fx - f

0 (16)
Type: Fraction UnivariatePolynomial(x, Fraction Integer)

For more information, see the paper: Bronstein, M and Salvy, B. “Full
Partial Fraction Decomposition of Rational Functions,” Proceedings of
ISSAC’93, Kiev, ACM Press. All see ‘PartialFraction’ on page 525 for stan-
dard partial fraction decompositions.

438 · Some Examples of Domains and Packages

9.30
GeneralSparse-
Table

Sometimes when working with tables there is a natural value to use as the
entry in all but a few cases. The GeneralSparseTable constructor can be used
to provide any table type with a default value for entries. See ‘Table’ on
page 585 for general information about tables. Issue the system command
)show GeneralSparseTable to display the full list of operations defined
by GeneralSparseTable.

Suppose we launched a fund-raising campaign to raise fifty thousand dol-
lars. To record the contributions, we want a table with strings as keys (for
the names) and integer entries (for the amount). In a data base of cash
contributions, unless someone has been explicitly entered, it is reasonable
to assume they have made a zero dollar contribution.

This creates a keyed access file
with default entry 0.

patrons: GeneralSparseTable(String, Integer,
KeyedAccessFile(Integer), 0) := table() ;

(1)
Type: GeneralSparseTable(String, Integer, KeyedAccessFile Integer, 0)

Now patrons can be used just
as any other table. Here we
record two gifts.

patrons."Smith" := 10500

10500 (2)
Type: PositiveInteger

patrons."Jones" := 22000

22000 (3)
Type: PositiveInteger

Now let us look up the size of
the contributions from Jones
and Stingy.

patrons."Jones"

22000 (4)
Type: PositiveInteger

patrons."Stingy"

0 (5)
Type: NonNegativeInteger

Have we met our seventy
thousand dollar goal?

reduce(+, entries patrons)

32500 (6)
Type: PositiveInteger

So the project is cancelled and
we can delete the data base:

)system rm -r kaf*.sdata

9.30. GeneralSparseTable · 439

9.31
Groebner-
Factorization-
Package

Solving systems of polynomial equations with the Gröbner basis algorithm
can often be very time consuming because, in general, the algorithm has
exponential run-time. These systems, which often come from concrete
applications, frequently have symmetries which are not taken advantage
of by the algorithm. However, it often happens in this case that the
polynomials which occur during the Gröbner calculations are reducible.
Since AXIOM has an excellent polynomial factorization algorithm, it is
very natural to combine the Gröbner and factorization algorithms.

GroebnerFactorizationPackage exports the groebnerFactorize operation
which implements a modified Gröbner basis algorithm. In this algorithm,
each polynomial that is to be put into the partial list of the basis is first
factored. The remaining calculation is split into as many parts as there
are irreducible factors. Call these factors p1, . . . , pn. In the branches cor-
responding to p2, . . . , pn, the factor p1 can be divided out, and so on. This
package also contains operations that allow you to specify the polynomials
that are not zero on the common roots of the final Gröbner basis.

Here is an example from chemistry. In a theoretical model of the cyclo-
hexan C6H12, the six carbon atoms each sit in the center of gravity of a
tetrahedron that has two hydrogen atoms and two carbon atoms at its
corners. We first normalize and set the length of each edge to 1. Hence,
the distances of one fixed carbon atom to each of its immediate neigh-
bours is 1. We will denote the distances to the other three carbon atoms
by x, y and z.

A. Dress developed a theory to decide whether a set of points and dis-
tances between them can be realized in an n-dimensional space. Here, of
course, we have n = 3.

mfzn : SQMATRIX(6,DMP([x,y,z],Fraction INT)) :=
[[0,1,1,1,1,1], [1,0,1,8/3,x,8/3], [1,1,0,1,8/3,y],
[1,8/3,1,0,1,8/3], [1,x,8/3,1,0,1], [1,8/3,y,8/3,1,0]]




0 1 1 1 1 1
1 0 1 8

3 x 8
3

1 1 0 1 8
3 y

1 8
3 1 0 1 8

3
1 x 8

3 1 0 1
1 8

3 y 8
3 1 0




(1)

Type: SquareMatrix(6, DistributedMultivariatePolynomial([x, y, z], Fraction
Integer))

440 · Some Examples of Domains and Packages

For the cyclohexan, the
distances have to satisfy this
equation.

eq := determinant mfzn

−x2 y2 + 22
3 x2 y − 25

9 x2 + 22
3 x y2 − 388

9 x y − 250
27 x

−25
9

y2 − 250
27

y +
14575

81

(2)

Type: DistributedMultivariatePolynomial([x, y, z], Fraction Integer)

They also must satisfy the
equations given by cyclic shifts
of the indeterminates.

groebnerFactorize [eq, eval(eq, [x,y,z], [y,z,x]),
eval(eq, [x,y,z], [z,x,y])]

[[
x y + x z − 22

3
x + y z − 22

3
y − 22

3
z +

121
3

,

x z2 − 22
3

x z +
25
9

x + y z2 − 22
3

y z +
25
9

y − 22
3

z2+

388
9

z +
250
27

,

y2 z2 − 22
3

y2 z +
25
9

y2 − 22
3

y z2 +
388
9

y z +
250
27

y+

25
9

z2 +
250
27

z − 14575
81

]
,

[
x + y − 21994

5625
, y2 − 21994

5625
y +

4427
675

, z − 463
87

]
,

[
x2 − 1

2
x z − 11

2
x− 5

6
z +

265
18

, y − z, z2 − 38
3

z +
265
9

]
,

[
x− 25

9
, y − 11

3
, z − 11

3

]
,

[
x− 11

3
, y − 11

3
, z − 11

3

]
,

[
x +

5
3
, y +

5
3
, z +

5
3

]
,

[
x− 19

3
, y +

5
3
, z +

5
3

]]

(3)

Type: List List DistributedMultivariatePolynomial([x, y, z], Fraction Integer)

The union of the solutions of this list is the solution of our original prob-
lem. If we impose positivity conditions, we get two relevant ideals. One
ideal is zero-dimensional, namely x = y = z = 11/3, and this determines
the “boat” form of the cyclohexan. The other ideal is one-dimensional,
which means that we have a solution space given by one parameter. This
gives the “chair” form of the cyclohexan. The parameter describes the
angle of the “back of the chair.”

groebnerFactorize has an optional Boolean-valued second argument.

9.31. GroebnerFactorizationPackage · 441

When it is true partial results are displayed, since it may happen that the
calculation does not terminate in a reasonable time. See the source code
for GroebnerFactorizationPackage in groebf.spad for more details about the
algorithms used.

442 · Some Examples of Domains and Packages

9.32
Heap

The domain Heap(S) implements a priority queue of objects of type S such
that the operation extract! removes and returns the maximum element.
The implementation represents heaps as flexible arrays (see ‘FlexibleAr-
ray’ on page 425). The representation and algorithms give complexity of
O(log(n)) for insertion and extractions, and O(n) for construction.

Create a heap of six elements. h := heap [-4,9,11,2,7,-7]

[11, 7, 9, −4, 2, −7] (1)
Type: Heap Integer

Use insert! to add an element. insert!(3,h)

[11, 7, 9, −4, 2, −7, 3] (2)
Type: Heap Integer

The operation extract!
removes and returns the
maximum element.

extract! h

11 (3)
Type: PositiveInteger

The internal structure of h has
been appropriately adjusted.

h

[9, 7, 3, −4, 2, −7] (4)
Type: Heap Integer

Now extract! elements
repeatedly until none are left,
collecting the elements in a list.

[extract!(h) while not empty?(h)]

[9, 7, 3, 2, −4, −7] (5)
Type: List Integer

Another way to produce the
same result is by defining a
heapsort function.

heapsort(x) == (empty? x => []; cons(extract!(x),heapsort
x))

Type: Void

Create another sample heap. h1 := heap [17,-4,9,-11,2,7,-7]

[17, 2, 9, −11, −4, 7, −7] (7)
Type: Heap Integer

Apply heapsort to present
elements in order.

heapsort h1

Compiling function heapsort with type Heap Integer
-> List Integer

[17, 9, 7, 2, −4, −7, −11] (8)
Type: List Integer

9.32. Heap · 443

9.33
Hexadecimal-
Expansion

All rationals have repeating hexadecimal expansions. The operation hex
returns these expansions of type HexadecimalExpansion. Operations to ac-
cess the individual numerals of a hexadecimal expansion can be obtained
by converting the value to RadixExpansion(16). More examples of expan-
sions are available in the ‘DecimalExpansion’ on page 401, ‘BinaryExpansion’
on page 359, and ‘RadixExpansion’ on page 537.

Issue the system command)show HexadecimalExpansion to display the
full list of operations defined by HexadecimalExpansion.

This is a hexadecimal expansion
of a rational number.

r := hex(22/7)

3.249 (1)
Type: HexadecimalExpansion

Arithmetic is exact. r + hex(6/7)

4 (2)
Type: HexadecimalExpansion

The period of the expansion can
be short or long . . .

[hex(1/i) for i in 350..354]
[
0.00BB3EE721A54D88, 0.00BAB 6561, 0.00BA2E8,
0.00B9A7862A0FF465879D5F,
0.00B92143FA36F5E02E4850FE8DBD78]

(3)

Type: List HexadecimalExpansion

or very long! hex(1/1007)

0.0041149783F0BF2C7D13933192AF6980619EE345E91
EC2BB9D5CCA5C071E40926E54E8DDAE24196C0B2F8A0
AAD60DBA57F5D4C8536262210C74F1

(4)

Type: HexadecimalExpansion

These numbers are bona fide
algebraic objects.

p := hex(1/4)*x**2 + hex(2/3)*x + hex(4/9)

0.4 x2 + 0.A x + 0.71C (5)
Type: Polynomial HexadecimalExpansion

q := D(p, x)

0.8 x + 0.A (6)
Type: Polynomial HexadecimalExpansion

g := gcd(p, q)

x + 1.5 (7)
Type: Polynomial HexadecimalExpansion

444 · Some Examples of Domains and Packages

9.34
Integer

AXIOM provides many operations for manipulating arbitrary precision
integers. In this section we will show some of those that come from Integer
itself plus some that are implemented in other packages. More examples of
using integers are in the following sections: ‘Some Numbers’ in Section 1.5
on page 56, ‘IntegerNumberTheoryFunctions’ on page 453, ‘DecimalExpansion’
on page 401, ‘BinaryExpansion’ on page 359, ‘HexadecimalExpansion’ on page
444, and ‘RadixExpansion’ on page 537.

9.34.1
Basic Functions

The size of an integer in
AXIOM is only limited by the
amount of computer storage you
have available. The usual
arithmetic operations are
available.

2**(5678 - 4856 + 2 * 17)

4804810770435008147181540925125924391239526139871682263
4738556100880842000763082930863425270914120837430745722
7821149607627692202643343568752733498024953930242542523
0458177649495442143929053063884787051467457680738771416
98859815495632935288783334250628775936

(1)

Type: PositiveInteger

There are a number of ways of
working with the sign of an
integer. Let’s use this x as an
example.

x := -101

−101 (2)
Type: Integer

First of all, there is the absolute
value function.

abs(x)

101 (3)
Type: PositiveInteger

The sign operation returns -1 if
its argument is negative, 0 if
zero and 1 if positive.

sign(x)

−1 (4)
Type: Integer

You can determine if an integer
is negative in several other
ways.

x < 0

true (5)
Type: Boolean

x <= -1

true (6)
Type: Boolean

negative?(x)

true (7)
Type: Boolean

9.34. Integer · 445

Similarly, you can find out if it
is positive.

x > 0

false (8)
Type: Boolean

x >= 1

false (9)
Type: Boolean

positive?(x)

false (10)
Type: Boolean

This is the recommended way of
determining whether an integer
is zero.

zero?(x)

false (11)
Type: Boolean

Use the zero? operation whenever you are testing any mathematical
object for equality with zero. This is usually more efficient that using
“=” (think of matrices: it is easier to tell if a matrix is zero by just
checking term by term than constructing another “zero” matrix and
comparing the two matrices term by term) and also avoids the problem
that “=” is usually used for creating equations.

This is the recommended way of
determining whether an integer
is equal to one.

one?(x)

false (12)
Type: Boolean

This syntax is used to test
equality using “=”. It says that
you want a Boolean (true or
false) answer rather than an
equation.

(x = -101)@Boolean

true (13)
Type: Boolean

The operations odd? and
even? determine whether an
integer is odd or even,
respectively. They each return a
Boolean object.

odd?(x)

true (14)
Type: Boolean

even?(x)

false (15)
Type: Boolean

446 · Some Examples of Domains and Packages

The operation gcd computes
the greatest common divisor of
two integers.

gcd(56788,43688)

4 (16)
Type: PositiveInteger

The operation lcm computes
their least common multiple.

lcm(56788,43688)

620238536 (17)
Type: PositiveInteger

To determine the maximum of
two integers, use max.

max(678,567)

678 (18)
Type: PositiveInteger

To determine the minimum, use
min.

min(678,567)

567 (19)
Type: PositiveInteger

The reduce operation is used to
extend binary operations to
more than two arguments. For
example, you can use reduce to
find the maximum integer in a
list or compute the least
common multiple of all integers
in the list.

reduce(max,[2,45,-89,78,100,-45])

100 (20)
Type: PositiveInteger

reduce(min,[2,45,-89,78,100,-45])

−89 (21)
Type: Integer

reduce(gcd,[2,45,-89,78,100,-45])

1 (22)
Type: PositiveInteger

reduce(lcm,[2,45,-89,78,100,-45])

1041300 (23)
Type: PositiveInteger

The infix operator “/” is not
used to compute the quotient of
integers. Rather, it is used to
create rational numbers as
described in ‘Fraction’ on page
433.

13 / 4

13
4

(24)

Type: Fraction Integer

The infix operation quo
computes the integer quotient.

13 quo 4

3 (25)
Type: PositiveInteger

9.34. Integer · 447

The infix operation rem
computes the integer remainder.

13 rem 4

1 (26)
Type: PositiveInteger

One integer is evenly divisible
by another if the remainder is
zero. The operation exquo can
also be used. See Section 2.5 on
page 108 for an example.

zero?(167604736446952 rem 2003644)

true (27)
Type: Boolean

The operation divide returns a
record of the quotient and
remainder and thus is more
efficient when both are needed.

d := divide(13,4)

[quotient = 3, remainder = 1] (28)
Type: Record(quotient: Integer, remainder: Integer)

d.quotient

3 (29)
Type: PositiveInteger

Records are discussed in detail
in Section 2.4 on page 105.

d.remainder

1 (30)
Type: PositiveInteger

9.34.2
Primes and
Factorization
Use the operation factor to
factor integers. It returns an
object of type Factored Integer.
See ‘Factored’ on page 414 for a
discussion of the manipulation
of factored objects.

factor 102400

212 52 (1)
Type: Factored Integer

The operation prime? returns
true or false depending on
whether its argument is a prime.

prime? 7

true (2)
Type: Boolean

prime? 8

false (3)
Type: Boolean

The operation nextPrime
returns the least prime number
greater than its argument.

nextPrime 100

101 (4)
Type: PositiveInteger

448 · Some Examples of Domains and Packages

The operation prevPrime
returns the greatest prime
number less than its argument.

prevPrime 100

97 (5)
Type: PositiveInteger

To compute all primes between
two integers (inclusively), use
the operation primes.

primes(100,175)

[173, 167, 163, 157, 151, 149, 139, 137, 131, 127, 113, 109,
107, 103, 101] (6)

Type: List Integer

You might sometimes want to
see the factorization of an
integer when it is considered a
Gaussian integer. See ‘Complex’
on page 383 for more details.

factor(2 :: Complex Integer)

−i (1 + i)2 (7)
Type: Factored Complex Integer

9.34.3
Some Number
Theoretic Functions

AXIOM provides several number theoretic operations for integers. More
examples are in ‘IntegerNumberTheoryFunctions’ on page 453.

The operation fibonacci
computes the Fibonacci
numbers. The algorithm has
running time O (log3(n)) for
argument n.

[fibonacci(k) for k in 0..]

[0, 1, 1, 2, 3, 5, 8, . . .] (1)
Type: Stream Integer

The operation legendre
computes the Legendre symbol
for its two integer arguments
where the second one is prime.
If you know the second
argument to be prime, use
jacobi instead where no check
is made.

[legendre(i,11) for i in 0..10]

[0, 1, −1, 1, 1, 1, −1, −1, −1, 1, −1] (2)
Type: List Integer

The operation jacobi computes
the Jacobi symbol for its two
integer arguments. By
convention, 0 is returned if the
greatest common divisor of the
numerator and denominator is
not 1.

[jacobi(i,15) for i in 0..9]

[0, 1, 1, 0, 1, 0, 0, −1, 1, 0] (3)
Type: List Integer

The operation eulerPhi
computes the values of Euler’s
φ-function where φ(n) equals
the number of positive integers
less than or equal to n that are
relatively prime to the positive
integer n.

[eulerPhi i for i in 1..]

[1, 1, 2, 2, 4, 2, 6, . . .] (4)
Type: Stream Integer

9.34. Integer · 449

The operation moebiusMu
computes the Möbius µ
function.

[moebiusMu i for i in 1..]

[1, −1, −1, 0, −1, 1, −1, . . .] (5)
Type: Stream Integer

Although they have somewhat
limited utility, AXIOM provides
Roman numerals.

a := roman(78)

LXXVIII (6)
Type: RomanNumeral

b := roman(87)

LXXXVII (7)
Type: RomanNumeral

a + b

CLXV (8)
Type: RomanNumeral

a * b

MMMMMMDCCLXXXVI (9)
Type: RomanNumeral

b rem a

IX (10)
Type: RomanNumeral

450 · Some Examples of Domains and Packages

9.35
IntegerLinear-
Dependence

The elements v1, . . . , vn of a module M over a ring R are said to be linearly
dependent over R if there exist c1, . . . , cn in R, not all 0, such that c1v1 +
. . . cnvn = 0. If such ci’s exist, they form what is called a linear dependence
relation over R for the vi’s.

The package IntegerLinearDependence provides functions for testing whether
some elements of a module over the integers are linearly dependent over
the integers, and to find the linear dependence relations, if any.

Consider the domain of two by
two square matrices with integer
entries.

M := SQMATRIX(2,INT)

SquareMatrix (2, Integer) (1)
Type: Domain

Now create three such matrices. m1: M := squareMatrix matrix [[1, 2], [0, -1]]
[

1 2
0 −1

]
(2)

Type: SquareMatrix(2, Integer)

m2: M := squareMatrix matrix [[2, 3], [1, -2]]
[

2 3
1 −2

]
(3)

Type: SquareMatrix(2, Integer)

m3: M := squareMatrix matrix [[3, 4], [2, -3]]
[

3 4
2 −3

]
(4)

Type: SquareMatrix(2, Integer)

This tells you whether m1, m2
and m3 are linearly dependent
over the integers.

linearlyDependentOverZ? vector [m1, m2, m3]

true (5)
Type: Boolean

Since they are linearly
dependent, you can ask for the
dependence relation.

c := linearDependenceOverZ vector [m1, m2, m3]

[1, −2, 1] (6)
Type: Union(Vector Integer, ...)

This means that the following
linear combination should be 0.

c.1 * m1 + c.2 * m2 + c.3 * m3
[

0 0
0 0

]
(7)

Type: SquareMatrix(2, Integer)

When a given set of elements are linearly dependent over R, this also
means that at least one of them can be rewritten as a linear combination
of the others with coefficients in the quotient field of R.

9.35. IntegerLinearDependence · 451

To express a given element in
terms of other elements, use the
operation
solveLinearlyOverQ.

solveLinearlyOverQ(vector [m1, m3], m2)
[
1
2
,

1
2

]
(8)

Type: Union(Vector Fraction Integer, ...)

452 · Some Examples of Domains and Packages

9.36
IntegerNumber-
TheoryFunctions

The IntegerNumberTheoryFunctions package contains a variety of operations
of interest to number theorists. Many of these operations deal with divis-
ibility properties of integers. (Recall that an integer a divides an integer
b if there is an integer c such that b = a * c.)

The operation divisors returns
a list of the divisors of an
integer.

div144 := divisors(144)

[1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144] (1)
Type: List Integer

You can now compute the
number of divisors of 144 and
the sum of the divisors of 144
by counting and summing the
elements of the list we just
created.

#(div144)

15 (2)
Type: PositiveInteger

reduce(+,div144)

403 (3)
Type: PositiveInteger

Of course, you can compute the number of divisors of an integer n, usually
denoted d(n), and the sum of the divisors of an integer n, usually denoted
σ(n), without ever listing the divisors of n.

In AXIOM, you can simply call
the operations
numberOfDivisors and
sumOfDivisors.

numberOfDivisors(144)

15 (4)
Type: PositiveInteger

sumOfDivisors(144)

403 (5)
Type: PositiveInteger

The key is that d(n) and σ(n) are “multiplicative functions.” This means
that when n and m are relatively prime, that is, when n and m have no
prime factor in common, then d(nm) = d(n) d(m) and σ(nm) = σ(n)
σ(m). Note that these functions are trivial to compute when n is a prime
power and are computed for general n from the prime factorization of n.
Other examples of multiplicative functions are σk(n), the sum of the k th

powers of the divisors of n and ϕ(n), the number of integers between 1
and n which are prime to n. The corresponding AXIOM operations are
called sumOfKthPowerDivisors and eulerPhi.

An interesting function is µ(n), the Möbius µ function, defined as follows:
µ(1) = 1, µ(n) = 0, when n is divisible by a square, and µ = (−1)k,
when n is the product of k distinct primes. The corresponding AXIOM
operation is moebiusMu. This function occurs in the following theorem:

9.36. IntegerNumberTheoryFunctions · 453

Theorem (Möbius Inversion Formula):
Let f(n) be a function on the positive integers and let F(n) be defined
by

F (n) =
∑

d|n
f(n)

where the sum is taken over the positive divisors of n. Then the values of
f(n) can be recovered from the values of F(n):

f(n) =
∑

d|n
µ(n)F (

n

d
)

where again the sum is taken over the positive divisors of n.

When f(n) = 1, then F(n) =
d(n). Thus, if you sum µ(d) ·
d(n/d) over the positive divisors
d of n, you should always get 1.

f1(n)
== reduce(+,[moebiusMu(d) * numberOfDivisors(quo(n,d))
for d in divisors(n)])

Type: Void

f1(200)

Compiling function f1 with type PositiveInteger ->
Integer

1 (7)
Type: PositiveInteger

f1(846)

1 (8)
Type: PositiveInteger

Similarly, when f(n) = n, then
F(n) = σ(n). Thus, if you sum
µ(d) · σ(n/d) over the positive
divisors d of n, you should
always get n.

f2(n) == reduce(+,[moebiusMu(d) * sumOfDivisors(quo(n,d))
for d in divisors(n)])

Type: Void

f2(200)

Compiling function f2 with type PositiveInteger ->
Integer

200 (10)
Type: PositiveInteger

f2(846)

846 (11)
Type: PositiveInteger

The Möbius inversion formula is derived from the multiplication of formal
Dirichlet series. A Dirichlet series is an infinite series of the form

454 · Some Examples of Domains and Packages

∞∑

n=1

a(n)n−s

When
∞∑

n=1

a(n)n−s ·
∞∑

n=1

b(n)n−s =
∞∑

n=1

c(n)n−s

then c(n) =
∑

d|n a(d)b(n/d). Recall that the Riemann ζ function is de-
fined by

ζ(s) =
∏
p

(1− p−s)−1 = σ∞n=1n
−s

where the product is taken over the set of (positive) primes. Thus,

ζ(s)−1 =
∏
p

(1− p−s) = σ∞n=1µ(n)n−s

Now if F (n) =
∑

d|n)f(d), then
∑

f(n)n−s · ζ(s) =
∑

F (n)n−s

Thus,

ζ(s)−1 ·
∑

F (n)n−s =
∑

f(n)n−s

and f(n) =
∑

d|n µ(d)F (n/d).

The Fibonacci numbers are defined by F(1) = F(2) = 1 and F(n) =
F(n-1) + F(n-2) for n = 3,4,

The operation fibonacci

computes the n th Fibonacci
number.

fibonacci(25)

75025 (12)
Type: PositiveInteger

[fibonacci(n) for n in 1..15]

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610] (13)
Type: List Integer

Fibonacci numbers can also be
expressed as sums of binomial
coefficients.

fib(n) == reduce(+,[binomial(n-1-k,k) for k in 0..quo(n-
1,2)])

Type: Void

fib(25)

Compiling function fib with type PositiveInteger ->
Integer

75025 (15)
Type: PositiveInteger

9.36. IntegerNumberTheoryFunctions · 455

[fib(n) for n in 1..15]

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610] (16)
Type: List Integer

Quadratic symbols can be computed with the operations legendre and
jacobi. The Legendre symbol

(
a
p

)
is defined for integers a and p with p

an odd prime number. By definition,
(

a
p

)
, when a is a square (mod p),(

a
p

)
, when a is not a square (mod p), and

(
a
p

)
, when a is divisible by p.

You compute
(

a
p

)
via the

command legendre(a,p).

legendre(3,5)

−1 (17)
Type: Integer

legendre(23,691)

−1 (18)
Type: Integer

The Jacobi symbol
(

a
n

)
is the usual extension of the Legendre symbol,

where n is an arbitrary integer. The most important property of the
Jacobi symbol is the following: if K is a quadratic field with discriminant
d and quadratic character χ, then χ(n) = (d/n). Thus, you can use the
Jacobi symbol to compute, say, the class numbers of imaginary quadratic
fields from a standard class number formula.

This function computes the
class number of the imaginary
quadratic field with
discriminant d.

h(d) == quo(reduce(+, [jacobi(d,k) for k in 1..quo(-d,
2)]), 2 - jacobi(d,2))

Type: Void

h(-163)

Compiling function h with type Integer -> Integer

1 (20)
Type: PositiveInteger

h(-499)

3 (21)
Type: PositiveInteger

h(-1832)

26 (22)
Type: PositiveInteger

456 · Some Examples of Domains and Packages

9.37
Kernel

A kernel is a symbolic function application (such as sin(x + y)) or a
symbol (such as x). More precisely, a non-symbol kernel over a set S is
an operator applied to a given list of arguments from S. The operator has
type BasicOperator (see ‘BasicOperator’ on page 356) and the kernel object
is usually part of an expression object (see ‘Expression’ on page 410).

Kernels are created implicitly for you when you create expressions.

x :: Expression Integer

x (1)
Type: Expression Integer

You can directly create a
“symbol” kernel by using the
kernel operation.

kernel x

x (2)
Type: Kernel Expression Integer

This expression has two
different kernels.

sin(x) + cos(x)

sin (x) + cos (x) (3)
Type: Expression Integer

The operator kernels returns a
list of the kernels in an object of
type Expression.

kernels %

[sin (x), cos (x)] (4)
Type: List Kernel Expression Integer

This expression also has two
different kernels.

sin(x)**2 + sin(x) + cos(x)

sin (x)2 + sin (x) + cos (x) (5)
Type: Expression Integer

The sin(x) kernel is used twice. kernels %

[sin (x), cos (x)] (6)
Type: List Kernel Expression Integer

An expression need not contain
any kernels.

kernels(1 :: Expression Integer)

[] (7)
Type: List Kernel Expression Integer

If one or more kernels are
present, one of them is
designated the main kernel.

mainKernel(cos(x) + tan(x))

tan (x) (8)
Type: Union(Kernel Expression Integer, ...)

Kernels can be nested. Use
height to determine the nesting
depth.

height kernel x

1 (9)
Type: PositiveInteger

9.37. Kernel · 457

This has height 2 because the x
has height 1 and then we apply
an operator to that.

height mainKernel(sin x)

2 (10)
Type: PositiveInteger

height mainKernel(sin cos x)

3 (11)
Type: PositiveInteger

height mainKernel(sin cos (tan x + sin x))

4 (12)
Type: PositiveInteger

Use the operator operation to
extract the operator component
of the kernel. The operator has
type BasicOperator.

operator mainKernel(sin cos (tan x + sin x))

sin (13)
Type: BasicOperator

Use the name operation to
extract the name of the operator
component of the kernel. The
name has type Symbol. This is
really just a shortcut for a
two-step process of extracting
the operator and then calling
name on the operator.

name mainKernel(sin cos (tan x + sin x))

sin (14)
Type: Symbol

AXIOM knows about functions such as sin, cos and so on and can
make kernels and then expressions using them. To create a kernel and
expression using an arbitrary operator, use operator.

Now f can be used to create
symbolic function applications.

f := operator ’f

f (15)
Type: BasicOperator

e := f(x, y, 10)

f (x, y, 10) (16)
Type: Expression Integer

Use the is? operation to learn if
the operator component of a
kernel is equal to a given
operator.

is?(e, f)

true (17)
Type: Boolean

You can also use a symbol or a
string as the second argument
to is?.

is?(e, ’f)

true (18)
Type: Boolean

458 · Some Examples of Domains and Packages

Use the argument operation to
get a list containing the
argument component of a
kernel.

argument mainKernel e

[x, y, 10] (19)
Type: List Expression Integer

Conceptually, an object of type Expression can be thought of a quotient
of multivariate polynomials, where the “variables” are kernels. The argu-
ments of the kernels are again expressions and so the structure recurses.
See ‘Expression’ on page 410 for examples of using kernels to take apart
expression objects.

9.37. Kernel · 459

9.38
KeyedAccessFile

The domain KeyedAccessFile(S) provides files which can be used as asso-
ciative tables. Data values are stored in these files and can be retrieved
according to their keys. The keys must be strings so this type behaves very
much like the StringTable(S) domain. The difference is that keyed access
files reside in secondary storage while string tables are kept in memory.
For more information on table-oriented operations, see the description of
Table.

Before a keyed access file can be
used, it must first be opened. A
new file can be created by
opening it for output.

ey: KeyedAccessFile(Integer) := open("/tmp/editor.year",
"output")

"/tmp/editor.year" (1)
Type: KeyedAccessFile Integer

Just as for vectors, tables or
lists, values are saved in a keyed
access file by setting elements.

ey."Char" := 1986

1986 (2)
Type: PositiveInteger

ey."Caviness" := 1985

1985 (3)
Type: PositiveInteger

ey."Fitch" := 1984

1984 (4)
Type: PositiveInteger

Values are retrieved using
application, in any of its
syntactic forms.

ey."Char"

1986 (5)
Type: PositiveInteger

ey("Char")

1986 (6)
Type: PositiveInteger

ey "Char"

1986 (7)
Type: PositiveInteger

Attempting to retrieve a
non-existent element in this way
causes an error. If it is not
known whether a key exists, you
should use the search
operation.

search("Char", ey)

1986 (8)
Type: Union(Integer, ...)

460 · Some Examples of Domains and Packages

search("Smith", ey)

"failed" (9)
Type: Union("failed", ...)

When an entry is no longer
needed, it can be removed from
the file.

remove!("Char", ey)

1986 (10)
Type: Union(Integer, ...)

The keys operation returns a
list of all the keys for a given
file.

keys ey

["Fitch", "Caviness"] (11)
Type: List String

The # operation gives the
number of entries.

#ey

2 (12)
Type: PositiveInteger

The table view of keyed access files provides safe operations. That is, if
the AXIOM program is terminated between file operations, the file is left
in a consistent, current state. This means, however, that the operations
are somewhat costly. For example, after each update the file is closed.

Here we add several more items
to the file, then check its
contents.

KE := Record(key: String, entry: Integer)

Record (key : String , entry : Integer) (13)
Type: Domain

reopen!(ey, "output")

"/tmp/editor.year" (14)
Type: KeyedAccessFile Integer

If many items are to be added
to a file at the same time, then
it is more efficient to use the
write! operation.

write!(ey, ["van Hulzen", 1983]$KE)

[key = "van Hulzen", entry = 1983] (15)
Type: Record(key: String, entry: Integer)

write!(ey, ["Calmet", 1982]$KE)

[key = "Calmet", entry = 1982] (16)
Type: Record(key: String, entry: Integer)

write!(ey, ["Wang", 1981]$KE)

[key = "Wang", entry = 1981] (17)
Type: Record(key: String, entry: Integer)

9.38. KeyedAccessFile · 461

close! ey

"/tmp/editor.year" (18)
Type: KeyedAccessFile Integer

The read! operation is also
available from the file view, but
it returns elements in a random
order. It is generally clearer and
more efficient to use the keys
operation and to extract
elements by key.

keys ey

["Wang", "Calmet", "van Hulzen", "Fitch", "Caviness"] (19)
Type: List String

members ey

[1981, 1982, 1983, 1984, 1985] (20)
Type: List Integer

)system rm -r /tmp/editor.year

For more information on related topics, see ‘File’ on page 420, ‘TextFile’
on page 588, and ‘Library’ on page 474. Issue the system command)show
KeyedAccessFile to display the full list of operations defined by KeyedAc-
cessFile.

462 · Some Examples of Domains and Packages

9.39
LazardSetSolving-
Package

The LazardSetSolvingPackage package constructor solves polynomial sys-
tems by means of Lazard triangular sets. However one condition is re-
laxed: Regular triangular sets whose saturated ideals have positive di-
mension are not necessarily normalized.

The decompositions are computed in two steps. First the algorithm of
Moreno Maza (implemented in the RegularTriangularSet domain construc-
tor) is called. Then the resulting decompositions are converted into lists
of square-free regular triangular sets and the redundant components are
removed. Moreover, zero-dimensional regular triangular sets are normal-
ized.

This constructor takes six arguments. The first one, R, is the coefficient
ring of the polynomials; it must belong to the category GcdDomain. The
second one, E, is the exponent monoid of the polynomials; it must be-
long to the category OrderedAbelianMonoidSup. the third one, V, is the
ordered set of variables; it must belong to the category OrderedSet. The
fourth one is the polynomial ring; it must belong to the category Re-
cursivePolynomialCategory(R,E,V). The fifth one is a domain of the category
RegularTriangularSetCategory(R,E,V,P) and the last one is a domain of the cat-
egory SquareFreeRegularTriangularSetCategory(R,E,V,P). The abbreviation for
LazardSetSolvingPackage is LAZM3PK.

N.B. For the purpose of solving zero-dimensional algebraic systems, the
package ZDSOLVE is easier to call and provides operations to compute either
the complex roots or the real roots.

We illustrate now the use of the LazardSetSolvingPackage package construc-
tor with two examples (Butcher and Vermeer).

Define the coefficient ring. R := Integer

Integer (1)
Type: Domain

Define the list of variables, ls : List Symbol := [b1,x,y,z,t,v,u,w]

[b1, x, y, z, t, v, u, w] (2)
Type: List Symbol

and make it an ordered set; V := OVAR(ls)

OrderedVariableList [b1, x, y, z, t, v, u, w] (3)
Type: Domain

then define the exponent
monoid.

E := IndexedExponents V

IndexedExponents OrderedVariableList [b1 ,x ,y ,z ,t ,v ,u ,w] (4)
Type: Domain

9.39. LazardSetSolvingPackage · 463

Define the polynomial ring. P := NSMP(R, V)

NewSparseMultivariatePolynomial(Integer, OrderedVariableList
[b1, x, y, z, t, v, u, w]) (5)

Type: Domain

Let the variables be polynomial. b1: P := ’b1

b1 (6)
Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [b1, x, y, z, t,

v, u, w])

x: P := ’x

x (7)
Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [b1, x, y, z, t,

v, u, w])

y: P := ’y

y (8)
Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [b1, x, y, z, t,

v, u, w])

z: P := ’z

z (9)
Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [b1, x, y, z, t,

v, u, w])

t: P := ’t

t (10)
Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [b1, x, y, z, t,

v, u, w])

u: P := ’u

u (11)
Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [b1, x, y, z, t,

v, u, w])

v: P := ’v

v (12)
Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [b1, x, y, z, t,

v, u, w])

w: P := ’w

w (13)
Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [b1, x, y, z, t,

v, u, w])

464 · Some Examples of Domains and Packages

Now call the RegularTriangularSet
domain constructor.

T := REGSET(R,E,V,P)

RegularTriangularSet(Integer, IndexedExponents
OrderedVariableList [b1, x, y, z, t, v, u, w], OrderedVariableList
[b1, x, y, z, t, v, u, w], NewSparseMultivariatePolynomial(Integer,
OrderedVariableList [b1, x, y, z, t, v, u, w]))

(14)

Type: Domain

Define a polynomial system (the
Butcher example).

p0 := b1 + y + z - t - w

b1 + y + z − t− w (15)
Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [b1, x, y, z, t,

v, u, w])

p1 := 2*z*u + 2*y*v + 2*t*w - 2*w**2 - w - 1

2 v y + 2 u z + 2 w t− 2 w2 − w − 1 (16)
Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [b1, x, y, z, t,

v, u, w])

p2 := 3*z*u**2 + 3*y*v**2 - 3*t*w**2 + 3*w**3 + 3*w**2 - t
+ 4*w

3 v2 y + 3 u2 z +
(
−3 w2 − 1

)
t + 3 w3 + 3 w2 + 4 w (17)

Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [b1, x, y, z, t,
v, u, w])

p3 := 6*x*z*v - 6*t*w**2 + 6*w**3 - 3*t*w + 6*w**2 - t +
4*w

6 v z x +
(
−6 w2 − 3 w − 1

)
t + 6 w3 + 6 w2 + 4 w (18)

Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [b1, x, y, z, t,
v, u, w])

p4 := 4*z*u**3+ 4*y*v**3+ 4*t*w**3- 4*w**4 - 6*w**3+
4*t*w- 10*w**2- w- 1

4 v3 y + 4 u3 z +
(
4 w3 + 4 w

)
t− 4 w4 − 6 w3 − 10 w2 − w − 1 (19)

Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [b1, x, y, z, t,
v, u, w])

p5 := 8*x*z*u*v +8*t*w**3 -8*w**4 +4*t*w**2 -12*w**3
+4*t*w -14*w**2 -3*w -1

8 u v z x +
(
8 w3 + 4 w2 + 4 w

)
t− 8 w4 − 12 w3 − 14 w2 − 3 w − 1(20)

Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [b1, x, y, z, t,
v, u, w])

9.39. LazardSetSolvingPackage · 465

p6 := 12*x*z*v**2+12*t*w**3 -12*w**4 +12*t*w**2 -18*w**3
+8*t*w -14*w**2 -w -1

12 v2 z x +
(
12 w3 + 12 w2 + 8 w

)
t− 12 w4 − 18 w3 − 14 w2

−w − 1 (21)

Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [b1, x, y, z, t,
v, u, w])

p7 := -24*t*w**3 + 24*w**4 - 24*t*w**2 + 36*w**3 - 8*t*w +
26*w**2 + 7*w + 1(
−24 w3 − 24 w2 − 8 w

)
t + 24 w4 + 36 w3 + 26 w2 + 7 w + 1 (22)

Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [b1, x, y, z, t,
v, u, w])

lp := [p0, p1, p2, p3, p4, p5, p6, p7]
[
b1 + y + z − t− w, 2 v y + 2 u z + 2 w t− 2 w2 − w − 1,
3 v2 y + 3 u2 z +

(−3 w2 − 1
)

t + 3 w3 + 3 w2 + 4 w,
6 v z x +

(−6 w2 − 3 w − 1
)

t + 6 w3 + 6 w2 + 4 w,
4 v3 y + 4 u3 z +

(
4 w3 + 4 w

)
t− 4 w4 − 6 w3 − 10 w2 − w − 1,

8 u v z x +
(
8 w3 + 4 w2 + 4 w

)
t− 8 w4 − 12 w3 − 14 w2

−3 w − 1,
12 v2 z x +

(
12 w3 + 12 w2 + 8 w

)
t− 12 w4 − 18 w3 − 14 w2

−w − 1,(−24 w3 − 24 w2 − 8 w
)

t + 24 w4 + 36 w3 + 26 w2 + 7 w + 1
]

(23)

Type: List NewSparseMultivariatePolynomial(Integer, OrderedVariableList [b1, x, y,
z, t, v, u, w])

466 · Some Examples of Domains and Packages

First of all, let us solve this
system in the sense of Lazard by
means of the REGSET
constructor:

lts := zeroSetSplit(lp,false)$T

[{w + 1, u, v, t + 1, b1 + y + z + 2},
{w + 1, v, t + 1, z, b1 + y + 2},
{w + 1, t + 1, z, y, b1 + 2},
{w + 1, v − u, t + 1, y + z, x, b1 + 2},
{w + 1, u, t + 1, y, x, b1 + z + 2},{
144 w5 + 216 w4 + 96 w3 + 6 w2 − 11 w − 1,(
12 w2 + 9 w + 1

)
u− 72 w5 − 108 w4 − 42 w3 − 9 w2 − 3 w,(

12 w2 + 9 w + 1
)

v + 36 w4 + 54 w3 + 18 w2,(
24 w3 + 24 w2 + 8 w

)
t− 24 w4 − 36 w3 − 26 w2 − 7 w − 1,(

12 u v − 12 u2
)

z +
(
12 w v + 12 w2 + 4

)
t + (3 w − 5) v+

36 w4 + 42 w3 + 6 w2 − 16 w,
2 v y + 2 u z + 2 w t− 2 w2 − w − 1,
6 v z x +

(−6 w2 − 3 w − 1
)

t + 6 w3 + 6 w2 + 4 w,
b1 + y + z − t− w}]

(24)

Type: List RegularTriangularSet(Integer, IndexedExponents OrderedVariableList
[b1, x, y, z, t, v, u, w], OrderedVariableList [b1, x, y, z, t, v, u, w],
NewSparseMultivariatePolynomial(Integer, OrderedVariableList [b1, x, y, z,
t, v, u, w]))

We can get the dimensions of
each component of a
decomposition as follows.

[coHeight(ts) for ts in lts]

[3, 3, 3, 2, 2, 0] (25)
Type: List NonNegativeInteger

The first five sets have a simple shape. However, the last one, which has
dimension zero, can be simplified by using Lazard triangular sets.

Thus we call the
SquareFreeRegularTriangularSet
domain constructor,

ST := SREGSET(R,E,V,P)

SquareFreeRegularTriangularSet(Integer, IndexedExponents
OrderedVariableList [b1, x, y, z, t, v, u, w], OrderedVariableList
[b1, x, y, z, t, v, u, w], NewSparseMultivariatePolynomial(Integer,
OrderedVariableList[b1, x, y, z, t, v, u, w]))

(26)

Type: Domain

9.39. LazardSetSolvingPackage · 467

and set the LAZM3PK package
constructor to our situation.

pack := LAZM3PK(R,E,V,P,T,ST)

LazardSetSolvingPackage(Integer, IndexedExponents
OrderedVariableList [b1, x, y, z, t, v, u, w], OrderedVariableList
[b1, x, y, z, t, v, u, w], NewSparseMultivariatePolynomial(Integer,
OrderedVariableList[b1, x, y, z, t, v, u, w]), RegularTriangularSet(
Integer, IndexedExponents OrderedVariableList[b1, x, y, z, t, v, u,
w], OrderedVariableList[b1, x, y, z, t, v, u, w],
NewSparseMultivariatePolynomial(Integer, OrderedVariableList
[b1, x, y, z, t, v, u, w])), SquareFreeRegularTriangularSet(Integer,
IndexedExponents OrderedVariableList[b1, x, y, z, t, v, u, w],
OrderedVariableList[b1, x, y, z, t, v, u, w],
NewSparseMultivariatePolynomial(Integer, OrderedVariableList
[b1, x, y, z, t, v, u, w])))

(27)

Type: Domain

We are ready to solve the
system by means of Lazard
triangular sets:

zeroSetSplit(lp,false)$pack

[{w + 1, t + 1, z, y, b1 + 2},
{w + 1, v, t + 1, z, b1 + y + 2},
{w + 1, u, v, t + 1, b1 + y + z + 2},
{w + 1, v − u, t + 1, y + z, x, b1 + 2},
{w + 1, u, t + 1, y, x, b1 + z + 2},{
144 w5 + 216 w4 + 96 w3 + 6 w2 − 11 w − 1,

u− 24 w4 − 36 w3 − 14 w2 + w + 1,
3 v − 48 w4 − 60 w3 − 10 w2 + 8 w + 2,
t− 24 w4 − 36 w3 − 14 w2 − w + 1,
486 z − 2772 w4 − 4662 w3 − 2055 w2 + 30 w + 127,
2916 y − 22752 w4 − 30312 w3 − 8220 w2 + 2064 w + 1561,
356 x− 3696 w4 − 4536 w3 − 968 w2 + 822 w + 371,
2916 b1− 30600 w4 − 46692 w3 − 20274 w2 − 8076 w + 593

}
]

(28)

Type: List SquareFreeRegularTriangularSet(Integer, IndexedExponents
OrderedVariableList [b1, x, y, z, t, v, u, w], OrderedVariableList [b1, x, y, z, t,
v, u, w], NewSparseMultivariatePolynomial(Integer, OrderedVariableList
[b1, x, y, z, t, v, u, w]))

We see the sixth triangular set is nicer now: each one of its polynomials
has a constant initial.

We follow with the Vermeer example. The ordering is the usual one for
this system.

Define the polynomial system. f0 := (w - v) ** 2 + (u - t) ** 2 - 1

t2 − 2 u t + v2 − 2 w v + u2 + w2 − 1 (29)
Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [b1, x, y, z, t,

v, u, w])

468 · Some Examples of Domains and Packages

f1 := t ** 2 - v ** 3

t2 − v3 (30)
Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [b1, x, y, z, t,

v, u, w])

f2 := 2 * t * (w - v) + 3 * v ** 2 * (u - t)(
−3 v2 − 2 v + 2 w

)
t + 3 u v2 (31)

Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [b1, x, y, z, t,
v, u, w])

f3 := (3 * z * v ** 2 - 1) * (2 * z * t - 1)

6 v2 t z2 +
(
−2 t− 3 v2

)
z + 1 (32)

Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [b1, x, y, z, t,
v, u, w])

lf := [f0, f1, f2, f3]
[
t2 − 2 u t + v2 − 2 w v + u2 + w2 − 1, t2 − v3,(−3 v2 − 2 v + 2 w

)
t + 3 u v2, 6 v2 t z2 +

(−2 t− 3 v2
)

z + 1
] (33)

Type: List NewSparseMultivariatePolynomial(Integer, OrderedVariableList [b1, x, y,
z, t, v, u, w])

First of all, let us solve this
system in the sense of
Kalkbrener by means of the
REGSET constructor:

zeroSetSplit(lf,true)$T







729 u6 +
(−1458 w3 + 729 w2 − 4158 w − 1685

)
u4+(

729 w6 − 1458 w5 − 2619 w4 − 4892 w3 − 297 w2+
5814 w + 427) u2 + 729 w8 + 216 w7 − 2900 w6−
2376 w5 + 3870 w4 + 4072 w3 − 1188 w2 − 1656 w + 529,

(
2187 u4 +

(−4374 w3 − 972 w2 − 12474 w − 2868
)

u2+
2187 w6 − 1944 w5 − 10125 w4 − 4800 w3 + 2501 w2+
4968 w − 1587) v +

(
1944 w3 − 108 w2

)
u2 + 972 w6+

3024 w5 − 1080 w4 + 496 w3 + 1116 w2,

(
3 v2 + 2 v − 2 w

)
t− 3 u v2,(

(4 v − 4 w) t− 6 u v2
)

z2 +
(
2 t + 3 v2

)
z − 1








(34)

Type: List RegularTriangularSet(Integer, IndexedExponents OrderedVariableList
[b1, x, y, z, t, v, u, w], OrderedVariableList [b1, x, y, z, t, v, u, w],
NewSparseMultivariatePolynomial(Integer, OrderedVariableList [b1, x, y, z,
t, v, u, w]))

We have obtained one regular chain (i.e. regular triangular set) with
dimension 1. This set is in fact a characterist set of the (radical of) of the
ideal generated by the input system lf. Thus we have only the generic
points of the variety associated with lf (for the elimination ordering given

9.39. LazardSetSolvingPackage · 469

by ls).

So let us get now a full description of this variety.

Hence, we solve this system in
the sense of Lazard by means of
the REGSET constructor:

zeroSetSplit(lf,false)$T







729 u6 +
(−1458 w3 + 729 w2 − 4158 w − 1685

)
u4+(

729 w6 − 1458 w5 − 2619 w4 − 4892 w3 − 297 w2+
5814 w + 427) u2 + 729 w8 + 216 w7 − 2900 w6 − 2376·
w5 + 3870 w4 + 4072 w3 − 1188 w2 − 1656 w + 529,

(
2187 u4 +

(−4374 w3 − 972 w2 − 12474 w − 2868
)

u2+
2187 w6 − 1944 w5 − 10125 w4 − 4800 w3 + 2501 w2+
4968 w − 1587) v +

(
1944 w3 − 108 w2

)
u2 + 972 w6+

3024 w5 − 1080 w4 + 496 w3 + 1116 w2,

(
3 v2 + 2 v − 2 w

)
t− 3 u v2,(

(4 v − 4 w) t− 6 u v2
)

z2 +
(
2 t + 3 v2

)
z − 1





,





27 w4 + 4 w3 − 54 w2 − 36 w + 23, u,
(12 w + 2) v − 9 w2 − 2 w + 9,
6 t2 − 2 v − 3 w2 + 2 w + 3, 2 t z − 1



 ,





59049 w6 + 91854 w5 − 45198 w4 + 145152 w3+
63549 w2 + 60922 w + 21420,

(
31484448266904 w5 − 18316865522574 w4+
23676995746098 w3 + 6657857188965 w2+
8904703998546 w + 3890631403260) u2+
94262810316408 w5 − 82887296576616 w4+
89801831438784 w3 + 28141734167208 w2+
38070359425432 w + 16003865949120,

(
243 w2 + 36 w + 85

)
v2 +

(−81 u2 − 162 w3+
36 w2 + 154 w + 72

)
v − 72 w3 + 4 w2,

(
3 v2 + 2 v − 2 w

)
t− 3 u v2,(

(4 v − 4 w) t− 6 u v2
)

z2 +
(
2 t + 3 v2

)
z − 1





,





27 w4 + 4 w3 − 54 w2 − 36 w + 23, u,
(12 w + 2) v − 9 w2 − 2 w + 9,
6 t2 − 2 v − 3 w2 + 2 w + 3, 3 v2 z − 1








(35)

Type: List RegularTriangularSet(Integer, IndexedExponents OrderedVariableList
[b1, x, y, z, t, v, u, w], OrderedVariableList [b1, x, y, z, t, v, u, w],
NewSparseMultivariatePolynomial(Integer, OrderedVariableList [b1, x, y, z,
t, v, u, w]))

We retrieve our regular chain of dimension 1 and we get three regular

470 · Some Examples of Domains and Packages

chains of dimension 0 corresponding to the degenerated cases. We want
now to simplify these zero-dimensional regular chains by using Lazard tri-
angular sets. Moreover, this will allow us to prove that the above decom-
position has no redundant component. N.B. Generally, decompositions
computed by the REGSET constructor do not have redundant components.
However, to be sure that no redundant component occurs one needs to
use the SREGSET or LAZM3PK constructors.

9.39. LazardSetSolvingPackage · 471

So let us solve the input system
in the sense of Lazard by means
of the LAZM3PK constructor:

zeroSetSplit(lf,false)$pack







729 u6 +
(−1458 w3 + 729 w2 − 4158 w − 1685

)
u4+(

729 w6 − 1458 w5 − 2619 w4 − 4892 w3 − 297 w2+
5814 w + 427) u2 + 729 w8 + 216 w7 − 2900 w6−
2376 w5 + 3870 w4 + 4072 w3 − 1188 w2 − 1656 w + 529,(
2187 u4 +

(−4374 w3 − 972 w2 − 12474 w − 2868
)

u2+
2187 w6 − 1944 w5 − 10125 w4 − 4800 w3 + 2501 w2+
4968 w − 1587) v +

(
1944 w3 − 108 w2

)
u2 + 972 w6+

3024 w5 − 1080 w4 + 496 w3 + 1116 w2,(
3 v2 + 2 v − 2 w

)
t− 3 u v2,(

(4 v − 4 w) t− 6 u v2
)

z2 +
(
2 t + 3 v2

)
z − 1





,





81 w2 + 18 w + 28, 729 u2 − 1890 w − 533,
81 v2 + (−162 w + 27) v − 72 w − 112,
11881 t + (972 w + 2997) u v + (−11448 w − 11536) u,
641237934604288 z2 + (((78614584763904 w+
26785578742272) u + 236143618655616 w+
70221988585728) v + (358520253138432 w+
101922133759488) u + 142598803536000 w+
54166419595008) z+
(32655103844499 w − 44224572465882) u v+
(43213900115457 w − 32432039102070) u





,





27 w4 + 4 w3 − 54 w2 − 36 w + 23, u,
218 v − 162 w3 + 3 w2 + 160 w + 153,
109 t2 − 27 w3 − 54 w2 + 63 w + 80,
1744 z +

(−1458 w3 + 27 w2 + 1440 w + 505
)

t





,





27 w4 + 4 w3 − 54 w2 − 36 w + 23, u,
218 v − 162 w3 + 3 w2 + 160 w + 153,
109 t2 − 27 w3 − 54 w2 + 63 w + 80,
1308 z + 162 w3 − 3 w2 − 814 w − 153





,





729 w4 + 972 w3 − 1026 w2 + 1684 w + 765,
81 u2 + 72 w2 + 16 w − 72,
702 v − 162 w3 − 225 w2 + 40 w − 99,
11336 t +

(
324 w3 − 603 w2 − 1718 w − 1557

)
u,

595003968 z2 + ((− 963325386 w3 − 898607682 w2+
1516286466 w − 3239166186) u− 1579048992 w3−
1796454288 w2 + 2428328160 w − 4368495024) z+(
9713133306 w3 + 9678670317 w2 − 16726834476 w+
28144233593) u








(36)

Type: List SquareFreeRegularTriangularSet(Integer, IndexedExponents
OrderedVariableList [b1, x, y, z, t, v, u, w], OrderedVariableList [b1, x, y, z, t,
v, u, w], NewSparseMultivariatePolynomial(Integer, OrderedVariableList
[b1, x, y, z, t, v, u, w]))

472 · Some Examples of Domains and Packages

Due to square-free factorization, we obtained now four zero-dimensional
regular chains. Moreover, each of them is normalized (the initials are con-
stant). Note that these zero-dimensional components may be investigated
further with the ZeroDimensionalSolvePackage package constructor.

9.39. LazardSetSolvingPackage · 473

9.40
Library

The Library domain provides a simple way to store AXIOM values in a
file. This domain is similar to KeyedAccessFile but fewer declarations are
needed and items of different types can be saved together in the same file.

To create a library, you supply a
file name.

stuff := library "/tmp/Neat.stuff"

"/tmp/Neat.stuff" (1)
Type: Library

Now values can be saved by key
in the file. The keys should be
mnemonic, just as the field
names are for records. They can
be given either as strings or
symbols.

stuff.int := 32**2

1024 (2)
Type: PositiveInteger

stuff."poly" := x**2 + 1

x2 + 1 (3)
Type: Polynomial Integer

stuff.str := "Hello"

"Hello" (4)
Type: String

You obtain the set of available
keys using the keys operation.

keys stuff

["str", "poly", "int"] (5)
Type: List String

You extract values by giving the
desired key in this way.

stuff.poly

x2 + 1 (6)
Type: Polynomial Integer

stuff("poly")

x2 + 1 (7)
Type: Polynomial Integer

When the file is no longer
needed, you should remove it
from the file system.

)system rm -rf /tmp/Neat.stuff

For more information on related topics, see ‘File’ on page 420, ‘TextFile’ on
page 588, and ‘KeyedAccessFile’ on page 460. Issue the system command
)show Library to display the full list of operations defined by Library.

474 · Some Examples of Domains and Packages

9.41
LinearOrdinary-
Differential-
Operator

LinearOrdinaryDifferentialOperator(A, diff) is the domain of linear ordinary dif-
ferential operators with coefficients in a ring A with a given derivation. Is-
sue the system command)show LinearOrdinaryDifferentialOperator
to display the full list of operations defined by LinearOrdinaryDifferential-
Operator.

9.41.1
Differential
Operators with
Series Coefficients

Problem: Find the first few coefficients of exp(x)/x**i of Dop phi
where

Dop := D**3 + G/x**2 * D + H/x**3 - 1
phi := sum(s[i]*exp(x)/x**i, i = 0..)

Solution:

Define the differential. Dx: LODO(EXPR INT, f +-> D(f, x))

Type: Void

Dx := D()

D (2)
Type: LinearOrdinaryDifferentialOperator(Expression Integer, theMap NIL)

Now define the differential
operator Dop.

Dop:= Dx**3 + G/x**2*Dx + H/x**3 - 1

D3 +
G

x2
D +

−x3 + H

x3
(3)

Type: LinearOrdinaryDifferentialOperator(Expression Integer, theMap NIL)

n == 3

Type: Void

phi == reduce(+,[subscript(s,[i])*exp(x)/x**i for i in
0..n])

Type: Void

phi1 == Dop(phi) / exp x

Type: Void

phi2 == phi1 *x**(n+3)

Type: Void

9.41. LinearOrdinaryDifferentialOperator · 475

phi3 == retract(phi2)@(POLY INT)

Type: Void

pans == phi3 ::UP(x,POLY INT)

Type: Void

pans1 == [coefficient(pans, (n+3-i) :: NNI) for i in
2..n+1]

Type: Void

leq == solve(pans1,[subscript(s,[i]) for i in 1..n])

Type: Void

Evaluate this for several values
of n.

leq

Compiling body of rule n to compute value of type
PositiveInteger

Compiling body of rule phi to compute value of type
Expression Integer

Compiling body of rule phi1 to compute value of type
Expression Integer

Compiling body of rule phi2 to compute value of type
Expression Integer

Compiling body of rule phi3 to compute value of type
Polynomial Integer

Compiling body of rule pans to compute value of type
UnivariatePolynomial(x,Polynomial Integer)

Compiling body of rule pans1 to compute value of type
List Polynomial Integer

Compiling body of rule leq to compute value of type
List List Equation Fraction Polynomial Integer

Compiling function G82300 with type Integer ->
Boolean




[
s1 =

s0 G

3
, s2 =

3 s0 H + s0 G2 + 6 s0 G

18
,

s3 =
(9 s0 G + 54 s0) H + s0 G3 + 18 s0 G2 + 72 s0 G

162

]




(12)

Type: List List Equation Fraction Polynomial Integer

476 · Some Examples of Domains and Packages

n==4

Compiled code for n has been cleared.
Compiled code for leq has been cleared.
Compiled code for pans1 has been cleared.
Compiled code for phi2 has been cleared.
Compiled code for phi has been cleared.
Compiled code for phi3 has been cleared.
Compiled code for phi1 has been cleared.
Compiled code for pans has been cleared.
1 old definition(s) deleted for function or rule n

Type: Void

leq

Compiling body of rule n to compute value of type
PositiveInteger

+++ |*0;n;1;initial| redefined
Compiling body of rule phi to compute value of type

Expression Integer
+++ |*0;phi;1;initial| redefined
Compiling body of rule phi1 to compute value of type

Expression Integer
+++ |*0;phi1;1;initial| redefined
Compiling body of rule phi2 to compute value of type

Expression Integer
+++ |*0;phi2;1;initial| redefined
Compiling body of rule phi3 to compute value of type

Polynomial Integer
+++ |*0;phi3;1;initial| redefined
Compiling body of rule pans to compute value of type

UnivariatePolynomial(x,Polynomial Integer)
+++ |*0;pans;1;initial| redefined
Compiling body of rule pans1 to compute value of type

List Polynomial Integer
+++ |*0;pans1;1;initial| redefined
Compiling body of rule leq to compute value of type

List List Equation Fraction Polynomial Integer
+++ |*0;leq;1;initial| redefined



[
s1 =

s0 G

3
, s2 =

3 s0 H + s0 G2 + 6 s0 G

18
,

s3 =
(9 s0 G + 54 s0) H + s0 G3 + 18 s0 G2 + 72 s0 G

162
,

s4 =

(
27 s0 H2 +

(
18 s0 G2 + 378 s0 G + 1296 s0

)
H+

s0 G4 + 36 s0 G3 + 396 s0 G2 + 1296 s0 G

)

1944

]




(14)

Type: List List Equation Fraction Polynomial Integer

9.41. LinearOrdinaryDifferentialOperator · 477

n==7

Compiled code for n has been cleared.
Compiled code for leq has been cleared.
Compiled code for pans1 has been cleared.
Compiled code for phi2 has been cleared.
Compiled code for phi has been cleared.
Compiled code for phi3 has been cleared.
Compiled code for phi1 has been cleared.
Compiled code for pans has been cleared.
1 old definition(s) deleted for function or rule n

Type: Void

478 · Some Examples of Domains and Packages

leq

Compiling body of rule n to compute value of type
PositiveInteger

+++ |*0;n;1;initial| redefined
Compiling body of rule phi to compute value of type

Expression Integer
+++ |*0;phi;1;initial| redefined
Compiling body of rule phi1 to compute value of type

Expression Integer
+++ |*0;phi1;1;initial| redefined
Compiling body of rule phi2 to compute value of type

Expression Integer
+++ |*0;phi2;1;initial| redefined
Compiling body of rule phi3 to compute value of type

Polynomial Integer
+++ |*0;phi3;1;initial| redefined
Compiling body of rule pans to compute value of type

UnivariatePolynomial(x,Polynomial Integer)
+++ |*0;pans;1;initial| redefined
Compiling body of rule pans1 to compute value of type

List Polynomial Integer
+++ |*0;pans1;1;initial| redefined
Compiling body of rule leq to compute value of type

List List Equation Fraction Polynomial Integer
+++ |*0;leq;1;initial| redefined



[
s1 = s0 G

3 , s2 = 3 s0 H+s0 G2+6 s0 G
18 ,

s3 = (9 s0 G+54 s0) H+s0 G3+18 s0 G2+72 s0 G
162 ,

s4 =

(
27 s0 H2+(18 s0 G2+378 s0 G+1296 s0) H+

s0 G4+36 s0 G3+396 s0 G2+1296 s0 G

)

1944 ,

s5 =




(135 s0 G+2268 s0) H2+(30 s0 G3+1350 s0 G2+

16416 s0 G+38880 s0) H+s0 G5+60 s0 G4+

1188 s0 G3+9504 s0 G2+25920 s0 G




29160 ,

s6 =




405 s0 H3+(405 s0 G2+18468 s0 G+174960 s0) H2

+(45 s0 G4+3510 s0 G3+88776 s0 G2+777600 s0 G

+1166400 s0) H+s0 G6+90 s0 G5+2628 s0 G4+

27864 s0 G3+90720 s0 G2




524880 ,

s7 =




(2835 s0 G+91854 s0) H3+(945 s0 G3+81648 s0 G2

+2082996 s0 G+14171760 s0) H2+(63 s0 G5+

7560 s0 G4+317520 s0 G3+5554008 s0 G2+

34058880 s0 G) H+s0 G7+126 s0 G6+4788 s0 G5

+25272 s0 G4−1744416 s0 G3−26827200 s0 G2

−97977600 s0 G




11022480

]




(16)

Type: List List Equation Fraction Polynomial Integer

9.41. LinearOrdinaryDifferentialOperator · 479

9.42
LinearOrdinary-
Differential-
Operator1

LinearOrdinaryDifferentialOperator1(A) is the domain of linear ordinary differ-
ential operators with coefficients in the differential ring A. Issue the sys-
tem command)show LinearOrdinaryDifferentialOperator1 to dis-
play the full list of operations defined by LinearOrdinaryDifferentialOperator1.

9.42.1
Differential
Operators with
Rational Function
Coefficients

This example shows differential operators with rational function coeffi-
cients. In this case operator multiplication is non-commutative and, since
the coefficients form a field, an operator division algorithm exists.

We begin by defining RFZ to be
the rational functions in x with
integer coefficients and Dx to be
the differential operator for
d/dx.

RFZ := Fraction UnivariatePolynomial(’x, Integer)

Fraction UnivariatePolynomial (x , Integer) (1)
Type: Domain

x : RFZ := ’x

x (2)
Type: Fraction UnivariatePolynomial(x, Integer)

Dx : LODO1 RFZ := D()

D (3)
Type: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,

Integer)

Operators are created using the
usual arithmetic operations.

b : LODO1 RFZ := 3*x**2*Dx**2 + 2*Dx + 1/x

3 x2 D2 + 2 D +
1
x

(4)

Type: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,
Integer)

a : LODO1 RFZ := b*(5*x*Dx + 7)

15 x3 D3 +
(
51 x2 + 10 x

)
D2 + 29 D +

7
x

(5)

Type: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,
Integer)

Operator multiplication
corresponds to functional
composition.

p := x**2 + 1/x**2

x4 + 1
x2

(6)

Type: Fraction UnivariatePolynomial(x, Integer)

480 · Some Examples of Domains and Packages

Since operator coefficients
depend on x, the multiplication
is not commutative.

(a*b - b*a) p

−75 x4 + 540 x− 75
x4

(7)

Type: Fraction UnivariatePolynomial(x, Integer)

When the coefficients of operator polynomials come from a field, as in
this case, it is possible to define operator division. Division on the left
and division on the right yield different results when the multiplication is
non-commutative.

The results of leftDivide and rightDivide are quotient-remainder pairs
satisfying:
leftDivide(a,b) = [q, r] such that a = b*q + r
rightDivide(a,b) = [q, r] such that a = q*b + r

In both cases, the degree of the
remainder, r, is less than the
degree of b.

ld := leftDivide(a,b)

[quotient = 5 x D + 7, remainder = 0] (8)
Type: Record(quotient: LinearOrdinaryDifferentialOperator1 Fraction

UnivariatePolynomial(x, Integer), remainder:
LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,
Integer))

a = b * ld.quotient + ld.remainder

15 x3 D3 +
(
51 x2 + 10 x

)
D2 + 29 D +

7
x

= 15 x3 D3+
(
51 x2 + 10 x

)
D2 + 29 D +

7
x

(9)

Type: Equation LinearOrdinaryDifferentialOperator1 Fraction
UnivariatePolynomial(x, Integer)

The operations of left and right
division are so-called because
the quotient is obtained by
dividing a on that side by b.

rd := rightDivide(a,b)
[
quotient = 5 x D + 7, remainder = 10 D +

5
x

]
(10)

Type: Record(quotient: LinearOrdinaryDifferentialOperator1 Fraction
UnivariatePolynomial(x, Integer), remainder:
LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,
Integer))

a = rd.quotient * b + rd.remainder

15 x3 D3 +
(
51 x2 + 10 x

)
D2 + 29 D +

7
x

= 15 x3 D3+
(
51 x2 + 10 x

)
D2 + 29 D +

7
x

(11)

Type: Equation LinearOrdinaryDifferentialOperator1 Fraction
UnivariatePolynomial(x, Integer)

9.42. LinearOrdinaryDifferentialOperator1 · 481

Operations rightQuotient and
rightRemainder are available
if only one of the quotient or
remainder are of interest to you.
This is the quotient from right
division.

rightQuotient(a,b)

5 x D + 7 (12)
Type: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,

Integer)

This is the remainder from right
division. The corresponding
“left” functions leftQuotient
and leftRemainder are also
available.

rightRemainder(a,b)

10 D +
5
x

(13)

Type: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,
Integer)

For exact division, the
operations leftExactQuotient
and rightExactQuotient are
supplied. These return the
quotient but only if the
remainder is zero. The call
rightExactQuotient(a,b)
would yield an error.

leftExactQuotient(a,b)

5 x D + 7 (14)
Type: Union(LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,

Integer), ...)

The division operations allow
the computation of left and
right greatest common divisors
(leftGcd and rightGcd) via
remainder sequences, and
consequently the computation of
left and right least common
multiples (rightLcm and
leftLcm).

e := leftGcd(a,b)

3 x2 D2 + 2 D +
1
x

(15)

Type: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,
Integer)

Note that a greatest common
divisor doesn’t necessarily divide
a and b on both sides. Here the
left greatest common divisor
does not divide a on the right.

leftRemainder(a, e)

0 (16)
Type: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,

Integer)

rightRemainder(a, e)

10 D +
5
x

(17)

Type: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,
Integer)

Similarly, a least common
multiple is not necessarily
divisible from both sides.

f := rightLcm(a,b)

15 x3 D3 +
(
51 x2 + 10 x

)
D2 + 29 D +

7
x

(18)

Type: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,
Integer)

482 · Some Examples of Domains and Packages

rightRemainder(f, b)

10 D +
5
x

(19)

Type: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,
Integer)

leftRemainder(f, b)

0 (20)
Type: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,

Integer)

9.42. LinearOrdinaryDifferentialOperator1 · 483

9.43
LinearOrdinary-
Differential-
Operator2

LinearOrdinaryDifferentialOperator2(A, M) is the domain of linear ordinary dif-
ferential operators with coefficients in the differential ring A and operating
on M, an A-module. This includes the cases of operators which are poly-
nomials in D acting upon scalar or vector expressions of a single variable.
The coefficients of the operator polynomials can be integers, rational func-
tions, matrices or elements of other domains. Issue the system command
)show LinearOrdinaryDifferentialOperator2 to display the full list
of operations defined by LinearOrdinaryDifferentialOperator2.

9.43.1
Differential
Operators with
Constant
Coefficients

This example shows differential operators with rational number coeffi-
cients operating on univariate polynomials.

We begin by making type
assignments so we can
conveniently refer to univariate
polynomials in x over the
rationals.

Q := Fraction Integer

Fraction Integer (1)
Type: Domain

PQ := UnivariatePolynomial(’x, Q)

UnivariatePolynomial (x , Fraction Integer) (2)
Type: Domain

x: PQ := ’x

x (3)
Type: UnivariatePolynomial(x, Fraction Integer)

Now we assign Dx to be the
differential operator D
corresponding to d/dx.

Dx: LODO2(Q, PQ) := D()

D (4)
Type: LinearOrdinaryDifferentialOperator2(Fraction Integer,

UnivariatePolynomial(x, Fraction Integer))

New operators are created as
polynomials in D().

a := Dx + 1

D + 1 (5)
Type: LinearOrdinaryDifferentialOperator2(Fraction Integer,

UnivariatePolynomial(x, Fraction Integer))

b := a + 1/2*Dx**2 - 1/2

1
2

D2 + D +
1
2

(6)

Type: LinearOrdinaryDifferentialOperator2(Fraction Integer,
UnivariatePolynomial(x, Fraction Integer))

484 · Some Examples of Domains and Packages

To apply the operator a to the
value p the usual function call
syntax is used.

p := 4*x**2 + 2/3

4 x2 +
2
3

(7)

Type: UnivariatePolynomial(x, Fraction Integer)
a p

4 x2 + 8 x +
2
3

(8)

Type: UnivariatePolynomial(x, Fraction Integer)

Operator multiplication is
defined by the identity (a*b) p
= a(b(p))

(a * b) p = a b p

2 x2 + 12 x +
37
3

= 2 x2 + 12 x +
37
3

(9)

Type: Equation UnivariatePolynomial(x, Fraction Integer)

Exponentiation follows from
multiplication.

c := (1/9)*b*(a + b)**2

1
72

D6 +
5
36

D5 +
13
24

D4 +
19
18

D3 +
79
72

D2 +
7
12

D +
1
8

(10)

Type: LinearOrdinaryDifferentialOperator2(Fraction Integer,
UnivariatePolynomial(x, Fraction Integer))

Finally, note that operator
expressions may be applied
directly.

(a**2 - 3/4*b + c) (p + 1)

3 x2 +
44
3

x +
541
36

(11)

Type: UnivariatePolynomial(x, Fraction Integer)

9.43.2
Differential
Operators with
Matrix Coefficients
Operating on Vectors

This is another example of linear ordinary differential operators with non-
commutative multiplication. Unlike the rational function case, the dif-
ferential ring of square matrices (of a given dimension) with univariate
polynomial entries does not form a field. Thus the number of operations
available is more limited.

In this section, the operators
have three by three matrix
coefficients with polynomial
entries.

PZ := UnivariatePolynomial(x,Integer)

UnivariatePolynomial (x, Integer) (1)
Type: Domain

x:PZ := ’x

x (2)
Type: UnivariatePolynomial(x, Integer)

Mat := SquareMatrix(3,PZ)

SquareMatrix (3, UnivariatePolynomial (x, Integer)) (3)
Type: Domain

9.43. LinearOrdinaryDifferentialOperator2 · 485

The operators act on the vectors
considered as a Mat-module.

Vect := DPMM(3, PZ, Mat, PZ);

(4)
Type: Domain

Modo := LODO2(Mat, Vect);

(5)
Type: Domain

The matrix m is used as a
coefficient and the vectors p and
q are operated upon.

m:Mat := matrix [[x**2,1,0],[1,x**4,0],[0,0,4*x**2]]



x2 1 0
1 x4 0
0 0 4 x2


 (6)

Type: SquareMatrix(3, UnivariatePolynomial(x, Integer))

p:Vect := directProduct [3*x**2+1,2*x,7*x**3+2*x]
[
3 x2 + 1, 2 x, 7 x3 + 2 x

]
(7)

Type: DirectProductMatrixModule(3, UnivariatePolynomial(x, Integer),
SquareMatrix(3, UnivariatePolynomial(x, Integer)), UnivariatePolynomial(x,
Integer))

q: Vect := m * p
[
3 x4 + x2 + 2 x, 2 x5 + 3 x2 + 1, 28 x5 + 8 x3

]
(8)

Type: DirectProductMatrixModule(3, UnivariatePolynomial(x, Integer),
SquareMatrix(3, UnivariatePolynomial(x, Integer)), UnivariatePolynomial(x,
Integer))

Now form a few operators. Dx : Modo := D()

D (9)
Type: LinearOrdinaryDifferentialOperator2(SquareMatrix(3,

UnivariatePolynomial(x, Integer)), DirectProductMatrixModule(3,
UnivariatePolynomial(x, Integer), SquareMatrix(3, UnivariatePolynomial(x,
Integer)), UnivariatePolynomial(x, Integer)))

a : Modo := Dx + m

D +




x2 1 0
1 x4 0
0 0 4 x2


 (10)

Type: LinearOrdinaryDifferentialOperator2(SquareMatrix(3,
UnivariatePolynomial(x, Integer)), DirectProductMatrixModule(3,
UnivariatePolynomial(x, Integer), SquareMatrix(3, UnivariatePolynomial(x,
Integer)), UnivariatePolynomial(x, Integer)))

486 · Some Examples of Domains and Packages

b : Modo := m*Dx + 1



x2 1 0
1 x4 0
0 0 4 x2


 D+




1 0 0
0 1 0
0 0 1




(11)

Type: LinearOrdinaryDifferentialOperator2(SquareMatrix(3,
UnivariatePolynomial(x, Integer)), DirectProductMatrixModule(3,
UnivariatePolynomial(x, Integer), SquareMatrix(3, UnivariatePolynomial(x,
Integer)), UnivariatePolynomial(x, Integer)))

c := a*b



x2 1 0
1 x4 0
0 0 4 x2


 D2+




x4 + 2 x + 2 x4 + x2 0
x4 + x2 x8 + 4 x3 + 2 0

0 0 16 x4 + 8 x + 1


 D+




x2 1 0
1 x4 0
0 0 4 x2




(12)

Type: LinearOrdinaryDifferentialOperator2(SquareMatrix(3,
UnivariatePolynomial(x, Integer)), DirectProductMatrixModule(3,
UnivariatePolynomial(x, Integer), SquareMatrix(3, UnivariatePolynomial(x,
Integer)), UnivariatePolynomial(x, Integer)))

These operators can be applied
to vector values.

a p
[
3 x4 + x2 + 8 x, 2 x5 + 3 x2 + 3, 28 x5 + 8 x3 + 21 x2 + 2

]
(13)

Type: DirectProductMatrixModule(3, UnivariatePolynomial(x, Integer),
SquareMatrix(3, UnivariatePolynomial(x, Integer)), UnivariatePolynomial(x,
Integer))

b p
[
6 x3 + 3 x2 + 3, 2 x4 + 8 x, 84 x4 + 7 x3 + 8 x2 + 2 x

]
(14)

Type: DirectProductMatrixModule(3, UnivariatePolynomial(x, Integer),
SquareMatrix(3, UnivariatePolynomial(x, Integer)), UnivariatePolynomial(x,
Integer))

9.43. LinearOrdinaryDifferentialOperator2 · 487

(a + b + c) (p + q)
[
10 x8 + 12 x7 + 16 x6 + 30 x5 + 85 x4 + 94 x3 + 40 x2+
40 x + 17,
10 x12 + 10 x9 + 12 x8 + 92 x7 + 6 x6 + 32 x5 + 72 x4+
28 x3 + 49 x2 + 32 x + 19,
2240 x8 + 224 x7 + 1280 x6 + 3508 x5 + 492 x4 + 751 x3+
98 x2 + 18 x + 4

]

(15)

Type: DirectProductMatrixModule(3, UnivariatePolynomial(x, Integer),
SquareMatrix(3, UnivariatePolynomial(x, Integer)), UnivariatePolynomial(x,
Integer))

488 · Some Examples of Domains and Packages

9.44
List

A list is a finite collection of elements in a specified order that can contain
duplicates. A list is a convenient structure to work with because it is easy
to add or remove elements and the length need not be constant. There are
many different kinds of lists in AXIOM, but the default types (and those
used most often) are created by the List constructor. For example, there
are objects of type List Integer, List Float and List Polynomial Fraction Integer.
Indeed, you can even have List List List Boolean (that is, lists of lists of lists
of Boolean values). You can have lists of any type of AXIOM object.

9.44.1
Creating Lists

The easiest way to create a list with, for example, the elements 2, 4,
5, 6 is to enclose the elements with square brackets and separate the
elements with commas.

The spaces after the commas
are optional, but they do
improve the readability.

[2, 4, 5, 6]

[2, 4, 5, 6] (1)
Type: List PositiveInteger

To create a list with the single
element 1, you can use either
[1] or the operation list.

[1]

[1] (2)
Type: List PositiveInteger

list(1)

[1] (3)
Type: List PositiveInteger

Once created, two lists k and m
can be concatenated by issuing
append(k,m). append does not
physically join the lists, but
rather produces a new list with
the elements coming from the
two arguments.

append([1,2,3],[5,6,7])

[1, 2, 3, 5, 6, 7] (4)
Type: List PositiveInteger

Use cons to append an element
onto the front of a list.

cons(10,[9,8,7])

[10, 9, 8, 7] (5)
Type: List PositiveInteger

9.44.2
Accessing List
Elements

9.44. List · 489

To determine whether a list has
any elements, use the operation
empty?.

empty? [x+1]

false (1)
Type: Boolean

Alternatively, equality with the
list constant nil can be tested.

([] = nil)@Boolean

true (2)
Type: Boolean

We’ll use this in some of the
following examples.

k := [4,3,7,3,8,5,9,2]

[4, 3, 7, 3, 8, 5, 9, 2] (3)
Type: List PositiveInteger

Each of the next four
expressions extracts the first
element of k.

first k

4 (4)
Type: PositiveInteger

k.first

4 (5)
Type: PositiveInteger

k.1

4 (6)
Type: PositiveInteger

k(1)

4 (7)
Type: PositiveInteger

The last two forms generalize to k.i and k(i), respectively, where 1 ≤
i ≤ n and n equals the length of k.

This length is calculated by “#”. n := #k

8 (8)
Type: PositiveInteger

Performing an operation such as k.i is sometimes referred to as indexing
into k or elting into k. The latter phrase comes about because the name
of the operation that extracts elements is called elt. That is, k.3 is just
alternative syntax for elt(k,3). It is important to remember that list
indices begin with 1. If we issue k := [1,3,2,9,5] then k.4 returns 9.
It is an error to use an index that is not in the range from 1 to the length
of the list.

490 · Some Examples of Domains and Packages

The last element of a list is
extracted by any of the
following three expressions.

last k

2 (9)
Type: PositiveInteger

k.last

2 (10)
Type: PositiveInteger

This form computes the index of
the last element and then
extracts the element from the
list.

k.(#k)

2 (11)
Type: PositiveInteger

9.44.3
Changing List
Elements

We’ll use this in some of the
following examples.

k := [4,3,7,3,8,5,9,2]

[4, 3, 7, 3, 8, 5, 9, 2] (1)
Type: List PositiveInteger

List elements are reset by using
the k.i form on the left-hand
side of an assignment. This
expression resets the first
element of k to 999.

k.1 := 999

999 (2)
Type: PositiveInteger

As with indexing into a list, it is
an error to use an index that is
not within the proper bounds.
Here you see that k was
modified.

k

[999, 3, 7, 3, 8, 5, 9, 2] (3)
Type: List PositiveInteger

The operation that performs the assignment of an element to a particular
position in a list is called setelt. This operation is destructive in that
it changes the list. In the above example, the assignment returned the
value 999 and k was modified. For this reason, lists are called mutable
objects: it is possible to change part of a list (mutate it) rather than
always returning a new list reflecting the intended modifications.

Moreover, since lists can share
structure, changes to one list
can sometimes affect others.

k := [1,2]

[1, 2] (4)
Type: List PositiveInteger

9.44. List · 491

m := cons(0,k)

[0, 1, 2] (5)
Type: List Integer

Change the second element of m. m.2 := 99

99 (6)
Type: PositiveInteger

See, m was altered. m

[0, 99, 2] (7)
Type: List Integer

But what about k? It changed
too!

k

[99, 2] (8)
Type: List PositiveInteger

9.44.4
Other Functions

An operation that is used
frequently in list processing is
that which returns all elements
in a list after the first element.

k := [1,2,3]

[1, 2, 3] (1)
Type: List PositiveInteger

Use the rest operation to do
this.

rest k

[2, 3] (2)
Type: List PositiveInteger

To remove duplicate elements in
a list k, use
removeDuplicates.

removeDuplicates [4,3,4,3,5,3,4]

[4, 3, 5] (3)
Type: List PositiveInteger

To get a list with elements in
the order opposite to those in a
list k, use reverse.

reverse [1,2,3,4,5,6]

[6, 5, 4, 3, 2, 1] (4)
Type: List PositiveInteger

To test whether an element is in
a list, use member?:
member?(a,k) returns true or
false depending on whether a
is in k or not.

member?(1/2,[3/4,5/6,1/2])

true (5)
Type: Boolean

492 · Some Examples of Domains and Packages

member?(1/12,[3/4,5/6,1/2])

false (6)
Type: Boolean

As an exercise, the reader should determine how to get a list containing
all but the last of the elements in a given non-empty list k.4

9.44.5
Dot, Dot

Certain lists are used so often that AXIOM provides an easy way of
constructing them. If n and m are integers, then expand [n..m] creates
a list containing n, n+1, ... m. If n > m then the list is empty. It is
actually permissible to leave off the m in the dot-dot construction (see
below).

The dot-dot notation can be
used more than once in a list
construction and with specific
elements being given. Items
separated by dots are called
segments.

[1..3,10,20..23]

[1..3, 10..10, 20..23] (1)
Type: List Segment PositiveInteger

Segments can be expanded into
the range of items between the
endpoints by using expand.

expand [1..3,10,20..23]

[1, 2, 3, 10, 20, 21, 22, 23] (2)
Type: List Integer

What happens if we leave off a
number on the right-hand side
of “..”?

expand [1..]

[1, 2, 3, 4, 5, 6, 7, . . .] (3)
Type: Stream Integer

What is created in this case is a Stream which is a generalization of a list.
See ‘Stream’ on page 575 for more information.

4reverse(rest(reverse(k))) works.

9.44. List · 493

9.45
MakeFunction

It is sometimes useful to be able to define a function given by the result
of a calculation.

Suppose that you have obtained
the following expression after
several computations and that
you now want to tabulate the
numerical values of f for x
between -1 and +1 with
increment 0.1.

expr := (x - exp x + 1)**2 * (sin(x**2) * x + 1)**3
(
x3 ex2 +

(
−2 x4 − 2 x3

)
ex + x5 + 2 x4 + x3

)
sin

(
x2

)3
+

(
3 x2 ex2 +

(
−6 x3 − 6 x2

)
ex + 3 x4 + 6 x3 + 3 x2

)
sin

(
x2

)2
+

(
3 x ex2 +

(
−6 x2 − 6 x

)
ex + 3 x3 + 6 x2 + 3 x

)
sin

(
x2

)
+

ex2 + (−2 x− 2) ex + x2 + 2 x + 1

(1)

Type: Expression Integer

You could, of course, use the function eval within a loop and evaluate
expr twenty-one times, but this would be quite slow. A better way is to
create a numerical function f such that f(x) is defined by the expression
expr above, but without retyping expr! The package MakeFunction pro-
vides the operation function which does exactly this.

Issue this to create the function
f(x) given by expr.

function(expr, f, x)

f (2)
Type: Symbol

To tabulate expr, we can now
quickly evaluate f 21 times.

tbl := [f(0.1 * i - 1) for i in 0..20];

Compiling function f with type Float -> Float
(2)

Type: List Float

Use the list [x1,...,xn] as the
third argument to function to
create a multivariate function
f(x1,...,xn).

e := (x - y + 1)**2 * (x**2 * y + 1)**2

x4 y4 +
(
−2 x5 − 2 x4 + 2 x2

)
y3+

(
x6 + 2 x5 + x4 − 4 x3 − 4 x2 + 1

)
y2+

(
2 x4 + 4 x3 + 2 x2 − 2 x− 2

)
y + x2 + 2 x + 1

(4)

Type: Polynomial Integer

function(e, g, [x, y])

g (5)
Type: Symbol

494 · Some Examples of Domains and Packages

In the case of just two variables,
they can be given as arguments
without making them into a list.

function(e, h, x, y)

h (6)
Type: Symbol

Note that the functions created
by function are not limited to
floating point numbers, but can
be applied to any type for which
they are defined.

m1 := squareMatrix [[1, 2], [3, 4]]
[

1 2
3 4

]
(7)

Type: SquareMatrix(2, Integer)

m2 := squareMatrix [[1, 0], [-1, 1]]
[

1 0
−1 1

]
(8)

Type: SquareMatrix(2, Integer)

h(m1, m2)

Compiling function h with type (SquareMatrix(2,
Integer),SquareMatrix(2,Integer)) -> SquareMatrix(
2,Integer)

[−7836 8960
−17132 19588

]
(9)

Type: SquareMatrix(2, Integer)

For more information, see Section 6.14 on page 207. Issue the system com-
mand)show MakeFunction to display the full list of operations defined
by MakeFunction.

9.45. MakeFunction · 495

9.46
Mapping-
Package1

Function are objects of type Mapping. In this section we demonstrate some
library operations from the packages MappingPackage1, MappingPackage2,
and MappingPackage3 that manipulate and create functions. Some termi-
nology: a nullary function takes no arguments, a unary function takes
one argument, and a binary function takes two arguments.

We begin by creating an
example function that raises a
rational number to an integer
exponent.

power(q: FRAC INT, n: INT): FRAC INT == q**n

Function declaration power : (Fraction Integer,
Integer) -> Fraction Integer has been added to
workspace.

Type: Void

power(2,3)

Compiling function power with type (Fraction Integer,
Integer) -> Fraction Integer

8 (2)
Type: Fraction Integer

The twist operation transposes
the arguments of a binary
function. Here rewop(a, b) is
power(b, a).

rewop := twist power

theMap (...) (3)
Type: ((Integer, Fraction Integer) → Fraction Integer)

This is 23. rewop(3, 2)

8 (4)
Type: Fraction Integer

Now we define square in terms
of power.

square: FRAC INT -> FRAC INT

Type: Void

The curryRight operation
creates a unary function from a
binary one by providing a
constant argument on the right.

square:= curryRight(power, 2)

theMap (...) (6)
Type: (Fraction Integer → Fraction Integer)

Likewise, the curryLeft
operation provides a constant
argument on the left.

square 4

16 (7)
Type: Fraction Integer

The constantRight operation
creates (in a trivial way) a
binary function from a unary
one: constantRight(f) is the
function g such that g(a,b)=
f(a).

squirrel:= constantRight(square)$MAPPKG3(FRAC INT,FRAC
INT,FRAC INT)

theMap (...) (8)
Type: ((Fraction Integer, Fraction Integer) → Fraction Integer)

496 · Some Examples of Domains and Packages

Likewise, constantLeft(f) is
the function g such that
g(a,b)= f(b).

squirrel(1/2, 1/3)

1
4

(9)

Type: Fraction Integer

The curry operation makes a
unary function nullary.

sixteen := curry(square, 4/1)

theMap (...) (10)
Type: (() → Fraction Integer)

sixteen()

16 (11)
Type: Fraction Integer

The “*” operation constructs
composed functions.

square2:=square*square

theMap (...) (12)
Type: (Fraction Integer → Fraction Integer)

square2 3

81 (13)
Type: Fraction Integer

Use the “**” operation to create
functions that are n-fold
iterations of other functions.

sc(x: FRAC INT): FRAC INT == x + 1

Function declaration sc : Fraction Integer ->
Fraction Integer has been added to workspace.

Type: Void

This is a list of Mapping objects. incfns := [sc**i for i in 0..10]

Compiling function sc with type Fraction Integer ->
Fraction Integer

[theMap (...), theMap (...), theMap (...), theMap (...),
theMap (...), theMap (...), theMap (...), theMap (...),
theMap (...), theMap (...), theMap (...)]

(15)

Type: List (Fraction Integer → Fraction Integer)

This is a list of applications of
those functions.

[f 4 for f in incfns]

[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] (16)
Type: List Fraction Integer

Use the recur operation for
recursion: g := recur f means
g(n,x) ==
f(n,f(n-1,...f(1,x))).

times(n:NNI, i:INT):INT == n*i

Function declaration times : (NonNegativeInteger,
Integer) -> Integer has been added to workspace.

Type: Void

9.46. MappingPackage1 · 497

r := recur(times)

Compiling function times with type (
NonNegativeInteger,Integer) -> Integer

theMap (...) (18)
Type: ((NonNegativeInteger, Integer) → Integer)

This is a factorial function. fact := curryRight(r, 1)

theMap (...) (19)
Type: (NonNegativeInteger → Integer)

fact 4

24 (20)
Type: PositiveInteger

Constructed functions can be
used within other functions.

mto2ton(m, n) ==
raiser := square**n
raiser m

Type: Void

This is 323
. mto2ton(3, 3)

Compiling function mto2ton with type (PositiveInteger
,PositiveInteger) -> Fraction Integer

6561 (22)
Type: Fraction Integer

Here shiftfib is a unary
function that modifies its
argument.

shiftfib(r: List INT) : INT ==
t := r.1
r.1 := r.2
r.2 := r.2 + t
t

Function declaration shiftfib : List Integer ->
Integer has been added to workspace.

Type: Void

By currying over the argument
we get a function with private
state.

fibinit: List INT := [0, 1]

[0, 1] (24)
Type: List Integer

fibs := curry(shiftfib, fibinit)

Compiling function shiftfib with type List Integer
-> Integer

theMap (...) (25)
Type: (() → Integer)

498 · Some Examples of Domains and Packages

[fibs() for i in 0..30]

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987,

1597, 2584, 4181, 6765, 10946, 17711, 28657,

46368, 75025, 121393, 196418, 317811, 514229, 832040]

(26)

Type: List Integer

9.46. MappingPackage1 · 499

9.47
Matrix

The Matrix domain provides arithmetic operations on matrices and stan-
dard functions from linear algebra. This domain is similar to the TwoDi-
mensionalArray domain, except that the entries for Matrix must belong to
a Ring.

9.47.1
Creating Matrices

There are many ways to create a matrix from a collection of values or
from existing matrices.

If the matrix has almost all
items equal to the same value,
use new to create a matrix filled
with that value and then reset
the entries that are different.

m : Matrix(Integer) := new(3,3,0)



0 0 0
0 0 0
0 0 0


 (1)

Type: Matrix Integer

To change the entry in the
second row, third column to 5,
use setelt.

setelt(m,2,3,5)

5 (2)
Type: PositiveInteger

An alternative syntax is to use
assignment.

m(1,2) := 10

10 (3)
Type: PositiveInteger

The matrix was destructively
modified.

m



0 10 0
0 0 5
0 0 0


 (4)

Type: Matrix Integer

If you already have the matrix
entries as a list of lists, use
matrix.

matrix [[1,2,3,4],[0,9,8,7]]
[

1 2 3 4
0 9 8 7

]
(5)

Type: Matrix Integer

If the matrix is diagonal, use
diagonalMatrix.

dm := diagonalMatrix [1,x**2,x**3,x**4,x**5]



1 0 0 0 0
0 x2 0 0 0
0 0 x3 0 0
0 0 0 x4 0
0 0 0 0 x5




(6)

Type: Matrix Polynomial Integer

500 · Some Examples of Domains and Packages

Use setRow! and setColumn!
to change a row or column of a
matrix.

setRow!(dm,5,vector [1,1,1,1,1])



1 0 0 0 0
0 x2 0 0 0
0 0 x3 0 0
0 0 0 x4 0
1 1 1 1 1




(7)

Type: Matrix Polynomial Integer

setColumn!(dm,2,vector [y,y,y,y,y])



1 y 0 0 0
0 y 0 0 0
0 y x3 0 0
0 y 0 x4 0
1 y 1 1 1




(8)

Type: Matrix Polynomial Integer

Use copy to make a copy of a
matrix.

cdm := copy(dm)



1 y 0 0 0
0 y 0 0 0
0 y x3 0 0
0 y 0 x4 0
1 y 1 1 1




(9)

Type: Matrix Polynomial Integer

This is useful if you intend to
modify a matrix destructively
but want a copy of the original.

setelt(dm,4,1,1-x**7)

−x7 + 1 (10)
Type: Polynomial Integer

[dm,cdm]






1 y 0 0 0
0 y 0 0 0
0 y x3 0 0

−x7 + 1 y 0 x4 0
1 y 1 1 1



,




1 y 0 0 0
0 y 0 0 0
0 y x3 0 0
0 y 0 x4 0
1 y 1 1 1







(11)

Type: List Matrix Polynomial Integer

9.47. Matrix · 501

Use subMatrix to extract part
of an existing matrix. The
syntax is subMatrix(m, firstrow,
lastrow, firstcol, lastcol).

subMatrix(dm,2,3,2,4)
[

y 0 0
y x3 0

]
(12)

Type: Matrix Polynomial Integer

To change a submatrix, use
setsubMatrix!.

d := diagonalMatrix [1.2,-1.3,1.4,-1.5]



1.2 0.0 0.0 0.0
0.0 −1.3 0.0 0.0
0.0 0.0 1.4 0.0
0.0 0.0 0.0 −1.5


 (13)

Type: Matrix Float

If e is too big to fit where you
specify, an error message is
displayed. Use subMatrix to
extract part of e, if necessary.

e := matrix [[6.7,9.11],[-31.33,67.19]]
[

6.7 9.11
−31.33 67.19

]
(14)

Type: Matrix Float

This changes the submatrix of d
whose upper left corner is at the
first row and second column and
whose size is that of e.

setsubMatrix!(d,1,2,e)



1.2 6.7 9.11 0.0
0.0 −31.33 67.19 0.0
0.0 0.0 1.4 0.0
0.0 0.0 0.0 −1.5


 (15)

Type: Matrix Float

d



1.2 6.7 9.11 0.0
0.0 −31.33 67.19 0.0
0.0 0.0 1.4 0.0
0.0 0.0 0.0 −1.5


 (16)

Type: Matrix Float

Matrices can be joined either
horizontally or vertically to
make new matrices.

a := matrix [[1/2,1/3,1/4],[1/5,1/6,1/7]]
[

1
2

1
3

1
4

1
5

1
6

1
7

]
(17)

Type: Matrix Fraction Integer

b := matrix [[3/5,3/7,3/11],[3/13,3/17,3/19]]
[

3
5

3
7

3
11

3
13

3
17

3
19

]
(18)

Type: Matrix Fraction Integer

502 · Some Examples of Domains and Packages

Use horizConcat to append
them side to side. The two
matrices must have the same
number of rows.

horizConcat(a,b)
[

1
2

1
3

1
4

3
5

3
7

3
11

1
5

1
6

1
7

3
13

3
17

3
19

]
(19)

Type: Matrix Fraction Integer

Use vertConcat to stack one
upon the other. The two
matrices must have the same
number of columns.

vab := vertConcat(a,b)



1
2

1
3

1
4

1
5

1
6

1
7

3
5

3
7

3
11

3
13

3
17

3
19


 (20)

Type: Matrix Fraction Integer

The operation transpose is
used to create a new matrix by
reflection across the main
diagonal.

transpose vab



1
2

1
5

3
5

3
13

1
3

1
6

3
7

3
17

1
4

1
7

3
11

3
19


 (21)

Type: Matrix Fraction Integer

9.47.2
Operations on
Matrices
AXIOM provides both left and
right scalar multiplication.

m := matrix [[1,2],[3,4]]
[

1 2
3 4

]
(1)

Type: Matrix Integer

4 * m * (-5)
[−20 −40
−60 −80

]
(2)

Type: Matrix Integer

You can add, subtract, and
multiply matrices provided, of
course, that the matrices have
compatible dimensions. If not,
an error message is displayed.

n := matrix([[1,0,-2],[-3,5,1]])
[

1 0 −2
−3 5 1

]
(3)

Type: Matrix Integer

This following product is
defined but n * m is not.

m * n
[−5 10 0
−9 20 −2

]
(4)

Type: Matrix Integer

The operations nrows and ncols return the number of rows and columns

9.47. Matrix · 503

of a matrix. You can extract a row or a column of a matrix using the
operations row and column. The object returned is a Vector.

Here is the third column of the
matrix n.

vec := column(n,3)

[−2, 1] (5)
Type: Vector Integer

You can multiply a matrix on
the left by a “row vector” and
on the right by a “column
vector.”

vec * m

[1, 0] (6)
Type: Vector Integer

Of course, the dimensions of the
vector and the matrix must be
compatible or an error message
is returned.

m * vec

[0, −2] (7)
Type: Vector Integer

The operation inverse computes the inverse of a matrix if the matrix is
invertible, and returns "failed" if not.

This Hilbert matrix is
invertible.

hilb := matrix([[1/(i + j) for i in 1..3] for j in 1..3])



1
2

1
3

1
4

1
3

1
4

1
5

1
4

1
5

1
6


 (8)

Type: Matrix Fraction Integer

inverse(hilb)



72 −240 180
−240 900 −720
180 −720 600


 (9)

Type: Union(Matrix Fraction Integer, ...)

This matrix is not invertible. mm := matrix([[1,2,3,4], [5,6,7,8], [9,10,11,12],
[13,14,15,16]])




1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16


 (10)

Type: Matrix Integer

inverse(mm)

"failed" (11)
Type: Union("failed", ...)

The operation determinant computes the determinant of a matrix pro-
vided that the entries of the matrix belong to a CommutativeRing.

504 · Some Examples of Domains and Packages

The above matrix mm is not
invertible and, hence, must have
determinant 0.

determinant(mm)

0 (12)
Type: NonNegativeInteger

The operation trace computes
the trace of a square matrix.

trace(mm)

34 (13)
Type: PositiveInteger

The operation rank computes
the rank of a matrix: the
maximal number of linearly
independent rows or columns.

rank(mm)

2 (14)
Type: PositiveInteger

The operation nullity computes
the nullity of a matrix: the
dimension of its null space.

nullity(mm)

2 (15)
Type: PositiveInteger

The operation nullSpace
returns a list containing a basis
for the null space of a matrix.
Note that the nullity is the
number of elements in a basis
for the null space.

nullSpace(mm)

[[1, −2, 1, 0], [2, −3, 0, 1]] (16)
Type: List Vector Integer

The operation rowEchelon
returns the row echelon form of
a matrix. It is easy to see that
the rank of this matrix is two
and that its nullity is also two.

rowEchelon(mm)



1 2 3 4
0 4 8 12
0 0 0 0
0 0 0 0


 (17)

Type: Matrix Integer

For more information on related topics, see Section 1.7 on page 67, Sec-
tion 8.4 on page 280, Section 9.27.4 on page 431, ‘Permanent’ on page 528,
‘Vector’ on page 601, ‘OneDimensionalArray’ on page 514, and ‘TwoDimen-
sionalArray’ on page 590. Issue the system command)show Matrix to
display the full list of operations defined by Matrix.

9.47. Matrix · 505

9.48
MultiSet

The domain Multiset(R) is similar to Set(R) except that multiplicities (counts
of duplications) are maintained and displayed. Use the operation multi-
set to create multisets from lists. All the standard operations from sets
are available for multisets. An element with multiplicity greater than one
has the multiplicity displayed first, then a colon, and then the element.

Create a multiset of integers. s := multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10]

{7, 2:5, 3:3, 1, 10, 6, 4:4, 2:2} (1)
Type: Multiset PositiveInteger

The operation insert! adds an
element to a multiset.

insert!(3,s)

{7, 2:5, 4:3, 1, 10, 6, 4:4, 2:2} (2)
Type: Multiset PositiveInteger

Use remove! to remove an
element. If a third argument is
present, it specifies how many
instances to remove. Otherwise
all instances of the element are
removed. Display the resulting
multiset.

remove!(3,s,1); s

{7, 2:5, 3:3, 1, 10, 6, 4:4, 2:2} (3)
Type: Multiset PositiveInteger

remove!(5,s); s

{7, 3:3, 1, 10, 6, 4:4, 2:2} (4)
Type: Multiset PositiveInteger

The operation count returns
the number of copies of a given
value.

count(5,s)

0 (5)
Type: NonNegativeInteger

A second multiset. t := multiset [2,2,2,-9]

{−9, 3:2} (6)
Type: Multiset Integer

The union of two multisets is
additive.

U := union(s,t)

{7, 3:3, 1, −9, 10, 6, 4:4, 5:2} (7)
Type: Multiset Integer

The intersect operation gives
the elements that are in
common, with additive
multiplicity.

I := intersect(s,t)

{5:2} (8)
Type: Multiset Integer

506 · Some Examples of Domains and Packages

The difference of s and t
consists of the elements that s
has but t does not. Elements
are regarded as
indistinguishable, so that if s
and t have any element in
common, the difference does
not contain that element.

difference(s,t)

{7, 3:3, 1, 10, 6, 4:4} (9)
Type: Multiset Integer

The symmetricDifference is
the union of difference(s, t)
and difference(t, s).

S := symmetricDifference(s,t)

{7, 3:3, 1, −9, 10, 6, 4:4} (10)
Type: Multiset Integer

Check that the union of the
symmetricDifference and the
intersect equals the union of
the elements.

(U = union(S,I))@Boolean

true (11)
Type: Boolean

Check some inclusion relations. t1 := multiset [1,2,2,3]; [t1 < t, t1 < s, t < s, t1 <= s]

[false, true, false, true] (12)
Type: List Boolean

9.48. MultiSet · 507

9.49
Multivariate-
Polynomial

The domain constructor MultivariatePolynomial is similar to Polynomial ex-
cept that it specifies the variables to be used. Most functions available
for Polynomial are available for MultivariatePolynomial. The abbreviation for
MultivariatePolynomial is MPOLY. The type expressions

MultivariatePolynomial([x,y],Integer) and MPOLY([x,y],INT)

refer to the domain of multivariate polynomials in the variables x and
y where the coefficients are restricted to be integers. The first variable
specified is the main variable and the display of the polynomial reflects
this.

This polynomial appears with
terms in descending powers of
the variable x.

m : MPOLY([x,y],INT) := (x**2 - x*y**3 +3*y)**2

x4 − 2 y3 x3 +
(
y6 + 6 y

)
x2 − 6 y4 x + 9 y2 (1)

Type: MultivariatePolynomial([x, y], Integer)

It is easy to see a different
variable ordering by doing a
conversion.

m :: MPOLY([y,x],INT)

x2 y6 − 6 x y4 − 2 x3 y3 + 9 y2 + 6 x2 y + x4 (2)
Type: MultivariatePolynomial([y, x], Integer)

You can use other, unspecified
variables, by using Polynomial in
the coefficient type of MPOLY.

p : MPOLY([x,y],POLY INT)

Type: Void

p := (a**2*x - b*y**2 + 1)**2

a4 x2 +
(
−2 a2 b y2 + 2 a2

)
x + b2 y4 − 2 b y2 + 1 (4)

Type: MultivariatePolynomial([x, y], Polynomial Integer)

Conversions can be used to
re-express such polynomials in
terms of the other variables. For
example, you can first push all
the variables into a polynomial
with integer coefficients.

p :: POLY INT

b2 y4 +
(
−2 a2 b x− 2 b

)
y2 + a4 x2 + 2 a2 x + 1 (5)

Type: Polynomial Integer

Now pull out the variables of
interest.

% :: MPOLY([a,b],POLY INT)

x2 a4 +
(
−2 x y2 b + 2 x

)
a2 + y4 b2 − 2 y2 b + 1 (6)

Type: MultivariatePolynomial([a, b], Polynomial Integer)

Restriction:
AXIOM does not allow you to create types where Multivar-

iatePolynomial is contained in the coefficient type of Polyno-
mial. Therefore, MPOLY([x,y],POLY INT) is legal but POLY
MPOLY([x,y],INT) is not.

508 · Some Examples of Domains and Packages

Multivariate polynomials may
be combined with univariate
polynomials to create types with
special structures.

q : UP(x, FRAC MPOLY([y,z],INT))

Type: Void

This is a polynomial in x whose
coefficients are quotients of
polynomials in y and z.

q := (x**2 - x*(z+1)/y +2)**2

x4 +
−2 z − 2

y
x3 +

4 y2 + z2 + 2 z + 1
y2

x2 +
−4 z − 4

y
x + 4 (8)

Type: UnivariatePolynomial(x, Fraction MultivariatePolynomial([y, z], Integer))

Use conversions for structural
rearrangements. z does not
appear in a denominator and so
it can be made the main
variable.

q :: UP(z, FRAC MPOLY([x,y],INT))

x2

y2
z2 +

−2 y x3 + 2 x2 − 4 y x

y2
z+

y2 x4 − 2 y x3 +
(
4 y2 + 1

)
x2 − 4 y x + 4 y2

y2

(9)

Type: UnivariatePolynomial(z, Fraction MultivariatePolynomial([x, y], Integer))

Or you can make a multivariate
polynomial in x and z whose
coefficients are fractions in
polynomials in y.

q :: MPOLY([x,z], FRAC UP(y,INT))

x4 +
(
−2

y
z − 2

y

)
x3 +

(
1
y2

z2 +
2
y2

z +
4 y2 + 1

y2

)
x2+

(
−4

y
z − 4

y

)
x + 4

(10)

Type: MultivariatePolynomial([x, z], Fraction UnivariatePolynomial(y, Integer))

A conversion like q :: MPOLY([x,y], FRAC UP(z,INT)) is not possible
in this example because y appears in the denominator of a fraction. As you
can see, AXIOM provides extraordinary flexibility in the manipulation
and display of expressions via its conversion facility.

For more information on related topics, see ‘Polynomial’ on page 529,
‘UnivariatePolynomial’ on page 594, and ‘DistributedMultivariatePolynomial’ on
page 402. Issue the system command)show MultivariatePolynomial
to display the full list of operations defined by MultivariatePolynomial.

9.49. MultivariatePolynomial · 509

9.50
None

The None domain is not very useful for interactive work but it is provided
nevertheless for completeness of the AXIOM type system.

Probably the only place you will
ever see it is if you enter an
empty list with no type
information.

[]

[] (1)
Type: List None

Such an empty list can be
converted into an empty list of
any other type.

[] :: List Float

[] (2)
Type: List Float

If you wish to produce an empty
list of a particular type directly,
such as List NonNegativeInteger,
do it this way.

[]$List(NonNegativeInteger)

[] (3)
Type: List NonNegativeInteger

510 · Some Examples of Domains and Packages

9.51
Octonion

The Octonions, also called the Cayley-Dixon algebra, defined over a com-
mutative ring are an eight-dimensional non-associative algebra. Their
construction from quaternions is similar to the construction of quater-
nions from complex numbers (see ‘Quaternion’ on page 535).

As Octonion creates an
eight-dimensional algebra, you
have to give eight components
to construct an octonion.

oci1 := octon(1,2,3,4,5,6,7,8)

1 + 2 i + 3 j + 4 k + 5 E + 6 I + 7 J + 8 K (1)
Type: Octonion Integer

oci2 := octon(7,2,3,-4,5,6,-7,0)

7 + 2 i + 3 j − 4 k + 5 E + 6 I − 7 J (2)
Type: Octonion Integer

Or you can use two quaternions
to create an octonion.

oci3 := octon(quatern(-7,-12,3,-10), quatern(5,6,9,0))

−7− 12 i + 3 j − 10 k + 5 E + 6 I + 9 J (3)
Type: Octonion Integer

You can easily demonstrate the
non-associativity of
multiplication.

(oci1 * oci2) * oci3 - oci1 * (oci2 * oci3)

2696 i− 2928 j − 4072 k + 16 E − 1192 I + 832 J + 2616 K (4)
Type: Octonion Integer

As with the quaternions, we have a real part, the imaginary parts i, j, k,
and four additional imaginary parts E, I, J and K. These parts correspond
to the canonical basis (1,i,j,k,E,I,J,K).

For each basis element there is a
component operation to extract
the coefficient of the basis
element for a given octonion.

[real oci1, imagi oci1, imagj oci1, imagk oci1, imagE
oci1, imagI oci1, imagJ oci1, imagK oci1]

[1, 2, 3, 4, 5, 6, 7, 8] (5)
Type: List PositiveInteger

A basis with respect to the quaternions is given by (1,E). However, you
might ask, what then are the commuting rules? To answer this, we create
some generic elements.

We do this in AXIOM by simply
changing the ground ring from
Integer to Polynomial Integer.

q : Quaternion Polynomial Integer := quatern(q1, qi, qj,
qk)

q1 + qi i + qj j + qk k (6)
Type: Quaternion Polynomial Integer

E : Octonion Polynomial Integer:= octon(0,0,0,0,1,0,0,0)

E (7)
Type: Octonion Polynomial Integer

9.51. Octonion · 511

Note that quaternions are
automatically converted to
octonions in the obvious way.

q * E

q1 E + qi I + qj J + qk K (8)
Type: Octonion Polynomial Integer

E * q

q1 E − qi I − qj J − qk K (9)
Type: Octonion Polynomial Integer

q * 1$(Octonion Polynomial Integer)

q1 + qi i + qj j + qk k (10)
Type: Octonion Polynomial Integer

1$(Octonion Polynomial Integer) * q

q1 + qi i + qj j + qk k (11)
Type: Octonion Polynomial Integer

Finally, we check that the
norm, defined as the sum of the
squares of the coefficients, is a
multiplicative map.

o : Octonion Polynomial Integer := octon(o1, oi, oj, ok,
oE, oI, oJ, oK)

o1 + oi i + oj j + ok k + oE E + oI I + oJ J + oK K (12)
Type: Octonion Polynomial Integer

norm o

ok2 + oj2 + oi2 + oK2 + oJ2 + oI2 + oE2 + o12 (13)
Type: Polynomial Integer

p : Octonion Polynomial Integer := octon(p1, pi, pj, pk,
pE, pI, pJ, pK)

p1 + pi i + pj j + pk k + pE E + pI I + pJ J + pK K (14)
Type: Octonion Polynomial Integer

512 · Some Examples of Domains and Packages

Since the result is 0, the norm is
multiplicative.

norm(o*p)-norm(p)*norm(p)

−pk4 +



−2 pj2 − 2 pi2 − 2 pK2 − 2 pJ2−
2 pI2 − 2 pE2 − 2 p12 + ok2 + oj2 + oi2+
oK2 + oJ2 + oI2 + oE2 + o12


 pk2

−pj4 +



−2 pi2 − 2 pK2 − 2 pJ2 − 2 pI2

−2 pE2 − 2 p12 + ok2 + oj2 + oi2+
oK2 + oJ2 + oI2 + oE2 + o12


 pj2

−pi4 +



−2 pK2 − 2 pJ2 − 2 pI2 − 2 pE2

−2 p12 + ok2 + oj2 + oi2+
oK2 + oJ2 + oI2 + oE2 + o12


 pi2

−pK4 +



−2 pJ2 − 2 pI2 − 2 pE2 − 2 p12

+ok2 + oj2 + oi2 + oK2 + oJ2

+oI2 + oE2 + o12


 pK2

−pJ4 +
(−2 pI2 − 2 pE2 − 2 p12 + ok2 + oj2 + oi2

+oK2 + oJ2 + oI2 + oE2 + o12

)
pJ2

−pI4 +
(−2 pE2 − 2 p12 + ok2 + oj2 + oi2 + oK2

+oJ2 + oI2 + oE2 + o12

)
pI2

−pE4 +
(−2 p12 + ok2 + oj2 + oi2 + oK2 + oJ2

+oI2 + oE2 + o12

)
pE2

−p14 +
(
ok2 + oj2 + oi2 + oK2 + oJ2 + oI2 + oE2 + o12

)
p12

(15)

Type: Polynomial Integer

Issue the system command)show Octonion to display the full list of
operations defined by Octonion.

9.51. Octonion · 513

9.52
OneDimensional-
Array

The OneDimensionalArray domain is used for storing data in a one-dimensional
indexed data structure. Such an array is a homogeneous data structure in
that all the entries of the array must belong to the same AXIOM domain.
Each array has a fixed length specified by the user and arrays are not
extensible. The indexing of one-dimensional arrays is one-based. This
means that the “first” element of an array is given the index 1. See also
‘Vector’ on page 601 and ‘FlexibleArray’ on page 425.

To create a one-dimensional
array, apply the operation
oneDimensionalArray to a
list.

oneDimensionalArray [i**2 for i in 1..10]

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100] (1)
Type: OneDimensionalArray PositiveInteger

Another approach is to first
create a, a one-dimensional
array of 10 0’s.
OneDimensionalArray has the
convenient abbreviation
ARRAY1.

a : ARRAY1 INT := new(10,0)

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0] (2)
Type: OneDimensionalArray Integer

Set each ith element to i, then
display the result.

for i in 1..10 repeat a.i := i; a

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] (3)
Type: OneDimensionalArray Integer

Square each element by
mapping the function i 7→ i2

onto each element.

map!(i +-> i ** 2,a); a

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100] (4)
Type: OneDimensionalArray Integer

Reverse the elements in place. reverse! a

[100, 81, 64, 49, 36, 25, 16, 9, 4, 1] (5)
Type: OneDimensionalArray Integer

Swap the 4th and 5th element. swap!(a,4,5); a

[100, 81, 64, 36, 49, 25, 16, 9, 4, 1] (6)
Type: OneDimensionalArray Integer

Sort the elements in place. sort! a

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100] (7)
Type: OneDimensionalArray Integer

Create a new one-dimensional
array b containing the last 5
elements of a.

b := a(6..10)

[36, 49, 64, 81, 100] (8)
Type: OneDimensionalArray Integer

514 · Some Examples of Domains and Packages

Replace the first 5 elements of a
with those of b.

copyInto!(a,b,1)

[36, 49, 64, 81, 100, 36, 49, 64, 81, 100] (9)
Type: OneDimensionalArray Integer

9.52. OneDimensionalArray · 515

9.53
Operator

Given any ring R, the ring of the Integer-linear operators over R is called
Operator(R). To create an operator over R, first create a basic operator
using the operation operator, and then convert it to Operator(R) for the
R you want.

We choose R to be the two by
two matrices over the integers.

R := SQMATRIX(2, INT)

SquareMatrix (2, Integer) (1)
Type: Domain

Create the operator tilde on R. t := operator("tilde") :: OP(R)

tilde (2)
Type: Operator SquareMatrix(2, Integer)

Since Operator is unexposed we must either package-call operations from
it, or expose it explicitly. For convenience we will do the latter.

Expose Operator.)set expose add constructor Operator
Operator is now explicitly ex-
posed in frame initial

To attach an evaluation function (from R to R) to an operator over R, use
evaluate(op, f) where op is an operator over R and f is a function R
-> R. This needs to be done only once when the operator is defined. Note
that f must be Integer-linear (that is, f(ax+y) = a f(x) + f(y) for any
integer a, and any x and y in R).

We now attach the transpose
map to the above operator t.

evaluate(t, m +-> transpose m)

tilde (3)
Type: Operator SquareMatrix(2, Integer)

Operators can be manipulated formally as in any ring: “+” is the pointwise
addition and “*” is composition. Any element x of R can be converted
to an operator opx over R, and the evaluation function of opx is left-
multiplication by x.

Multiplying on the left by this
matrix swaps the two rows.

s : R := matrix [[0, 1], [1, 0]]
[

0 1
1 0

]
(4)

Type: SquareMatrix(2, Integer)

Can you guess what is the
action of the following operator?

rho := t * s

tilde

[
0 1
1 0

]
(5)

Type: Operator SquareMatrix(2, Integer)

516 · Some Examples of Domains and Packages

Hint: applying rho four times
gives the identity, so rho**4-1
should return 0 when applied to
any two by two matrix.

z := rho**4 - 1

−1 +

tilde

[
0 1
1 0

]
tilde

[
0 1
1 0

]
tilde ·

[
0 1
1 0

]
tilde

[
0 1
1 0

] (6)

Type: Operator SquareMatrix(2, Integer)

Now check with this matrix. m:R := matrix [[1, 2], [3, 4]]
[

1 2
3 4

]
(7)

Type: SquareMatrix(2, Integer)
z m
[

0 0
0 0

]
(8)

Type: SquareMatrix(2, Integer)

As you have probably guessed
by now, rho acts on matrices by
rotating the elements clockwise.

rho m
[

3 1
4 2

]
(9)

Type: SquareMatrix(2, Integer)

rho rho m
[

4 3
2 1

]
(10)

Type: SquareMatrix(2, Integer)

(rho**3) m
[

2 4
1 3

]
(11)

Type: SquareMatrix(2, Integer)

Do the swapping of rows and
transposition commute? We can
check by computing their
bracket.

b := t * s - s * t

−
[

0 1
1 0

]
tilde + tilde

[
0 1
1 0

]
(12)

Type: Operator SquareMatrix(2, Integer)

Now apply it to m. b m
[

1 −3
3 −1

]
(13)

Type: SquareMatrix(2, Integer)

Next we demonstrate how to define a differential operator on a polynomial
ring.

9.53. Operator · 517

This is the recursive definition of
the n-th Legendre polynomial.

L n ==
n = 0 => 1
n = 1 => x
(2*n-1)/n * x * L(n-1) - (n-1)/n * L(n-2)

Type: Void

Create the differential operator
d

dx
on polynomials in x over the

rational numbers.

dx := operator("D") :: OP(POLY FRAC INT)

D (15)
Type: Operator Polynomial Fraction Integer

Now attach the map to it. evaluate(dx, p +-> D(p, ’x))

D (16)
Type: Operator Polynomial Fraction Integer

This is the differential equation
satisfied by the n-th Legendre
polynomial.

E n == (1 - x**2) * dx**2 - 2 * x * dx + n*(n+1)

Type: Void

Now we verify this for n = 15.
Here is the polynomial.

L 15

Compiling function L with type Integer -> Polynomial
Fraction Integer

Compiling function L as a recurrence relation.

9694845
2048

x15 − 35102025
2048

x13 +
50702925

2048
x11 − 37182145

2048
x9+

14549535
2048

x7 − 2909907
2048

x5 +
255255
2048

x3 − 6435
2048

x

(18)

Type: Polynomial Fraction Integer

Here is the operator. E 15

Compiling function E with type PositiveInteger ->
Operator Polynomial Fraction Integer

240− 2 x D −
(
x2 − 1

)
D2 (19)

Type: Operator Polynomial Fraction Integer

Here is the evaluation. (E 15)(L 15)

0 (20)
Type: Polynomial Fraction Integer

518 · Some Examples of Domains and Packages

9.54
OrderedVariable-
List

The domain OrderedVariableList provides symbols which are restricted to
a particular list and have a definite ordering. Those two features are
specified by a List Symbol object that is the argument to the domain.

This is a sample ordering of
three symbols.

ls:List Symbol:=[’x,’a,’z]

[x, a, z] (1)
Type: List Symbol

Let’s build the domain Z:=OVAR ls

OrderedVariableList [x , a , z] (2)
Type: Domain

How many variables does it
have?

size()$Z

3 (3)
Type: NonNegativeInteger

They are (in the imposed order) lv:=[index(i::PI)$Z for i in 1..size()$Z]

Compiling function G82211 with type Integer ->
Boolean

Compiling function G82223 with type
NonNegativeInteger -> Boolean

[x, a, z] (4)
Type: List OrderedVariableList [x, a, z]

Check that the ordering is right sorted?(>,lv)

true (5)
Type: Boolean

9.54. OrderedVariableList · 519

9.55
Orderly-
Differential-
Polynomial

Many systems of differential equations may be transformed to equiva-
lent systems of ordinary differential equations where the equations are
expressed polynomially in terms of the unknown functions. In AXIOM,
the domain constructors OrderlyDifferentialPolynomial (abbreviated ODPOL)
and SequentialDifferentialPolynomial (abbreviation SDPOL) implement two
domains of ordinary differential polynomials over any differential ring.
In the simplest case, this differential ring is usually either the ring of in-
tegers, or the field of rational numbers. However, AXIOM can handle
ordinary differential polynomials over a field of rational functions in a
single indeterminate.

The two domains ODPOL and SDPOL are almost identical, the only differ-
ence being the choice of a different ranking, which is an ordering of the
derivatives of the indeterminates. The first domain uses an orderly rank-
ing, that is, derivatives of higher order are ranked higher, and derivatives
of the same order are ranked alphabetically. The second domain uses a se-
quential ranking, where derivatives are ordered first alphabetically by the
differential indeterminates, and then by order. A more general domain
constructor, DifferentialSparseMultivariatePolynomial (abbreviation DSMP) al-
lows both a user-provided list of differential indeterminates as well as
a user-defined ranking. We shall illustrate ODPOL(FRAC INT), which con-
structs a domain of ordinary differential polynomials in an arbitrary num-
ber of differential indeterminates with rational numbers as coefficients.

dpol:= ODPOL(FRAC INT)

OrderlyDifferentialPolynomial Fraction Integer (1)
Type: Domain

A differential indeterminate w
may be viewed as an infinite
sequence of algebraic
indeterminates, which are the
derivatives of w. To facilitate
referencing these, AXIOM
provides the operation
makeVariable to convert an
element of type Symbol to a map
from the natural numbers to the
differential polynomial ring.

w := makeVariable(’w)$dpol

theMap (...) (2)
Type: (NonNegativeInteger → OrderlyDifferentialPolynomial Fraction Integer)

z := makeVariable(’z)$dpol

theMap (...) (3)
Type: (NonNegativeInteger → OrderlyDifferentialPolynomial Fraction Integer)

520 · Some Examples of Domains and Packages

The fifth derivative of w can be
obtained by applying the map w
to the number 5. Note that the
order of differentiation is given
as a subscript (except when the
order is 0).

w.5

w5 (4)
Type: OrderlyDifferentialPolynomial Fraction Integer

w 0

w (5)
Type: OrderlyDifferentialPolynomial Fraction Integer

The first five derivatives of z
can be generated by a list.

[z.i for i in 1..5]

[z1, z2, z3, z4, z5] (6)
Type: List OrderlyDifferentialPolynomial Fraction Integer

The usual arithmetic can be
used to form a differential
polynomial from the derivatives.

f:= w.4 - w.1 * w.1 * z.3

w4 − w1
2 z3 (7)

Type: OrderlyDifferentialPolynomial Fraction Integer

g:=(z.1)**3 * (z.2)**2 - w.2

z1
3 z2

2 − w2 (8)
Type: OrderlyDifferentialPolynomial Fraction Integer

The operation D computes the
derivative of any differential
polynomial.

D(f)

w5 − w1
2 z4 − 2 w1 w2 z3 (9)

Type: OrderlyDifferentialPolynomial Fraction Integer

The same operation can
compute higher derivatives, like
the fourth derivative.

D(f,4)

w8 − w1
2 z7 − 8 w1 w2 z6 +

(
−12 w1 w3 − 12 w2

2
)

z5 − 2 w1 z3 w5+

(−8 w1 w4 − 24 w2 w3) z4 − 8 w2 z3 w4 − 6 w3
2 z3

(10)

Type: OrderlyDifferentialPolynomial Fraction Integer

The operation makeVariable
creates a map to facilitate
referencing the derivatives of f,
similar to the map w.

df:=makeVariable(f)$dpol

theMap (...) (11)
Type: (NonNegativeInteger → OrderlyDifferentialPolynomial Fraction Integer)

The fourth derivative of f may
be referenced easily.

df.4

w8 − w1
2 z7 − 8 w1 w2 z6 +

(
−12 w1 w3 − 12 w2

2
)

z5 − 2 w1 z3 w5+

(−8 w1 w4 − 24 w2 w3) z4 − 8 w2 z3 w4 − 6 w3
2 z3

(12)

Type: OrderlyDifferentialPolynomial Fraction Integer

9.55. OrderlyDifferentialPolynomial · 521

The operation order returns
the order of a differential
polynomial, or the order in a
specified differential
indeterminate.

order(g)

2 (13)
Type: PositiveInteger

order(g, ’w)

2 (14)
Type: PositiveInteger

The operation
differentialVariables returns
a list of differential
indeterminates occurring in a
differential polynomial.

differentialVariables(g)

[z, w] (15)
Type: List Symbol

The operation degree returns
the degree, or the degree in the
differential indeterminate
specified.

degree(g)

z2
2 z1

3 (16)
Type: IndexedExponents OrderlyDifferentialVariable Symbol

degree(g, ’w)

1 (17)
Type: PositiveInteger

The operation weights returns
a list of weights of differential
monomials appearing in
differential polynomial, or a list
of weights in a specified
differential indeterminate.

weights(g)

[7, 2] (18)
Type: List NonNegativeInteger

weights(g,’w)

[2] (19)
Type: List NonNegativeInteger

The operation weight returns
the maximum weight of all
differential monomials appearing
in the differential polynomial.

weight(g)

7 (20)
Type: PositiveInteger

A differential polynomial is
isobaric if the weights of all
differential monomials
appearing in it are equal.

isobaric?(g)

false (21)
Type: Boolean

522 · Some Examples of Domains and Packages

To substitute differentially, use
eval. Note that we must coerce
’w to Symbol, since in ODPOL,
differential indeterminates
belong to the domain Symbol.
Compare this result to the next,
which substitutes algebraically
(no substitution is done since
w.0 does not appear in g).

eval(g,[’w::Symbol],[f])

−w6 + w1
2 z5 + 4 w1 w2 z4 +

(
2 w1 w3 + 2 w2

2
)

z3 + z1
3 z2

2 (22)

Type: OrderlyDifferentialPolynomial Fraction Integer

eval(g,variables(w.0),[f])

z1
3 z2

2 − w2 (23)
Type: OrderlyDifferentialPolynomial Fraction Integer

Since
OrderlyDifferentialPolynomial
belongs to PolynomialCategory,
all the operations defined in the
latter category, or in packages
for the latter category, are
available.

monomials(g)
[
z1

3 z2
2, −w2

]
(24)

Type: List OrderlyDifferentialPolynomial Fraction Integer

variables(g)

[z2, w2, z1] (25)
Type: List OrderlyDifferentialVariable Symbol

gcd(f,g)

1 (26)
Type: OrderlyDifferentialPolynomial Fraction Integer

groebner([f,g])
[
w4 − w1

2 z3, z1
3 z2

2 − w2

]
(27)

Type: List OrderlyDifferentialPolynomial Fraction Integer

The next three operations are
essential for elimination
procedures in differential
polynomial rings. The operation
leader returns the leader of a
differential polynomial, which is
the highest ranked derivative of
the differential indeterminates
that occurs.

lg:=leader(g)

z2 (28)
Type: OrderlyDifferentialVariable Symbol

The operation separant returns
the separant of a differential
polynomial, which is the partial
derivative with respect to the
leader.

sg:=separant(g)

2 z1
3 z2 (29)

Type: OrderlyDifferentialPolynomial Fraction Integer

9.55. OrderlyDifferentialPolynomial · 523

The operation initial returns
the initial, which is the leading
coefficient when the given
differential polynomial is
expressed as a polynomial in the
leader.

ig:=initial(g)

z1
3 (30)

Type: OrderlyDifferentialPolynomial Fraction Integer

Using these three operations, it
is possible to reduce f modulo
the differential ideal generated
by g. The general scheme is to
first reduce the order, then
reduce the degree in the leader.
First, eliminate z.3 using the
derivative of g.

g1 := D g

2 z1
3 z2 z3 − w3 + 3 z1

2 z2
3 (31)
Type: OrderlyDifferentialPolynomial Fraction Integer

Find its leader. lg1:= leader g1

z3 (32)
Type: OrderlyDifferentialVariable Symbol

Differentiate f partially with
respect to this leader.

pdf:=D(f, lg1)

−w1
2 (33)

Type: OrderlyDifferentialPolynomial Fraction Integer

Compute the partial remainder
of f with respect to g.

prf:=sg * f- pdf * g1

2 z1
3 z2 w4 − w1

2 w3 + 3 w1
2 z1

2 z2
3 (34)

Type: OrderlyDifferentialPolynomial Fraction Integer

Note that high powers of lg still
appear in prf. Compute the
leading coefficient of prf as a
polynomial in the leader of g.

lcf:=leadingCoefficient univariate(prf, lg)

3 w1
2 z1

2 (35)
Type: OrderlyDifferentialPolynomial Fraction Integer

Finally, continue eliminating the
high powers of lg appearing in
prf to obtain the (pseudo)
remainder of f modulo g and its
derivatives.

ig * prf - lcf * g * lg

2 z1
6 z2 w4 − w1

2 z1
3 w3 + 3 w1

2 z1
2 w2 z2 (36)

Type: OrderlyDifferentialPolynomial Fraction Integer

Issue the system command)show OrderlyDifferentialPolyomial to
display the full list of operations defined by OrderlyDifferentialPolyomial. Is-
sue the system command)show SequentialDifferentialPolynomial
to display the full list of operations defined by SequentialDifferentialPolyno-
mial.

524 · Some Examples of Domains and Packages

9.56
PartialFraction

A partial fraction is a decomposition of a quotient into a sum of quotients
where the denominators of the summands are powers of primes.5 For
example, the rational number 1/6 is decomposed into 1/2 -1/3. You can
compute partial fractions of quotients of objects from domains belonging
to the category EuclideanDomain. For example, Integer, Complex Integer, and
UnivariatePolynomial(x, Fraction Integer) all belong to EuclideanDomain. In the
examples following, we demonstrate how to decompose quotients of each
of these kinds of object into partial fractions. Issue the system command
)show PartialFraction to display the full list of operations defined by
PartialFraction.

It is necessary that we know how to factor the denominator when we want
to compute a partial fraction. Although the interpreter can often do this
automatically, it may be necessary for you to include a call to factor. In
these examples, it is not necessary to factor the denominators explicitly.

The main operation for
computing partial fractions is
called partialFraction and we
use this to compute a
decomposition of 1 / 10!. The
first argument to
partialFraction is the
numerator of the quotient and
the second argument is the
factored denominator.

partialFraction(1,factorial 10)

159
28

− 23
34
− 12

52
+

1
7

(1)

Type: PartialFraction Integer

Since the denominators are
powers of primes, it may be
possible to expand the
numerators further with respect
to those primes. Use the
operation padicFraction to do
this.

f := padicFraction(%)

1
2

+
1
24

+
1
25

+
1
26

+
1
27

+
1
28
− 2

32
− 1

33
− 2

34
− 2

5
− 2

52
+

1
7

(2)

Type: PartialFraction Integer

The operation
compactFraction returns an
expanded fraction into the usual
form. The compacted version is
used internally for
computational efficiency.

compactFraction(f)

159
28

− 23
34
− 12

52
+

1
7

(3)

Type: PartialFraction Integer

5Most people first encounter partial fractions when they are learning integral calcu-
lus. For a technical discussion of partial fractions, see, for example, Lang’s Algebra.

9.56. PartialFraction · 525

You can add, subtract, multiply
and divide partial fractions. In
addition, you can extract the
parts of the decomposition.
numberOfFractionalTerms
computes the number of terms
in the fractional part. This does
not include the whole part of
the fraction, which you get by
calling wholePart. In this
example, the whole part is just
0.

numberOfFractionalTerms(f)

12 (4)
Type: PositiveInteger

The operation
nthFractionalTerm returns
the individual terms in the
decomposition. Notice that the
object returned is a partial
fraction itself. firstNumer and
firstDenom extract the
numerator and denominator of
the first term of the fraction.

nthFractionalTerm(f,3)

1
25

(5)

Type: PartialFraction Integer

Given two gaussian integers (see
‘Complex’ on page 383), you can
decompose their quotient into a
partial fraction.

partialFraction(1,- 13 + 14 * %i)

− 1
1 + 2 i

+
4

3 + 8 i
(6)

Type: PartialFraction Complex Integer

To convert back to a quotient,
simply use a conversion.

% :: Fraction Complex Integer

− i

14 + 13 i
(7)

Type: Fraction Complex Integer

To conclude this section, we compute the decomposition of

1
(x + 1)(x + 2)2(x + 3)3(x + 4)4

The polynomials in this object have type UnivariatePolynomial(x, Fraction
Integer).

We use the primeFactor
operation (see ‘Factored’ on page
414) to create the denominator
in factored form directly.

u : FR UP(x, FRAC INT) := reduce(*,[primeFactor(x+i,i) for
i in 1..4])

(x + 1) (x + 2)2 (x + 3)3 (x + 4)4 (8)
Type: Factored UnivariatePolynomial(x, Fraction Integer)

526 · Some Examples of Domains and Packages

These are the compact and
expanded partial fractions for
the quotient.

partialFraction(1,u)

1
648

x + 1
+

1
4 x + 7

16

(x + 2)2
+
−17

8 x2 − 12 x− 139
8

(x + 3)3
+

607
324 x3 + 10115

432 x2 + 391
4 x + 44179

324

(x + 4)4

(9)

Type: PartialFraction UnivariatePolynomial(x, Fraction Integer)

padicFraction %

1
648

x + 1
+

1
4

x + 2
−

1
16

(x + 2)2
−

17
8

x + 3
+

3
4

(x + 3)2
−

1
2

(x + 3)3
+

607
324

x + 4
+

403
432

(x + 4)2
+

13
36

(x + 4)3
+

1
12

(x + 4)4

(10)

Type: PartialFraction UnivariatePolynomial(x, Fraction Integer)

All see ‘FullPartialFractionExpansion’ on page 435 for examples of factor-free
conversion of quotients to full partial fractions.

9.56. PartialFraction · 527

9.57
Permanent

The package Permanent provides the function permanent for square ma-
trices. The permanent of a square matrix can be computed in the same
way as the determinant by expansion of minors except that for the per-
manent the sign for each element is 1, rather than being 1 if the row plus
column indices is positive and -1 otherwise. This function is much more
difficult to compute efficiently than the determinant. An example of
the use of permanent is the calculation of the n th derangement num-
ber, defined to be the number of different possibilities for n couples to
dance but never with their own spouse.

Consider an n by n matrix with
entries 0 on the diagonal and 1
elsewhere. Think of the rows as
one-half of each couple (for
example, the males) and the
columns the other half. The
permanent of such a matrix
gives the desired derangement
number.

kn n ==
r : MATRIX INT := new(n,n,1)
for i in 1..n repeat

r.i.i := 0
r

Type: Void

Here are some derangement
numbers, which you see grow
quite fast.

permanent(kn(5) :: SQMATRIX(5,INT))

Compiling function kn with type PositiveInteger ->
Matrix Integer

44 (2)
Type: PositiveInteger

[permanent(kn(n) :: SQMATRIX(n,INT)) for n in 1..13]

Cannot compile conversion for types involving local
variables. In particular, could not compile the
expression involving :: SQMATRIX(n,INT)

AXIOM will attempt to step through and interpret the
code.

[0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961, 14684570,
176214841, 2290792932] (3)

Type: List NonNegativeInteger

528 · Some Examples of Domains and Packages

9.58
Polynomial

The domain constructor Polynomial (abbreviation: POLY) provides polyno-
mials with an arbitrary number of unspecified variables.

It is used to create the default
polynomial domains in AXIOM.
Here the coefficients are
integers.

x + 1

x + 1 (1)
Type: Polynomial Integer

Here the coefficients have type
Float.

z - 2.3

z − 2.3 (2)
Type: Polynomial Float

And here we have a polynomial
in two variables with coefficients
which have type Fraction Integer.

y**2 - z + 3/4

−z + y2 +
3
4

(3)

Type: Polynomial Fraction Integer

The representation of objects of domains created by Polynomial is that of
recursive univariate polynomials.6

This recursive structure is
sometimes obvious from the
display of a polynomial.

y **2 + x*y + y

y2 + (x + 1) y (4)
Type: Polynomial Integer

In this example, you see that the polynomial is stored as a polyno-
mial in y with coefficients that are polynomials in x with integer coef-
ficients. In fact, you really don’t need to worry about the representa-
tion unless you are working on an advanced application where it is crit-
ical. The polynomial types created from DistributedMultivariatePolynomial
and NewDistributedMultivariatePolynomial (discussed in ‘DistributedMultivar-
iatePolynomial’ on page 402) are stored and displayed in a non-recursive
manner.

You see a “flat” display of the
above polynomial by converting
to one of those types.

% :: DMP([y,x],INT)

y2 + y x + y (5)
Type: DistributedMultivariatePolynomial([y, x], Integer)

We will demonstrate many of the polynomial facilities by using two poly-
nomials with integer coefficients.

By default, the interpreter
expands polynomial expressions,
even if they are written in a
factored format.

p := (y-1)**2 * x * z
(
x y2 − 2 x y + x

)
z (6)

Type: Polynomial Integer

6The term univariate means “one variable.” multivariate means “possibly more
than one variable.”

9.58. Polynomial · 529

See ‘Factored’ on page 414 to see
how to create objects in
factored form directly.

q := (y-1) * x * (z+5)

(x y − x) z + 5 x y − 5 x (7)
Type: Polynomial Integer

The fully factored form can be
recovered by using factor.

factor(q)

x (y − 1) (z + 5) (8)
Type: Factored Polynomial Integer

This is the same name used for the operation to factor integers. Such reuse
of names is called overloading and makes it much easier to think of solving
problems in general ways. AXIOM facilities for factoring polynomials
created with Polynomial are currently restricted to the integer and rational
number coefficient cases. There are more complete facilities for factoring
univariate polynomials: see Section 8.2 on page 274.

The standard arithmetic
operations are available for
polynomials.

p - q**2
(
−x2 y2 + 2 x2 y − x2

)
z2+

((
−10 x2 + x

)
y2 +

(
20 x2 − 2 x

)
y − 10 x2 + x

)
z − 25 x2 y2+

50 x2 y − 25 x2

(9)

Type: Polynomial Integer

The operation gcd is used to
compute the greatest common
divisor of two polynomials.

gcd(p,q)

x y − x (10)
Type: Polynomial Integer

In the case of p and q, the gcd is
obvious from their definitions.
We factor the gcd to show this
relationship better.

factor %

x (y − 1) (11)
Type: Factored Polynomial Integer

The least common multiple is
computed by using lcm.

lcm(p,q)
(
x y2 − 2 x y + x

)
z2 +

(
5 x y2 − 10 x y + 5 x

)
z (12)

Type: Polynomial Integer

Use content to compute the
greatest common divisor of the
coefficients of the polynomial.

content p

1 (13)
Type: PositiveInteger

Many of the operations on polynomials require you to specify a variable.
For example, resultant requires you to give the variable in which the
polynomials should be expressed.

530 · Some Examples of Domains and Packages

This computes the resultant of
the values of p and q,
considering them as polynomials
in the variable z. They do not
share a root when thought of as
polynomials in z.

resultant(p,q,z)

5 x2 y3 − 15 x2 y2 + 15 x2 y − 5 x2 (14)
Type: Polynomial Integer

This value is 0 because as
polynomials in x the
polynomials have a common
root.

resultant(p,q,x)

0 (15)
Type: Polynomial Integer

The data type used for the variables created by Polynomial is Symbol. As
mentioned above, the representation used by Polynomial is recursive and
so there is a main variable for nonconstant polynomials.

The operation mainVariable
returns this variable. The return
type is actually a union of
Symbol and "failed".

mainVariable p

z (16)
Type: Union(Symbol, ...)

The latter branch of the union is
be used if the polynomial has no
variables, that is, is a constant.

mainVariable(1 :: POLY INT)

"failed" (17)
Type: Union("failed", ...)

You can also use the predicate
ground? to test whether a
polynomial is in fact a member
of its ground ring.

ground? p

false (18)
Type: Boolean

ground?(1 :: POLY INT)

true (19)
Type: Boolean

The complete list of variables
actually used in a particular
polynomial is returned by
variables. For constant
polynomials, this list is empty.

variables p

[z, y, x] (20)
Type: List Symbol

The degree operation returns
the degree of a polynomial in a
specific variable.

degree(p,x)

1 (21)
Type: PositiveInteger

degree(p,y)

2 (22)
Type: PositiveInteger

9.58. Polynomial · 531

degree(p,z)

1 (23)
Type: PositiveInteger

If you give a list of variables for
the second argument, a list of
the degrees in those variables is
returned.

degree(p,[x,y,z])

[1, 2, 1] (24)
Type: List NonNegativeInteger

The minimum degree of a
variable in a polynomial is
computed using
minimumDegree.

minimumDegree(p,z)

1 (25)
Type: PositiveInteger

The total degree of a polynomial
is returned by totalDegree.

totalDegree p

4 (26)
Type: PositiveInteger

It is often convenient to think of
a polynomial as a leading
monomial plus the remaining
terms.

leadingMonomial p

x y2 z (27)
Type: Polynomial Integer

The reductum operation
returns a polynomial consisting
of the sum of the monomials
after the first.

reductum p

(−2 x y + x) z (28)
Type: Polynomial Integer

These have the obvious
relationship that the original
polynomial is equal to the
leading monomial plus the
reductum.

p - leadingMonomial p - reductum p

0 (29)
Type: Polynomial Integer

The value returned by
leadingMonomial includes the
coefficient of that term. This is
extracted by using
leadingCoefficient on the
original polynomial.

leadingCoefficient p

1 (30)
Type: PositiveInteger

The operation eval is used to
substitute a value for a variable
in a polynomial.

p
(
x y2 − 2 x y + x

)
z (31)

Type: Polynomial Integer

This value may be another
variable, a constant or a
polynomial.

eval(p,x,w)
(
w y2 − 2 w y + w

)
z (32)

Type: Polynomial Integer

532 · Some Examples of Domains and Packages

eval(p,x,1)
(
y2 − 2 y + 1

)
z (33)

Type: Polynomial Integer

Actually, all the things being
substituted are just polynomials,
some more trivial than others.

eval(p,x,y**2 - 1)
(
y4 − 2 y3 + 2 y − 1

)
z (34)

Type: Polynomial Integer

Derivatives are computed using
the D operation.

D(p,x)
(
y2 − 2 y + 1

)
z (35)

Type: Polynomial Integer

The first argument is the
polynomial and the second is
the variable.

D(p,y)

(2 x y − 2 x) z (36)
Type: Polynomial Integer

Even if the polynomial has only
one variable, you must specify
it.

D(p,z)

x y2 − 2 x y + x (37)
Type: Polynomial Integer

Integration of polynomials is similar and the integrate operation is used.

Integration requires that the
coefficients support division.
Consequently, AXIOM converts
polynomials over the integers to
polynomials over the rational
numbers before integrating
them.

integrate(p,y)
(

1
3

x y3 − x y2 + x y

)
z (38)

Type: Polynomial Fraction Integer

It is not possible, in general, to divide two polynomials. In our example
using polynomials over the integers, the operation monicDivide divides
a polynomial by a monic polynomial (that is, a polynomial with leading
coefficient equal to 1). The result is a record of the quotient and remainder
of the division.

You must specify the variable in
which to express the
polynomial.

qr := monicDivide(p,x+1,x)
[
quotient =

(
y2 − 2 y + 1

)
z, remainder =

(
−y2 + 2 y − 1

)
z
]

(39)

Type: Record(quotient: Polynomial Integer, remainder: Polynomial Integer)

The selectors of the components
of the record are quotient and
remainder. Issue this to extract
the remainder.

qr.remainder
(
−y2 + 2 y − 1

)
z (40)

Type: Polynomial Integer

9.58. Polynomial · 533

Now that we can extract the
components, we can
demonstrate the relationship
among them and the arguments
to our original expression qr :=
monicDivide(p,x+1,x).

p - ((x+1) * qr.quotient + qr.remainder)

0 (41)
Type: Polynomial Integer

If the “/” operator is used with
polynomials, a fraction object is
created. In this example, the
result is an object of type
Fraction Polynomial Integer.

p/q

(y − 1) z

z + 5
(42)

Type: Fraction Polynomial Integer

If you use rational numbers as
polynomial coefficients, the
resulting object is of type
Polynomial Fraction Integer.

(2/3) * x**2 - y + 4/5

−y +
2
3

x2 +
4
5

(43)

Type: Polynomial Fraction Integer

This can be converted to a
fraction of polynomials and back
again, if required.

% :: FRAC POLY INT

−15 y + 10 x2 + 12
15

(44)

Type: Fraction Polynomial Integer

% :: POLY FRAC INT

−y +
2
3

x2 +
4
5

(45)

Type: Polynomial Fraction Integer

To convert the coefficients to
floating point, map the
numeric operation on the
coefficients of the polynomial.

map(numeric,%)

−1.0 y + 0.66666666666666666667 x2 + 0.8 (46)
Type: Polynomial Float

For more information on related topics, see ‘UnivariatePolynomial’ on page
594, ‘MultivariatePolynomial’ on page 508, and ‘DistributedMultivariatePoly-
nomial’ on page 402. You can also issue the system command)show
Polynomial to display the full list of operations defined by Polynomial.

534 · Some Examples of Domains and Packages

9.59
Quaternion

The domain constructor Quaternion implements quaternions over commu-
tative rings. For information on related topics, see ‘Complex’ on page 383
and ‘Octonion’ on page 511. You can also issue the system command)show
Quaternion to display the full list of operations defined by Quaternion.

The basic operation for creating
quaternions is quatern. This is
a quaternion over the rational
numbers.

q := quatern(2/11,-8,3/4,1)

2
11
− 8 i +

3
4

j + k (1)

Type: Quaternion Fraction Integer

The four arguments are the real
part, the i imaginary part, the
j imaginary part, and the k
imaginary part, respectively.

[real q, imagI q, imagJ q, imagK q]
[

2
11

, −8,
3
4
, 1

]
(2)

Type: List Fraction Integer

Because q is over the rationals
(and nonzero), you can invert it.

inv q

352
126993

+
15488
126993

i− 484
42331

j − 1936
126993

k (3)

Type: Quaternion Fraction Integer

The usual arithmetic (ring)
operations are available

q**6

−2029490709319345
7256313856

− 48251690851
1288408

i +
144755072553

41229056
j+

48251690851
10307264

k

(4)

Type: Quaternion Fraction Integer

r := quatern(-2,3,23/9,-89); q + r

−20
11
− 5 i +

119
36

j − 88 k (5)

Type: Quaternion Fraction Integer

In general, multiplication is not
commutative.

q * r - r * q

−2495
18

i− 1418 j − 817
18

k (6)

Type: Quaternion Fraction Integer

There are no predefined
constants for the imaginary i,
j, and k parts, but you can
easily define them.

i:=quatern(0,1,0,0); j:=quatern(0,0,1,0);
k:=quatern(0,0,0,1)

k (7)
Type: Quaternion Integer

These satisfy the normal
identities.

[i*i, j*j, k*k, i*j, j*k, k*i, q*i]
[
−1, −1, −1, k, i, j, 8 +

2
11

i + j − 3
4

k

]
(8)

Type: List Quaternion Fraction Integer

9.59. Quaternion · 535

The norm is the quaternion
times its conjugate.

norm q

126993
1936

(9)

Type: Fraction Integer

conjugate q

2
11

+ 8 i− 3
4

j − k (10)

Type: Quaternion Fraction Integer

q * %

126993
1936

(11)

Type: Quaternion Fraction Integer

536 · Some Examples of Domains and Packages

9.60
RadixExpansion

It possible to expand numbers in general bases.

Here we expand 111 in base 5.
This means
102+101+100 = 4·52+2·51+50.

111::RadixExpansion(5)

421 (1)
Type: RadixExpansion 5

You can expand fractions to
form repeating expansions.

(5/24)::RadixExpansion(2)

0.00110 (2)
Type: RadixExpansion 2

(5/24)::RadixExpansion(3)

0.012 (3)
Type: RadixExpansion 3

(5/24)::RadixExpansion(8)

0.152 (4)
Type: RadixExpansion 8

(5/24)::RadixExpansion(10)

0.2083 (5)
Type: RadixExpansion 10

For bases from 11 to 36 the
letters A through Z are used.

(5/24)::RadixExpansion(12)

0.26 (6)
Type: RadixExpansion 12

(5/24)::RadixExpansion(16)

0.35 (7)
Type: RadixExpansion 16

(5/24)::RadixExpansion(36)

0.7I (8)
Type: RadixExpansion 36

For bases greater than 36, the
ragits are separated by blanks.

(5/24)::RadixExpansion(38)

0 . 7 34 31 25 12 (9)
Type: RadixExpansion 38

The RadixExpansion type
provides operations to obtain
the individual ragits. Here is a
rational number in base 8.

a := (76543/210)::RadixExpansion(8)

554.37307 (10)
Type: RadixExpansion 8

9.60. RadixExpansion · 537

The operation wholeRagits
returns a list of the ragits for
the integral part of the number.

w := wholeRagits a

[5, 5, 4] (11)
Type: List Integer

The operations prefixRagits
and cycleRagits return lists of
the initial and repeating ragits
in the fractional part of the
number.

f0 := prefixRagits a

[3] (12)
Type: List Integer

f1 := cycleRagits a

[7, 3, 0, 7] (13)
Type: List Integer

You can construct any radix
expansion by giving the whole,
prefix and cycle parts. The
declaration is necessary to let
AXIOM know the base of the
ragits.

u:RadixExpansion(8):=wholeRadix(w)+fractRadix(f0,f1)

554.37307 (14)
Type: RadixExpansion 8

If there is no repeating part,
then the list [0] should be used.

v: RadixExpansion(12) := fractRadix([1,2,3,11], [0])

0.123B0 (15)
Type: RadixExpansion 12

If you are not interested in the
repeating nature of the
expansion, an infinite stream of
ragits can be obtained using
fractRagits.

fractRagits(u)
[
3, 7, 3, 0, 7, 7

]
(16)

Type: Stream Integer

Of course, it’s possible to
recover the fraction
representation:

a :: Fraction(Integer)

76543
210

(17)

Type: Fraction Integer

Issue the system command)show RadixExpansion to display the full list
of operations defined by RadixExpansion. More examples of expansions are
available in ‘DecimalExpansion’ on page 401, ‘BinaryExpansion’ on page 359,
and ‘HexadecimalExpansion’ on page 444.

538 · Some Examples of Domains and Packages

9.61
RealClosure

The Real Closure 1.0 package provided by Renaud Rioboo (Renaud.Rio-
boo@lip6.fr) consists of different packages, categories and domains :

• The package RealPolynomialUtilitiesPackage which needs a Field F and
a UnivariatePolynomialCategory domain with coefficients in F. It com-
putes some simple functions such as Sturm and Sylvester sequences
(“sturmSequence”, “sylvesterSequence”).

• The category RealRootCharacterizationCategory provides abstract func-
tions to work with ”real roots” of univariate polynomials. These
resemble variables with some functionality needed to compute im-
portant operations.

• The category RealClosedField provides common operations available
over real closed fiels. These include finding all the roots of a uni-
variate polynomial, taking square (and higher) roots, ...

• The domain RightOpenIntervalRootCharacterization is the main code
that provides the functionality of RealRootCharacterizationCategory for
the case of archimedean fields. Abstract roots are encoded with a
left closed right open interval containing the root together with a
defining polynomial for the root.

• The RealClosure domain is the end-user code. It provides usual arith-
metic with real algebraic numbers, along with the functionality of
a real closed field. It also provides functions to approximate a
real algebraic number by an element of the base field. This ap-
proximation may either be absolute (“approximate”) or relative
(“relativeApprox”).

CAVEATS

Since real algebraic expressions are stored as depending on ”real roots”
which are managed like variables, there is an ordering on these. This
ordering is dynamical in the sense that any new algebraic takes precedence
over older ones. In particular every creation function raises a new ”real
root”. This has the effect that when you type something like sqrt(2) +
sqrt(2) you have two new variables which happen to be equal. To avoid
this name the expression such as in s2 := sqrt(2) ; s2 + s2

Also note that computing times depend strongly on the ordering you
implicitly provide. Please provide algebraics in the order which seems
most natural to you.

LIMITATIONS

This packages uses algorithms which are published in [1] and [2] which
are based on field arithmetics, in particular for polynomial gcd related
algorithms. This can be quite slow for high degree polynomials and sub-
resultants methods usually work best. Beta versions of the package try to
use these techniques in a better way and work significantly faster. These

9.61. RealClosure · 539

are mostly based on unpublished algorithms and cannot be distributed.
Please contact the author if you have a particular problem to solve or
want to use these versions.

Be aware that approximations behave as post-processing and that all
computations are done excatly. They can thus be quite time consuming
when depending on several ”real roots”.

REFERENCES

[1] R. Rioboo : Real Algebraic Closure of an ordered Field : Implemen-
tation in Axiom. In proceedings of the ISSAC’92 Conference, Berkeley
1992 pp. 206-215.

[2] Z. Ligatsikas, R. Rioboo, M. F. Roy : Generic computation of the real
closure of an ordered field. In Mathematics and Computers in Simulation
Volume 42, Issue 4-6, November 1996.

EXAMPLES

We shall work with the real
closure of the ordered field of
rational numbers.

Ran := RECLOS(FRAC INT)

RealClosure Fraction Integer (1)
Type: Domain

Some simple signs for square
roots, these correspond to an
extension of degree 16 of the
rational numbers. Examples
provided by J. Abbot.

fourSquares(a:Ran,b:Ran,c:Ran,d:Ran):Ran ==
sqrt(a)+sqrt(b) - sqrt(c)-sqrt(d)

Function declaration fourSquares : (RealClosure
Fraction Integer,RealClosure Fraction Integer,
RealClosure Fraction Integer,RealClosure Fraction
Integer) -> RealClosure Fraction Integer has been
added to workspace.

Type: Void

These produce values very close
to zero.

squareDiff1 := fourSquares(73,548,60,586)

Compiling function fourSquares with type (RealClosure
Fraction Integer,RealClosure Fraction Integer,
RealClosure Fraction Integer,RealClosure Fraction
Integer) -> RealClosure Fraction Integer

−
√

586−
√

60 +
√

548 +
√

73 (3)
Type: RealClosure Fraction Integer

recip(squareDiff1)
((

54602
√

548 + 149602
√

73
) √

60 + 49502
√

73
√

548+

9900895)
√

586 +
(
154702

√
73
√

548 + 30941947
) √

60+

10238421
√

548 + 28051871
√

73

(4)

Type: Union(RealClosure Fraction Integer, ...)

540 · Some Examples of Domains and Packages

sign(squareDiff1)

1 (5)
Type: PositiveInteger

squareDiff2 := fourSquares(165,778,86,990)

−
√

990−
√

86 +
√

778 +
√

165 (6)
Type: RealClosure Fraction Integer

recip(squareDiff2)
((

556778
√

778 + 1209010
√

165
) √

86 + 401966
√

165
√

778+

144019431)
√

990 +
(
1363822

√
165

√
778 + 488640503

) √
86+

162460913
√

778 + 352774119
√

165

(7)

Type: Union(RealClosure Fraction Integer, ...)

sign(squareDiff2)

1 (8)
Type: PositiveInteger

squareDiff3 := fourSquares(217,708,226,692)

−
√

692−
√

226 +
√

708 +
√

217 (9)
Type: RealClosure Fraction Integer

recip(squareDiff3)
((
−34102

√
708− 61598

√
217

) √
226− 34802

√
217

√
708−

13641141)
√

692 +
(
−60898

√
217

√
708− 23869841

) √
226−

13486123
√

708− 24359809
√

217

(10)

Type: Union(RealClosure Fraction Integer, ...)

sign(squareDiff3)

−1 (11)
Type: Integer

squareDiff4 := fourSquares(155,836,162,820)

−
√

820−
√

162 +
√

836 +
√

155 (12)
Type: RealClosure Fraction Integer

9.61. RealClosure · 541

recip(squareDiff4)
((
−37078

√
836− 86110

√
155

) √
162− 37906

√
155

√
836−

13645107)
√

820 +
(
−85282

√
155

√
836− 30699151

) √
162−

13513901
√

836− 31384703
√

155

(13)

Type: Union(RealClosure Fraction Integer, ...)

sign(squareDiff4)

−1 (14)
Type: Integer

squareDiff5 := fourSquares(591,772,552,818)

−
√

818−
√

552 +
√

772 +
√

591 (15)
Type: RealClosure Fraction Integer

recip(squareDiff5)
((

70922
√

772 + 81058
√

591
) √

552 + 68542
√

591
√

772+

46297673)
√

818 +
(
83438

√
591

√
772 + 56359389

) √
552+

47657051
√

772 + 54468081
√

591

(16)

Type: Union(RealClosure Fraction Integer, ...)

sign(squareDiff5)

1 (17)
Type: PositiveInteger

squareDiff6 := fourSquares(434,1053,412,1088)

−
√

1088−
√

412 +
√

1053 +
√

434 (18)
Type: RealClosure Fraction Integer

recip(squareDiff6)
((

115442
√

1053 + 179818
√

434
) √

412 + 112478
√

434
√

1053+

76037291)
√

1088 +
(
182782

√
434

√
1053 + 123564147

) √
412+

77290639
√

1053 + 120391609
√

434

(19)

Type: Union(RealClosure Fraction Integer, ...)

sign(squareDiff6)

1 (20)
Type: PositiveInteger

542 · Some Examples of Domains and Packages

squareDiff7 := fourSquares(514,1049,446,1152)

−
√

1152−
√

446 +
√

1049 +
√

514 (21)
Type: RealClosure Fraction Integer

recip(squareDiff7)
((

349522
√

1049 + 499322
√

514
) √

446 + 325582
√

514
√

1049+

239072537)
√

1152 +
(
523262

√
514

√
1049 + 384227549

) √
446+

250534873
√

1049 + 357910443
√

514

(22)

Type: Union(RealClosure Fraction Integer, ...)

sign(squareDiff7)

1 (23)
Type: PositiveInteger

squareDiff8 := fourSquares(190,1751,208,1698)

−
√

1698−
√

208 +
√

1751 +
√

190 (24)
Type: RealClosure Fraction Integer

recip(squareDiff8)
((
−214702

√
1751− 651782

√
190

) √
208− 224642

√
190

√
1751

−129571901)
√

1698 +
(
−641842

√
190

√
1751− 370209881

) √
208

−127595865
√

1751− 387349387
√

190

(25)

Type: Union(RealClosure Fraction Integer, ...)

sign(squareDiff8)

−1 (26)
Type: Integer

This should give three digits of
precision

relativeApprox(squareDiff8,10**(-3))::Float

−0.23405277715937700123E − 10 (27)
Type: Float

The sum of these 4 roots is 0 l := allRootsOf((x**2-2)**2-2)$Ran

[%R33, %R34, %R35, %R36] (28)
Type: List RealClosure Fraction Integer

Check that they are all roots of
the same polynomial

removeDuplicates map(mainDefiningPolynomial,l)
[
?4 − 4 ?2 + 2

]
(29)

Type: List Union(SparseUnivariatePolynomial RealClosure Fraction Integer,
"failed")

9.61. RealClosure · 543

We can see at a glance that they
are separate roots

map(mainCharacterization,l)

[[−2, −1[, [−1, 0[, [0, 1[, [1, 2[] (30)
Type: List Union(RightOpenIntervalRootCharacterization(RealClosure Fraction

Integer, SparseUnivariatePolynomial RealClosure Fraction Integer), "failed")

Check the sum and product [reduce(+,l),reduce(*,l)-2]

[0, 0] (31)
Type: List RealClosure Fraction Integer

A more complicated test that
involve an extension of degree
256. This is a way of checking
nested radical identities.

(s2, s5, s10) := (sqrt(2)$Ran, sqrt(5)$Ran, sqrt(10)$Ran)
√

10 (32)
Type: RealClosure Fraction Integer

eq1:=sqrt(s10+3)*sqrt(s5+2) - sqrt(s10-3)*sqrt(s5-2) =
sqrt(10*s2+10)

−
√√

10− 3
√√

5− 2 +
√√

10 + 3
√√

5 + 2 =
√

10
√

2 + 10 (33)
Type: Equation RealClosure Fraction Integer

eq1::Boolean

true (34)
Type: Boolean

eq2:=sqrt(s5+2)*sqrt(s2+1) - sqrt(s5-2)*sqrt(s2-1) =
sqrt(2*s10+2)

−
√√

5− 2
√√

2− 1 +
√√

5 + 2
√√

2 + 1 =
√

2
√

10 + 2 (35)
Type: Equation RealClosure Fraction Integer

eq2::Boolean

true (36)
Type: Boolean

Some more examples from J. M.
Arnaudies

s3 := sqrt(3)$Ran
√

3 (37)
Type: RealClosure Fraction Integer

s7:= sqrt(7)$Ran
√

7 (38)
Type: RealClosure Fraction Integer

e1 := sqrt(2*s7-3*s3,3)

3
√

2
√

7− 3
√

3 (39)
Type: RealClosure Fraction Integer

544 · Some Examples of Domains and Packages

e2 := sqrt(2*s7+3*s3,3)

3
√

2
√

7 + 3
√

3 (40)
Type: RealClosure Fraction Integer

This should be null e2-e1-s3

0 (41)
Type: RealClosure Fraction Integer

A quartic polynomial pol : UP(x,Ran) := x**4+(7/3)*x**2+30*x-(100/3)

x4 +
7
3

x2 + 30 x− 100
3

(42)

Type: UnivariatePolynomial(x, RealClosure Fraction Integer)

Add some cubic roots r1 := sqrt(7633)$Ran
√

7633 (43)
Type: RealClosure Fraction Integer

alpha := sqrt(5*r1-436,3)/3

1
3

3
√

5
√

7633− 436 (44)

Type: RealClosure Fraction Integer

beta := -sqrt(5*r1+436,3)/3

−1
3

3
√

5
√

7633 + 436 (45)

Type: RealClosure Fraction Integer

this should be null pol.(alpha+beta-1/3)

0 (46)
Type: RealClosure Fraction Integer

A quintic polynomial qol : UP(x,Ran) := x**5+10*x**3+20*x+22

x5 + 10 x3 + 20 x + 22 (47)
Type: UnivariatePolynomial(x, RealClosure Fraction Integer)

Add some cubic roots r2 := sqrt(153)$Ran
√

153 (48)
Type: RealClosure Fraction Integer

alpha2 := sqrt(r2-11,5)

5
√√

153− 11 (49)
Type: RealClosure Fraction Integer

9.61. RealClosure · 545

beta2 := -sqrt(r2+11,5)

− 5
√√

153 + 11 (50)
Type: RealClosure Fraction Integer

this should be null qol(alpha2+beta2)

0 (51)
Type: RealClosure Fraction Integer

Finally, some examples from the
book Computer Algebra by
Davenport, Siret and Tournier
(page 77). The last one is due
to Ramanujan.

dst1:=sqrt(9+4*s2)=1+2*s2
√

4
√

2 + 9 = 2
√

2 + 1 (52)
Type: Equation RealClosure Fraction Integer

dst1::Boolean

true (53)
Type: Boolean

s6:Ran:=sqrt 6
√

6 (54)
Type: RealClosure Fraction Integer

dst2:=sqrt(5+2*s6)+sqrt(5-2*s6) = 2*s3
√
−2

√
6 + 5 +

√
2
√

6 + 5 = 2
√

3 (55)
Type: Equation RealClosure Fraction Integer

dst2::Boolean

true (56)
Type: Boolean

s29:Ran:=sqrt 29
√

29 (57)
Type: RealClosure Fraction Integer

dst4:=sqrt(16-2*s29+2*sqrt(55-10*s29)) = sqrt(22+2*s5)-
sqrt(11+2*s29)+s5

√
2

√
−10

√
29 + 55− 2

√
29 + 16 = −

√
2
√

29 + 11+

√
2
√

5 + 22 +
√

5

(58)

Type: Equation RealClosure Fraction Integer

546 · Some Examples of Domains and Packages

dst4::Boolean

true (59)
Type: Boolean

dst6:=sqrt((112+70*s2)+(46+34*s2)*s5) = (5+4*s2)+(3+s2)*s5
√(

34
√

2 + 46
) √

5 + 70
√

2 + 112 =
(√

2 + 3
) √

5 + 4
√

2 + 5 (60)

Type: Equation RealClosure Fraction Integer

dst6::Boolean

true (61)
Type: Boolean

f3:Ran:=sqrt(3,5)
5
√

3 (62)
Type: RealClosure Fraction Integer

f25:Ran:=sqrt(1/25,5)

5

√
1
25

(63)

Type: RealClosure Fraction Integer

f32:Ran:=sqrt(32/5,5)

5

√
32
5

(64)

Type: RealClosure Fraction Integer

f27:Ran:=sqrt(27/5,5)

5

√
27
5

(65)

Type: RealClosure Fraction Integer

dst5:=sqrt((f32-f27,3)) = f25*(1+f3-f3**2)

3

√
− 5

√
27
5

+ 5

√
32
5

=
(
− 5
√

3
2
+ 5
√

3 + 1
)

5

√
1
25

(66)

Type: Equation RealClosure Fraction Integer

dst5::Boolean

true (67)
Type: Boolean

9.61. RealClosure · 547

9.62
Regular-
TriangularSet

The RegularTriangularSet domain constructor implements regular triangular
sets. These particular triangular sets were introduced by M. Kalkbrener
(1991) in his PhD Thesis under the name regular chains. Regular chains
and their related concepts are presented in the paper ”On the Theories of
Triangular sets” By P. Aubry, D. Lazard and M. Moreno Maza (to appear
in the Journal of Symbolic Computation). This constructor also provides
a new method (by the third author) for solving polynomial system by
means of regular chains. This method has two ways of solving. One has
the same specifications as Kalkbrener’s algorithm (1991) and the other is
closer to Lazard’s method (Discr. App. Math, 1991). Moreover, this new
method removes redundant component from the decompositions when
this is not too much expensive. This is always the case with square-
free regular chains. So if you want to obtain decompositions without
redundant components just use the SquareFreeRegularTriangularSet domain
constructor or the LazardSetSolvingPackage package constructor. See also
the ZeroDimensionalSolvePackage for the case of algebraic systems with a
finite number of (complex) solutions.

One of the main features of regular triangular sets is that they naturally
define towers of simple extensions of a field. This allows to perform with
multivariate polynomials the same kind of operations as one can do in an
EuclideanDomain.

We shall explain now how to use the constructor RegularTriangularSet and
how the decomposition of a polynomial system by means of regular sets
has to be understood.

This constructor takes four arguments. The first one, R, is the coefficient
ring of the polynomials; it must belong to the category GcdDomain. The
second one, E, is the exponent monoid of the polynomials; it must belong
to the category OrderedAbelianMonoidSup. the third one, V, is the ordered
set of variables; it must belong to the category OrderedSet. The last one
is the polynomial ring; it must belong to the category RecursivePolynomi-
alCategory(R,E,V). The abbreviation for RegularTriangularSet is REGSET. See
also the constructor RegularChain which only takes two arguments, the
coefficient ring and the ordered set of variables; in that case, polynomi-
als are necessarily built with the NewSparseMultivariatePolynomial domain
constructor.

Let us illustrate the facilities of the REGSET constructor by some examples.
We start with an easy example (Donati-Traverso) in order to understand
its two ways of solving polynomial systems.

548 · Some Examples of Domains and Packages

Define the coefficient ring. R := Integer

Integer (1)
Type: Domain

Define the list of variables, ls : List Symbol := [x,y,z,t]

[x, y, z, t] (2)
Type: List Symbol

and make it an ordered set; V := OVAR(ls)

OrderedVariableList [x,y,z,t] (3)
Type: Domain

then define the exponent
monoid.

E := IndexedExponents V

IndexedExponents OrderedVariableList [x,y,z,t] (4)
Type: Domain

Define the polynomial ring. P := NSMP(R, V)

NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])(5)
Type: Domain

Let the variables be polynomial. x: P := ’x

x (6)
Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t])

y: P := ’y

y (7)
Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t])

z: P := ’z

z (8)
Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t])

t: P := ’t

t (9)
Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t])

Now call the RegularTriangularSet
domain constructor.

T := REGSET(R,E,V,P)

RegularTriangularSet(Integer, IndexedExponents
OrderedVariableList [x, y, z, t], OrderedVariableList [x, y, z, t],
NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x,
y, z, t]))

(10)

Type: Domain

9.62. RegularTriangularSet · 549

Define a polynomial system. p1 := x ** 31 - x ** 6 - x - y

x31 − x6 − x− y (11)
Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t])

p2 := x ** 8 - z

x8 − z (12)
Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t])

p3 := x ** 10 - t

x10 − t (13)
Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t])

lp := [p1, p2, p3]
[
x31 − x6 − x− y, x8 − z, x10 − t

]
(14)

Type: List NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z,
t])

First of all, let us solve this
system in the sense of
Kalkbrener.

zeroSetSplit(lp)$T
[{

z5 − t4, t z y2 + 2 z3 y − t8 + 2 t5 + t3 − t2,(
t4 − t

)
x− t y − z2

}]
(15)

Type: List RegularTriangularSet(Integer, IndexedExponents OrderedVariableList [x,
y, z, t], OrderedVariableList [x, y, z, t],
NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t]))

And now in the sense of Lazard
(or Wu and other authors).

lts := zeroSetSplit(lp,false)$T



{
z5 − t4, t z y2 + 2 z3 y − t8 + 2 t5 + t3 − t2,

(
t4 − t

)
x− t y − z2

}
,{

t3 − 1, z5 − t, t z y2 + 2 z3 y + 1, z x2 − t
}
,

{t, z, y, x}


(16)

Type: List RegularTriangularSet(Integer, IndexedExponents OrderedVariableList [x,
y, z, t], OrderedVariableList [x, y, z, t],
NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t]))

We can see that the first decomposition is a subset of the second. So how
can both be correct ?

Recall first that polynomials from a domain of the category Recursive-
PolynomialCategory are regarded as univariate polynomials in their main
variable. For instance the second polynomial in the first set of each de-
composition has main variable y and its initial (i.e. its leading coefficient
w.r.t. its main variable) is t z.

Now let us explain how to read the second decomposition. Note that the
non-constant initials of the first set are t4 − t and tz. Then the solu-

550 · Some Examples of Domains and Packages

tions described by this first set are the common zeros of its polynomials
that do not cancel the polynomials t4 − t and tyz. Now the solutions of
the input system lp satisfying these equations are described by the sec-
ond and the third sets of the decomposition. Thus, in some sense, they
can be considered as degenerated solutions. The solutions given by the
first set are called the generic points of the system; they give the general
form of the solutions. The first decomposition only provides these generic
points. This latter decomposition is useful when they are many degen-
erated solutions (which is sometimes hard to compute) and when one is
only interested in general informations, like the dimension of the input
system.

We can get the dimensions of
each component of a
decomposition as follows.

[coHeight(ts) for ts in lts]

[1, 0, 0] (17)
Type: List NonNegativeInteger

Thus the first set has dimension one. Indeed t can take any value, except
0 or any third root of 1, whereas z is completely determined from t, y is
given by z and t, and finally x is given by the other three variables. In the
second and the third sets of the second decomposition the four variables
are completely determined and thus these sets have dimension zero.

We give now the precise specifications of each decomposition. This assume
some mathematical knowledge. However, for the non-expert user, the
above explanations will be sufficient to understand the other features of
the RSEGSET constructor.

The input system lp is decomposed in the sense of Kalkbrener as finitely
many regular sets T1,...,Ts such that the radical ideal generated by lp
is the intersection of the radicals of the saturated ideals of T1,...,Ts.
In other words, the affine variety associated with lp is the union of the
closures (w.r.t. Zarisky topology) of the regular zeros sets of T1,...,Ts.

N. B. The prime ideals associated with the radical of the saturated ideal
of a regular triangular set have all the same dimension; moreover these
prime ideals can be given by characteristic sets with the same main vari-
ables. Thus a decomposition in the sense of Kalkbrener is unmixed dimen-
sional. Then it can be viewed as a lazy decomposition into prime ideals
(some of these prime ideals being merged into unmixed dimensional ide-
als).

Now we explain the other way of solving by means of regular triangular
sets. The input system lp is decomposed in the sense of Lazard as finitely
many regular triangular sets T1,...,Ts such that the affine variety asso-
ciated with lp is the union of the regular zeros sets of T1,...,Ts. Thus a
decomposition in the sense of Lazard is also a decomposition in the sense

9.62. RegularTriangularSet · 551

of Kalkbrener; the converse is false as we have seen before.

When the input system has a finite number of solutions, both ways of
solving provide similar decompositions as we shall see with this second
example (Caprasse).

Define a polynomial system. f1 := y**2*z+2*x*y*t-2*x-z

(2 t y − 2) x + z y2 − z (18)
Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t])

f2 := -x**3*z+ 4*x*y**2*z+ 4*x**2*y*t+ 2*y**3*t+ 4*x**2-
10*y**2+ 4*x*z- 10*y*t+ 2

−z x3 + (4 t y + 4) x2 +
(
4 z y2 + 4 z

)
x + 2 t y3 − 10 y2 − 10 t y + 2(19)

Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t])

f3 := 2*y*z*t+x*t**2-x-2*z
(
t2 − 1

)
x + 2 t z y − 2 z (20)

Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t])

f4 := -x*z**3+ 4*y*z**2*t+ 4*x*z*t**2+ 2*y*t**3+ 4*x*z+
4*z**2-10*y*t- 10*t**2+2

(
−z3 +

(
4 t2 + 4

)
z
)

x +
(
4 t z2 + 2 t3 − 10 t

)
y + 4 z2 − 10 t2 + 2 (21)

Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t])

lf := [f1, f2, f3, f4]
[
(2 t y − 2) x + z y2 − z,

−z x3 + (4 t y + 4) x2 +
(
4 z y2 + 4 z

)
x + 2 t y3 − 10 y2 − 10 t y + 2,(

t2 − 1
)

x + 2 t z y − 2 z,(
−z3 +

(
4 t2 + 4

)
z
)

x +
(
4 t z2 + 2 t3 − 10 t

)
y + 4 z2 − 10 t2 + 2

]
(22)

Type: List NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z,
t])

First of all, let us solve this
system in the sense of
Kalkbrener.

zeroSetSplit(lf)$T



{
t2 − 1, z8 − 16 z6 + 256 z2 − 256, t y − 1,

(
z3 − 8 z

)
x− 8 z2 + 16

}
,{

3 t2 + 1, z2 − 7 t2 − 1, y + t, x + z
}
,{

t8 − 10 t6 + 10 t2 − 1, z,
(
t3 − 5 t

)
y − 5 t2 + 1, x

}
,{

t2 + 3, z2 − 4, y + t, x− z
}



(23)

Type: List RegularTriangularSet(Integer, IndexedExponents OrderedVariableList [x,
y, z, t], OrderedVariableList [x, y, z, t],
NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t]))

552 · Some Examples of Domains and Packages

And now in the sense of Lazard
(or Wu and other authors).

lts2 := zeroSetSplit(lf,false)$T



{
t8 − 10 t6 + 10 t2 − 1, z,

(
t3 − 5 t

)
y − 5 t2 + 1, x

}
,{

t2 − 1, z8 − 16 z6 + 256 z2 − 256, t y − 1,
(
z3 − 8 z

)
x− 8 z2 + 16

}
,{

3 t2 + 1, z2 − 7 t2 − 1, y + t, x + z
}
,{

t2 + 3, z2 − 4, y + t, x− z
}



(24)

Type: List RegularTriangularSet(Integer, IndexedExponents OrderedVariableList [x,
y, z, t], OrderedVariableList [x, y, z, t],
NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t]))

Up to the ordering of the components, both decompositions are identical.

Let us check that each
component has a finite number
of solutions.

[coHeight(ts) for ts in lts2]

[0, 0, 0, 0] (25)
Type: List NonNegativeInteger

Let us count the degrees of each
component,

degrees := [degree(ts) for ts in lts2]

[8, 16, 4, 4] (26)
Type: List NonNegativeInteger

and compute their sum. reduce(+,degrees)

32 (27)
Type: PositiveInteger

We study now the options of the zeroSetSplit operation. As we have
seen yet, there is an optional second argument which is a boolean value. If
this value is true (this is the default) then the decomposition is computed
in the sense of Kalkbrener, otherwise it is computed in the sense of Lazard.

There is a second boolean optional argument that can be used (in that
case the first optional argument must be present). This second option
allows you to get some information during the computations.

Therefore, we need to understand a little what is going on during the
computations. An important feature of the algorithm is that the interme-
diate computations are managed in some sense like the processes of a Unix
system. Indeed, each intermediate computation may generate other inter-
mediate computations and the management of all these computations is
a crucial task for the efficiency. Thus any intermediate computation may
be suspended, killed or resumed, depending on algebraic considerations
that determine priorities for these processes. The goal is of course to go
as fast as possible towards the final decomposition which means to avoid
as much as possible unnecessary computations.

To follow the computations, one needs to set to true the second argument.

9.62. RegularTriangularSet · 553

Then a lot of numbers and letters are displayed. Between a [and a]
one has the state of the processes at a given time. Just after [one can
see the number of processes. Then each process is represented by two
numbers between < and >. A process consists of a list of polynomial ps
and a triangular set ts; its goal is to compute the common zeros of ps
that belong to the regular zeros set of ts. After the processes, the number
between pipes gives the total number of polynomials in all the sets ps.
Finally, the number between braces gives the number of components of a
decomposition that are already computed. This number may decrease.

Let us take a third example (Czapor-Geddes-Wang) to see how these
informations are displayed.

Define a polynomial system. u : R := 2

2 (28)
Type: Integer

q1 := 2*(u-1)**2+ 2*(x-z*x+z**2)+ y**2*(x-1)**2- 2*u*x+
2*y*t*(1-x)*(x-z)+ 2*u*z*t*(t-y)+ u**2*t**2*(1-2*z)+
2*u*t**2*(z-x)+ 2*u*t*y*(z-1)+ 2*u*z*x*(y+1)+ (u**2-
2*u)*z**2*t**2+ 2*u**2*z**2+ 4*u*(1-u)*z+ t**2*(z-x)**2

(
y2 − 2 t y + t2

)
x2+(

−2 y2 + ((2 t + 4) z + 2 t) y +
(
−2 t2 + 2

)
z − 4 t2 − 2

)
x+

y2 + (−2 t z − 4 t) y +
(
t2 + 10

)
z2 − 8 z + 4 t2 + 2

(29)

Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t])

q2 := t*(2*z+1)*(x-z)+ y*(z+2)*(1-x)+ u*(u-2)*t+ u*(1-
2*u)*z*t+ u*y*(x+u-z*x-1)+ u*(u+1)*z**2*t

(−3 z y + 2 t z + t) x + (z + 4) y + 4 t z2 − 7 t z (30)
Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t])

q3 := -u**2*(z-1)**2+ 2*z*(z-x)-2*(x-1)

(−2 z − 2) x− 2 z2 + 8 z − 2 (31)
Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t])

q4 := u**2+4*(z-x**2)+3*y**2*(x-1)**2- 3*t**2*(z-x)**2
+3*u**2*t**2*(z-1)**2+u**2*z*(z-2)+6*u*t*y*(z+x+z*x-1)

(
3 y2 − 3 t2 − 4

)
x2 +

(
−6 y2 + (12 t z + 12 t) y + 6 t2 z

)
x+

3 y2 + (12 t z − 12 t) y +
(
9 t2 + 4

)
z2 +

(
−24 t2 − 4

)
z+

12 t2 + 4

(32)

Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t])

554 · Some Examples of Domains and Packages

lq := [q1, q2, q3, q4]



(
y2 − 2 t y + t2

)
x2 +

(
−2 y2 + ((2 t + 4) z + 2 t) y+(

−2 t2 + 2
)

z − 4 t2 − 2
)

x + y2 + (−2 t z − 4 t) y+(
t2 + 10

)
z2 − 8 z + 4 t2 + 2,

(−3 z y + 2 t z + t) x + (z + 4) y + 4 t z2 − 7 t z,
(−2 z − 2) x− 2 z2 + 8 z − 2,(
3 y2 − 3 t2 − 4

)
x2 +

(
−6 y2 + (12 t z + 12 t) y + 6 t2 z

)
x

+3 y2 + (12 t z − 12 t) y +
(
9 t2 + 4

)
z2 +

(
−24 t2 − 4

)
z+

12 t2 + 4




(33)

Type: List NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z,
t])

Let us try the information
option. N.B. The timing should
be between 1 and 10 minutes,
depending on your machine.

zeroSetSplit(lq,true,true)$T

*** QCMPACK Statistics ***
Table size: 36
Entries reused: 255

*** REGSETGCD: Gcd Statistics ***
Table size: 125
Entries reused: 0

*** REGSETGCD: Inv Set Statistics ***
Table size: 30
Entries reused: 0

[{ 960725655771966 t24 + 386820897948702 t23 + 8906817198608181 t22 + 2704966893949428 t21 + 37304033340228264 t20 + 7924782817170207 t19 + 93126799040354990 t18 + 13101273653130910 t17 + 156146250424711858 t16 + 16626490957259119 t15 + 190699288479805763 t14 + 24339173367625275 t13 + 180532313014960135 t12 + 35288089030975378 t11 + 135054975747656285 t10 + 34733736952488540 t9 + 75947600354493972 t8 + 19772555692457088 t7 + 28871558573755428 t6 + 5576152439081664 t5 + 6321711820352976 t4 + 438314209312320 t3 + 581105748367008 t2 − 60254467992576 t + 1449115951104,(
26604210869491302385515265737052082361668474181372891857784 t23 + 443104378424686086067294899528296664238693556855017735265295 t22 + 279078393286701234679141342358988327155321305829547090310242 t21 + 3390276361413232465107617176615543054620626391823613392185226 t20 + 941478179503540575554198645220352803719793196473813837434129 t19 + 11547855194679475242211696749673949352585747674184320988144390 t18 + 1343609566765597789881701656699413216467215660333356417241432 t17 + 23233813868147873503933551617175640859899102987800663566699334 t16 + 869574020537672336950845440508790740850931336484983573386433 t15 + 31561554305876934875419461486969926554241750065103460820476969 t14 + 1271400990287717487442065952547731879554823889855386072264931 t13 + 31945089913863736044802526964079540198337049550503295825160523 t12 + 3738735704288144509871371560232845884439102270778010470931960 t11 + 25293997512391412026144601435771131587561905532992045692885927 t10 + 5210239009846067123469262799870052773410471135950175008046524 t9 + 15083887986930297166259870568608270427403187606238713491129188 t8 + 3522087234692930126383686270775779553481769125670839075109000 t7 + 6079945200395681013086533792568886491101244247440034969288588 t6 + 1090634852433900888199913756247986023196987723469934933603680 t5 + 1405819430871907102294432537538335402102838994019667487458352 t4 + 88071527950320450072536671265507748878347828884933605202432 t3 + 135882489433640933229781177155977768016065765482378657129440 t2 − 13957283442882262230559894607400314082516690749975646520320 t + 334637692973189299277258325709308472592117112855749713920

)
z + 8567175484043952879756725964506833932149637101090521164936 t23 + 149792392864201791845708374032728942498797519251667250945721 t22 + 77258371783645822157410861582159764138123003074190374021550 t21 + 1108862254126854214498918940708612211184560556764334742191654 t20 + 213250494460678865219774480106826053783815789621501732672327 t19 + 3668929075160666195729177894178343514501987898410131431699882 t18 + 171388906471001872879490124368748236314765459039567820048872 t17 + 7192430746914602166660233477331022483144921771645523139658986 t16 − 128798674689690072812879965633090291959663143108437362453385 t15 + 9553010858341425909306423132921134040856028790803526430270671 t14 − 13296096245675492874538687646300437824658458709144441096603 t13 + 9475806805814145326383085518325333106881690568644274964864413 t12 + 803234687925133458861659855664084927606298794799856265539336 t11 + 7338202759292865165994622349207516400662174302614595173333825 t10 + 1308004628480367351164369613111971668880538855640917200187108 t9 + 4268059455741255498880229598973705747098216067697754352634748 t8 + 892893526858514095791318775904093300103045601514470613580600 t7 + 1679152575460683956631925852181341501981598137465328797013652 t6 + 269757415767922980378967154143357835544113158280591408043936 t5 + 380951527864657529033580829801282724081345372680202920198224 t4 + 19785545294228495032998826937601341132725035339452913286656 t3 + 36477412057384782942366635303396637763303928174935079178528 t2 − 3722212879279038648713080422224976273210890229485838670848 t + 89079724853114348361230634484013862024728599906874105856,(

3 z3 − 11 z2 + 8 z + 4
)

y + 2 t z3 + 4 t z2 − 5 t z − t,

(z + 1) x + z2 − 4 z + 1 }]

(34)

Type: List RegularTriangularSet(Integer, IndexedExponents OrderedVariableList [x,
y, z, t], OrderedVariableList [x, y, z, t],
NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t]))

Between a sequence of processes, thus between a] and a [you can see
capital letters W, G, I and lower case letters i, w. Each time a capital
letter appears a non-trivial computation has be performed and its result
is put in a hash-table. Each time a lower case letter appears a needed
result has been found in an hash-table. The use of these hash-tables
generally speed up the computations. However, on very large systems, it
may happen that these hash-tables become too big to be handle by your
AXIOM configuration. Then in these exceptional cases, you may prefer
getting a result (even if it takes a long time) than getting nothing. Hence
you need to know how to prevent the RSEGSET constructor from using

9.62. RegularTriangularSet · 555

these hash-tables. In that case you will be using the zeroSetSplit with
five arguments. The first one is the input system lp as above. The second
one is a boolean value hash? which is true iff you want to use hash-tables.
The third one is boolean value clos? which is true iff you want to solve
your system in the sense of Kalkbrener, the other way remaining that of
Lazard. The fourth argument is boolean value info? which is true iff
you want to display information during the computations. The last one is
boolean value prep? which is true iff you want to use some heuristics that
are performed on the input system before starting the real algorithm. The
value of this flag is true when you are using zeroSetSplit with less than
five arguments. Note that there is no available signature for zeroSetSplit
with four arguments.

We finish this section by some remarks about both ways of solving, in
the sense of Kalkbrener or in the sense of Lazard. For problems with
a finite number of solutions, there are theoretically equivalent and the
resulting decompositions are identical, up to the ordering of the com-
ponents. However, when solving in the sense of Lazard, the algorithm
behaves differently. In that case, it becomes more incremental than in
the sense of Kalkbrener. That means the polynomials of the input sys-
tem are considered one after another whereas in the sense of Kalkbrener
the input system is treated more globally.

This makes an important difference in positive dimension. Indeed when
solving in the sense of Kalkbrener, the Primeidealkettensatz of Krull is
used. That means any regular triangular containing more polynomials
than the input system can be deleted. This is not possible when solving
in the sense of Lazard. This explains why Kalkbrener’s decompositions
usually contain less components than those of Lazard. However, it may
happen with some examples that the incremental process (that cannot
be used when solving in the sense of Kalkbrener) provide a more efficient
way of solving than the global one even if the Primeidealkettensatz is used.
Thus just try both, with the various options, before concluding that you
cannot solve your favorite system with zeroSetSplit. There exist more
options at the development level that are not currently available in this
public version. So you are welcome to contact marc@nag.co.uk for more
information and help.

556 · Some Examples of Domains and Packages

9.63
RomanNumeral

The Roman numeral package was added to AXIOM in MCMLXXXVI for
use in denoting higher order derivatives.

For example, let f be a symbolic
operator.

f := operator ’f

f (1)
Type: BasicOperator

This is the seventh derivative of
f with respect to x.

D(f x,x,7)

f (vii) (x) (2)
Type: Expression Integer

You can have integers printed as
Roman numerals by declaring
variables to be of type
RomanNumeral (abbreviation
ROMAN).

a := roman(1978 - 1965)

XIII (3)
Type: RomanNumeral

This package now has a small but devoted group of followers that claim
this domain has shown its efficacy in many other contexts. They claim
that Roman numerals are every bit as useful as ordinary integers.

In a sense, they are correct,
because Roman numerals form a
ring and you can therefore
construct polynomials with
Roman numeral coefficients,
matrices over Roman numerals,
etc..

x : UTS(ROMAN,’x,0) := x

x (4)
Type: UnivariateTaylorSeries(RomanNumeral, x, 0)

Was Fibonacci Italian or
ROMAN?

recip(1 - x - x**2)

I + x + II x2 + III x3 + V x4 + VIII x5 + XIII x6 + XXI x7 + O
(
x8

)
(5)

Type: Union(UnivariateTaylorSeries(RomanNumeral, x, 0), ...)

You can also construct fractions
with Roman numeral
numerators and denominators,
as this matrix Hilberticus
illustrates.

m : MATRIX FRAC ROMAN

Type: Void

m := matrix [[1/(i + j) for i in 1..3] for j in 1..3]



I
II

I
III

I
IV

I
III

I
IV

I
V

I
IV

I
V

I
V I


 (7)

Type: Matrix Fraction RomanNumeral

9.63. RomanNumeral · 557

Note that the inverse of the
matrix has integral ROMAN
entries.

inverse m



LXXII −CCXL CLXXX
−CCXL CM −DCCXX
CLXXX −DCCXX DC


 (8)

Type: Union(Matrix Fraction RomanNumeral, ...)

Unfortunately, the spoil-sports
say that the fun stops when the
numbers get big—mostly
because the Romans didn’t
establish conventions about
representing very large numbers.

y := factorial 10

3628800 (9)
Type: PositiveInteger

You work it out! roman y

((((I)))) ((((I)))) ((((I)))) (((I))) (((I))) (((I))) (((I))) (((I))) (((I)))
((I)) ((I)) MMMMMMMMDCCC

(10)

Type: RomanNumeral

Issue the system command)show RomanNumeral to display the full list
of operations defined by RomanNumeral.

558 · Some Examples of Domains and Packages

9.64
Segment

The Segment domain provides a generalized interval type.

Segments are created using the
“..” construct by indicating the
(included) end points.

s := 3..10

3..10 (1)
Type: Segment PositiveInteger

The first end point is called the
lo and the second is called hi.

lo s

3 (2)
Type: PositiveInteger

These names are used even
though the end points might
belong to an unordered set.

hi s

10 (3)
Type: PositiveInteger

In addition to the end points,
each segment has an integer
“increment.” An increment can
be specified using the “by”
construct.

t := 10..3 by -2

10..3 by − 2 (4)
Type: Segment PositiveInteger

This part can be obtained using
the incr function.

incr s

1 (5)
Type: PositiveInteger

Unless otherwise specified, the
increment is 1.

incr t

−2 (6)
Type: Integer

A single value can be converted
to a segment with equal end
points. This happens if
segments and single values are
mixed in a list.

l := [1..3, 5, 9, 15..11 by -1]

[1..3, 5..5, 9..9, 15..11 by − 1] (7)
Type: List Segment PositiveInteger

If the underlying type is an
ordered ring, it is possible to
perform additional operations.
The expand operation creates a
list of points in a segment.

expand s

[3, 4, 5, 6, 7, 8, 9, 10] (8)
Type: List Integer

If k > 0, then expand(l..h by
k) creates the list [l, l+k,
..., lN] where lN <= h <
lN+k. If k < 0, then lN >= h >
lN+k.

expand t

[10, 8, 6, 4] (9)
Type: List Integer

9.64. Segment · 559

It is also possible to expand a
list of segments. This is
equivalent to appending lists
obtained by expanding each
segment individually.

expand l

[1, 2, 3, 5, 9, 15, 14, 13, 12, 11] (10)
Type: List Integer

For more information on related topics, see ‘SegmentBinding’ on page 561
and ‘UniversalSegment’ on page 599. Issue the system command)show
Segment to display the full list of operations defined by Segment.

560 · Some Examples of Domains and Packages

9.65
SegmentBinding

The SegmentBinding type is used to indicate a range for a named symbol.

First give the symbol, then an
“=” and finally a segment of
values.

x = a..b

x = a..b (1)
Type: SegmentBinding Symbol

This is used to provide a
convenient syntax for arguments
to certain operations.

sum(i**2, i = 0..n)

2 n3 + 3 n2 + n

6
(2)

Type: Fraction Polynomial Integer

The draw operation uses a
SegmentBinding argument as a
range of coordinates. This is an
example of a two-dimensional
parametrized plot; other draw
options use more than one
SegmentBinding argument.

draw(x**2, x = -2..2)

Compiling function %B with type DoubleFloat -> Double-
Float
Graph data being transmitted to the viewport
manager...
AXIOM2D data being transmitted to the viewport
manager...

TwoDimensionalViewport: "x*x" (3)
Type: TwoDimensionalViewport

0.00 1.60-1.60

0.80

1.60

2.40

3.20

4.00

The left-hand side must be of
type Symbol but the right-hand
side can be a segment over any
type.

sb := y = 1/2..3/2

y =
(

1
2

)
..

(
3
2

)
(4)

Type: SegmentBinding Fraction Integer

The left- and right-hand sides
can be obtained using the
variable and segment
operations.

variable(sb)

y (5)
Type: Symbol

9.65. SegmentBinding · 561

segment(sb)
(

1
2

)
..

(
3
2

)
(6)

Type: Segment Fraction Integer

For more information on related topics, see ‘Segment’ on page 559 and ‘Uni-
versalSegment’ on page 599. Issue the system command)show SegmentBinding
to display the full list of operations defined by SegmentBinding.

562 · Some Examples of Domains and Packages

9.66
Set

The Set domain allows one to represent explicit finite sets of values. These
are similar to lists, but duplicate elements are not allowed.

Sets can be created by giving a
fixed set of values . . .

s := set [x**2-1, y**2-1, z**2-1]
{
x2 − 1, y2 − 1, z2 − 1

}
(1)

Type: Set Polynomial Integer

or by using a collect form, just
as for lists. In either case, the
set is formed from a finite
collection of values.

t := set [x**i - i+1 for i in 2..10 | prime? i]
{
x2 − 1, x3 − 2, x5 − 4, x7 − 6

}
(2)

Type: Set Polynomial Integer

The basic operations on sets are
intersect, union, difference,
and symmetricDifference.

i := intersect(s,t){
x2 − 1

}
(3)

Type: Set Polynomial Integer

u := union(s,t){
x2 − 1, x3 − 2, x5 − 4, x7 − 6, y2 − 1, z2 − 1

}
(4)

Type: Set Polynomial Integer

The set difference(s,t)
contains those members of s
which are not in t.

difference(s,t){
y2 − 1, z2 − 1

}
(5)

Type: Set Polynomial Integer

The set
symmetricDifference(s,t)
contains those elements which
are in s or t but not in both.

symmetricDifference(s,t)
{
x3 − 2, x5 − 4, x7 − 6, y2 − 1, z2 − 1

}
(6)

Type: Set Polynomial Integer

Set membership is tested using
the member? operation.

member?(y, s)

false (7)
Type: Boolean

member?((y+1)*(y-1), s)

true (8)
Type: Boolean

The subset? function
determines whether one set is a
subset of another.

subset?(i, s)

true (9)
Type: Boolean

subset?(u, s)

false (10)
Type: Boolean

9.66. Set · 563

When the base type is finite, the
absolute complement of a set is
defined. This finds the set of all
multiplicative generators of
PrimeField 11—the integers mod
11.

gs := set [g for i in 1..11 | primitive?(g := i::PF 11)]

{2, 6, 7, 8} (11)
Type: Set PrimeField 11

The following values are not
generators.

complement gs

{1, 3, 4, 5, 9, 10, 0} (12)
Type: Set PrimeField 11

Often the members of a set are computed individually; in addition, values
can be inserted or removed from a set over the course of a computation.

There are two ways to do this: a := set [i**2 for i in 1..5]

{1, 4, 9, 16, 25} (13)
Type: Set PositiveInteger

One is to view a set as a data
structure and to apply updating
operations.

insert!(32, a)

{1, 4, 9, 16, 25, 32} (14)
Type: Set PositiveInteger

remove!(25, a)

{1, 4, 9, 16, 32} (15)
Type: Set PositiveInteger

a

{1, 4, 9, 16, 32} (16)
Type: Set PositiveInteger

The other way is to view a set
as a mathematical entity and to
create new sets from old.

b := b0 := set [i**2 for i in 1..5]

{1, 4, 9, 16, 25} (17)
Type: Set PositiveInteger

b := union(b, {32})
{1, 4, 9, 16, 25, 32} (18)

Type: Set PositiveInteger

b := difference(b, {25})
{1, 4, 9, 16, 32} (19)

Type: Set PositiveInteger

b0

{1, 4, 9, 16, 25} (20)
Type: Set PositiveInteger

564 · Some Examples of Domains and Packages

For more information about lists, see ‘List’ on page 489. Issue the system
command)show Set to display the full list of operations defined by Set.

9.66. Set · 565

9.67
SingleInteger

The SingleInteger domain is intended to provide support in AXIOM for ma-
chine integer arithmetic. It is generally much faster than (bignum) Integer
arithmetic but suffers from a limited range of values. Since AXIOM can
be implemented on top of various dialects of Lisp, the actual representa-
tion of small integers may not correspond exactly to the host machines
integer representation.

In the CCL implementation of AXIOM (Release 2.1 onwards) the under-
lying representation of SingleInteger is the same as Integer. The underlying
Lisp primitives treat machine-word sized computations specially.

You can discover the minimum
and maximum values in your
implementation by using min
and max.

min()$SingleInteger

−134217728 (1)
Type: SingleInteger

max()$SingleInteger

134217727 (2)
Type: SingleInteger

To avoid confusion with Integer,
which is the default type for
integers, you usually need to
work with declared variables
(Section 2.3 on page 103) . . .

a := 1234 :: SingleInteger

1234 (3)
Type: SingleInteger

or use package calling (Section
2.9 on page 119).

b := 124$SingleInteger

124 (4)
Type: SingleInteger

You can add, multiply and
subtract SingleInteger objects,
and ask for the greatest
common divisor (gcd).

gcd(a,b)

2 (5)
Type: SingleInteger

The least common multiple
(lcm) is also available.

lcm(a,b)

76508 (6)
Type: SingleInteger

Operations mulmod, addmod,
submod, and invmod are
similar—they provide arithmetic
modulo a given small integer.
Here is 5 * 6 mod 13.

mulmod(5,6,13)$SingleInteger

4 (7)
Type: SingleInteger

To reduce a small integer
modulo a prime, use
positiveRemainder.

positiveRemainder(37,13)$SingleInteger

11 (8)
Type: SingleInteger

566 · Some Examples of Domains and Packages

Operations And, Or, xor, and
Not provide bit level operations
on small integers.

And(3,4)$SingleInteger

0 (9)
Type: SingleInteger

Use shift(int,numToShift) to
shift bits, where i is shifted left
if numToShift is positive, right if
negative.

shift(1,4)$SingleInteger

16 (10)
Type: SingleInteger

shift(31,-1)$SingleInteger

15 (11)
Type: SingleInteger

Many other operations are available for small integers, including many of
those provided for Integer. To see the other operations, use the Browse
HyperDoc facility (Section 14 on page 699). Issue the system command
)show SingleInteger to display the full list of operations defined by
SingleInteger..

9.67. SingleInteger · 567

9.68
SparseTable

The SparseTable domain provides a general purpose table type with default
entries.

Here we create a table to save
strings under integer keys. The
value "Try again!" is returned
if no other value has been stored
for a key.

t: SparseTable(Integer, String, "Try again!") := table()

table() (1)
Type: SparseTable(Integer, String, Try again!)

Entries can be stored in the
table.

t.3 := "Number three"

"Number three" (2)
Type: String

t.4 := "Number four"

"Number four" (3)
Type: String

These values can be retrieved as
usual, but if a look up fails the
default entry will be returned.

t.3

"Number three" (4)
Type: String

t.2

"Try again!" (5)
Type: String

To see which values are
explicitly stored, the keys and
entries functions can be used.

keys t

[4, 3] (6)
Type: List Integer

entries t

["Number four", "Number three"] (7)
Type: List String

If a specific table representation is required, the GeneralSparseTable con-
structor should be used. The domain SparseTable(K, E, dflt) is equivalent
to GeneralSparseTable(K,E, Table(K,E), dflt). For more information, see ‘Table’
on page 585 and ‘GeneralSparseTable’ on page 439. Issue the system com-
mand)show SparseTable to display the full list of operations defined by
SparseTable.

568 · Some Examples of Domains and Packages

9.69
SquareMatrix

The top level matrix type in AXIOM is Matrix (see ‘Matrix’ on page 500),
which provides basic arithmetic and linear algebra functions. However,
since the matrices can be of any size it is not true that any pair can be
added or multiplied. Thus Matrix has little algebraic structure.

Sometimes you want to use matrices as coefficients for polynomials or in
other algebraic contexts. In this case, SquareMatrix should be used. The
domain SquareMatrix(n,R) gives the ring of n by n square matrices over R.

Since SquareMatrix is not
normally exposed at the top
level, you must expose it before
it can be used.

)set expose add constructor SquareMatrix

SquareMatrix is now explicitly exposed in frame

Once SQMATRIX has been
exposed, values can be created
using the squareMatrix
function.

m := squareMatrix [[1,-%i],[%i,4]]
[

1 −i
i 4

]
(1)

Type: SquareMatrix(2, Complex Integer)

The usual arithmetic operations
are available.

m*m - m
[

1 −4 i
4 i 13

]
(2)

Type: SquareMatrix(2, Complex Integer)

Square matrices can be used
where ring elements are
required. For example, here is a
matrix with matrix entries.

mm := squareMatrix [[m, 1], [1-m, m**2]]



[
1 −i
i 4

] [
1 0
0 1

]

[
0 i
−i −3

] [
2 −5 i

5 i 17

]


 (3)

Type: SquareMatrix(2, SquareMatrix(2, Complex Integer))

Or you can construct a
polynomial with square matrix
coefficients.

p := (x + m)**2

x2 +
[

2 −2 i
2 i 8

]
x +

[
2 −5 i

5 i 17

]
(4)

Type: Polynomial SquareMatrix(2, Complex Integer)

This value can be converted to a
square matrix with polynomial
coefficients.

p::SquareMatrix(2, ?)
[

x2 + 2 x + 2 −2 i x− 5 i
2 i x + 5 i x2 + 8 x + 17

]
(5)

Type: SquareMatrix(2, Polynomial Complex Integer)

For more information on related topics, see Section 2.2.4 on page 100,
Section 2.11 on page 124, and ‘Matrix’ on page 500. Issue the system com-
mand)show SquareMatrix to display the full list of operations defined
by SquareMatrix.

9.69. SquareMatrix · 569

9.70
SquareFree-
Regular-
TriangularSet

The SquareFreeRegularTriangularSet domain constructor implements square-
free regular triangular sets. See the RegularTriangularSet domain construc-
tor for general regular triangular sets. Let T be a regular triangular set
consisting of polynomials t1, ..., tm ordered by increasing main variables.
The regular triangular set T is square-free if T is empty or if the polyno-
mial tm is square-free as a univariate polynomial with coefficients in the
tower of simple extensions associated with t1, ..., tm-1.

The main interest of square-free regular triangular sets is that their as-
sociated towers of simple extensions are product of fields. Consequently,
the saturated ideal of a square-free regular triangular set is radical. This
property simplifies some of the operations related to regular triangular
sets. However, building square-free regular triangular sets is generally
more expensive than building general regular triangular sets.

As the RegularTriangularSet domain constructor, the SquareFreeRegularTrian-
gularSet domain constructor also implements a method for solving poly-
nomial systems by means of regular triangular sets. This is in fact the
same method with some adaptations to take into account the fact that
the computed regular chains are square-free. Note that it is also possible
to pass from a decomposition into general regular triangular sets to a
decomposition into square-free regular triangular sets. This conversion is
used internally in the LazardSetSolvingPackage package constructor.

N.B. When solving polynomial systems with the SquareFreeRegularTrian-
gularSet domain constructor or the LazardSetSolvingPackage package con-
structor, decompositions have no redundant components. See also the
ZeroDimensionalSolvePackage for the case of algebraic systems with a finite
number of (complex) solutions.

We shall explain now how to use the constructor SquareFreeRegularTriangu-
larSet.

This constructor takes four arguments. The first one, R, is the coefficient
ring of the polynomials; it must belong to the category GcdDomain. The
second one, E, is the exponent monoid of the polynomials; it must belong
to the category OrderedAbelianMonoidSup. the third one, V, is the ordered
set of variables; it must belong to the category OrderedSet. The last one is
the polynomial ring; it must belong to the category RecursivePolynomialCat-
egory(R,E,V). The abbreviation for SquareFreeRegularTriangularSet is SREGSET.

Let us illustrate the use of this
constructor with one example
(Donati-Traverso). Define the
coefficient ring.

R := Integer

Integer (1)
Type: Domain

570 · Some Examples of Domains and Packages

Define the list of variables, ls : List Symbol := [x,y,z,t]

[x, y, z, t] (2)
Type: List Symbol

and make it an ordered set; V := OVAR(ls)

OrderedVariableList [x , y , z , t] (3)
Type: Domain

then define the exponent
monoid.

E := IndexedExponents V

IndexedExponents OrderedVariableList [x , y , z , t] (4)
Type: Domain

Define the polynomial ring. P := NSMP(R, V)

NewSparseMultivariatePolynomial (Integer , OrderedVariableList [x , y , z
, t]) (5)

Type: Domain

Let the variables be polynomial. x: P := ’x

x (6)
Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t])

y: P := ’y

y (7)
Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t])

z: P := ’z

z (8)
Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t])

t: P := ’t

t (9)
Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t])

Now call the
SquareFreeRegularTriangularSet
domain constructor.

ST := SREGSET(R,E,V,P)

SquareFreeRegularTriangularSet (Integer, IndexedExponents
OrderedVariableList [x , y , z , t] , OrderedVariableList [x , y , z , t] ,
NewSparseMultivariatePolynomial (Integer , OrderedVariableList [x , y , z
, t]))

(10)

Type: Domain

Define a polynomial system. p1 := x ** 31 - x ** 6 - x - y

x31 − x6 − x− y (11)
Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t])

9.70. SquareFreeRegularTriangularSet · 571

p2 := x ** 8 - z

x8 − z (12)
Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t])

p3 := x ** 10 - t

x10 − t (13)
Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t])

lp := [p1, p2, p3]
[
x31 − x6 − x− y, x8 − z, x10 − t

]
(14)

Type: List NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z,
t])

First of all, let us solve this
system in the sense of
Kalkbrener.

zeroSetSplit(lp)$ST
[{

z5 − t4, t z y2 + 2 z3 y − t8 + 2 t5 + t3 − t2,
(
t4 − t

)
x− t y − z2

}]
(15)

Type: List SquareFreeRegularTriangularSet(Integer, IndexedExponents
OrderedVariableList [x, y, z, t], OrderedVariableList [x, y, z, t],
NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t]))

And now in the sense of Lazard
(or Wu and other authors).

zeroSetSplit(lp,false)$ST
[{

z5 − t4, t z y2 + 2 z3 y − t8 + 2 t5 + t3 − t2,
(
t4 − t

)
x− t y − z2

}
,

{
t3 − 1, z5 − t, t y + z2, z x2 − t

}
, {t, z, y, x}

] (16)

Type: List SquareFreeRegularTriangularSet(Integer, IndexedExponents
OrderedVariableList [x, y, z, t], OrderedVariableList [x, y, z, t],
NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t]))

Now to see the difference with the RegularTriangularSet domain constructor,

we define: T := REGSET(R,E,V,P)

RegularTriangularSet (Integer , IndexedExponents OrderedVariableList [x ,
y , z , t] , OrderedVariableList [x , y , z , t] ,
NewSparseMultivariatePolynomial (Integer , OrderedVariableList [x , y , z
, t]))

(17)

Type: Domain

572 · Some Examples of Domains and Packages

and compute: lts := zeroSetSplit(lp,false)$T
[{

z5 − t4, t z y2 + 2 z3 y − t8 + 2 t5 + t3 − t2,
(
t4 − t

)
x− t y − z2

}
,

{
t3 − 1, z5 − t, t z y2 + 2 z3 y + 1, z x2 − t

}
, {t, z, y, x}

] (18)

Type: List RegularTriangularSet(Integer, IndexedExponents OrderedVariableList [x,
y, z, t], OrderedVariableList [x, y, z, t],
NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t]))

If you look at the second set in both decompositions in the sense of Lazard,
you will see that the polynomial with main variable y is not the same.

Let us understand what has happened.

We define: ts := lts.2{
t3 − 1, z5 − t, t z y2 + 2 z3 y + 1, z x2 − t

}
(19)

Type: RegularTriangularSet(Integer, IndexedExponents OrderedVariableList [x, y, z,
t], OrderedVariableList [x, y, z, t], NewSparseMultivariatePolynomial(Integer,
OrderedVariableList [x, y, z, t]))

pol := select(ts,’y)$T

t z y2 + 2 z3 y + 1 (20)
Type: Union(NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y,

z, t]), ...)

tower := collectUnder(ts,’y)$T
{
t3 − 1, z5 − t

}
(21)

Type: RegularTriangularSet(Integer, IndexedExponents OrderedVariableList [x, y, z,
t], OrderedVariableList [x, y, z, t], NewSparseMultivariatePolynomial(Integer,
OrderedVariableList [x, y, z, t]))

pack := RegularTriangularSetGcdPackage(R,E,V,P,T)

RegularTriangularSetGcdPackage (Integer , IndexedExponents
OrderedVariableList [x , y , z , t] , OrderedVariableList [x , y , z , t] ,
NewSparseMultivariatePolynomial (Integer , OrderedVariableList [x , y , z
, t]) , RegularTriangularSet (Integer , IndexedExponents
OrderedVariableList [x , y , z , t] , OrderedVariableList [x , y , z , t] ,
NewSparseMultivariatePolynomial (Integer , OrderedVariableList [x , y , z
, t])))

(22)

Type: Domain

9.70. SquareFreeRegularTriangularSet · 573

Then we compute: toseSquareFreePart(pol,tower)$pack
[[

val = t y + z2, tower =
{
t3 − 1, z5 − t

}]]
(23)

Type: List Record(val: NewSparseMultivariatePolynomial(Integer,
OrderedVariableList [x, y, z, t]), tower: RegularTriangularSet(Integer,
IndexedExponents OrderedVariableList [x, y, z, t], OrderedVariableList [x, y,
z, t], NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z,
t])))

574 · Some Examples of Domains and Packages

9.71
Stream

A Stream object is represented as a list whose last element contains the
wherewithal to create the next element, should it ever be required.

Let ints be the infinite stream
of non-negative integers.

ints := [i for i in 0..]

[0, 1, 2, 3, 4, 5, 6, . . .] (1)
Type: Stream NonNegativeInteger

By default, ten stream elements are calculated. This number may be
changed to something else by the system command)set streams calculate.
For the display purposes of this book, we have chosen a smaller value.

More generally, you can
construct a stream by specifying
its initial value and a function
which, when given an element,
creates the next element.

f : List INT -> List INT

Type: Void

f x == [x.1 + x.2, x.1]

Type: Void

fibs := [i.2 for i in [generate(f,[1,1])]]

Compiling function f with type List Integer -> List
Integer

[1, 1, 2, 3, 5, 8, 13, . . .] (4)
Type: Stream Integer

You can create the stream of
odd non-negative integers by
either filtering them from the
integers, or by evaluating an
expression for each integer.

[i for i in ints | odd? i]

[1, 3, 5, 7, 9, 11, 13, . . .] (5)
Type: Stream NonNegativeInteger

odds := [2*i+1 for i in ints]

[1, 3, 5, 7, 9, 11, 13, . . .] (6)
Type: Stream NonNegativeInteger

You can accumulate the initial
segments of a stream using the
scan operation.

scan(0,+,odds)

[1, 4, 9, 16, 25, 36, 49, . . .] (7)
Type: Stream NonNegativeInteger

The corresponding elements of
two or more streams can be
combined in this way.

[i*j for i in ints for j in odds]

[0, 3, 10, 21, 36, 55, 78, . . .] (8)
Type: Stream NonNegativeInteger

9.71. Stream · 575

map(*,ints,odds)

[0, 3, 10, 21, 36, 55, 78, . . .] (9)
Type: Stream NonNegativeInteger

Many operations similar to
those applicable to lists are
available for streams.

first ints

0 (10)
Type: NonNegativeInteger

rest ints

[1, 2, 3, 4, 5, 6, 7, . . .] (11)
Type: Stream NonNegativeInteger

fibs 20

6765 (12)
Type: PositiveInteger

The packages StreamFunctions1, StreamFunctions2 and StreamFunctions3 ex-
port some useful stream manipulation operations. For more information,
see Section 5.5 on page 171, Section 8.9 on page 295, ‘ContinuedFraction’
on page 385, and ‘List’ on page 489. Issue the system command)show
Stream to display the full list of operations defined by Stream.

576 · Some Examples of Domains and Packages

9.72
String

The type String provides character strings. Character strings provide all
the operations for a one-dimensional array of characters, plus additional
operations for manipulating text. For more information on related topics,
see ‘Character’ on page 374 and ‘CharacterClass’ on page 376. You can
also issue the system command)show String to display the full list of
operations defined by String.

String values can be created
using double quotes.

hello := "Hello, I’m AXIOM!"

"Hello, I’m AXIOM!" (1)
Type: String

Note, however, that double
quotes and underscores must be
preceded by an extra
underscore.

said := "Jane said, "Look! ""

"Jane said, " Look ! "" (2)
Type: String

saw := "She saw exactly one underscore: ."

"She saw exactly one underscore: ." (3)
Type: String

It is also possible to use new to
create a string of any size filled
with a given character. Since
there are many new functions it
is necessary to indicate the
desired type.

gasp: String := new(32, char "x")

"xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" (4)
Type: String

The length of a string is given
by “#”.

#gasp

32 (5)
Type: PositiveInteger

Indexing operations allow
characters to be extracted or
replaced in strings. For any
string s, indices lie in the range
1..#s.

hello.2

e (6)
Type: Character

Indexing is really just the
application of a string to a
subscript, so any application
syntax works.

hello 2

e (7)
Type: Character

hello(2)

e (8)
Type: Character

If it is important not to modify
a given string, it should be
copied before any updating
operations are used.

hullo := copy hello

"Hello, I’m AXIOM!" (9)
Type: String

9.72. String · 577

hullo.2 := char "u"; [hello, hullo]

["Hello, I’m AXIOM!", "Hullo, I’m AXIOM!"] (10)
Type: List String

Operations are provided to split
and join strings. The concat
operation allows several strings
to be joined together.

saidsaw := concat ["alpha","---","omega"]

"alpha---omega" (11)
Type: String

There is a version of concat
that works with two strings.

concat("hello ","goodbye")

"hello goodbye" (12)
Type: String

Juxtaposition can also be used
to concatenate strings.

"This " "is " "several " "strings " "concatenated."

"This is several strings concatenated." (13)
Type: String

Substrings are obtained by
giving an index range.

hello(1..5)

"Hello" (14)
Type: String

hello(8..)

"I’m AXIOM!" (15)
Type: String

A string can be split into several
substrings by giving a
separation character or
character class.

split(hello, char " ")

["Hello,", "I’m", "AXIOM!"] (16)
Type: List String

other := complement alphanumeric();

(17)
Type: CharacterClass

split(saidsaw, other)

["alpha", "omega"] (18)
Type: List String

Unwanted characters can be
trimmed from the beginning or
end of a string using the
operations trim, leftTrim and
rightTrim.

trim ("## ++ relax ++ ##", char "#")

" ++ relax ++ " (19)
Type: String

578 · Some Examples of Domains and Packages

Each of these functions takes a
string and a second argument to
specify the characters to be
discarded.

trim ("## ++ relax ++ ##", other)

"relax" (20)
Type: String

The second argument can be
given either as a single character
or as a character class.

leftTrim ("## ++ relax ++ ##", other)

"relax ++ ##" (21)
Type: String

rightTrim("## ++ relax ++ ##", other)

"## ++ relax" (22)
Type: String

Strings can be changed to upper
case or lower case using the
operations upperCase,
upperCase!, lowerCase and
lowerCase!.

upperCase hello

"HELLO, I’M AXIOM!" (23)
Type: String

The versions with the
exclamation mark change the
original string, while the others
produce a copy.

lowerCase hello

"hello, i’m axiom!" (24)
Type: String

Some basic string matching is
provided. The function prefix?
tests whether one string is an
initial prefix of another.

prefix?("He", "Hello")

true (25)
Type: Boolean

prefix?("Her", "Hello")

false (26)
Type: Boolean

A similar function, suffix?,
tests for suffixes.

suffix?("", "Hello")

true (27)
Type: Boolean

suffix?("LO", "Hello")

false (28)
Type: Boolean

The function substring? tests
for a substring given a starting
position.

substring?("ll", "Hello", 3)

true (29)
Type: Boolean

9.72. String · 579

substring?("ll", "Hello", 4)

false (30)
Type: Boolean

A number of position functions
locate things in strings. If the
first argument to position is a
string, then position(s,t,i)
finds the location of s as a
substring of t starting the
search at position i.

n := position("nd", "underground", 1)

2 (31)
Type: PositiveInteger

n := position("nd", "underground", n+1)

10 (32)
Type: PositiveInteger

If s is not found, then 0 is
returned (minIndex(s)-1 in
IndexedString).

n := position("nd", "underground", n+1)

0 (33)
Type: NonNegativeInteger

To search for a specific
character or a member of a
character class, a different first
argument is used.

position(char "d", "underground", 1)

3 (34)
Type: PositiveInteger

position(hexDigit(), "underground", 1)

3 (35)
Type: PositiveInteger

580 · Some Examples of Domains and Packages

9.73
StringTable

This domain provides a table type in which the keys are known to be
strings so special techniques can be used. Other than performance, the
type StringTable(S) should behave exactly the same way as Table(String,S). See
‘Table’ on page 585 for general information about tables. Issue the system
command)show StringTable to display the full list of operations defined
by StringTable.

This creates a new table whose
keys are strings.

t: StringTable(Integer) := table()

table() (1)
Type: StringTable Integer

The value associated with each
string key is the number of
characters in the string.

for s in split("My name is Ian Watt.",char " ")
repeat

t.s := #s

Type: Void

for key in keys t repeat output [key, t.key]

["Ian",3]
["My",2]
["Watt.",5]
["name",4]
["is",2]

Type: Void

9.73. StringTable · 581

9.74
Symbol

Symbols are one of the basic types manipulated by AXIOM. The Symbol
domain provides ways to create symbols of many varieties. Issue the sys-
tem command)show Symbol to display the full list of operations defined
by Symbol.

The simplest way to create a
symbol is to “single quote” an
identifier.

X: Symbol := ’x

x (1)
Type: Symbol

This gives the symbol even if x
has been assigned a value. If x
has not been assigned a value,
then it is possible to omit the
quote.

XX: Symbol := x

x (2)
Type: Symbol

Declarations must be used when
working with symbols, because
otherwise the interpreter tries to
place values in a more
specialized type Variable.

A := ’a

a (3)
Type: Variable a

B := b

b (4)
Type: Variable b

The normal way of entering
polynomials uses this fact.

x**2 + 1

x2 + 1 (5)
Type: Polynomial Integer

Another convenient way to
create symbols is to convert a
string. This is useful when the
name is to be constructed by a
program.

"Hello"::Symbol

Hello (6)
Type: Symbol

Sometimes it is necessary to
generate new unique symbols,
for example, to name constants
of integration. The expression
new() generates a symbol
starting with %.

new()$Symbol

%A (7)
Type: Symbol

Successive calls to new produce
different symbols.

new()$Symbol

%B (8)
Type: Symbol

The expression new("s")
produces a symbol starting with
%s.

new("xyz")$Symbol

%xyz0 (9)
Type: Symbol

582 · Some Examples of Domains and Packages

A symbol can be adorned in
various ways. The most basic
thing is applying a symbol to a
list of subscripts.

X[i,j]

xi, j (10)
Type: Symbol

Somewhat less pretty is to
attach subscripts, superscripts
or arguments.

U := subscript(u, [1,2,1,2])

u1, 2, 1, 2 (11)
Type: Symbol

V := superscript(v, [n])

vn (12)
Type: Symbol

P := argscript(p, [t])

p (t) (13)
Type: Symbol

It is possible to test whether a
symbol has scripts using the
scripted? test.

scripted? U

true (14)
Type: Boolean

scripted? X

false (15)
Type: Boolean

If a symbol is not scripted, then
it may be converted to a string.

string X

"x" (16)
Type: String

The basic parts can always be
extracted using the name and
scripts operations.

name U

u (17)
Type: Symbol

scripts U

[sub = [1, 2, 1, 2], sup = [], presup = [], presub = [], args = []] (18)
Type: Record(sub: List OutputForm, sup: List OutputForm, presup: List

OutputForm, presub: List OutputForm, args: List OutputForm)

name X

x (19)
Type: Symbol

9.74. Symbol · 583

scripts X

[sub = [], sup = [], presup = [], presub = [], args = []] (20)
Type: Record(sub: List OutputForm, sup: List OutputForm, presup: List

OutputForm, presub: List OutputForm, args: List OutputForm)

The most general form is
obtained using the script
operation. This operation takes
an argument which is a list
containing, in this order, lists of
subscripts, superscripts,
presuperscripts, presubscripts
and arguments to a symbol.

M := script(Mammoth, [[i,j],[k,l],[0,1],[2],[u,v,w]])

0, 1
2 Mammoth k, l

i, j (u, v, w) (21)
Type: Symbol

scripts M

[sub = [i, j], sup = [k, l], presup = [0, 1], presub = [2], args = [u, v, w]](22)
Type: Record(sub: List OutputForm, sup: List OutputForm, presup: List

OutputForm, presub: List OutputForm, args: List OutputForm)

If trailing lists of scripts are
omitted, they are assumed to be
empty.

N := script(Nut, [[i,j],[k,l],[0,1]])

0, 1Nut k, l
i, j (23)

Type: Symbol

scripts N

[sub = [i, j], sup = [k, l], presup = [0, 1], presub = [], args = []] (24)
Type: Record(sub: List OutputForm, sup: List OutputForm, presup: List

OutputForm, presub: List OutputForm, args: List OutputForm)

584 · Some Examples of Domains and Packages

9.75
Table

The Table constructor provides a general structure for associative storage.
This type provides hash tables in which data objects can be saved accord-
ing to keys of any type. For a given table, specific types must be chosen
for the keys and entries.

In this example the keys to the
table are polynomials with
integer coefficients. The entries
in the table are strings.

t: Table(Polynomial Integer, String) := table()

table() (1)
Type: Table(Polynomial Integer, String)

To save an entry in the table,
the setelt operation is used.
This can be called directly,
giving the table a key and an
entry.

setelt(t, x**2 - 1, "Easy to factor")

"Easy to factor" (2)
Type: String

Alternatively, you can use
assignment syntax.

t(x**3 + 1) := "Harder to factor"

"Harder to factor" (3)
Type: String

t(x) := "The easiest to factor"

"The easiest to factor" (4)
Type: String

Entries are retrieved from the
table by calling the elt
operation.

elt(t, x)

"The easiest to factor" (5)
Type: String

This operation is called when a
table is “applied” to a key using
this or the following syntax.

t.x

"The easiest to factor" (6)
Type: String

t x

"The easiest to factor" (7)
Type: String

Parentheses are used only for
grouping. They are needed if
the key is an infixed expression.

t.(x**2 - 1)

"Easy to factor" (8)
Type: String

Note that the elt operation is
used only when the key is known
to be in the table—otherwise an
error is generated.

t (x**3 + 1)

"Harder to factor" (9)
Type: String

9.75. Table · 585

You can get a list of all the keys
to a table using the keys
operation.

keys t
[
x, x3 + 1, x2 − 1

]
(10)

Type: List Polynomial Integer

If you wish to test whether a
key is in a table, the search
operation is used. This
operation returns either an
entry or "failed".

search(x, t)

"The easiest to factor" (11)
Type: Union(String, ...)

search(x**2, t)

"failed" (12)
Type: Union("failed", ...)

The return type is a union so
the success of the search can be
tested using case.

search(x**2, t) case "failed"

true (13)
Type: Boolean

The remove! operation is used
to delete values from a table.

remove!(x**2-1, t)

"Easy to factor" (14)
Type: Union(String, ...)

If an entry exists under the key,
then it is returned. Otherwise
remove! returns "failed".

remove!(x-1, t)

"failed" (15)
Type: Union("failed", ...)

The number of key-entry pairs
can be found using the #
operation.

#t

2 (16)
Type: PositiveInteger

Just as keys returns a list of
keys to the table, a list of all the
entries can be obtained using
the members operation.

members t

["The easiest to factor", "Harder to factor"] (17)
Type: List String

A number of useful operations
take functions and map them on
to the table to compute the
result. Here we count the entries
which have "Hard" as a prefix.

count(s: String +-> prefix?("Hard", s), t)

1 (18)
Type: PositiveInteger

Other table types are provided to support various needs.

• AssociationList gives a list with a table view. This allows new entries
to be appended onto the front of the list to cover up old entries. This
is useful when table entries need to be stacked or when frequent list
traversals are required. See ‘AssociationList’ on page 352 for more

586 · Some Examples of Domains and Packages

information.
• EqTable gives tables in which keys are considered equal only when

they are in fact the same instance of a structure. See ‘EqTable’ on
page 406 for more information.

• StringTable should be used when the keys are known to be strings.
See ‘StringTable’ on page 581 for more information.

• SparseTable provides tables with default entries, so lookup never fails.
The GeneralSparseTable constructor can be used to make any table
type behave this way. See ‘SparseTable’ on page 568 for more infor-
mation.

• KeyedAccessFile allows values to be saved in a file, accessed as a table.
See ‘KeyedAccessFile’ on page 460 for more information.

Issue the system command)show Table to display the full list of opera-
tions defined by Table.

9.75. Table · 587

9.76
TextFile

The domain TextFile allows AXIOM to read and write character data and
exchange text with other programs. This type behaves in AXIOM much
like a File of strings, with additional operations to cause new lines. We
give an example of how to produce an upper case copy of a file.

This is the file from which we
read the text.

f1: TextFile := open("/etc/group", "input")

"/etc/group" (1)
Type: TextFile

This is the file to which we read
the text.

f2: TextFile := open("/tmp/MOTD", "output")

"/tmp/MOTD" (2)
Type: TextFile

Entire lines are handled using
the readLine! and writeLine!
operations.

l := readLine! f1

"system:*:0:root" (3)
Type: String

writeLine!(f2, upperCase l)

"SYSTEM:*:0:ROOT" (4)
Type: String

Use the endOfFile? operation
to check if you have reached the
end of the file.

while not endOfFile? f1 repeat
s := readLine! f1
writeLine!(f2, upperCase s)

Type: Void

The file f1 is exhausted and
should be closed.

close! f1

"/etc/group" (6)
Type: TextFile

It is sometimes useful to write
lines a bit at a time. The
write! operation allows this.

write!(f2, "-The-")

"-The-" (7)
Type: String

write!(f2, "-End-")

"-End-" (8)
Type: String

This ends the line. This is done
in a machine-dependent manner.

writeLine! f2

"" (9)
Type: String

588 · Some Examples of Domains and Packages

close! f2

"/tmp/MOTD" (10)
Type: TextFile

Finally, clean up.)system rm /tmp/MOTD

For more information on related topics, see ‘File’ on page 420, ‘KeyedAc-
cessFile’ on page 460, and ‘Library’ on page 474. Issue the system command
)show TextFile to display the full list of operations defined by TextFile.

9.76. TextFile · 589

9.77
TwoDimensional-
Array

The TwoDimensionalArray domain is used for storing data in a two-dimen-
sional data structure indexed by row and by column. Such an array is
a homogeneous data structure in that all the entries of the array must
belong to the same AXIOM domain (although see Section 2.6 on page
112). Each array has a fixed number of rows and columns specified by
the user and arrays are not extensible. In AXIOM, the indexing of two-
dimensional arrays is one-based. This means that both the “first” row of
an array and the “first” column of an array are given the index 1. Thus,
the entry in the upper left corner of an array is in position (1,1).

The operation new creates an array with a specified number of rows and
columns and fills the components of that array with a specified entry. The
arguments of this operation specify the number of rows, the number of
columns, and the entry.

This creates a five-by-four array
of integers, all of whose entries
are zero.

arr : ARRAY2 INT := new(5,4,0)



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




(1)

Type: TwoDimensionalArray Integer

The entries of this array can be set to other integers using the operation
setelt.

Issue this to set the element in
the upper left corner of this
array to 17.

setelt(arr,1,1,17)

17 (2)
Type: PositiveInteger

Now the first element of the
array is 17.

arr



17 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




(3)

Type: TwoDimensionalArray Integer

Likewise, elements of an array
are extracted using the
operation elt.

elt(arr,1,1)

17 (4)
Type: PositiveInteger

Another way to use these two
operations is as follows. This
sets the element in position
(3,2) of the array to 15.

arr(3,2) := 15

15 (5)
Type: PositiveInteger

590 · Some Examples of Domains and Packages

This extracts the element in
position (3,2) of the array.

arr(3,2)

15 (6)
Type: PositiveInteger

The operations elt and setelt come equipped with an error check which
verifies that the indices are in the proper ranges. For example, the above
array has five rows and four columns, so if you ask for the entry in posi-
tion (6,2) with arr(6,2) AXIOM displays an error message. If there is
no need for an error check, you can call the operations qelt and qsetelt!
which provide the same functionality but without the error check. Typi-
cally, these operations are called in well-tested programs.

The operations row and
column extract rows and
columns, respectively, and
return objects of
OneDimensionalArray with the
same underlying element type.

row(arr,1)

[17, 0, 0, 0] (7)
Type: OneDimensionalArray Integer

column(arr,1)

[17, 0, 0, 0, 0] (8)
Type: OneDimensionalArray Integer

You can determine the
dimensions of an array by
calling the operations nrows
and ncols, which return the
number of rows and columns,
respectively.

nrows(arr)

5 (9)
Type: PositiveInteger

ncols(arr)

4 (10)
Type: PositiveInteger

To apply an operation to every
element of an array, use map.
This creates a new array. This
expression negates every
element.

map(-,arr)



−17 0 0 0
0 0 0 0
0 −15 0 0
0 0 0 0
0 0 0 0




(11)

Type: TwoDimensionalArray Integer

9.77. TwoDimensionalArray · 591

This creates an array where all
the elements are doubled.

map((x +-> x + x),arr)



34 0 0 0
0 0 0 0
0 30 0 0
0 0 0 0
0 0 0 0




(12)

Type: TwoDimensionalArray Integer

To change the array
destructively, use map! instead
of map. If you need to make a
copy of any array, use copy.

arrc := copy(arr)



17 0 0 0
0 0 0 0
0 15 0 0
0 0 0 0
0 0 0 0




(13)

Type: TwoDimensionalArray Integer

map!(-,arrc)



−17 0 0 0
0 0 0 0
0 −15 0 0
0 0 0 0
0 0 0 0




(14)

Type: TwoDimensionalArray Integer
arrc



−17 0 0 0
0 0 0 0
0 −15 0 0
0 0 0 0
0 0 0 0




(15)

Type: TwoDimensionalArray Integer
arr



17 0 0 0
0 0 0 0
0 15 0 0
0 0 0 0
0 0 0 0




(16)

Type: TwoDimensionalArray Integer

Use member? to see if a given
element is in an array.

member?(17,arr)

true (17)
Type: Boolean

592 · Some Examples of Domains and Packages

member?(10317,arr)

false (18)
Type: Boolean

To see how many times an
element appears in an array, use
count.

count(17,arr)

1 (19)
Type: PositiveInteger

count(0,arr)

18 (20)
Type: PositiveInteger

For more information about the operations available for TwoDimension-
alArray, issue)show TwoDimensionalArray. For information on related
topics, see ‘Matrix’ on page 500 and ‘OneDimensionalArray’ on page 514.

9.77. TwoDimensionalArray · 593

9.78
Univariate-
Polynomial

The domain constructor UnivariatePolynomial (abbreviated UP) creates do-
mains of univariate polynomials in a specified variable. For example, the
domain UP(a1,POLY FRAC INT) provides polynomials in the single variable
a1 whose coefficients are general polynomials with rational number coef-
ficients.

Restriction:
AXIOM does not allow you to create types where Univariate-

Polynomial is contained in the coefficient type of Polynomial.
Therefore, UP(x,POLY INT) is legal but POLY UP(x,INT) is not.

UP(x,INT) is the domain of
polynomials in the single
variable x with integer
coefficients.

(p,q) : UP(x,INT)

Type: Void

p := (3*x-1)**2 * (2*x + 8)

18 x3 + 60 x2 − 46 x + 8 (2)
Type: UnivariatePolynomial(x, Integer)

q := (1 - 6*x + 9*x**2)**2

81 x4 − 108 x3 + 54 x2 − 12 x + 1 (3)
Type: UnivariatePolynomial(x, Integer)

The usual arithmetic operations
are available for univariate
polynomials.

p**2 + p*q

1458 x7 + 3240 x6 − 7074 x5 + 10584 x4 − 9282 x3+
4120 x2 − 878 x + 72

(4)

Type: UnivariatePolynomial(x, Integer)

The operation
leadingCoefficient extracts
the coefficient of the term of
highest degree.

leadingCoefficient p

18 (5)
Type: PositiveInteger

The operation degree returns
the degree of the polynomial.
Since the polynomial has only
one variable, the variable is not
supplied to operations like
degree.

degree p

3 (6)
Type: PositiveInteger

The reductum of the
polynomial, the polynomial
obtained by subtracting the
term of highest order, is
returned by reductum.

reductum p

60 x2 − 46 x + 8 (7)
Type: UnivariatePolynomial(x, Integer)

594 · Some Examples of Domains and Packages

The operation gcd computes
the greatest common divisor of
two polynomials.

gcd(p,q)

9 x2 − 6 x + 1 (8)
Type: UnivariatePolynomial(x, Integer)

The operation lcm computes
the least common multiple.

lcm(p,q)

162 x5 + 432 x4 − 756 x3 + 408 x2 − 94 x + 8 (9)
Type: UnivariatePolynomial(x, Integer)

The operation resultant
computes the resultant of two
univariate polynomials. In the
case of p and q, the resultant is
0 because they share a common
root.

resultant(p,q)

0 (10)
Type: NonNegativeInteger

To compute the derivative of a
univariate polynomial with
respect to its variable, use D.

D p

54 x2 + 120 x− 46 (11)
Type: UnivariatePolynomial(x, Integer)

Univariate polynomials can also
be used as if they were
functions. To evaluate a
univariate polynomial at some
point, apply the polynomial to
the point.

p(2)

300 (12)
Type: PositiveInteger

The same syntax is used for
composing two univariate
polynomials, i.e. substituting
one polynomial for the variable
in another. This substitutes q
for the variable in p.

p(q)

9565938 x12 − 38263752 x11 + 70150212 x10 − 77944680 x9+
58852170 x8 − 32227632 x7 + 13349448 x6 − 4280688 x5+
1058184 x4 − 192672 x3 + 23328 x2 − 1536 x + 40

(13)

Type: UnivariatePolynomial(x, Integer)

This substitutes p for the
variable in q.

q(p)

8503056 x12 + 113374080 x11 + 479950272 x10 + 404997408 x9−
1369516896 x8 − 626146848 x7 + 2939858712 x6 − 2780728704 x5

+1364312160 x4 − 396838872 x3 + 69205896 x2 − 6716184 x+
279841

(14)

Type: UnivariatePolynomial(x, Integer)

To obtain a list of coefficients of
the polynomial, use
coefficients.

l := coefficients p

[18, 60, −46, 8] (15)
Type: List Integer

From this you can use gcd and
reduce to compute the content
of the polynomial.

reduce(gcd,l)

2 (16)
Type: PositiveInteger

9.78. UnivariatePolynomial · 595

Alternatively (and more easily),
you can just call content.

content p

2 (17)
Type: PositiveInteger

Note that the operation coefficients omits the zero coefficients from the
list. Sometimes it is useful to convert a univariate polynomial to a vector
whose i th position contains the degree i-1 coefficient of the polynomial.

ux := (x**4+2*x+3)::UP(x,INT)

x4 + 2 x + 3 (18)
Type: UnivariatePolynomial(x, Integer)

To get a complete vector of
coefficients, use the operation
vectorise, which takes a
univariate polynomial and an
integer denoting the length of
the desired vector.

vectorise(ux,5)

[3, 2, 0, 0, 1] (19)
Type: Vector Integer

It is common to want to do something to every term of a polynomial,
creating a new polynomial in the process.

This is a function for iterating
across the terms of a
polynomial, squaring each term.

squareTerms(p) ==
reduce(+,[t**2 for t in monomials p])

Type: Void

Recall what p looked like. p

18 x3 + 60 x2 − 46 x + 8 (21)
Type: UnivariatePolynomial(x, Integer)

We can demonstrate
squareTerms on p.

squareTerms p

Compiling function squareTerms with type
UnivariatePolynomial(x,Integer) ->
UnivariatePolynomial(x,Integer)

324 x6 + 3600 x4 + 2116 x2 + 64 (22)
Type: UnivariatePolynomial(x, Integer)

When the coefficients of the univariate polynomial belong to a field,7 it
is possible to compute quotients and remainders.

(r,s) : UP(a1,FRAC INT)

Type: Void

7For example, when the coefficients are rational numbers, as opposed to integers.
The important property of a field is that non-zero elements can be divided and produce
another element. The quotient of the integers 2 and 3 is not another integer.

596 · Some Examples of Domains and Packages

r := a1**2 - 2/3

a12 − 2
3

(24)

Type: UnivariatePolynomial(a1, Fraction Integer)

s := a1 + 4

a1 + 4 (25)
Type: UnivariatePolynomial(a1, Fraction Integer)

When the coefficients are
rational numbers or rational
expressions, the operation quo
computes the quotient of two
polynomials.

r quo s

a1− 4 (26)
Type: UnivariatePolynomial(a1, Fraction Integer)

The operation rem computes
the remainder.

r rem s

46
3

(27)

Type: UnivariatePolynomial(a1, Fraction Integer)

The operation divide can be
used to return a record of both
components.

d := divide(r, s)
[
quotient = a1− 4, remainder =

46
3

]
(28)

Type: Record(quotient: UnivariatePolynomial(a1, Fraction Integer), remainder:
UnivariatePolynomial(a1, Fraction Integer))

Now we check the arithmetic! r - (d.quotient * s + d.remainder)

0 (29)
Type: UnivariatePolynomial(a1, Fraction Integer)

It is also possible to integrate
univariate polynomials when the
coefficients belong to a field.

integrate r

1
3

a13 − 2
3

a1 (30)

Type: UnivariatePolynomial(a1, Fraction Integer)

integrate s

1
2

a12 + 4 a1 (31)

Type: UnivariatePolynomial(a1, Fraction Integer)

One application of univariate polynomials is to see expressions in terms
of a specific variable.

We start with a polynomial in
a1 whose coefficients are
quotients of polynomials in b1
and b2.

t : UP(a1,FRAC POLY INT)

Type: Void

9.78. UnivariatePolynomial · 597

Since in this case we are not
talking about using multivariate
polynomials in only two
variables, we use Polynomial. We
also use Fraction because we
want fractions.

t := a1**2 - a1/b2 + (b1**2-b1)/(b2+3)

a12 − 1
b2

a1 +
b12 − b1
b2 + 3

(33)

Type: UnivariatePolynomial(a1, Fraction Polynomial Integer)

We push all the variables into a
single quotient of polynomials.

u : FRAC POLY INT := t

a12 b22 +
(
b12 − b1 + 3 a12 − a1

)
b2− 3 a1

b22 + 3 b2
(34)

Type: Fraction Polynomial Integer

Alternatively, we can view this
as a polynomial in the variable
This is a mode-directed
conversion: you indicate as
much of the structure as you
care about and let AXIOM
decide on the full type and how
to do the transformation.

u :: UP(b1,?)

1
b2 + 3

b12 − 1
b2 + 3

b1 +
a12 b2− a1

b2
(35)

Type: UnivariatePolynomial(b1, Fraction Polynomial Integer)

See Section 8.2 on page 274 for a discussion of the factorization facil-
ities in AXIOM for univariate polynomials. For more information on
related topics, see Section 1.9 on page 73, Section 2.7 on page 113, ‘Poly-
nomial’ on page 529, ‘MultivariatePolynomial’ on page 508, and ‘Distributed-
MultivariatePolynomial’ on page 402. Issue the system command)show
UnivariatePolynomial to display the full list of operations defined by
UnivariatePolynomial.

598 · Some Examples of Domains and Packages

9.79
Universal-
Segment

The UniversalSegment domain generalizes Segment by allowing segments
without a “hi” end point.

pints := 1..

1.. (1)
Type: UniversalSegment PositiveInteger

nevens := (0..) by -2

0.. by − 2 (2)
Type: UniversalSegment NonNegativeInteger

Values of type Segment are
automatically converted to type
UniversalSegment when
appropriate.

useg: UniversalSegment(Integer) := 3..10

3..10 (3)
Type: UniversalSegment Integer

The operation hasHi is used to
test whether a segment has a hi
end point.

hasHi pints

false (4)
Type: Boolean

hasHi nevens

false (5)
Type: Boolean

hasHi useg

true (6)
Type: Boolean

All operations available on type
Segment apply to
UniversalSegment, with the
proviso that expansions produce
streams rather than lists. This
is to accommodate infinite
expansions.

expand pints

[1, 2, 3, 4, 5, 6, 7, . . .] (7)
Type: Stream Integer

expand nevens

[0, −2, −4, −6, −8, −10, −12, . . .] (8)
Type: Stream Integer

expand [1, 3, 10..15, 100..]

[1, 3, 10, 11, 12, 13, 14, . . .] (9)
Type: Stream Integer

For more information on related topics, see ‘Segment’ on page 559, ‘Seg-
mentBinding’ on page 561, ‘List’ on page 489, and ‘Stream’ on page 575.
Issue the system command)show UniversalSegment to display the full

9.79. UniversalSegment · 599

list of operations defined by UniversalSegment.

600 · Some Examples of Domains and Packages

9.80
Vector

The Vector domain is used for storing data in a one-dimensional indexed
data structure. A vector is a homogeneous data structure in that all the
components of the vector must belong to the same AXIOM domain. Each
vector has a fixed length specified by the user; vectors are not extensible.
This domain is similar to the OneDimensionalArray domain, except that
when the components of a Vector belong to a Ring, arithmetic operations
are provided. For more examples of operations that are defined for both
Vector and OneDimensionalArray, see ‘OneDimensionalArray’ on page 514.

As with the OneDimensionalArray domain, a Vector can be created by call-
ing the operation new, its components can be accessed by calling the
operations elt and qelt, and its components can be reset by calling the
operations setelt and qsetelt!.

This creates a vector of integers
of length 5 all of whose
components are 12.

u : VECTOR INT := new(5,12)

[12, 12, 12, 12, 12] (1)
Type: Vector Integer

This is how you create a vector
from a list of its components.

v : VECTOR INT := vector([1,2,3,4,5])

[1, 2, 3, 4, 5] (2)
Type: Vector Integer

Indexing for vectors begins at 1.
The last element has index equal
to the length of the vector,
which is computed by “#”.

#(v)

5 (3)
Type: PositiveInteger

This is the standard way to use
elt to extract an element.
Functionally, it is the same as if
you had typed elt(v,2).

v.2

2 (4)
Type: PositiveInteger

This is the standard way to use
setelt to change an element. It
is the same as if you had typed
setelt(v,3,99).

v.3 := 99

99 (5)
Type: PositiveInteger

Now look at v to see the change.
You can use qelt and qsetelt!
(instead of elt and setelt,
respectively) but only when you
know that the index is within
the valid range.

v

[1, 2, 99, 4, 5] (6)
Type: Vector Integer

When the components belong to
a Ring, AXIOM provides
arithmetic operations for Vector.
These include left and right
scalar multiplication.

5 * v

[5, 10, 495, 20, 25] (7)
Type: Vector Integer

9.80. Vector · 601

v * 7

[7, 14, 693, 28, 35] (8)
Type: Vector Integer

w : VECTOR INT := vector([2,3,4,5,6])

[2, 3, 4, 5, 6] (9)
Type: Vector Integer

Addition and subtraction are
also available.

v + w

[3, 5, 103, 9, 11] (10)
Type: Vector Integer

Of course, when adding or
subtracting, the two vectors
must have the same length or an
error message is displayed.

v - w

[−1, −1, 95, −1, −1] (11)
Type: Vector Integer

For more information about other aggregate domains, see the following:
‘List’ on page 489, ‘Matrix’ on page 500, ‘OneDimensionalArray’ on page 514,
‘Set’ on page 563, ‘Table’ on page 585, and ‘TwoDimensionalArray’ on page
590. Issue the system command)show Vector to display the full list of
operations defined by Vector.

602 · Some Examples of Domains and Packages

9.81
Void

When an expression is not in a value context, it is given type Void. For
example, in the expression

r := (a; b; if c then d else e; f)

values are used only from the subexpressions c and f: all others are thrown
away. The subexpressions a, b, d and e are evaluated for side-effects only
and have type Void. There is a unique value of type Void.

You will most often see results
of type Void when you declare a
variable.

a : Integer

Type: Void

Usually no output is displayed
for Void results. You can force
the display of a rather ugly
object by issuing)set message
void on.

)set message void on

b : Fraction Integer

"()"

Type: Void

)set message void off

All values can be converted to
type Void.

3::Void

Type: Void

Once a value has been converted
to Void, it cannot be recovered.

% :: PositiveInteger

Cannot convert from type Void to PositiveInteger for
value

"()"

9.81. Void · 603

9.82
WuWenTsun-
TriangularSet

The WuWenTsunTriangularSet domain constructor implements the charac-
teristic set method of Wu Wen Tsun. This algorithm decomposes an
algebraic variety into a union of regular zeros set of finitely many trian-
gular sets. The constructor takes four arguments. The first one, R, is the
coefficient ring of the polynomials; it must belong to the category Integral-
Domain. The second one, E, is the exponent monoid of the polynomials; it
must belong to the category OrderedAbelianMonoidSup. The third one, V,
is the ordered set of variables; it must belong to the category OrderedSet.
The last one is the polynomial ring; it must belong to the category Recur-
sivePolynomialCategory(R,E,V). The abbreviation for WuWenTsunTriangularSet
is WUTSET.

Let us illustrate the facilities by an example.

Define the coefficient ring. R := Integer

Integer (1)
Type: Domain

Define the list of variables, ls : List Symbol := [x,y,z,t]

[x, y, z, t] (2)
Type: List Symbol

and make it an ordered set; V := OVAR(ls)

OrderedVariableList [x , y , z , t] (3)
Type: Domain

then define the exponent
monoid.

E := IndexedExponents V

IndexedExponents OrderedVariableList [x , y , z , t] (4)
Type: Domain

Define the polynomial ring. P := NSMP(R, V)

NewSparseMultivariatePolynomial (Integer , OrderedVariableList [x , y , z
, t]) (5)

Type: Domain

Let the variables be polynomial. x: P := ’x

x (6)
Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t])

y: P := ’y

y (7)
Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t])

604 · Some Examples of Domains and Packages

z: P := ’z

z (8)
Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t])

t: P := ’t

t (9)
Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t])

Now call the
WuWenTsunTriangularSet domain
constructor.

T := WUTSET(R,E,V,P)

WuWenTsunTriangularSet (Integer , IndexedExponents OrderedVariableList
[x , y , z , t] , OrderedVariableList [x , y , z , t] ,
NewSparseMultivariatePolynomial (Integer , OrderedVariableList [x , y , z
, t]))

(10)

Type: Domain

Define a polynomial system. p1 := x ** 31 - x ** 6 - x - y

x31 − x6 − x− y (11)
Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t])

p2 := x ** 8 - z

x8 − z (12)
Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t])

p3 := x ** 10 - t

x10 − t (13)
Type: NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t])

lp := [p1, p2, p3]
[
x31 − x6 − x− y, x8 − z, x10 − t

]
(14)

Type: List NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z,
t])

Compute a characteristic set of
the system.

characteristicSet(lp)$T




z5 − t4,

t4 z2 y2 + 2 t3 z4 y +
(
−t7 + 2 t4 − t

)
z6 + t6 z,(

t3 − 1
)

z3 x− z3 y − t3





(15)

Type: Union(WuWenTsunTriangularSet(Integer, IndexedExponents
OrderedVariableList [x, y, z, t], OrderedVariableList [x, y, z, t],
NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t])),
...)

9.82. WuWenTsunTriangularSet · 605

Solve the system. zeroSetSplit(lp)$T



{t, z, y, x},{
t3 − 1, z5 − t4, z3 y + t3, z x2 − t

}
,{

z5 − t4, t4 z2 y2 + 2 t3 z4 y +
(
−t7 + 2 t4 − t

)
z6 + t6 z,(

t3 − 1
)

z3 x− z3 y − t3
}




(16)

Type: List WuWenTsunTriangularSet(Integer, IndexedExponents
OrderedVariableList [x, y, z, t], OrderedVariableList [x, y, z, t],
NewSparseMultivariatePolynomial(Integer, OrderedVariableList [x, y, z, t]))

The RegularTriangularSet and SquareFreeRegularTriangularSet domain construc-
tors, and the LazardSetSolvingPackage and ZeroDimensionalSolvePackage pack-
age constructors also provide operations to compute triangular decompo-
sitions of algebraic varieties. These four constructor use a special kind of
characteristic sets, called regular triangular sets. These special character-
istic sets have better properties than the general ones. Regular triangular
sets and their related concepts are presented in the paper ”On the The-
ories of Triangular sets” By P. Aubry, D. Lazard and M. Moreno Maza
(to appear in the Journal of Symbolic Computation). The decomposition
algorithm (due to the third author) available in the four above construc-
tors provide generally better timings than the characteristic set method.
In fact, the WUTSET constructor remains interesting for the purpose of
manipulating characteristic sets whereas the other constructors are more
convenient for solving polynomial systems.

Note that the way of understanding triangular decompositions is detailed
in the documentation of the RegularTriangularSet constructor.

606 · Some Examples of Domains and Packages

9.83
ZeroDimensional-
SolvePackage

The ZeroDimensionalSolvePackage package constructor provides operations
for computing symbolically the complex or real roots of zero-dimensional
algebraic systems.

The package provides no multiplicity information (i.e. some returned
roots may be double or higher) but only distinct roots are returned.

Complex roots are given by means of univariate representations of irre-
ducible regular chains. These univariate representations are computed
by the InternalRationalUnivariateRepresentationPackage package constructor.
Real roots are given by means of tuples of coordinates lying in the Real-
Closure of the coefficient ring.

The ZeroDimensionalSolvePackage constructor takes three arguments. The
first one R is the coefficient ring; it must belong to the categories Or-
deredRing, EuclideanDomain, CharacteristicZero and RealConstant. This means
essentially that R is Integer or Fraction(Integer). The second argument ls
is the list of variables involved in the systems to solve. The third one
must be concat(ls,s) where s is an additional symbol used for the uni-
variate representations. The abbreviation for ZeroDimensionalSolvePackage
is ZDSOLVE.

Both computations of complex roots and real roots rely on triangular
decompositions by means of the RegularTriangularSet domain constructor.
No Groebner bases are computed.

We illustrate now how to use the constructor ZDSOLVE by two examples:
the Arnborg-Lazard system and the L-3 system (Aubry-Moreno Maza).

Define the coefficient ring. R := Integer

Integer (1)
Type: Domain

Define the lists of variables: ls : List Symbol := [x,y,z,t]

[x, y, z, t] (2)
Type: List Symbol

and: ls2 : List Symbol := [x,y,z,t,new()$Symbol]

[x, y, z, t, %A] (3)
Type: List Symbol

Call the package: pack := ZDSOLVE(R,ls,ls2)

ZeroDimensionalSolvePackage(Integer, [x, y, z, t], [x, y, z, t, (4)
Type: Domain

9.83. ZeroDimensionalSolvePackage · 607

Define a polynomial system
(Arnborg-Lazard)

p1 := x**2*y*z + x*y**2*z + x*y*z**2 + x*y*z + x*y + x*z +
y*z

x y z2 +
(
x y2 +

(
x2 + x + 1

)
y + x

)
z + x y (5)

Type: Polynomial Integer

p2 := x**2*y**2*z + x*y**2*z**2 + x**2*y*z + x*y*z + y*z +
x + z

x y2 z2 +
(
x2 y2 +

(
x2 + x + 1

)
y + 1

)
z + x (6)

Type: Polynomial Integer

p3 := x**2*y**2*z**2 + x**2*y**2*z + x*y**2*z + x*y*z +
x*z + z + 1

x2 y2 z2 +
((

x2 + x
)

y2 + x y + x + 1
)

z + 1 (7)

Type: Polynomial Integer

lp := [p1, p2, p3]



x y z2 +
(
x y2 +

(
x2 + x + 1

)
y + x

)
z + x y,

x y2 z2 +
(
x2 y2 +

(
x2 + x + 1

)
y + 1

)
z + x,

x2 y2 z2 +
((

x2 + x
)

y2 + x y + x + 1
)

z + 1


 (8)

Type: List Polynomial Integer

Note that these polynomials do not involve the variable t; we will use it
in the second example.

608 · Some Examples of Domains and Packages

First compute a decomposition
into regular chains (i.e. regular
triangular sets).

triangSolve(lp)$pack







z20 − 6 z19 − 41 z18 + 71 z17 + 106 z16 + 92 z15 + 197 z14+
145 z13 + 257 z12 + 278 z11 + 201 z10 + 278 z9 + 257 z8+
145 z7 + 197 z6 + 92 z5 + 106 z4 + 71 z3 − 41 z2 − 6 z + 1,(
14745844 z19 + 50357474 z18 − 130948857 z17

−185261586 z16 − 180077775 z15 − 338007307 z14

−275379623 z13 − 453190404 z12 − 474597456 z11

−366147695 z10 − 481433567 z9 − 430613166 z8

−261878358 z7 − 326073537 z6 − 163008796 z5

−177213227 z4 − 104356755 z3 + 65241699 z2

+9237732 z − 1567348) y + 1917314 z19 + 6508991 z18

−16973165 z17 − 24000259 z16 − 23349192 z15 − 43786426 z14

−35696474 z13 − 58724172 z12 − 61480792 z11 − 47452440 z10

−62378085 z9 − 55776527 z8 − 33940618 z7 − 42233406 z6

−21122875 z5 − 22958177 z4 − 13504569 z3 + 8448317 z2+
1195888 z − 202934,((

z3 − 2 z
)

y2 +
(
−z3 − z2 − 2 z − 1

)
y − z2 − z + 1

)
x+

z2 − 1








(9)

Type: List RegularChain(Integer, [x, y, z, t])

We can see easily from this decomposition (consisting of a single regular
chain) that the input system has 20 complex roots.

9.83. ZeroDimensionalSolvePackage · 609

Then we compute a univariate
representation of this regular
chain.

univariateSolve(lp)$pack






complexRoots =




?12 − 12 ?11 + 24 ?10 + 4 ?9 − 9 ?8+
27 ?7 − 21 ?6 + 27 ?5 − 9 ?4 + 4 ?3+
24 ?2 − 12 ? + 1


,

coordinates =




63 x + 62 %A11 − 721 %A10 + 1220 %A9+
705 %A8 − 285 %A7 + 1512 %A6−
735 %A5 + 1401 %A4 − 21 %A3+
215 %A2 + 1577 %A− 142,
63 y − 75 %A11 + 890 %A10 − 1682 %A9−
516 %A8 + 588 %A7 − 1953 %A6+
1323 %A5 − 1815 %A4 + 426 %A3−
243 %A2 − 1801 %A + 679,
z −%A







,

[
complexRoots = ?6 + ?5 + ?4 + ?3 + ?2+? + 1,

coordinates =
[
x−%A5, y −%A3, z −%A

]
]
,

[
complexRoots = ?2 + 5 ? + 1,
coordinates = [x− 1, y − 1, z −%A]

]




(10)

Type: List Record(complexRoots: SparseUnivariatePolynomial Integer, coordinates:
List Polynomial Integer)

We see that the zeros of our regular chain are split into three components.
This is due to the use of univariate polynomial factorization.

Each of these components consist of two parts. The first one is an ir-
reducible univariate polynomial p(?) which defines a simple algebraic
extension of the field of fractions of R. The second one consists of multi-
variate polynomials pol1(x,%A), pol2(y,%A) and pol3(z,%A). Each
of these polynomials involve two variables: one is an indeterminate x, y
or z of the input system lp and the other is %A which represents any root
of p(?). Recall that this %A is the last element of the third parameter of
ZDSOLVE. Thus any complex root ? of p(?) leads to a solution of the in-
put system lp by replacing %A by this ? in pol1(x,%A), pol2(y,%A)
and pol3(z,%A). Note that the polynomials pol1(x,%A), pol2(y,%A)
and pol3(z,%A) have degree one w.r.t. x, y or z respectively. This is
always the case for all univariate representations. Hence the operation
univariateSolve replaces a system of multivariate polynomials by a list
of univariate polynomials, what justifies its name.

610 · Some Examples of Domains and Packages

We now compute the solutions
with real coordinates:

lr := realSolve(lp)$pack
[[

%R1,
1184459
1645371

%R119 − 2335702
548457

%R118 − 5460230
182819

%R117 +
79900378
1645371

%R116 +
43953929
548457

%R115 +
13420192
182819

%R114 +
553986
3731

%R113 +
193381378
1645371

%R112 +
35978916
182819

%R111 +
358660781
1645371

%R110 +
271667666
1645371

%R19 +
118784873

548457
%R18 +

337505020
1645371

%R17 +
1389370
11193

%R16 +
688291
4459

%R15 +
3378002
42189

%R14 +
140671876
1645371

%R13 +
32325724
548457

%R12 − 8270
343

%R1− 9741532
1645371

, − 91729
705159

%R119 +
487915
705159

%R118 +
4114333
705159

%R117 − 1276987
235053

%R116 − 13243117
705159

%R115 − 16292173
705159

%R114 − 26536060
705159

%R113 − 722714
18081

%R112 − 5382578
100737

%R111 − 15449995
235053

%R110 − 14279770
235053

%R19 − 6603890
100737

%R18 − 409930
6027

%R17 − 37340389
705159

%R16 − 34893715
705159

%R15 − 26686318
705159

%R14 − 801511
26117

%R13 − 17206178
705159

%R12 − 4406102
705159

%R1 +
377534
705159

]
,

[
%R2,

1184459
1645371

%R219 − 2335702
548457

%R218 − 5460230
182819

%R217 +
79900378
1645371

%R216 +
43953929
548457

%R215 +
13420192
182819

%R214 +
553986
3731

%R213 +
193381378
1645371

%R212 +
35978916
182819

%R211 +
358660781
1645371

%R210 +
271667666
1645371

%R29 +
118784873

548457
%R28 +

337505020
1645371

%R27 +
1389370
11193

%R26 +
688291
4459

%R25 +
3378002
42189

%R24 +
140671876
1645371

%R23 +
32325724
548457

%R22 − 8270
343

%R2− 9741532
1645371

, − 91729
705159

%R219 +
487915
705159

%R218 +
4114333
705159

%R217 − 1276987
235053

%R216 − 13243117
705159

%R215 − 16292173
705159

%R214 − 26536060
705159

%R213 − 722714
18081

%R212 − 5382578
100737

%R211 − 15449995
235053

%R210 − 14279770
235053

%R29 − 6603890
100737

%R28 − 409930
6027

%R27 − 37340389
705159

%R26 − 34893715
705159

%R25 − 26686318
705159

%R24 − 801511
26117

%R23 − 17206178
705159

%R22 − 4406102
705159

%R2 +
377534
705159

]
,

[
%R3,

1184459
1645371

%R319 − 2335702
548457

%R318 − 5460230
182819

%R317 +
79900378
1645371

%R316 +
43953929
548457

%R315 +
13420192
182819

%R314 +
553986
3731

%R313 +
193381378
1645371

%R312 +
35978916
182819

%R311 +
358660781
1645371

%R310 +
271667666
1645371

%R39 +
118784873

548457
%R38 +

337505020
1645371

%R37 +
1389370
11193

%R36 +
688291
4459

%R35 +
3378002
42189

%R34 +
140671876
1645371

%R33 +
32325724
548457

%R32 − 8270
343

%R3− 9741532
1645371

, − 91729
705159

%R319 +
487915
705159

%R318 +
4114333
705159

%R317 − 1276987
235053

%R316 − 13243117
705159

%R315 − 16292173
705159

%R314 − 26536060
705159

%R313 − 722714
18081

%R312 − 5382578
100737

%R311 − 15449995
235053

%R310 − 14279770
235053

%R39 − 6603890
100737

%R38 − 409930
6027

%R37 − 37340389
705159

%R36 − 34893715
705159

%R35 − 26686318
705159

%R34 − 801511
26117

%R33 − 17206178
705159

%R32 − 4406102
705159

%R3 +
377534
705159

]
,

[
%R4,

1184459
1645371

%R419 − 2335702
548457

%R418 − 5460230
182819

%R417 +
79900378
1645371

%R416 +
43953929
548457

%R415 +
13420192
182819

%R414 +
553986
3731

%R413 +
193381378
1645371

%R412 +
35978916
182819

%R411 +
358660781
1645371

%R410 +
271667666
1645371

%R49 +
118784873

548457
%R48 +

337505020
1645371

%R47 +
1389370
11193

%R46 +
688291
4459

%R45 +
3378002
42189

%R44 +
140671876
1645371

%R43 +
32325724
548457

%R42 − 8270
343

%R4− 9741532
1645371

, − 91729
705159

%R419 +
487915
705159

%R418 +
4114333
705159

%R417 − 1276987
235053

%R416 − 13243117
705159

%R415 − 16292173
705159

%R414 − 26536060
705159

%R413 − 722714
18081

%R412 − 5382578
100737

%R411 − 15449995
235053

%R410 − 14279770
235053

%R49 − 6603890
100737

%R48 − 409930
6027

%R47 − 37340389
705159

%R46 − 34893715
705159

%R45 − 26686318
705159

%R44 − 801511
26117

%R43 − 17206178
705159

%R42 − 4406102
705159

%R4 +
377534
705159

]
,

[
%R5,

1184459
1645371

%R519 − 2335702
548457

%R518 − 5460230
182819

%R517 +
79900378
1645371

%R516 +
43953929
548457

%R515 +
13420192
182819

%R514 +
553986
3731

%R513 +
193381378
1645371

%R512 +
35978916
182819

%R511 +
358660781
1645371

%R510 +
271667666
1645371

%R59 +
118784873

548457
%R58 +

337505020
1645371

%R57 +
1389370
11193

%R56 +
688291
4459

%R55 +
3378002
42189

%R54 +
140671876
1645371

%R53 +
32325724
548457

%R52 − 8270
343

%R5− 9741532
1645371

, − 91729
705159

%R519 +
487915
705159

%R518 +
4114333
705159

%R517 − 1276987
235053

%R516 − 13243117
705159

%R515 − 16292173
705159

%R514 − 26536060
705159

%R513 − 722714
18081

%R512 − 5382578
100737

%R511 − 15449995
235053

%R510 − 14279770
235053

%R59 − 6603890
100737

%R58 − 409930
6027

%R57 − 37340389
705159

%R56 − 34893715
705159

%R55 − 26686318
705159

%R54 − 801511
26117

%R53 − 17206178
705159

%R52 − 4406102
705159

%R5 +
377534
705159

]
,

[
%R6,

1184459
1645371

%R619 − 2335702
548457

%R618 − 5460230
182819

%R617 +
79900378
1645371

%R616 +
43953929
548457

%R615 +
13420192
182819

%R614 +
553986
3731

%R613 +
193381378
1645371

%R612 +
35978916
182819

%R611 +
358660781
1645371

%R610 +
271667666
1645371

%R69 +
118784873

548457
%R68 +

337505020
1645371

%R67 +
1389370
11193

%R66 +
688291
4459

%R65 +
3378002
42189

%R64 +
140671876
1645371

%R63 +
32325724
548457

%R62 − 8270
343

%R6− 9741532
1645371

, − 91729
705159

%R619 +
487915
705159

%R618 +
4114333
705159

%R617 − 1276987
235053

%R616 − 13243117
705159

%R615 − 16292173
705159

%R614 − 26536060
705159

%R613 − 722714
18081

%R612 − 5382578
100737

%R611 − 15449995
235053

%R610 − 14279770
235053

%R69 − 6603890
100737

%R68 − 409930
6027

%R67 − 37340389
705159

%R66 − 34893715
705159

%R65 − 26686318
705159

%R64 − 801511
26117

%R63 − 17206178
705159

%R62 − 4406102
705159

%R6 +
377534
705159

]
,

[
%R7,

1184459
1645371

%R719 − 2335702
548457

%R718 − 5460230
182819

%R717 +
79900378
1645371

%R716 +
43953929
548457

%R715 +
13420192
182819

%R714 +
553986
3731

%R713 +
193381378
1645371

%R712 +
35978916
182819

%R711 +
358660781
1645371

%R710 +
271667666
1645371

%R79 +
118784873

548457
%R78 +

337505020
1645371

%R77 +
1389370
11193

%R76 +
688291
4459

%R75 +
3378002
42189

%R74 +
140671876
1645371

%R73 +
32325724
548457

%R72 − 8270
343

%R7− 9741532
1645371

, − 91729
705159

%R719 +
487915
705159

%R718 +
4114333
705159

%R717 − 1276987
235053

%R716 − 13243117
705159

%R715 − 16292173
705159

%R714 − 26536060
705159

%R713 − 722714
18081

%R712 − 5382578
100737

%R711 − 15449995
235053

%R710 − 14279770
235053

%R79 − 6603890
100737

%R78 − 409930
6027

%R77 − 37340389
705159

%R76 − 34893715
705159

%R75 − 26686318
705159

%R74 − 801511
26117

%R73 − 17206178
705159

%R72 − 4406102
705159

%R7 +
377534
705159

]
,

[
%R8,

1184459
1645371

%R819 − 2335702
548457

%R818 − 5460230
182819

%R817 +
79900378
1645371

%R816 +
43953929
548457

%R815 +
13420192
182819

%R814 +
553986
3731

%R813 +
193381378
1645371

%R812 +
35978916
182819

%R811 +
358660781
1645371

%R810 +
271667666
1645371

%R89 +
118784873

548457
%R88 +

337505020
1645371

%R87 +
1389370
11193

%R86 +
688291
4459

%R85 +
3378002
42189

%R84 +
140671876
1645371

%R83 +
32325724
548457

%R82 − 8270
343

%R8− 9741532
1645371

, − 91729
705159

%R819 +
487915
705159

%R818 +
4114333
705159

%R817 − 1276987
235053

%R816 − 13243117
705159

%R815 − 16292173
705159

%R814 − 26536060
705159

%R813 − 722714
18081

%R812 − 5382578
100737

%R811 − 15449995
235053

%R810 − 14279770
235053

%R89 − 6603890
100737

%R88 − 409930
6027

%R87 − 37340389
705159

%R86 − 34893715
705159

%R85 − 26686318
705159

%R84 − 801511
26117

%R83 − 17206178
705159

%R82 − 4406102
705159

%R8 +
377534
705159

]]
(11)

Type: List List RealClosure Fraction Integer

The number of real solutions for
the input system is:

lr

8 (12)
Type: PositiveInteger

Each of these real solutions is given by a list of elements in RealClosure(R).
In these 8 lists, the first element is a value of z, the second of y and the last
of x. This is logical since by setting the list of variables of the package to
[x,y,z,t] we mean that the elimination ordering on the variables is t ¡ z ¡ y
¡ x . Note that each system treated by the ZDSOLVE package constructor
needs only to be zero-dimensional w.r.t. the variables involved in the
system it-self and not necessarily w.r.t. all the variables used to define
the package.

We can approximate these real
numbers as follows. This
computation takes between 30
sec. and 5 min, depending on
your machine.

[[approximate(r,1/1000000) for r in point] for point in
lr]

[[
−10048059

2097152
,

4503057316985387943524397913838966414596731976211768219335881208385516314058924567176091423629695777403099833360761048898228916578137094309838597331137202584846939132376157019506760357601165917454986815382098789094851523420392811293126141329856546977145464661495487825919941188447041722440491921567263542158028061437758844364634410045253024786561923163288214175
4503057283025245488516511806985826635083100693757320465280554706865644949577509916867201889438090408354817931718593862797624551518983570793048774424291488708829840324189200301436123314860200821443733790755311243632919864895421704228949571290016119498807957023663865443069392027148979688266712323356043491523434068924275280417338574817381189277066143312396681216

,
21062607688234750738947986804860165962496071486906855387636837150206396808586496507900558895056468933094470970999378021873290953258987852472490207175049836604820751566187387245146853330600112029646351663813515432559822002503052839810868371106148423070260912112979298768962856818304790547600563807626649056184620553060478161917820115887037891389881895
21062606094984641924721138048164741753419629532964341024139031423687579676852738885855909759652117788621898728819539436402462973570619598123261036597990251268632586765672023421068770317101842474841814232889218376812370627084702957062184859288674007719378284992009237605933141689010006663738963475981182285567310370720264744967762283837629939232800768

]
,

[
−2563013

2097152
, −2611346176791927789698617693237757719238259963063541781922752330440189899668072928338490768623593207442125925986733815932243504809294837523030237337236806668167446173001727271353311571242897

1165225400505222530583981916004589143757226610276858990008790134819914940922413753983971394019523433320408139928153188829495755455163963417619308395977544797140231469234269034921938055593984
,

35725945502759172210965887296157882729985170546756032395781981410060340917352828265906219023044669639419710389233045262733293163737574500619789892286110976997087250466235373
10395482693455989368770712448340260558008145511201705922005223665917594096594864423391410294529502651799899601048118758225302053465051315812439017247289173865014702966308864

]
,

[
−1715967

2097152
, −421309353378430352108483951797708239037726150396958622482899843660603065607635937456481377349837660312126782256580143620693951995146518222580524697287410022543952491

944181414418537445864969203434922405243659747096625366393064196079580588258549319984019169991765944326482464113518738358388814786734019307857605820364195856822304768
,

76358333471126442225156254244108312253474756690085893388341621725019049943763467308768090428452089199199253021057209714539189827313890725914035
262418876408609719978429761047806663393423046789585160227858097850378454920578849901964060226696602689158010354356762503901862988714128491675648

]
,

[
− 437701

2097152
,

168310690863834958832217233265422591356298631318195103145275016144149747345532815072136486835557964678160350777719907507783521336648453365491383623741304759
168310686809521338900170998270591363896307766873122611116778518800490742522629868032588781096261414029859736698426488799890837706879999845423381649008099328

,
496155010983501018642268101342210873595871480100376063970796809664691282670847283444311723917219104249213450966312411133
496154987275773831550919207821020902985289711861109712623638404082937659261914313170254867464792718363492160482442215424

]
,

[
222801
2097152

, −8994884880402428265107595121970691427136045692541978275573001865213759921588137716696126349101655220195142994932299137183241705867672383477
1167889998665026372177765100691888582708969960229934769690835752457077779416435209473767866507769405888942764587718542434255625992456372224

, −2389704888133156878320801544373808395612771509208491019847452991885509546519525467839016613593999693886640036283570552321155037871291458703265
5355487273645096326090403286689931905988225444685411433221593833681192957562833671468654290340746993656285925599117602120446183443145479421952

]
,

[
765693
2097152

,
8558969219816716267873244761178198088724698958616670140213765754322002303251685786118678330840203328837654339523418704917749518340772512899000391009630373148561
29414424455330107909764284113763934998155802159458569179064525354957230138568189417023302287798901412962367211381542319972389173221567119652444639331719460159488

, −20576182305825721012476503248602425611113025815435888088439236627675493822416593627122907776128001929214205744089480851937436885827622246433251878894899015
2671598203325735538097952353501450220576313759890835097091722520642710198771902667183948906289863714759678360292483949204616471537777775324180661095366656

]
,

[
5743879
2097152

,
107628881696890684795554639477357020817145672494261861402366312357476896085043426397139807254659277266215883344979769861745539788756290007298476800060834355318980169340872720504761255988923275756383052868895353542180948277105891754260289006094194962087408300785836666945350176624841488732463225
31317689570803179466484619400235520441903766134585849862285496319161966016162197817656155325322947465296482764305838108940793745664607578231468885811955560292085152188388832003186584074693994260632605898286123092315966691297079864813198515719429272303406229340239234867030420681530440845099008

, − 2113286699185750918364120475565458437870172489865485994389828135335264444665284557526492734931691731407872701432935503473348172076098720545849008780077564160534317894688366119529739980502944162668550098127961950496210221942878089359674925850594427768502251789758706752831632503615
16276155849379875802429066243471045808891444661684597180431538394083725255333098080703636995855022160112110871032636095510260277694140873911481262211681397816825874380753225914661319399754572005223498385689642856344480185620382723787873544601061061415180109356172051706396253618176

]
,

[
19739877
2097152

, − 29972499368327033037990158048615209492150403875007071777012857667201925305794224789535660243598601431015478016380827716111603722128748477780358098728431492254842383658580136293417053217025823333509180096017899370239859353049004604933898738370308534103470899088808148539811320184645824588006153947707416994872958759602107502158919488144768548710315309312954673321901337026710982009022823005107518607185928457030277807397796525813862762239286996106809728023675
230843327485227859072891008119181102390650414132143264612393679487393331927060896070213819341764789836062022951917663293763178685145501476602720625902225250555174182368889688380663660257443176047224029209319672947516024726883412114189331884872866184443492728728511289708076755286489505658586403317856591038706500611280151640352274103736099055605447694952705922707080959304949125751955470887925959552929920110858560812556635485429471554031675979542656381353984

, −512818926354822848909627639786894008060093841066308045940796633584500926410949052045982531625008472301004703502449743652303892581895928931293158470135392762143543439867426304729390912285013385199069649023156609437199433379507078262401172758774998929661127731837229462420711653791043655457414608288470130554391262041935488541073594015777589660282236457586461183151294397397471516692046506185060376287516256195847052412587282839139194642913955
228828193977843933053120879318129047118363109245536899038639082424350946364423624977308064743898773914492160779468265385174118909171174186814511497833728419182249767586835872948664473085662255268720920372441180048140570283719831064229127567619577461444381599671350262939174978359004147086012775237299648862774267248762248006326880888932489185084249493434733760307593998026820848290485967817775144465749979827872616963053217673201717237252096

]]
(13)

Type: List List Fraction Integer

We can also concentrate on the
solutions with real (strictly)
positive coordinates:

lpr := positiveSolve(lp)$pack

[] (14)
Type: List List RealClosure Fraction Integer

Thus we have checked that the input system has no solution with strictly
positive coordinates.

Let us define another
polynomial system (L-3).

f0 := x**3 + y + z + t- 1

z + y + x3 + t− 1 (15)
Type: Polynomial Integer

f1 := x + y**3 + z + t -1

z + y3 + x + t− 1 (16)
Type: Polynomial Integer

f2 := x + y + z**3 + t-1

z3 + y + x + t− 1 (17)
Type: Polynomial Integer

9.83. ZeroDimensionalSolvePackage · 611

f3 := x + y + z + t**3 -1

z + y + x + t3 − 1 (18)
Type: Polynomial Integer

lf := [f0, f1, f2, f3]
[
z + y + x3 + t− 1, z + y3 + x + t− 1,
z3 + y + x + t− 1, z + y + x + t3 − 1

]
(19)

Type: List Polynomial Integer

First compute a decomposition
into regular chains (i.e. regular
triangular sets).

lts := triangSolve(lf)$pack
[{

t2 + t + 1, z3 − z − t3 + t,
(
3 z + 3 t3 − 3

)
y2 +

(
3 z2 +

(
6 t3 − 6

)
z + 3 t6 − 6 t3 + 3

)
y +

(
3 t3 − 3

)
z2 +

(
3 t6 − 6 t3 + 3

)
z + t9 − 3 t6 + 5 t3 − 3 t, x + y + z

}
,

{
t16 − 6 t13 + 9 t10 + 4 t7 + 15 t4 − 54 t2 + 27,

(
4907232 t15 + 40893984 t14 − 115013088 t13 + 22805712 t12 + 36330336 t11 + 162959040 t10 − 159859440 t9 − 156802608 t8 + 117168768 t7 + 126282384 t6 − 129351600 t5 + 306646992 t4 + 475302816 t3 − 1006837776 t2 − 237269088 t + 480716208

)
z + 48 t54 − 912 t51 + 8232 t48 − 72 t46 − 46848 t45 + 1152 t43 + 186324 t42 − 3780 t40 − 543144 t39 − 3168 t38 − 21384 t37 + 1175251 t36 + 41184 t35 + 278003 t34 − 1843242 t33 − 301815 t32 − 1440726 t31 + 1912012 t30 + 1442826 t29 + 4696262 t28 − 922481 t27 − 4816188 t26 − 10583524 t25 − 208751 t24 + 11472138 t23 + 16762859 t22 − 857663 t21 − 19328175 t20 − 18270421 t19 + 4914903 t18 + 22483044 t17 + 12926517 t16 − 8605511 t15 − 17455518 t14 − 5014597 t13 + 8108814 t12 + 8465535 t11 + 190542 t10 − 4305624 t9 − 2226123 t8 + 661905 t7 + 1169775 t6 + 226260 t5 − 209952 t4 − 141183 t3 + 27216 t,

(
3 z + 3 t3 − 3

)
y2 +

(
3 z2 +

(
6 t3 − 6

)
z + 3 t6 − 6 t3 + 3

)
y +

(
3 t3 − 3

)
z2 +

(
3 t6 − 6 t3 + 3

)
z + t9 − 3 t6 + 5 t3 − 3 t, x + y + z + t3 − 1

}
,

{
t, z − 1, y2 − 1, x + y

}
,

{
t− 1, z, y2 − 1, x + y

}
,

{
t− 1, z2 − 1, z y + 1, x

}
,

{
t16 − 6 t13 + 9 t10 + 4 t7 + 15 t4 − 54 t2 + 27,

(
4907232 t29 + 40893984 t28 − 115013088 t27 − 1730448 t26 − 168139584 t25 + 738024480 t24 − 195372288 t23 + 315849456 t22 − 2567279232 t21 + 937147968 t20 + 1026357696 t19 + 4780488240 t18 − 2893767696 t17 − 5617160352 t16 − 3427651728 t15 + 5001100848 t14 + 8720098416 t13 + 2331732960 t12 − 499046544 t11 − 16243306272 t10 − 9748123200 t9 + 3927244320 t8 + 25257280896 t7 + 10348032096 t6 − 17128672128 t5 − 14755488768 t4 + 544086720 t3 + 10848188736 t2 + 1423614528 t− 2884297248

)
z − 48 t68 + 1152 t65 − 13560 t62 + 360 t60 + 103656 t59 − 7560 t57 − 572820 t56 + 71316 t54 + 2414556 t53 + 2736 t52 − 402876 t51 − 7985131 t50 − 49248 t49 + 1431133 t48 + 20977409 t47 + 521487 t46 − 2697635 t45 − 43763654 t44 − 3756573 t43 − 2093410 t42 + 71546495 t41 + 19699032 t40 + 35025028 t39 − 89623786 t38 − 77798760 t37 − 138654191 t36 + 87596128 t35 + 235642497 t34 + 349607642 t33 − 93299834 t32 − 551563167 t31 − 630995176 t30 + 186818962 t29 + 995427468 t28 + 828416204 t27 − 393919231 t26 − 1076617485 t25 − 1609479791 t24 + 595738126 t23 + 1198787136 t22 + 4342832069 t21 − 2075938757 t20 − 4390835799 t19 − 4822843033 t18 + 6932747678 t17 + 6172196808 t16 + 1141517740 t15 − 4981677585 t14 − 9819815280 t13 − 7404299976 t12 − 157295760 t11 + 29124027630 t10 + 14856038208 t9 − 16184101410 t8 − 26935440354 t7 − 3574164258 t6 + 10271338974 t5 + 11191425264 t4 + 6869861262 t3 − 9780477840 t2 − 3586674168 t + 2884297248,

(
3 z3 +

(
6 t3 − 6

)
z2 +

(
6 t6 − 12 t3 + 3

)
z + 2 t9 − 6 t6 + t3 + 3 t

)
y +

(
3 t3 − 3

)
z3 +

(
6 t6 − 12 t3 + 6

)
z2 +

(
4 t9 − 12 t6 + 11 t3 − 3

)
z + t12 − 4 t9 + 5 t6 − 2 t3, x + y + z + t3 − 1

}
,

{
t− 1, z2 − 1, y, x + z

}
,

{
t8 + t7 + t6 − 2 t5 − 2 t4 − 2 t3 + 19 t2 + 19 t− 8,

(
2395770 t7 + 3934440 t6 − 3902067 t5 − 10084164 t4 − 1010448 t3 + 32386932 t2 + 22413225 t− 10432368

)
z − 463519 t7 + 3586833 t6 + 9494955 t5 − 8539305 t4 − 33283098 t3 + 35479377 t2 + 46263256 t− 17419896,

(
3 z4 +

(
9 t3 − 9

)
z3 +

(
12 t6 − 24 t3 + 9

)
z2 +

(
−152 t3 + 219 t− 67

)
z − 41 t6 + 57 t4 + 25 t3 − 57 t + 16

)
y +

(
3 t3 − 3

)
z4 +

(
9 t6 − 18 t3 + 9

)
z3 +

(
−181 t3 + 270 t− 89

)
z2 +

(
−92 t6 + 135 t4 + 49 t3 − 135 t + 43

)
z + 27 t7 − 27 t6 − 54 t4 + 396 t3 − 486 t + 144, x + y + z + t3 − 1

}
,

{
t, z − t3 + 1, y − 1, x− 1

}
, {t− 1, z, y, x}, {t, z − 1, y, x}, {t, z, y − 1, x}, {t, z, y, x− 1}

]
(20)

Type: List RegularChain(Integer, [x, y, z, t])

Then we compute a univariate
representation.

univariateSolve(lf)$pack
[
[complexRoots =?, coordinates = [x− 1, y − 1, z + 1, t−%A]], [complexRoots =?, coordinates = [x, y − 1, z, t−%A]], [complexRoots = ?− 1, coordinates = [x, y, z, t−%A]], [complexRoots =?, coordinates = [x− 1, y, z, t−%A]], [complexRoots =?, coordinates = [x, y, z − 1, t−%A]], [complexRoots = ?− 2, coordinates = [x− 1, y + 1, z, t− 1]], [complexRoots =?, coordinates = [x + 1, y − 1, z, t− 1]], [complexRoots = ?− 1, coordinates = [x− 1, y + 1, z − 1, t]], [complexRoots = ? + 1, coordinates = [x + 1, y − 1, z − 1, t]],

[
complexRoots = ?6 − 2 ?3 + 3 ?2 − 3, coordinates =

[
2 x + %A3 + %A− 1, 2 y + %A3 + %A− 1, z −%A, t−%A

]]
,

[
complexRoots = ?5 + 3 ?3 − 2 ?2 + 3 ?− 3, coordinates =

[
x−%A, y −%A, z + %A3 + 2 %A− 1, t−%A

]]
,

[
complexRoots = ?4 − ?3 − 2 ?2 + 3, coordinates =

[
x + %A3 −%A− 1, y + %A3 −%A− 1, z −%A3 + 2 %A + 1, t−%A

]]
, [complexRoots = ? + 1, coordinates = [x− 1, y − 1, z, t−%A]],

[
complexRoots = ?6 + 2 ?3 + 3 ?2 − 3, coordinates =

[
2 x−%A3 −%A− 1, y + %A, 2 z −%A3 −%A− 1, t + %A

]]
,

[
complexRoots = ?6 + 12 ?4 + 20 ?3 − 45 ?2 − 42 ?− 953, coordinates =

[
12609 x + 23 %A5 + 49 %A4 − 46 %A3 + 362 %A2 − 5015 %A− 8239, 25218 y + 23 %A5 + 49 %A4 − 46 %A3 + 362 %A2 + 7594 %A− 8239, 25218 z + 23 %A5 + 49 %A4 − 46 %A3 + 362 %A2 + 7594 %A− 8239, 12609 t + 23 %A5 + 49 %A4 − 46 %A3 + 362 %A2 − 5015 %A− 8239

]]
,

[
complexRoots = ?5 + 12 ?3 − 16 ?2 + 48 ?− 96, coordinates =

[
8 x + %A3 + 8 %A− 8, 2 y −%A, 2 z −%A, 2 t−%A

]]
,

[
complexRoots = ?5 + ?4 − 5 ?3 − 3 ?2 + 9 ? + 3, coordinates =

[
2 x−%A3 + 2 %A− 1, 2 y + %A3 − 4 %A + 1, 2 z −%A3 + 2 %A− 1, 2 t−%A3 + 2 %A− 1

]]
,

[
complexRoots = ?4 − 3 ?3 + 4 ?2 − 6 ? + 13, coordinates =

[
9 x− 2 %A3 + 4 %A2 −%A + 2, 9 y + %A3 − 2 %A2 + 5 %A− 1, 9 z + %A3 − 2 %A2 + 5 %A− 1, 9 t + %A3 − 2 %A2 − 4 %A− 1

]]
,

[
complexRoots = ?4 − 11 ?2 + 37, coordinates =

[
3 x−%A2 + 7, 6 y + %A2 + 3 %A− 7, 3 z −%A2 + 7, 6 t + %A2 − 3 %A− 7

]]
, [complexRoots = ? + 1, coordinates = [x− 1, y, z − 1, t + 1]], [complexRoots = ? + 2, coordinates = [x, y − 1, z − 1, t + 1]], [complexRoots = ?− 2, coordinates = [x, y − 1, z + 1, t− 1]], [complexRoots =?, coordinates = [x, y + 1, z − 1, t− 1]], [complexRoots = ?− 2, coordinates = [x− 1, y, z + 1, t− 1]], [complexRoots =?, coordinates = [x + 1, y, z − 1, t− 1]],

[
complexRoots = ?4 + 5 ?3 + 16 ?2 + 30 ? + 57, coordinates =

[
151 x + 15 %A3 + 54 %A2 + 104 %A + 93, 151 y − 10 %A3 − 36 %A2 − 19 %A− 62, 151 z − 5 %A3 − 18 %A2 − 85 %A− 31, 151 t− 5 %A3 − 18 %A2 − 85 %A− 31

]]
,

[
complexRoots = ?4 − ?3 − 2 ?2 + 3, coordinates =

[
x−%A3 + 2 %A + 1, y + %A3 −%A− 1, z −%A, t + %A3 −%A− 1

]]
,

[
complexRoots = ?4 + 2 ?3 − 8 ?2 + 48, coordinates =

[
8 x−%A3 + 4 %A− 8, 2 y + %A, 8 z + %A3 − 8 %A + 8, 8 t−%A3 + 4 %A− 8

]]
,

[
complexRoots = ?5 + ?4 − 2 ?3 − 4 ?2 + 5 ? + 8, coordinates =

[
3 x + %A3 − 1, 3 y + %A3 − 1, 3 z + %A3 − 1, t−%A

]]
,

[
complexRoots = ?3 + 3 ?− 1, coordinates = [x−%A, y −%A, z −%A, t−%A]

]]
(21)

Type: List Record(complexRoots: SparseUnivariatePolynomial Integer, coordinates:
List Polynomial Integer)

Note that this computation is made from the input system lf.

However it is possible to reuse a
pre-computed regular chain as
follows:

ts := lts.1{
t2 + t + 1, z3 − z − t3 + t,

(
3 z + 3 t3 − 3

)
y2 +

(
3 z2 +

(
6 t3 − 6

)
z + 3 t6 − 6 t3 + 3

)
y +

(
3 t3 − 3

)
z2 +

(
3 t6 − 6 t3 + 3

)
z + t9 − 3 t6 + 5 t3 − 3 t, x + y + z

}
(22)

Type: RegularChain(Integer, [x, y, z, t])

univariateSolve(ts)$pack
[[

complexRoots = ?4 + 5 ?3 + 16 ?2 + 30 ? + 57, coordinates =
[
151 x + 15 %A3 + 54 %A2 + 104 %A + 93, 151 y − 10 %A3 − 36 %A2 − 19 %A− 62, 151 z − 5 %A3 − 18 %A2 − 85 %A− 31, 151 t− 5 %A3 − 18 %A2 − 85 %A− 31

]]
,

[
complexRoots = ?4 − ?3 − 2 ?2 + 3, coordinates =

[
x−%A3 + 2 %A + 1, y + %A3 −%A− 1, z −%A, t + %A3 −%A− 1

]]
,

[
complexRoots = ?4 + 2 ?3 − 8 ?2 + 48, coordinates =

[
8 x−%A3 + 4 %A− 8, 2 y + %A, 8 z + %A3 − 8 %A + 8, 8 t−%A3 + 4 %A− 8

]]]
(23)

Type: List Record(complexRoots: SparseUnivariatePolynomial Integer, coordinates:
List Polynomial Integer)

realSolve(ts)$pack

[] (24)
Type: List List RealClosure Fraction Integer

We compute now the full set of
points with real coordinates:

lr2 := realSolve(lf)$pack
[
[0, −1, 1, 1], [0, 0, 1, 0], [1, 0, 0, 0], [0, 0, 0, 1], [0, 1, 0, 0], [1, 0, %R37, −%R37], [1, 0, %R38, −%R38], [0, 1, %R35, −%R35], [0, 1, %R36, −%R36], [−1, 0, 1, 1],

[
%R32,

1
27

%R3215 +
2
27

%R3214 +
1
27

%R3213 − 4
27

%R3212 − 11
27

%R3211 − 4
27

%R3210 +
1
27

%R329 +
14
27

%R328 +
1
27

%R327 +
2
9

%R326 +
1
3

%R325 +
2
9

%R324 + %R323 +
4
3

%R322 −%R32− 2, − 1
54

%R3215 − 1
27

%R3214 − 1
54

%R3213 +
2
27

%R3212 +
11
54

%R3211 +
2
27

%R3210 − 1
54

%R329 − 7
27

%R328 − 1
54

%R327 − 1
9

%R326 − 1
6

%R325 − 1
9

%R324 −%R323 − 2
3

%R322 +
1
2

%R32 +
3
2
, − 1

54
%R3215 − 1

27
%R3214 − 1

54
%R3213 +

2
27

%R3212 +
11
54

%R3211 +
2
27

%R3210 − 1
54

%R329 − 7
27

%R328 − 1
54

%R327 − 1
9

%R326 − 1
6

%R325 − 1
9

%R324 −%R323 − 2
3

%R322 +
1
2

%R32 +
3
2

]
,

[
%R33,

1
27

%R3315 +
2
27

%R3314 +
1
27

%R3313 − 4
27

%R3312 − 11
27

%R3311 − 4
27

%R3310 +
1
27

%R339 +
14
27

%R338 +
1
27

%R337 +
2
9

%R336 +
1
3

%R335 +
2
9

%R334 + %R333 +
4
3

%R332 −%R33− 2, − 1
54

%R3315 − 1
27

%R3314 − 1
54

%R3313 +
2
27

%R3312 +
11
54

%R3311 +
2
27

%R3310 − 1
54

%R339 − 7
27

%R338 − 1
54

%R337 − 1
9

%R336 − 1
6

%R335 − 1
9

%R334 −%R333 − 2
3

%R332 +
1
2

%R33 +
3
2
, − 1

54
%R3315 − 1

27
%R3314 − 1

54
%R3313 +

2
27

%R3312 +
11
54

%R3311 +
2
27

%R3310 − 1
54

%R339 − 7
27

%R338 − 1
54

%R337 − 1
9

%R336 − 1
6

%R335 − 1
9

%R334 −%R333 − 2
3

%R332 +
1
2

%R33 +
3
2

]
,

[
%R34,

1
27

%R3415 +
2
27

%R3414 +
1
27

%R3413 − 4
27

%R3412 − 11
27

%R3411 − 4
27

%R3410 +
1
27

%R349 +
14
27

%R348 +
1
27

%R347 +
2
9

%R346 +
1
3

%R345 +
2
9

%R344 + %R343 +
4
3

%R342 −%R34− 2, − 1
54

%R3415 − 1
27

%R3414 − 1
54

%R3413 +
2
27

%R3412 +
11
54

%R3411 +
2
27

%R3410 − 1
54

%R349 − 7
27

%R348 − 1
54

%R347 − 1
9

%R346 − 1
6

%R345 − 1
9

%R344 −%R343 − 2
3

%R342 +
1
2

%R34 +
3
2
, − 1

54
%R3415 − 1

27
%R3414 − 1

54
%R3413 +

2
27

%R3412 +
11
54

%R3411 +
2
27

%R3410 − 1
54

%R349 − 7
27

%R348 − 1
54

%R347 − 1
9

%R346 − 1
6

%R345 − 1
9

%R344 −%R343 − 2
3

%R342 +
1
2

%R34 +
3
2

]
, [−1, 1, 0, 1], [−1, 1, 1, 0],

[
%R23, − 1

54
%R2315 − 1

27
%R2314 − 1

54
%R2313 +

2
27

%R2312 +
11
54

%R2311 +
2
27

%R2310 − 1
54

%R239 − 7
27

%R238 − 1
54

%R237 − 1
9

%R236 − 1
6

%R235 − 1
9

%R234 −%R233 − 2
3

%R232 +
1
2

%R23 +
3
2
, %R30, −%R30 +

1
54

%R2315 +
1
27

%R2314 +
1
54

%R2313 − 2
27

%R2312 − 11
54

%R2311 − 2
27

%R2310 +
1
54

%R239 +
7
27

%R238 +
1
54

%R237 +
1
9

%R236 +
1
6

%R235 +
1
9

%R234 +
2
3

%R232 − 1
2

%R23− 1
2

]
,

[
%R23, − 1

54
%R2315 − 1

27
%R2314 − 1

54
%R2313 +

2
27

%R2312 +
11
54

%R2311 +
2
27

%R2310 − 1
54

%R239 − 7
27

%R238 − 1
54

%R237 − 1
9

%R236 − 1
6

%R235 − 1
9

%R234 −%R233 − 2
3

%R232 +
1
2

%R23 +
3
2
, %R31, −%R31 +

1
54

%R2315 +
1
27

%R2314 +
1
54

%R2313 − 2
27

%R2312 − 11
54

%R2311 − 2
27

%R2310 +
1
54

%R239 +
7
27

%R238 +
1
54

%R237 +
1
9

%R236 +
1
6

%R235 +
1
9

%R234 +
2
3

%R232 − 1
2

%R23− 1
2

]
,

[
%R24, − 1

54
%R2415 − 1

27
%R2414 − 1

54
%R2413 +

2
27

%R2412 +
11
54

%R2411 +
2
27

%R2410 − 1
54

%R249 − 7
27

%R248 − 1
54

%R247 − 1
9

%R246 − 1
6

%R245 − 1
9

%R244 −%R243 − 2
3

%R242 +
1
2

%R24 +
3
2
, %R28, −%R28 +

1
54

%R2415 +
1
27

%R2414 +
1
54

%R2413 − 2
27

%R2412 − 11
54

%R2411 − 2
27

%R2410 +
1
54

%R249 +
7
27

%R248 +
1
54

%R247 +
1
9

%R246 +
1
6

%R245 +
1
9

%R244 +
2
3

%R242 − 1
2

%R24− 1
2

]
,

[
%R24, − 1

54
%R2415 − 1

27
%R2414 − 1

54
%R2413 +

2
27

%R2412 +
11
54

%R2411 +
2
27

%R2410 − 1
54

%R249 − 7
27

%R248 − 1
54

%R247 − 1
9

%R246 − 1
6

%R245 − 1
9

%R244 −%R243 − 2
3

%R242 +
1
2

%R24 +
3
2
, %R29, −%R29 +

1
54

%R2415 +
1
27

%R2414 +
1
54

%R2413 − 2
27

%R2412 − 11
54

%R2411 − 2
27

%R2410 +
1
54

%R249 +
7
27

%R248 +
1
54

%R247 +
1
9

%R246 +
1
6

%R245 +
1
9

%R244 +
2
3

%R242 − 1
2

%R24− 1
2

]
,

[
%R25, − 1

54
%R2515 − 1

27
%R2514 − 1

54
%R2513 +

2
27

%R2512 +
11
54

%R2511 +
2
27

%R2510 − 1
54

%R259 − 7
27

%R258 − 1
54

%R257 − 1
9

%R256 − 1
6

%R255 − 1
9

%R254 −%R253 − 2
3

%R252 +
1
2

%R25 +
3
2
, %R26, −%R26 +

1
54

%R2515 +
1
27

%R2514 +
1
54

%R2513 − 2
27

%R2512 − 11
54

%R2511 − 2
27

%R2510 +
1
54

%R259 +
7
27

%R258 +
1
54

%R257 +
1
9

%R256 +
1
6

%R255 +
1
9

%R254 +
2
3

%R252 − 1
2

%R25− 1
2

]
,

[
%R25, − 1

54
%R2515 − 1

27
%R2514 − 1

54
%R2513 +

2
27

%R2512 +
11
54

%R2511 +
2
27

%R2510 − 1
54

%R259 − 7
27

%R258 − 1
54

%R257 − 1
9

%R256 − 1
6

%R255 − 1
9

%R254 −%R253 − 2
3

%R252 +
1
2

%R25 +
3
2
, %R27, −%R27 +

1
54

%R2515 +
1
27

%R2514 +
1
54

%R2513 − 2
27

%R2512 − 11
54

%R2511 − 2
27

%R2510 +
1
54

%R259 +
7
27

%R258 +
1
54

%R257 +
1
9

%R256 +
1
6

%R255 +
1
9

%R254 +
2
3

%R252 − 1
2

%R25− 1
2

]
, [1, %R21, −%R21, 0], [1, %R22, −%R22, 0], [1, %R19, 0, −%R19], [1, %R20, 0, −%R20],

[
%R17, −1

3
%R173 +

1
3
, −1

3
%R173 +

1
3
, −1

3
%R173 +

1
3

]
,

[
%R18, −1

3
%R183 +

1
3
, −1

3
%R183 +

1
3
, −1

3
%R183 +

1
3

]]
(25)

Type: List List RealClosure Fraction Integer

The number of real solutions for
the input system is:

#lr2

27 (26)
Type: PositiveInteger

612 · Some Examples of Domains and Packages

We concentrate now on the
solutions with real (strictly)
positive coordinates:

lpr2 := positiveSolve(lf)$pack
[[

%R40, −1
3

%R403 +
1
3
, −1

3
%R403 +

1
3
, −1

3
%R403 +

1
3

]]
(27)

Type: List List RealClosure Fraction Integer

Finally, we approximate the
coordinates of this point with 20
exact digits:

[approximate(r,1/10**21)::Float for r in lpr2.1]

[0.32218535462608559291, 0.32218535462608559291, 0.32218535462608559291, 0.32218535462608559291](28)
Type: List Float

9.83. ZeroDimensionalSolvePackage · 613

PART IV

Advanced
Programming
in AXIOM

CHAPTER 10

Interactive
Programming

Programming in the interpreter is easy. So is the use of AXIOM’s graphics
facility. Both are rather flexible and allow you to use them for many
interesting applications. However, both require learning some basic ideas
and skills.

All graphics examples in the AXIOM Images section are either produced
directly by interactive commands or by interpreter programs. Four of
these programs are introduced here. By the end of this chapter you will
know enough about graphics and programming in the interpreter to not
only understand all these examples, but to tackle interesting and difficult
problems on your own. Appendix F lists all the remaining commands and
programs used to create these images.

617

10.1
Drawing Ribbons
Interactively

We begin our discussion of interactive graphics with the creation of a
useful facility: plotting ribbons of two-graphs in three-space. Suppose you
want to draw the two-dimensional graphs of n functions fi(x), 1 ≤ i ≤ n,
all over some fixed range of x. One approach is to create a two-dimen-
sional graph for each one, then superpose one on top of the other. What
you will more than likely get is a jumbled mess. Even if you make each
function a different color, the result is likely to be confusing.

A better approach is to display each of the fi(x) in three dimensions as
a “ribbon” of some appropriate width along the y-direction, laying down
each ribbon next to the previous one. A ribbon is simply a function of x
and y depending only on x.

We illustrate this for fi(x) defined as simple powers of x for x ranging
between −1 and 1.

Draw the ribbon for z = x2. draw(x**2,x=-1..1,y=0..1)

Compiling function %B with type (DoubleFloat,
DoubleFloat) -> DoubleFloat

Transmitting data...

ThreeDimensionalViewport: "x*x" (1)
Type: ThreeDimensionalViewport

X Y

Z

Now that was easy! What you get is a “wire-mesh” rendition of the
ribbon. That’s fine for now. Notice that the mesh-size is small in both
the x and the y directions. AXIOM normally computes points in both
these directions. This is unnecessary. One step is all we need in the y-
direction. To have AXIOM economize on y-points, we re-draw the ribbon
with option var2Steps == 1.

618 · Interactive Programming

Re-draw the ribbon, but with
option var2Steps == 1 so that
only 1 step is computed in the y
direction.

vp := draw(x**2,x=-1..1,y=0..1,var2Steps==1)

Compiling function %D with type (DoubleFloat,
DoubleFloat) -> DoubleFloat

Transmitting data...

ThreeDimensionalViewport: "x*x" (2)
Type: ThreeDimensionalViewport

X Y

Z

The operation has created a viewport, that is, a graphics window on
your screen. We assigned the viewport to vp and now we manipulate its
contents.

Graphs are objects, like numbers and algebraic expressions. You may
want to do some experimenting with graphs. For example, say

showRegion(vp, "on")

to put a bounding box around the ribbon. Try it! Issue rotate(vp,
-45, 90) to rotate the figure −45 longitudinal degrees and 90 latitudinal
degrees.

Here is a different rotation. This
turns the graph so you can view
it along the y-axis.

rotate(vp, 0, -90)

Type: Void

X
Y

Z

There are many other things you can do. In fact, most everything you

10.1. Drawing Ribbons Interactively · 619

can do interactively using the three-dimensional control panel (such as
translating, zooming, resizing, coloring, perspective and lighting selec-
tions) can also be done directly by operations (see Chapter 7 for more
details).

When you are done experimenting, say reset(vp) to restore the picture
to its original position and settings.

Let’s add another ribbon to our picture—one for x3. Since y ranges from
0 to 1 for the first ribbon, now let y range from 1 to 2. This puts the
second ribbon next to the first one.

How do you add a second ribbon to the viewport? One method is to
extract the “space” component from the viewport using the operation
subspace. You can think of the space component as the object inside
the window (here, the ribbon). Let’s call it sp. To add the second ribbon,
you draw the second ribbon using the option space == sp.

Extract the space component of
vp.

sp := subspace(vp)

3− Space with1component (4)
Type: ThreeSpace DoubleFloat

Add the ribbon for x3 alongside
that for x2.

vp := draw(x**3,x=-1..1,y=1..2,var2Steps==1, space==sp)

Compiling function %F with type (DoubleFloat,
DoubleFloat) -> DoubleFloat

Transmitting data...

ThreeDimensionalViewport: "x**3" (5)
Type: ThreeDimensionalViewport

X Y

Z

Unless you moved the original viewport, the new viewport covers the old
one. You might want to check that the old object is still there by moving
the top window.

Let’s show quadrilateral polygon outlines on the ribbons and then enclose

620 · Interactive Programming

the ribbons in a box.

Show quadrilateral polygon
outlines.

drawStyle(vp,"shade");outlineRender(vp,"on")

Type: Void

X Y

Z

Enclose the ribbons in a box. rotate(vp,20,-60); showRegion(vp,"on")

Type: Void

X

Y

Z

This process has become tedious! If we had to add two or three more
ribbons, we would have to repeat the above steps several more times. It
is time to write an interpreter program to help us take care of the details.

10.1. Drawing Ribbons Interactively · 621

10.2
A Ribbon Program

The above approach creates a new viewport for each additional ribbon.
A better approach is to build one object composed of all ribbons before
creating a viewport. To do this, use makeObject rather than draw.
The operations have similar formats, but draw returns a viewport and
makeObject returns a space object.

We now create a function drawRibbons of two arguments: flist, a list
of formulas for the ribbons you want to draw, and xrange, the range over
which you want them drawn. Using this function, you can just say

drawRibbons([x**2, x**3], x=-1..1)

to do all of the work required in the last section. Here is the drawRib-
bons program. Invoke your favorite editor and create a file called rib-
bon.input containing the following program.

drawRibbons(flist, xrange) == 1
Create empty space sp. sp := createThreeSpace() 2
The initial ribbon position. y0 := 0 3
For each function f, for f in flist repeat 4

create and add a ribbon makeObject(f, xrange, y=y0..y0+1, 5
for f to the space sp. space==sp, var2Steps == 1) 6

The next ribbon position. y0 := y0 + 1 7
Create viewport. vp := makeViewport3D(sp, "Ribbons") 8
Select shading style. drawStyle(vp, "shade") 9
Show polygon outlines. outlineRender(vp, "on") 10
Enclose in a box. showRegion(vp,"on") 11
The number of ribbons n := # flist 12
Zoom in x- and z-directions. zoom(vp,n,1,n) 13
Change the angle of view. rotate(vp,0,75) 14
Return the viewport. vp 15

Figure 10.1: The first drawRibbons function.

Here are some remarks on the syntax used in the drawRibbons function
(consult Chapter 6 for more details). Unlike most other programming
languages which use semicolons, parentheses, or begin–end brackets to
delineate the structure of programs, the structure of an AXIOM program
is determined by indentation. The first line of the function definition
always begins in column 1. All other lines of the function are indented
with respect to the first line and form a pile (see Section 5.2 on page 153).

The definition of drawRibbons consists of a pile of expressions to be
executed one after another. Each expression of the pile is indented at
the same level. Lines 4-7 designate one single expression: since lines 5-
7 are indented with respect to the others, these lines are treated as a
continuation of line 4. Also since lines 5 and 7 have the same indentation
level, these lines designate a pile within the outer pile.

622 · Interactive Programming

The last line of a pile usually gives the value returned by the pile. Here it
is also the value returned by the function. AXIOM knows this is the last
line of the function because it is the last line of the file. In other cases, a
new expression beginning in column one signals the end of a function.

The line drawStyle(vp,"shade") is given after the viewport has been
created to select the draw style. We have also used the zoom option.
Without the zoom, the viewport region would be scaled equally in all
three coordinate directions.

Let’s try the function drawRibbons. First you must read the file to give
AXIOM the function definition.

Read the input file.)read ribbon

--Copyright The Numerical Algorithms Group Limited
1994.
--the first attempt
drawRibbons(flist,xrange) ==
sp := createThreeSpace()
y0 := 0
for f in flist repeat
makeObject(f,xrange,y=y0..y0+1,

space==sp, var2Steps ==1)
y0 := y0+1
vp:=makeViewport3D(sp,"Ribbons")
drawStyle(vp,"shade")
outlineRender(vp,"on")
showRegion(vp,"on")
n := # flist
zoom(vp,n,1,n)
rotate(vp,0,75)
vp

Type: Void

10.2. A Ribbon Program · 623

Draw ribbons for x, x2, . . . , x5

for −1 ≤ x ≤ 1
drawRibbons([x**i for i in 1..5],x=-1..1)

Compiling function drawRibbons with type (List
Polynomial Integer,SegmentBinding Integer) ->
ThreeDimensionalViewport

Compiling function %H with type (DoubleFloat,
DoubleFloat) -> DoubleFloat

Compiling function %J with type (DoubleFloat,
DoubleFloat) -> DoubleFloat

Compiling function %L with type (DoubleFloat,
DoubleFloat) -> DoubleFloat

Compiling function %N with type (DoubleFloat,
DoubleFloat) -> DoubleFloat

Compiling function %P with type (DoubleFloat,
DoubleFloat) -> DoubleFloat

Transmitting data...

ThreeDimensionalViewport: "Ribbons" (2)
Type: ThreeDimensionalViewport

Y

624 · Interactive Programming

10.3
Coloring and
Positioning
Ribbons

Before leaving the ribbon example, we make two improvements. Normally,
the color given to each point in the space is a function of its height within
a bounding box. The points at the bottom of the box are red, those at
the top are purple.

To change the normal coloring, you can give an option colorFunction ==
function. When AXIOM goes about displaying the data, it determines
the range of colors used for all points within the box. AXIOM then
distributes these numbers uniformly over the number of hues. Here we
use the simple color function (x, y) 7→ i for the i th ribbon.

Also, we add an argument yrange so you can give the range of y occupied
by the ribbons. For example, if the yrange is given as y=0..1 and there
are 5 ribbons to be displayed, each ribbon would have width 0.2 and would
appear in the range 0 ≤ y ≤ 1.

Refer to lines 4-9. Line 4 assigns to yVar the variable part of the yrange
(after all, it need not be y). Suppose that yrange is given as t = a..b
where a and b have numerical values. Then line 5 assigns the value of a
to the variable y0. Line 6 computes the width of the ribbon by dividing
the difference of a and b by the number, num, of ribbons. The result is
assigned to the variable width. Note that in the for-loop in line 7, we are
iterating in parallel; it is not a nested loop.

drawRibbons(flist, xrange, yrange) == 1
Create empty space sp. sp := createThreeSpace() 2
The number of ribbons. num := # flist 3
The ribbon variable. yVar := variable yrange 4
The first ribbon coordinate. y0:Float := lo segment yrange 5
The width of a ribbon. width:Float := (hi segment yrange - y0)/num 6
For each function f, for f in flist for color in 1..num repeat 7

create and add ribbon to makeObject(f, xrange, yVar = y0..y0+width, 8
sp of a different color. var2Steps == 1, colorFunction == (x,y) +-> color, 9

space == sp) 10
The next ribbon coordinate. y0 := y0 + width 11
Create viewport. vp := makeViewport3D(sp, "Ribbons") 12
Select shading style. drawStyle(vp, "shade") 13
Show polygon outlines. outlineRender(vp, "on") 14
Enclose in a box. showRegion(vp, "on") 15
Return the viewport. vp 16

Figure 10.2: The final drawRibbons function.

10.3. Coloring and Positioning Ribbons · 625

10.4
Points, Lines, and
Curves

What you have seen so far is a high-level program using the graphics
facility. We now turn to the more basic notions of points, lines, and curves
in three-dimensional graphs. These facilities use small floats (objects of
type DoubleFloat) for data. Let us first give names to the small float values
0 and 1.

The small float 0. zero := 0.0@DFLOAT

0.0 (1)
Type: DoubleFloat

The small float 1. one := 1.0@DFLOAT

1.0 (2)
Type: DoubleFloat

The “@” sign means “of the type.” Thus zero is 0.0 of the type DoubleFloat.
You can also say 0.0::DFLOAT.

Points can have four small float components: x, y, z coordinates and an
optional color. A “curve” is simply a list of points connected by straight
line segments.

Create the point origin with
color zero, that is, the lowest
color on the color map.

origin := point [zero,zero,zero,zero]

[0.0, 0.0, 0.0, 0.0] (3)
Type: Point DoubleFloat

Create the point unit with color
zero.

unit := point [one,one,one,zero]

[1.0, 1.0, 1.0, 0.0] (4)
Type: Point DoubleFloat

Create the curve (well, here, a
line) from origin to unit.

line := [origin, unit]

[[0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 0.0]] (5)
Type: List Point DoubleFloat

We make this line segment into an arrow by adding an arrowhead. The
arrowhead extends to, say, p3 on the left, and to, say, p4 on the right.
To describe an arrow, you tell AXIOM to draw the two curves [p1, p2,
p3] and [p2, p4]. We also decide through experimentation on values
for arrowScale, the ratio of the size of the arrowhead to the stem of the
arrow, and arrowAngle, the angle between the arrowhead and the arrow.

Invoke your favorite editor and create an input file called arrows.input.
This input file first defines the values of arrowAngle and arrowScale,
then defines the function makeArrow(p1, p2) to draw an arrow from
point p1 to p2.

626 · Interactive Programming

The angle of the arrowhead. arrowAngle := %pi-%pi/10.0@DFLOAT 1
The size of the arrowhead arrowScale := 0.2@DFLOAT 2

relative to the stem. 3
makeArrow(p1, p2) == 4

The arrow. delta := p2 - p1 5
The length of the arrowhead. len := arrowScale * length delta 6
The angle from the x-axis theta := atan(delta.1, delta.2) 7
The x-coord of left endpoint. c1 := len*cos(theta + arrowAngle) 8
The y-coord of left endpoint. s1 := len*sin(theta + arrowAngle) 9
The x-coord of right endpoint. c2 := len*cos(theta - arrowAngle) 10
The y-coord of right endpoint. s2 := len*sin(theta - arrowAngle) 11
The z-coord of both endpoints. z := p2.3*(1 - arrowScale) 12
The left endpoint of head. p3 := point [p2.1 + c1, p2.2 + s1, z, p2.4] 13
The right endpoint of head. p4 := point [p2.1 + c2, p2.2 + s2, z, p2.4] 14
The arrow as a list of curves. [[p1, p2, p3], [p2, p4]] 15

Read the file and then create an arrow from the point origin to the point
unit.

Read the input file defining
makeArrow.

)read arrows

--Copyright The Numerical Algorithms Group Limited
1991.

arrowAngle:=%pi-%pi/10.0@SF

2.8274333882308138 (6)
Type: DoubleFloat

arrowScale:=0.2@SF

0.20000000000000001 (7)
Type: DoubleFloat

makeArrow(p1,p2) ==

delta :=p2 -p1
len := arrowScale * length delta
theta := atan(delta.1, delta.2)
c1:= len*cos(theta+arrowAngle)
s1:= len*sin(theta+arrowAngle)
c2:= len*cos(theta-arrowAngle)
s2:= len*sin(theta-arrowAngle)
z:= p2.3*(1-arrowScale)
p3:=point[p2.1+c1,p2.2+s1,z,p2.4]
p4:=point[p2.1+c2,p2.2+s2,z,p2.4]
[[p1,p2,p3],[p2,p4]]

Type: Void

10.4. Points, Lines, and Curves · 627

Construct the arrow (a list of
two curves).

arrow := makeArrow(origin,unit)

Compiling function makeArrow with type (Point
DoubleFloat,Point DoubleFloat) -> List List Point
DoubleFloat







[0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 0.0],

[0.69134628604607973, 0.842733077659504,
0.80000000000000004, 0.0]


,




[1.0, 1.0, 1.0, 0.0],

[0.842733077659504, 0.69134628604607973,
0.80000000000000004, 0.0]







(9)

Type: List List Point DoubleFloat

Create an empty object sp of
type ThreeSpace.

sp := createThreeSpace()

3− Space with0components (10)
Type: ThreeSpace DoubleFloat

Add each curve of the arrow to
the space sp.

for a in arrow repeat sp := curve(sp,a)

Type: Void

Create a three-dimensional
viewport containing that space.

vp := makeViewport3D(sp,"Arrow")

Transmitting data...

ThreeDimensionalViewport: "Arrow" (12)
Type: ThreeDimensionalViewport

X Y

Z

628 · Interactive Programming

Here is a better viewing angle. rotate(vp,200,-60)

Type: Void

X

Y

Z

10.4. Points, Lines, and Curves · 629

10.5
A Bouquet of
Arrows

Let’s draw a “bouquet” of arrows. Each arrow is identical. The arrow-
heads are uniformly placed on a circle parallel to the xy-plane. Thus the
position of each arrow differs only by the angle θ, 0 ≤ θ < 2π, between
the arrow and the x-axis on the xy-plane.

Our bouquet is rather special: each arrow has a different color (which
won’t be evident here, unfortunately). This is arranged by letting the
color of each successive arrow be denoted by θ. In this way, the color of
arrows ranges from red to green to violet. Here is a program to draw a
bouquet of n arrows.

drawBouquet(n,title) == 1
The initial angle. angle := 0.0@DFLOAT 2
Create empty space sp. sp := createThreeSpace() 3
For each index i, create: for i in 0..n-1 repeat 4

—the point at base of arrow; start:=point[0.0@DFLOAT,0.0@DFLOAT,0.0@DFLOAT,angle] 5
—the point at tip of arrow; end :=point[cos angle, sin angle, 1.0@DFLOAT, angle]6
—the ith arrow. arrow := makeArrow(start,end) 7

For each arrow component, for a in makeArrow(start,end) repeat 8
add the component to sp. curve(sp,a) 9

The next angle. angle := angle + 2*%pi/n 10
Create the viewport from sp. makeViewport3D(sp,title) 11

Read the input file.)read bouquet

--Copyright The Numerical Algorithms Group Limited
1994.

relative size of the arrow head
compared to the length of the
arrow

arrowScale := 0.2@DFLOAT

0.20000000000000001 (1)
Type: DoubleFloat

angle of the arrow head arrowAngle := %pi-%pi/10.0@DFLOAT

2.8274333882308138 (2)
Type: DoubleFloat

630 · Interactive Programming

Add an arrow head to a line
segment, which starts at ’p1’,
ends at ’p2’, has length ’len’,
and and angle ’arg’. We pass
’len’ and ’arg’ as arguments
since they were already
computed by the calling
program

makeArrow(p1, p2) ==

delta := p2 - p1
len := arrowScale * length delta
theta := atan(delta.1, delta.2)
c1 := len * cos(theta + arrowAngle)
s1 := len * sin(theta + arrowAngle)
c2 := len * cos(theta - arrowAngle)
s2 := len * sin(theta - arrowAngle)
z := p2.3*(1 - arrowScale)
p3 := point [p2.1 + c1, p2.2 + s1, z, p2.4]
p4 := point [p2.1 + c2, p2.2 + s2, z, p2.4]
[[p1, p2, p3], [p2, p4]]

Type: Void
drawBouquet(n,title) ==

angle := 0.0@DFLOAT
sp := create3Space()$ThreeSpace(DFLOAT)
for i in 0..n-1 repeat
start := point

[0.0@DFLOAT,0.0@DFLOAT,0.0@DFLOAT,angle]
end := point [cos angle, sin angle, 1.0@DFLOAT, an-

gle]
arrow := makeArrow(start, end)
for a in arrow repeat curve(sp,a)
angle := angle + 2*%pi/n
makeViewport3D(sp,title)$VIEW3D

Type: Void
A bouquet of a dozen arrows. drawBouquet(12,"A Dozen Arrows")

Compiling function makeArrow with type (Point
DoubleFloat,Point DoubleFloat) -> List List Point
DoubleFloat

+++ |*2;makeArrow;1;initial| redefined
Compiling function drawBouquet with type (

PositiveInteger,String) ->
ThreeDimensionalViewport

Transmitting data...

ThreeDimensionalViewport: "A Dozen Arrows" (5)
Type: ThreeDimensionalViewport

X Y

Z

10.5. A Bouquet of Arrows · 631

10.6
Drawing Complex
Vector Fields

We now put our arrows to good use drawing complex vector fields. These
vector fields give a representation of complex-valued functions of complex
variables. Consider a Cartesian coordinate grid of points (x, y) in the
plane, and some complex-valued function f defined on this grid. At every
point on this grid, compute the value of f(x + iy) and call it z. Since z
has both a real and imaginary value for a given (x, y) grid point, there
are four dimensions to plot. What do we do? We represent the values of
z by arrows planted at each grid point. Each arrow represents the value
of z in polar coordinates (r, θ). The length of the arrow is proportional
to r. Its direction is given by θ.

The code for drawing vector fields is in the file vectors.input. We discuss
its contents from top to bottom.

Before showing you the code, we have two small matters to take care
of. First, what if the function has large spikes, say, ones that go off
to infinity? We define a variable clipValue for this purpose. When
r exceeds the value of clipValue, then the value of clipValue is used
instead of that for r. For convenience, we define a function clipFun(x)
which uses clipValue to “clip” the value of x.

Maximum value allowed. clipValue : DFLOAT := 6 1
clipFun(x) == min(max(x,-clipValue),clipValue) 2

Notice that we identify clipValue as a small float but do not declare the
type of the function clipFun. As it turns out, clipFun is called with
a small float value. This declaration ensures that clipFun never does a
conversion when it is called.

The second matter concerns the possible “poles” of a function, the ac-
tual points where the spikes have infinite values. AXIOM uses normal
DoubleFloat arithmetic which does not directly handle infinite values. If
your function has poles, you must adjust your step size to avoid landing
directly on them (AXIOM calls error when asked to divide a value by 0,
for example).

We set the variables realSteps and imagSteps to hold the number of
steps taken in the real and imaginary directions, respectively. Most ex-
amples will have ranges centered around the origin. To avoid a pole at
the origin, the number of points is taken to be odd.

Number of real steps. realSteps: INT := 25 3
Number of imaginary steps. imagSteps: INT := 25 4

)read arrows 5

Now define the function drawComplexVectorField to draw the arrows.

632 · Interactive Programming

It is good practice to declare the type of the main function in the file.
This one declaration is usually sufficient to ensure that other lower-level
functions are compiled with the correct types.

C := Complex DoubleFloat 6
S := Segment DoubleFloat 7
drawComplexVectorField: (C -> C, S, S) -> VIEW3D 8

The first argument is a function mapping complex small floats into com-
plex small floats. The second and third arguments give the range of real
and imaginary values as segments like a..b. The result is a three-dimen-
sional viewport. Here is the full function definition:

drawComplexVectorField(f, realRange,imagRange) == 9
The real step size. delReal := (hi(realRange)-lo(realRange))/realSteps 10
The imaginary step size. delImag := (hi(imagRange)-lo(imagRange))/imagSteps 11
Create empty space sp. sp := createThreeSpace() 12
The initial real value. real := lo(realRange) 13
Begin real iteration. for i in 1..realSteps+1 repeat 14
The initial imaginary value. imag := lo(imagRange) 15
Begin imaginary iteration. for j in 1..imagSteps+1 repeat 16
The value of f at the point. z := f complex(real,imag) 17
The direction of the arrow. arg := argument z 18
The length of the arrow. len := clipFun sqrt norm z 19
The base point of the arrow. p1 := point [real, imag, 0.0@DFLOAT, arg] 20
The scaled length of the arrow. scaleLen := delReal * len 21
The tip point of the arrow. p2 := point [p1.1 + scaleLen*cos(arg), 22

p1.2 + scaleLen*sin(arg),0.0@DFLOAT, arg] 23
Create the arrow. arrow := makeArrow(p1, p2) 24
Add arrow to the space sp. for a in arrow repeat curve(sp, a) 25
The next imaginary value. imag := imag + delImag 26
The next real value. real := real + delReal 27
Draw it! makeViewport3D(sp, "Complex Vector Field") 28

As a first example, let us draw f(z) == sin(z). There is no need to
create a user function: just pass the sin from Complex DoubleFloat.

Read the file.)read vectors

--Copyright The Numerical Algorithms Group Limited
1991.

)r arrows

--Copyright The Numerical Algorithms Group Limited
1991.

arrowAngle:=%pi-%pi/10.0@SF

2.8274333882308138 (1)
Type: DoubleFloat

10.6. Drawing Complex Vector Fields · 633

arrowScale:=0.2@SF

0.20000000000000001 (2)
Type: DoubleFloat

makeArrow(p1,p2) ==

delta :=p2 -p1
len := arrowScale * length delta
theta := atan(delta.1, delta.2)
c1:= len*cos(theta+arrowAngle)
s1:= len*sin(theta+arrowAngle)
c2:= len*cos(theta-arrowAngle)
s2:= len*sin(theta-arrowAngle)
z:= p2.3*(1-arrowScale)
p3:=point[p2.1+c1,p2.2+s1,z,p2.4]
p4:=point[p2.1+c2,p2.2+s2,z,p2.4]
[[p1,p2,p3],[p2,p4]]

Type: Void

clipValue :SF := 6

6.0 (4)
Type: DoubleFloat

clipFun(x) == min(max(x,-clipValue),clipValue)

Type: Void

realSteps :INT := 25

25 (6)
Type: Integer

imagSteps :INT := 25

25 (7)
Type: Integer

C := Complex SF

Complex DoubleFloat (8)
Type: Domain

S := Segment SF

Segment DoubleFloat (9)
Type: Domain

634 · Interactive Programming

drawComplexVectorField :(C -> C, S, S) -> VIEW3D

Type: Void

drawComplexVectorField(f,realRange,imagRange) ==

delReal := (hi realRange - lo realRange)/realSteps
delImag := (hi imagRange - lo imagRange)/imagSteps
sp := create3Space()$ThreeSpace SF
real := lo realRange
for i in 1..realSteps + 1 repeat
imag := lo imagRange
for j in 1..imagSteps + 1 repeat

z := f complex(real, imag)
arg := argument z
len := clipFun sqrt norm z
p1 := point[real, imag, 0.0@SF, arg]
scaleLen := delReal * len
p2 := point[p1.1 + scaleLen * cos(arg),

p1.2 + scaleLen * sin(arg), 0.0@SF,
arg]

arrow := makeArrow(p1, p2)
for a in arrow repeat curve(sp, a)
imag := imag + delImag

real := real + delReal
makeViewport3D(sp, "Complex Vector Field")$VIEW3D

Type: Void

drawComplex :(C->C, S, S) -> VIEW3D

Type: Void

10.6. Drawing Complex Vector Fields · 635

drawComplex(f, realRange, imagRange) ==

deltaReal :SF := (hi realRange - lo
realRange)/realSteps
deltaImag :SF := (hi imagRange - lo

imagRange)/imagSteps
llp:List List Point SF := []
real :SF := lo realRange
for i in 1..realSteps + 1 repeat
imag :SF := lo imagRange
lp := []$(List Point SF)
for j in 1..imagSteps + 1 repeat
z :COMPLEX SF := f(complex(real, imag))
pt :Point SF := point[real, imag, clipFun sqrt norm

z, argument z]
lp := cons(pt, lp)
imag := imag + deltaImag

real := real + deltaReal
llp := cons(reverse! lp, llp)
llp := reverse! llp
makeViewport3D(mesh(llp), "Complex Function")$VIEW3D

Type: Void

Draw the complex vector field of
sin(x).

drawComplexVectorField(sin,-2..2,-2..2)

Compiling function clipFun with type DoubleFloat ->
DoubleFloat

Compiling function makeArrow with type (Point
DoubleFloat,Point DoubleFloat) -> List List Point
DoubleFloat

+++ |*2;makeArrow;1;initial| redefined
Compiling function drawComplexVectorField with type (

(Complex DoubleFloat -> Complex DoubleFloat),
Segment DoubleFloat,Segment DoubleFloat) ->
ThreeDimensionalViewport

Transmitting data...

ThreeDimensionalViewport: "Complex Vector Field" (14)
Type: ThreeDimensionalViewport

X Y

Z

636 · Interactive Programming

10.7
Drawing Complex
Functions

Here is another way to graph a complex function of complex arguments.
For each complex value z, compute f(z), again expressing the value in
polar coordinates (r, θ). We draw the complex valued function, again
considering the (x, y)-plane as the complex plane, using r as the height
(or z-coordinate) and θ as the color. This is a standard plot—we learned
how to do this in Chapter 7—but here we write a new program to illustrate
the creation of polygon meshes, or grids.

Call this function drawComplex. It displays the points using the “mesh”
of points. The function definition is in three parts.

drawComplex: (C -> C, S, S) -> VIEW3D 1
The first part. drawComplex(f, realRange, imagRange) == 2
The real step size. delReal := (hi(realRange)-lo(realRange))/realSteps 3
The imaginary step size. delImag := (hi(imagRange)-lo(imagRange))/imagSteps 4
Initial list of list of points llp. llp:List List Point DFLOAT := [] 5

Variables delReal and delImag give the step sizes along the real and
imaginary directions as computed by the values of the global variables
realSteps and imagSteps. The mesh is represented by a list of lists of
points llp, initially empty. Now [] alone is ambiguous, so to set this
initial value you have to tell AXIOM what type of empty list it is. Next
comes the loop which builds llp.

The initial real value. real := lo(realRange) 6
Begin real iteration. for i in 1..realSteps+1 repeat 7
The initial imaginary value. imag := lo(imagRange) 8

The initial list of points lp. lp := []$(List Point DFLOAT) 9
Begin imaginary iteration. for j in 1..imagSteps+1 repeat 10
The value of f at the point. z := f complex(real,imag) 11
Create a point. pt := point [real,imag, clipFun sqrt norm z, 12

argument z] 13
Add the point to lp. lp := cons(pt,lp) 14
The next imaginary value. imag := imag + delImag 15
The next real value. real := real + delReal 16
Add lp to llp. llp := cons(lp, llp) 17

The code consists of both an inner and outer loop. Each pass through
the inner loop adds one list lp of points to the list of lists of points llp.
The elements of lp are collected in reverse order.

Create a mesh and display. makeViewport3D(mesh(llp), "Complex Function") 18

The operation mesh then creates an object of type ThreeSpace(DoubleFloat)
from the list of lists of points. This is then passed to makeViewport3D
to display the image.

Now add this function directly to your vectors.input file and re-read the

10.7. Drawing Complex Functions · 637

file using)read vectors. We try drawComplex using a user-defined
function f.

Read the file.)read vectors

--Copyright The Numerical Algorithms Group Limited
1991.

)r arrows

--Copyright The Numerical Algorithms Group Limited
1991.

arrowAngle:=%pi-%pi/10.0@SF

2.8274333882308138 (1)
Type: DoubleFloat

arrowScale:=0.2@SF

0.20000000000000001 (2)
Type: DoubleFloat

makeArrow(p1,p2) ==

delta :=p2 -p1
len := arrowScale * length delta
theta := atan(delta.1, delta.2)
c1:= len*cos(theta+arrowAngle)
s1:= len*sin(theta+arrowAngle)
c2:= len*cos(theta-arrowAngle)
s2:= len*sin(theta-arrowAngle)
z:= p2.3*(1-arrowScale)
p3:=point[p2.1+c1,p2.2+s1,z,p2.4]
p4:=point[p2.1+c2,p2.2+s2,z,p2.4]
[[p1,p2,p3],[p2,p4]]

Type: Void

clipValue :SF := 6

6.0 (4)
Type: DoubleFloat

clipFun(x) == min(max(x,-clipValue),clipValue)

Type: Void

realSteps :INT := 25

25 (6)
Type: Integer

638 · Interactive Programming

imagSteps :INT := 25

25 (7)
Type: Integer

C := Complex SF

Complex DoubleFloat (8)
Type: Domain

S := Segment SF

Segment DoubleFloat (9)
Type: Domain

drawComplexVectorField :(C -> C, S, S) -> VIEW3D

Type: Void

drawComplexVectorField(f,realRange,imagRange) ==

delReal := (hi realRange - lo realRange)/realSteps
delImag := (hi imagRange - lo imagRange)/imagSteps
sp := create3Space()$ThreeSpace SF
real := lo realRange
for i in 1..realSteps + 1 repeat
imag := lo imagRange
for j in 1..imagSteps + 1 repeat

z := f complex(real, imag)
arg := argument z
len := clipFun sqrt norm z
p1 := point[real, imag, 0.0@SF, arg]
scaleLen := delReal * len
p2 := point[p1.1 + scaleLen * cos(arg),

p1.2 + scaleLen * sin(arg), 0.0@SF,
arg]

arrow := makeArrow(p1, p2)
for a in arrow repeat curve(sp, a)
imag := imag + delImag

real := real + delReal
makeViewport3D(sp, "Complex Vector Field")$VIEW3D

Type: Void

drawComplex :(C->C, S, S) -> VIEW3D

Type: Void

10.7. Drawing Complex Functions · 639

drawComplex(f, realRange, imagRange) ==

deltaReal :SF := (hi realRange - lo
realRange)/realSteps
deltaImag :SF := (hi imagRange - lo

imagRange)/imagSteps
llp:List List Point SF := []
real :SF := lo realRange
for i in 1..realSteps + 1 repeat
imag :SF := lo imagRange
lp := []$(List Point SF)
for j in 1..imagSteps + 1 repeat
z :COMPLEX SF := f(complex(real, imag))
pt :Point SF := point[real, imag, clipFun sqrt norm

z, argument z]
lp := cons(pt, lp)
imag := imag + deltaImag

real := real + deltaReal
llp := cons(reverse! lp, llp)
llp := reverse! llp
makeViewport3D(mesh(llp), "Complex Function")$VIEW3D

Type: Void
This one has a pole at z = 0. f(z) == exp(1/z)

Type: Void
Draw it with an odd number of
steps to avoid the pole.

drawComplex(f,-2..2,-2..2)

Compiling function f with type Complex DoubleFloat
-> Complex DoubleFloat

Compiling function clipFun with type DoubleFloat ->
DoubleFloat

+++ |*1;clipFun;1;initial| redefined
Compiling function drawComplex with type ((Complex

DoubleFloat -> Complex DoubleFloat),Segment
DoubleFloat,Segment DoubleFloat) ->
ThreeDimensionalViewport

Transmitting data...

ThreeDimensionalViewport: "Complex Function" (15)
Type: ThreeDimensionalViewport

640 · Interactive Programming

10.8
Functions
Producing
Functions

In Section 6.14 on page 207, you learned how to use the operation func-
tion to create a function from symbolic formulas. Here we introduce a
similar operation which not only creates functions, but functions from
functions.

The facility we need is provided by the package MakeUnaryCompiledFunc-
tion(E,S,T). This package produces a unary (one-argument) compiled func-
tion from some symbolic data generated by a previous computation.1 The
E tells where the symbolic data comes from; the S and T give AXIOM the
source and target type of the function, respectively. The compiled func-
tion produced has type S→ T. To produce a compiled function with defini-
tion p(x) == expr, call compiledFunction(expr, x) from this package.
The function you get has no name. You must to assign the function to
the variable p to give it that name.

Do some computation. (x+1/3)**5

x5 +
5
3

x4 +
10
9

x3 +
10
27

x2 +
5
81

x +
1

243
(1)

Type: Polynomial Fraction Integer

Convert this to an anonymous
function of x. Assign it to the
variable p to give the function a
name.

p := compiledFunction(%,x)$MakeUnaryCompiledFunction(POLY
FRAC INT,DFLOAT,DFLOAT)

Compiling function %Q with type DoubleFloat ->
DoubleFloat

theMap (...) (2)
Type: (DoubleFloat → DoubleFloat)

Apply the function. p(sin(1.3))

3.668751115057229 (3)
Type: DoubleFloat

For a more sophisticated application, read on.

1MakeBinaryCompiledFunction is available for binary functions.

10.8. Functions Producing Functions · 641

10.9
Automatic
Newton Iteration
Formulas

We resume our continuing saga of arrows and complex functions. Suppose
we want to investigate the behavior of Newton’s iteration function in the
complex plane. Given a function f , we want to find the complex values z
such that f(z) = 0.

The first step is to produce a Newton iteration formula for a given f :
xn+1 = xn − f(xn)

f ′(xn) . We represent this formula by a function g that per-
forms the computation on the right-hand side, that is, xn+1 = g(xn).

The type Expression Integer (abbreviated EXPR INT) is used to represent
general symbolic expressions in AXIOM. To make our facility as general
as possible, we assume f has this type. Given f , we want to produce a
Newton iteration function g which, given a complex point xn, delivers the
next Newton iteration point xn+1.

This time we write an input file called newton.input. We need to im-
port MakeUnaryCompiledFunction (discussed in the last section), call it with
appropriate types, and then define the function newtonStep which refer-
ences it. Here is the function newtonStep:

The complex numbers. C := Complex DoubleFloat 1
Package for making functions. complexFunPack:=MakeUnaryCompiledFunction(EXPR INT,C,C) 2

3
Newton’s iteration function. newtonStep(f) == 4
Function for f . fun := complexNumericFunction f 5
Function for f ′. deriv := complexDerivativeFunction(f,1) 6
Return the iterator function. (x:C):C +-> 7

x - fun(x)/deriv(x) 8
9

Turn an expression f into a complexNumericFunction f == 10
function. v := theVariableIn f 11

compiledFunction(f, v)$complexFunPack 12
13

Create an nth derivative complexDerivativeFunction(f,n) == 14
function. v := theVariableIn f 15

df := D(f,v,n) 16
compiledFunction(df, v)$complexFunPack 17

18
Returns the variable in f . theVariableIn f == 19
The list of variables. vl := variables f 20
The number of variables. nv := # vl 21

nv > 1 => error "Expression is not univariate." 22
Return a dummy variable. nv = 0 => ’x 23

first vl 24

Do you see what is going on here? A formula f is passed into the func-
tion newtonStep. First, the function turns f into a compiled program
mapping complex numbers into complex numbers. Next, it does the same
thing for the derivative of f. Finally, it returns a function which computes
a single step of Newton’s iteration.

642 · Interactive Programming

The function complexNumericFunction extracts the variable from the
expression f and then turns f into a function which maps complex num-
bers into complex numbers. The function complexDerivativeFunction
does the same thing for the derivative of f. The function theVariableIn
extracts the variable from the expression f, calling the function error if
f has more than one variable. It returns the dummy variable x if f has
no variables.

Let’s now apply newtonStep to the formula for computing cube roots
of two.

Read the input file with the
definitions.

)read newton

--Copyright The Numerical Algorithms Group Limited
1994.

Newton’s Iteration function
newtonStep(f) returns a
newton’s iteration function for
the expression f.

newtonStep(f) ==

fun := complexNumericFunction f
deriv := complexDerivativeFunction(f,1)
(b:Complex DoubleFloat):Complex DoubleFloat +->
b - fun(b)/deriv(b)

Type: Void

create complex numeric
functions from an expression

complexFunPack := MakeUnaryCompiledFunction(EXPR INT,
Complex DoubleFloat, Complex DoubleFloat)

MakeUnaryCompiledFunction (Expression Integer , Complex DoubleFloat
, Complex DoubleFloat) (2)

Type: Domain

create a complex numeric
function from an expression

complexNumericFunction x ==

v := theVariable x
compiledFunction(x, v)$complexFunPack

Type: Void

create a complex numeric
derivatiave function from an
expression

complexDerivativeFunction(x,n) ==

v := theVariable x
df := differentiate(x,v,n)
compiledFunction(df, v)$complexFunPack

Type: Void

10.9. Automatic Newton Iteration Formulas · 643

return the unique variable in x,
or an error if it is multivariate

theVariable x ==

vl := variables x
nv := # vl
nv > 1 => error "Expression is not univariate."
nv = 0 => ’x
first vl

Type: Void

)read vectors

--Copyright The Numerical Algorithms Group Limited
1991.

)r arrows

--Copyright The Numerical Algorithms Group Limited
1991.

arrowAngle:=%pi-%pi/10.0@SF

2.8274333882308138 (6)
Type: DoubleFloat

arrowScale:=0.2@SF

0.20000000000000001 (7)
Type: DoubleFloat

makeArrow(p1,p2) ==

delta :=p2 -p1
len := arrowScale * length delta
theta := atan(delta.1, delta.2)
c1:= len*cos(theta+arrowAngle)
s1:= len*sin(theta+arrowAngle)
c2:= len*cos(theta-arrowAngle)
s2:= len*sin(theta-arrowAngle)
z:= p2.3*(1-arrowScale)
p3:=point[p2.1+c1,p2.2+s1,z,p2.4]
p4:=point[p2.1+c2,p2.2+s2,z,p2.4]
[[p1,p2,p3],[p2,p4]]

Type: Void

clipValue :SF := 6

6.0 (9)
Type: DoubleFloat

clipFun(x) == min(max(x,-clipValue),clipValue)

Type: Void

644 · Interactive Programming

realSteps :INT := 25

25 (11)
Type: Integer

imagSteps :INT := 25

25 (12)
Type: Integer

C := Complex SF

Complex DoubleFloat (13)
Type: Domain

S := Segment SF

Segment DoubleFloat (14)
Type: Domain

drawComplexVectorField :(C -> C, S, S) -> VIEW3D

Type: Void

drawComplexVectorField(f,realRange,imagRange) ==

delReal := (hi realRange - lo realRange)/realSteps
delImag := (hi imagRange - lo imagRange)/imagSteps
sp := create3Space()$ThreeSpace SF
real := lo realRange
for i in 1..realSteps + 1 repeat
imag := lo imagRange
for j in 1..imagSteps + 1 repeat

z := f complex(real, imag)
arg := argument z
len := clipFun sqrt norm z
p1 := point[real, imag, 0.0@SF, arg]
scaleLen := delReal * len
p2 := point[p1.1 + scaleLen * cos(arg),

p1.2 + scaleLen * sin(arg), 0.0@SF,
arg]

arrow := makeArrow(p1, p2)
for a in arrow repeat curve(sp, a)
imag := imag + delImag

real := real + delReal
makeViewport3D(sp, "Complex Vector Field")$VIEW3D

Type: Void

drawComplex :(C->C, S, S) -> VIEW3D

Type: Void

10.9. Automatic Newton Iteration Formulas · 645

drawComplex(f, realRange, imagRange) ==

deltaReal :SF := (hi realRange - lo
realRange)/realSteps
deltaImag :SF := (hi imagRange - lo

imagRange)/imagSteps
llp:List List Point SF := []
real :SF := lo realRange
for i in 1..realSteps + 1 repeat
imag :SF := lo imagRange
lp := []$(List Point SF)
for j in 1..imagSteps + 1 repeat
z :COMPLEX SF := f(complex(real, imag))
pt :Point SF := point[real, imag, clipFun sqrt norm

z, argument z]
lp := cons(pt, lp)
imag := imag + deltaImag

real := real + deltaReal
llp := cons(reverse! lp, llp)
llp := reverse! llp
makeViewport3D(mesh(llp), "Complex Function")$VIEW3D

Type: Void

The cube root of two. f := x**3 - 2

x3 − 2 (19)
Type: Polynomial Integer

Get Newton’s iteration formula. g := newtonStep f

Compiling function theVariable with type Polynomial
Integer -> Symbol

Compiling function complexNumericFunction with type
Polynomial Integer -> (Complex DoubleFloat ->
Complex DoubleFloat)

Compiling function complexDerivativeFunction with
type (Polynomial Integer,PositiveInteger) -> (
Complex DoubleFloat -> Complex DoubleFloat)

Compiling function newtonStep with type Polynomial
Integer -> (Complex DoubleFloat -> Complex
DoubleFloat)

Compiling function %R with type Complex DoubleFloat
-> Complex DoubleFloat

Compiling function %S with type Complex DoubleFloat
-> Complex DoubleFloat

theMap (...) (20)
Type: (Complex DoubleFloat → Complex DoubleFloat)

Let a denote the result of
applying Newton’s iteration
once to the complex number 1 +
%i.

a := g(1.0 + %i)

0.66666666666666674 + 0.33333333333333337 i (21)
Type: Complex DoubleFloat

646 · Interactive Programming

Now apply it repeatedly. How
fast does it converge?

[(a := g(a)) for i in 1..]

[1.1644444444444444− 0.73777777777777775 i,
0.92614004697164776− 0.17463006425584393 i,
1.3164444838140228 + 0.15690694583015852 i,
1.2462991025761463 + 0.015454763610132094 i,
1.2598725296532081− 0.00033827162059311272 i,
1.259920960928212 + 2.6023534653422681e− 08 i,
1.259921049894879− 3.6751942591616685e− 15 i,
1.2599210498948732− 3.3132158019282496e− 29 i,
1.2599210498948732− 5.6051938572992683e− 45 i,
1.2599210498948732, . . .]

(22)

Type: Stream Complex DoubleFloat

Check the accuracy of the last
iterate.

a**3

2.0 (23)
Type: Complex DoubleFloat

In ‘MappingPackage1’ on page 496, we show how functions can be manip-
ulated as objects in AXIOM. A useful operation to consider here is “*”,
which means composition. For example g*g causes the Newton iteration
formula to be applied twice. Correspondingly, g**n means to apply the
iteration formula n times.

Apply g twice to the point 1 +
%i.

(g*g) (1.0 + %i)

1.1644444444444444− 0.73777777777777775 i (24)
Type: Complex DoubleFloat

Apply g 11 times. (g**11) (1.0 + %i)

1.2599210498948732 (25)
Type: Complex DoubleFloat

Look now at the vector field and surface generated after two steps of
Newton’s formula for the cube root of two. The poles in these pictures
represent bad starting values, and the flat areas are the regions of con-
vergence to the three roots.

10.9. Automatic Newton Iteration Formulas · 647

The vector field. drawComplexVectorField(g**3,-3..3,-3..3)

Compiling function clipFun with type DoubleFloat ->
DoubleFloat

+++ |*1;clipFun;1;initial| redefined
Compiling function makeArrow with type (Point

DoubleFloat,Point DoubleFloat) -> List List Point
DoubleFloat

+++ |*2;makeArrow;1;initial| redefined
Compiling function drawComplexVectorField with type (

(Complex DoubleFloat -> Complex DoubleFloat),
Segment DoubleFloat,Segment DoubleFloat) ->
ThreeDimensionalViewport

+++ |*3;drawComplexVectorField;1;initial| redefined
Transmitting data...

ThreeDimensionalViewport: "Complex Vector Field" (26)
Type: ThreeDimensionalViewport

X Y

Z

The surface. drawComplex(g**3,-3..3,-3..3)

Compiling function drawComplex with type ((Complex
DoubleFloat -> Complex DoubleFloat),Segment
DoubleFloat,Segment DoubleFloat) ->
ThreeDimensionalViewport

+++ |*3;drawComplex;1;initial| redefined
Transmitting data...

ThreeDimensionalViewport: "Complex Function" (27)
Type: ThreeDimensionalViewport

X Y

Z

648 · Interactive Programming

CHAPTER 11

Packages
Packages provide the bulk of AXIOM’s algorithmic library, from numeric
packages for computing special functions to symbolic facilities for differ-
ential equations, symbolic integration, and limits.

In Chapter 10, we developed several useful functions for drawing vector
fields and complex functions. We now show you how you can add these
functions to the AXIOM library to make them available for general use.

The way we created the functions in Chapter 10 is typical of how you,
as an advanced AXIOM user, may interact with AXIOM. You have an
application. You go to your editor and create an input file defining some
functions for the application. Then you run the file and try the functions.
Once you get them all to work, you will often want to extend them, add
new features, perhaps write additional functions.

Eventually, when you have a useful set of functions for your application,
you may want to add them to your local AXIOM library. To do this, you
embed these function definitions in a package and add that package to
the library.

To introduce new packages, categories, and domains into the system, you
need to use the AXIOM compiler to convert the constructors into exe-
cutable machine code. An existing compiler in AXIOM is available on an
“as-is” basis. A new, faster compiler will be available in version 2.0 of
AXIOM.

649

11.1
Names,
Abbreviations,
and File Structure

Each package has a name and an abbreviation. For a package of the com-
plex draw functions from Chapter 10, we choose the name DrawComplex
and abbreviation DRAWCX.1 To be sure that you have not chosen a name
or abbreviation already used by the system, issue the system command
)show for both the name and the abbreviation.

Once you have named the package and its abbreviation, you can choose
any new filename you like with extension “.spad” to hold the definition of
your package. We choose the name drawpak.spad. If your application
involves more than one package, you can put them all in the same file.
AXIOM assumes no relationship between the name of a library file, and
the name or abbreviation of a package.

Near the top of the “.spad” file, list all the abbreviations for the packages
using)abbrev, each command beginning in column one. Macros giving
names to AXIOM expressions can also be placed near the top of the file.
The macros are only usable from their point of definition until the end of
the file.

Consider the definition of DrawComplex in Figure 11.1. After the macro
definition

S ==> Segment DoubleFloat

the name S can be used in the file as a shorthand for Segment DoubleFloat.2

The abbreviation command for the package

)abbrev package DRAWCX DrawComplex

is given after the macros (although it could precede them).

11.2
Syntax

The definition of a package has the syntax:

PackageForm : Exports == Implementation

The syntax for defining a package constructor is the same as that for
defining any function in AXIOM. In practice, the definition extends over
many lines so that this syntax is not practical. Also, the type of a package
is expressed by the operator with followed by an explicit list of operations.
A preferable way to write the definition of a package is with a where
expression:

1An abbreviation can be any string of between two and seven capital letters and
digits, beginning with a letter. See Section 2.2.5 on page 101 for more information.

2The interpreter also allows macro for macro definitions.

650 · Packages

The definition of a package usually has the form:
PackageForm : Exports == Implementation where

optional type declarations
Exports == with

list of exported operations
Implementation == add

list of function definitions for exported operations

The DrawComplex package takes no parameters and exports five opera-
tions, each a separate item of a pile. Each operation is described as a
declaration: a name, followed by a colon (“:”), followed by the type of
the operation. All operations have types expressed as mappings with the
syntax

source -> target

11.3
Abstract
Datatypes

A constructor as defined in AXIOM is called an abstract datatype in the
computer science literature. Abstract datatypes separate “specification”
(what operations are provided) from “implementation” (how the opera-
tions are implemented). The Exports (specification) part of a construc-
tor is said to be “public” (it provides the user interface to the package)
whereas the Implementation part is “private” (information here is effec-
tively hidden—programs cannot take advantage of it).

The Exports part specifies what operations the package provides to users.
As an author of a package, you must ensure that the Implementation part
provides a function for each operation in the Exports part.3

An important difference between interactive programming and the use
of packages is in the handling of global variables such as realSteps and
imagSteps. In interactive programming, you simply change the values
of variables by assignment. With packages, such variables are local to
the package—their values can only be set using functions exported by
the package. In our example package, we provide two functions setReal-
Steps and setImagSteps for this purpose.

Another local variable is clipValue which can be changed using the ex-
ported operation setClipValue. This value is referenced by the internal
function clipFun that decides whether to use the computed value of the

3The DrawComplex package enhances the facility described in Chapter 10.7 by al-
lowing a complex function to have arrows emanating from the surface to indicate the
direction of the complex argument.

11.3. Abstract Datatypes · 651

function at a point or, if the magnitude of that value is too large, the
value assigned to clipValue (with the appropriate sign).

11.4
Capsules

The part to the right of add in the Implementation part of the definition
is called a capsule. The purpose of a capsule is:

• to define a function for each exported operation, and
• to define a local environment for these functions to run.

What is a local environment? First, what is an environment? Think of
the capsule as an input file that AXIOM reads from top to bottom. Think
of the input file as having a)clear all at the top so that initially no
variables or functions are defined. When this file is read, variables such
as realSteps and arrowSize in DrawComplex are set to initial values.
Also, all the functions defined in the capsule are compiled. These include
those that are exported (like drawComplex), and those that are not (like
makeArrow). At the end, you get a set of name-value pairs: variable
names (like realSteps and arrowSize) are paired with assigned values,
while operation names (like drawComplex and makeArrow) are paired with
function values.

This set of name-value pairs is called an environment. Actually, we call
this environment the “initial environment” of a package: it is the environ-
ment that exists immediately after the package is first built. Afterwards,
functions of this capsule can access or reset a variable in the environment.
The environment is called local since any changes to the value of a variable
in this environment can be seen only by these functions.

Only the functions from the package can change the variables in the local
environment. When two functions are called successively from a package,
any changes caused by the first function called are seen by the second.

Since the environment is local to the package, its names don’t get mixed
up with others in the system or your workspace. If you happen to have a
variable called realSteps in your workspace, it does not affect what the
DrawComplex functions do in any way.

The functions in a package are compiled into machine code. Unlike func-
tion definitions in input files that may be compiled repeatedly as you use
them with varying argument types, functions in packages have a unique
type (generally parameterized by the argument parameters of a package)
and a unique compilation residing on disk.

The capsule itself is turned into a compiled function. This so-called cap-
sule function is what builds the initial environment spoken of above. If
the package has arguments (see below), then each call to the package con-

652 · Packages

structor with a distinct pair of arguments builds a distinct package, each
with its own local environment.

11.5
Input Files vs.
Packages

A good question at this point would be “Is writing a package more difficult
than writing an input file?”

The programs in input files are designed for flexibility and ease-of-use.
AXIOM can usually work out all of your types as it reads your program
and does the computations you request. Let’s say that you define a one-
argument function without giving its type. When you first apply the
function to a value, this value is understood by AXIOM as identifying
the type for the argument parameter. Most of the time AXIOM goes
through the body of your function and figures out the target type that
you have in mind. AXIOM sometimes fails to get it right. Then—and
only then—do you need a declaration to tell AXIOM what type you want.

Input files are usually written to be read by AXIOM—and by you. With-
out suitable documentation and declarations, your input files are likely
incomprehensible to a colleague—and to you some months later!

Packages are designed for legibility, as well as run-time efficiency. There
are few new concepts you need to learn to write packages. Rather, you
just have to be explicit about types and type conversions. The types of
all functions are pre-declared so that AXIOM—and the reader— knows
precisely what types of arguments can be passed to and from the functions
(certainly you don’t want a colleague to guess or to have to work this out
from context!). The types of local variables are also declared. Type
conversions are explicit, never automatic.4

In summary, packages are more tedious to write than input files. When
writing input files, you can casually go ahead, giving some facts now,
leaving others for later. Writing packages requires forethought, care and
discipline.

11.6
Compiling
Packages

Once you have defined the package DrawComplex, you need to compile
and test it. To compile the package, issue the system command)compile
drawpak. AXIOM reads the file drawpak.spad and compiles its contents
into machine binary. If all goes well, the file DRAWCX.NRLIB is
created in your local directory for the package. To test the package, you
must load the package before trying an operation.

4There is one exception to this rule: conversions from a subdomain to a domain are
automatic. After all, the objects both have the domain as a common type.

11.5. Input Files vs. Packages · 653

Compile the package.)compile drawpak

Expose the package.)expose DRAWCX

DrawComplex is now explicitly exposed in frame

Use an odd step size to avoid a
pole at the origin.

setRealSteps 51

51 (1)
Type: PositiveInteger

setImagSteps 51

51 (2)
Type: PositiveInteger

Define f to be the Gamma
function.

f(z) == Gamma(z)

Type: Void

Clip values of function with
magnitude larger than 7.

setClipValue 7

7.0 (4)
Type: DoubleFloat

Draw the Gamma function. drawComplex(f,-%pi..%pi,-%pi..%pi, false)

Compiling function f with type Complex DoubleFloat
-> Complex DoubleFloat

Transmitting data...

ThreeDimensionalViewport: "Complex Function" (5)
Type: ThreeDimensionalViewport

X Y

Z

654 · Packages

11.7
Parameters

The power of packages becomes evident when packages have parameters.
Usually these parameters are domains and the exported operations have
types involving these parameters.

In Chapter 2, you learned that categories denote classes of domains. Al-
though we cover this notion in detail in the next chapter, we now give
you a sneak preview of its usefulness.

In Section 6.15 on page 210, we defined functions bubbleSort(m) and
insertionSort(m) to sort a list of integers. If you look at the code for
these functions, you see that they may be used to sort any structure m with
the right properties. Also, the functions can be used to sort lists of any
elements—not just integers. Let us now recall the code for bubbleSort.

bubbleSort(m) ==
n := #m
for i in 1..(n-1) repeat

for j in n..(i+1) by -1 repeat
if m.j < m.(j-1) then swap!(m,j,j-1)

m

What properties of “lists of integers” are assumed by the sorting algo-
rithm? In the first line, the operation # computes the maximum index
of the list. The first obvious property is that m must have a finite num-
ber of elements. In AXIOM, this is done by your telling AXIOM that m
has the “attribute” finiteAggregate. An attribute is a property that a
domain either has or does not have. As we show later in Section 12.9 on
page 670, programs can query domains as to the presence or absence of
an attribute.

The operation swap! swaps elements of m. Using Browse, you find that
swap! requires its elements to come from a domain of category Indexed-
Aggregate with attribute shallowlyMutable. This attribute means that
you can change the internal components of m without changing its exter-
nal structure. Shallowly-mutable data structures include lists, streams,
one- and two-dimensional arrays, vectors, and matrices.

The category IndexedAggregate designates the class of aggregates whose
elements can be accessed by the notation m.s for suitable selectors s.
The category IndexedAggregate takes two arguments: Index, a domain of
selectors for the aggregate, and Entry, a domain of entries for the ag-
gregate. Since the sort functions access elements by integers, we must
choose Index = Integer. The most general class of domains for which
bubbleSort and insertionSort are defined are those of category In-
dexedAggregate(Integer,Entry) with the two attributes shallowlyMutable
and finiteAggregate.

Using Browse, you can also discover that AXIOM has many kinds of

11.7. Parameters · 655

domains with attribute shallowlyMutable. Those of class IndexedAggre-
gate(Integer,Entry) include Bits, FlexibleArray, OneDimensionalArray, List, String,
and Vector, and also HashTable and EqTable with integer keys. Although you
may never want to sort all such structures, we nonetheless demonstrate
AXIOM’s ability to do so.

Another requirement is that Entry has an operation “<”. One way to
get this operation is to assume that Entry has category OrderedSet. By
definition, will then export a “<” operation. A more general approach is
to allow any comparison function f to be used for sorting. This function
will be passed as an argument to the sorting functions.

Our sorting package then takes two arguments: a domain S of objects of
any type, and a domain A, an aggregate of type IndexedAggregate(Integer, S)
with the above two attributes. Here is its definition using what are close
to the original definitions of bubbleSort and insertionSort for sorting
lists of integers. The symbol “!” is added to the ends of the operation
names. This uniform naming convention is used for AXIOM operation
names that destructively change one or more of their arguments.

SortPackage(S,A) : Exports == Implementation where 1
S: Object 2
A: IndexedAggregate(Integer,S) 3

with (finiteAggregate; shallowlyMutable) 4
5

Exports == with 6
bubbleSort!: (A,(S,S) -> Boolean) -> A 7
insertionSort!: (A, (S,S) -> Boolean) -> A 8

9
Implementation == add 10

bubbleSort!(m,f) == 11
n := #m 12
for i in 1..(n-1) repeat 13
for j in n..(i+1) by -1 repeat 14
if f(m.j,m.(j-1)) then swap!(m,j,j-1) 15

m 16
insertionSort!(m,f) == 17
for i in 2..#m repeat 18
j := i 19
while j > 1 and f(m.j,m.(j-1)) repeat 20
swap!(m,j,j-1) 21
j := (j - 1) pretend PositiveInteger 22

m 23

656 · Packages

11.8
Conditionals

When packages have parameters, you can say that an operation is or is
not exported depending on the values of those parameters. When the
domain of objects S has an “<” operation, we can supply one-argument
versions of bubbleSort and insertionSort which use this operation for
sorting. The presence of the operation “<” is guaranteed when S is an
ordered set.

Exports == with 1
bubbleSort!: (A,(S,S) -> Boolean) -> A 2
insertionSort!: (A, (S,S) -> Boolean) -> A 3

4
if S has OrderedSet then 5
bubbleSort!: A -> A 6
insertionSort!: A -> A 7

In addition to exporting the one-argument sort operations condition-
ally, we must provide conditional definitions for the operations in the
Implementation part. This is easy: just have the one-argument func-
tions call the corresponding two-argument functions with the operation
“<” from S.

Implementation == add 1
... 2

if S has OrderedSet then 3
bubbleSort!(m) == bubbleSort!(m,<$S) 4
insertionSort!(m) == insertionSort!(m,<$S) 5

In Section 6.15 on page 210, we give an alternative definition of bub-
bleSort using first and rest that is more efficient for a list (for which
access to any element requires traversing the list from its first node).
To implement a more efficient algorithm for lists, we need the operation
setelt which allows us to destructively change the first and rest of a
list. Using Browse, you find that these operations come from category
UnaryRecursiveAggregate. Several aggregate types are unary recursive ag-
gregates including those of List and AssociationList. We provide two different
implementations for bubbleSort! and insertionSort!: one for list-like
structures, another for array-like structures.

Implementation == add 1
... 2

if A has UnaryRecursiveAggregate(S) then 3
bubbleSort!(m,fn) == 4
empty? m => m 5
l := m 6
while not empty? (r := l.rest) repeat 7

r := bubbleSort! r 8
x := l.first 9
if fn(r.first,x) then 10
l.first := r.first 11

11.8. Conditionals · 657

r.first := x 12
l.rest := r 13
l := l.rest 14

m 15
insertionSort!(m,fn) == 16

... 17

The ordering of definitions is important. The standard definitions come
first and then the predicate

A has UnaryRecursiveAggregate(S)

is evaluated. If true, the special definitions cover up the standard ones.

Another equivalent way to write the capsule is to use an if-then-else
expression:

if A has UnaryRecursiveAggregate(S) then 1
... 2

else 3
... 4

11.9
Testing

Once you have written the package, embed it in a file, for example, sort-
pak.spad. Be sure to include an)abbrev command at the top of the
file:

)abbrev package SORTPAK SortPackage

Now compile the file (using)compile sortpak.spad).

Expose the constructor. You are
then ready to begin testing.

)expose SORTPAK

SortPackage is now explicitly exposed in frame

Define a list. l := [1,7,4,2,11,-7,3,2]

[1, 7, 4, 2, 11, −7, 3, 2] (1)
Type: List Integer

Since the integers are an
ordered set, a one-argument
operation will do.

bubbleSort!(l)

[−7, 1, 2, 2, 3, 4, 7, 11] (2)
Type: List Integer

Re-sort it using “greater than.” bubbleSort!(l,(x,y) +-> x > y)

[11, 7, 4, 3, 2, 2, 1, −7] (3)
Type: List Integer

658 · Packages

Now sort it again using “<” on
integers.

bubbleSort!(l, <$Integer)

[−7, 1, 2, 2, 3, 4, 7, 11] (4)
Type: List Integer

A string is an aggregate of
characters so we can sort them
as well.

bubbleSort! "Mathematical Sciences"

" MSaaaccceeehiilmnstt" (5)
Type: String

Is “<” defined on booleans? false < true

true (6)
Type: Boolean

Good! Create a bit string
representing ten consecutive
boolean values true.

u : Bits := new(10,true)

"1111111111" (7)
Type: Bits

Set bits 3 through 5 to false,
then display the result.

u(3..5) := false; u

"1100011111" (8)
Type: Bits

Now sort these booleans. bubbleSort! u

"0001111111" (9)
Type: Bits

Create an “eq-table” (see
‘EqTable’ on page 406), a table
having integers as keys and
strings as values.

t : EqTable(Integer,String) := table()

table() (10)
Type: EqTable(Integer, String)

Give the table a first entry. t.1 := "robert"

"robert" (11)
Type: String

And a second. t.2 := "richard"

"richard" (12)
Type: String

What does the table look like? t

table (2 = "richard", 1 = "robert") (13)
Type: EqTable(Integer, String)

Now sort it. bubbleSort! t

table (2 = "robert", 1 = "richard") (14)
Type: EqTable(Integer, String)

11.9. Testing · 659

11.10
How Packages
Work

Recall that packages as abstract datatypes are compiled independently
and put into the library. The curious reader may ask: “How is the in-
terpreter able to find an operation such as bubbleSort!? Also, how is
a single compiled function such as bubbleSort! able to sort data of
different types?”

After the interpreter loads the package SortPackage, the four operations
from the package become known to the interpreter. Each of these oper-
ations is expressed as a modemap in which the type of the operation is
written in terms of symbolic domains.

See the modemaps for
bubbleSort!.

)display op bubbleSort!

There are 2 exposed functions called bubbleSort! :

[1] D1 -> D1 from SortPackage(D2,D1)
if D2 has ORDSET and D2 has OBJECT and D1 has
IndexedAggregate(Integer, D2) with

finiteAggregate
shallowlyMutable

[2] (D1,((D3,D3) -> Boolean)) -> D1 from SortPackage(D3,D1)
if D3 has OBJECT and D1 has
IndexedAggregate(Integer,D3) with

finiteAggregate
shallowlyMutable

What happens if you ask for bubbleSort!([1,-5,3])? There is a unique
modemap for an operation named bubbleSort! with one argument.
Since [1,-5,3] is a list of integers, the symbolic domain D1 is defined
as List(Integer). For some operation to apply, it must satisfy the predicate
for some D2. What D2? The third expression of the and requires D1 has
IndexedAggregate(Integer, D2) with two attributes. So the inter-
preter searches for an IndexedAggregate among the ancestors of List (Integer)
(see Section 12.4 on page 667). It finds one: IndexedAggregate(Integer,
Integer). The interpreter tries defining D2 as Integer. After substituting for
D1 and D2, the predicate evaluates to true. An applicable operation has
been found!

Now AXIOM builds the package SortPackage(List(Integer), Integer). Accord-
ing to its definition, this package exports the required operation: bubble-
Sort!: List Integer → List Integer. The interpreter then asks the package
for a function implementing this operation. The package gets all the
functions it needs (for example, rest and swap!) from the appropriate
domains and then it returns a bubbleSort! to the interpreter together
with the local environment for bubbleSort!. The interpreter applies
the function to the argument [1,-5,3]. The bubbleSort! function is
executed in its local environment and produces the result.

660 · Packages

All constructors used in a file C ==> Complex DoubleFloat 1
must be spelled out in full S ==> Segment DoubleFloat 2
unless abbreviated by macros INT ==> Integer 3
like these at the top of DFLOAT ==> DoubleFloat 4
a file. VIEW3D ==> ThreeDimensionalViewport 5

CURVE ==> List List Point DFLOAT 6
7

Identify kinds and abbreviations)abbrev package DRAWCX DrawComplex 8
Type definition begins here. DrawComplex(): Exports == Implementation where 9

10
Export part begins. Exports == with 11
Exported Operations drawComplex: (C -> C,S,S,Boolean) -> VIEW3D 12

drawComplexVectorField: (C -> C,S,S) -> VIEW3D 13
setRealSteps: INT -> INT 14
setImagSteps: INT -> INT 15
setClipValue: DFLOAT-> DFLOAT 16

17
Implementation part begins. Implementation == add 18
Local variable 1. arrowScale : DFLOAT := (0.2)::DFLOAT --relative size 19
Local variable 2. arrowAngle : DFLOAT := pi()-pi()/(20::DFLOAT) 20
Local variable 3. realSteps : INT := 11 --# real steps 21
Local variable 4. imagSteps : INT := 11 --# imaginary steps 22
Local variable 5.

clipValue : DFLOAT := 10::DFLOAT --maximum vector length 23
24

Exported function definition 1. setRealSteps(n) == realSteps := n 25
Exported function definition 2. setImagSteps(n) == imagSteps := n 26
Exported function definition 3. setClipValue(c) == clipValue := c 27

28
clipFun: DFLOAT -> DFLOAT --Clip large magnitudes. 29

Local function definition 1. clipFun(x) == min(max(x, -clipValue), clipValue) 30
31

makeArrow: (Point DFLOAT,Point DFLOAT,DFLOAT,DFLOAT) -> CURVE 32
Local function definition 2. makeArrow(p1, p2, len, arg) == ... 33

34
Exported function definition 4. drawComplex(f, realRange, imagRange, arrows?) == ... 35

Figure 11.1: The DrawComplex package.

11.10. How Packages Work · 661

CHAPTER 12

Categories
This chapter unravels the mysteries of categories—what they are, how
they are related to domains and packages, how they are defined in AXIOM,
and how you can extend the system to include new categories of your own.

We assume that you have read the introductory material on domains and
categories in Section 2.1.1 on page 93. There you learned that the notion
of packages covered in the previous chapter are special cases of domains.
While this is in fact the case, it is useful here to regard domains as distinct
from packages.

Think of a domain as a datatype, a collection of objects (the objects of
the domain). From your “sneak preview” in the previous chapter, you
might conclude that categories are simply named clusters of operations
exported by domains. As it turns out, categories have a much deeper
meaning. Categories are fundamental to the design of AXIOM. They
control the interactions between domains and algorithmic packages, and,
in fact, between all the components of AXIOM.

Categories form hierarchies as shown on the inside cover pages of this
book. The inside front-cover pages illustrate the basic algebraic hierarchy
of the AXIOM programming language. The inside back-cover pages show
the hierarchy for data structures.

Think of the category structures of AXIOM as a foundation for a city on
which superstructures (domains) are built. The algebraic hierarchy, for
example, serves as a foundation for constructive mathematical algorithms
embedded in the domains of AXIOM. Once in place, domains can be
constructed, either independently or from one another.

Superstructures are built for quality—domains are compiled into machine

663

code for run-time efficiency. You can extend the foundation in directions
beyond the space directly beneath the superstructures, then extend se-
lected superstructures to cover the space. Because of the compilation
strategy, changing components of the foundation generally means that
the existing superstructures (domains) built on the changed parts of the
foundation (categories) have to be rebuilt—that is, recompiled.

Before delving into some of the interesting facts about categories, let’s see
how you define them in AXIOM.

12.1
Definitions

A category is defined by a function with exactly the same format as any
other function in AXIOM.

The definition of a category has the syntax:

CategoryForm : Category == Extensions [with Exports]

The brackets [] here indicate optionality.

The first example of a category definition is SetCategory, the most basic
of the algebraic categories in AXIOM.

SetCategory(): Category == 1
Join(Type,CoercibleTo OutputForm) with 2

"=" : ($, $) -> Boolean 3

The definition starts off with the name of the category (SetCategory); this
is always in column one in the source file. All parts of a category definition
are then indented with respect to this first line.

In Chapter 2, we talked about Ring as denoting the class of all domains
that are rings, in short, the class of all rings. While this is the usual nam-
ing convention in AXIOM, it is also common to use the word “Category”
at the end of a category name for clarity. The interpretation of the name
SetCategory is, then, “the category of all domains that are (mathematical)
sets.”

The name SetCategory is followed in the definition by its formal parameters
enclosed in parentheses “()”. Here there are no parameters. As required,
the type of the result of this category function is the distinguished name
Category.

Then comes the “==”. As usual, what appears to the right of the “==” is
a definition, here, a category definition. A category definition always has

664 · Categories

two parts separated by the reserved word with.

The first part tells what categories the category extends. Here, the cat-
egory extends two categories: Type, the category of all domains, and Co-
ercibleTo(OutputForm). The operation Join is a system-defined operation
that forms a single category from two or more other categories.

Every category other than Type is an extension of some other category. If,
for example, SetCategory extended only the category Type, the definition
here would read “Type with ...”. In fact, the Type is optional in this
line; “with ...” suffices.

12.2
Exports

To the right of the with is a list of all the exports of the category. Each
exported operation has a name and a type expressed by a declaration of
the form “name: type”.

Categories can export symbols, as well as 0 and 1 which denote domain
constants.1 In the current implementation, all other exports are opera-
tions with types expressed as mappings with the syntax

source -> target

The category SetCategory has a single export: the operation “=” whose
type is given by the mapping ($, $) -> Boolean. The “$” in a mapping
type always means “the domain.” Thus the operation “=” takes two
arguments from the domain and returns a value of type Boolean.

The source part of the mapping here is given by a tuple consisting of two
or more types separated by commas and enclosed in parentheses. If an
operation takes only one argument, you can drop the parentheses around
the source type. If the mapping has no arguments, the source part of
the mapping is either left blank or written as “()”. Here are examples of
formats of various operations with some contrived names.

someIntegerConstant : $
aZeroArgumentOperation: () -> Integer
aOneArgumentOperation: Integer -> $
aTwoArgumentOperation: (Integer,$) -> Void
aThreeArgumentOperation: ($,Integer,$) -> Fraction($)

12.3
Documentation

The definition of SetCategory above is missing an important component:
its library documentation. Here is its definition, complete with documen-
tation.

1The numbers 0 and 1 are operation names in AXIOM.

12.2. Exports · 665

++ Description: 1
++ \axiomType{SetCategory} is the basic category 2
++ for describing a collection of elements with 3

++ \axiomOp{=} (equality) and a \axiomFun{coerce} 4

++ to \axiomType{OutputForm}. 5
6

SetCategory(): Category == 7
Join(Type, CoercibleTo OutputForm) with 8

"=": ($, $) -> Boolean 9
++ \axiom{x = y} tests if \axiom{x} and 10

++ \axiom{y} are equal. 11

Documentary comments are an important part of constructor definitions.
Documentation is given both for the category itself and for each export. A
description for the category precedes the code. Each line of the description
begins in column one with “++”. The description starts with the word
Description:.2 All lines of the description following the initial line are
indented by the same amount.

Surround the name of any constructor (with or without parameters) with
an . Similarly, surround an operator name with ‘‘’’, an AXIOM op-
eration with , and a variable or AXIOM expression with . Library doc-
umentation is given in a TEX-like language so that it can be used both
for hard-copy and for Browse. These different wrappings cause operations
and types to have mouse-active buttons in Browse. For hard-copy output,
wrapped expressions appear in a different font. The above documentation
appears in hard-copy as:

SetCategory is the basic category for describing a collection of
elements with “=” (equality) and a coerce to OutputForm.

and

x = y tests if x and y are equal.

For our purposes in this chapter, we omit the documentation from further
category descriptions.

2Other information such as the author’s name, date of creation, and so on, can go
in this area as well but are currently ignored by AXIOM.

666 · Categories

12.4
Hierarchies

A second example of a category is SemiGroup, defined by:

SemiGroup(): Category == SetCategory with 1

"*": ($,$) -> $ 2
"**": ($, PositiveInteger) -> $ 3

This definition is as simple as that for SetCategory, except that there are
two exported operations. Multiple exported operations are written as
a pile, that is, they all begin in the same column. Here you see that
the category mentions another type, PositiveInteger, in a signature. Any
domain can be used in a signature.

Since categories extend one another, they form hierarchies. Each category
other than Type has one or more parents given by the one or more cate-
gories mentioned before the with part of the definition. SemiGroup extends
SetCategory and SetCategory extends both Type and CoercibleTo (OutputForm).
Since CoercibleTo (OutputForm) also extends Type, the mention of Type in the
definition is unnecessary but included for emphasis.

12.5
Membership

We say a category designates a class of domains. What class of domains?
That is, how does AXIOM know what domains belong to what categories?
The simple answer to this basic question is key to the design of AXIOM:

Domains belong to categories by assertion.

When a domain is defined, it is asserted to belong to one or more cate-
gories. Suppose, for example, that an author of domain String wishes to
use the binary operator “*” to denote concatenation. Thus "hello " *
"there" would produce the string "hello there"3. The author of String
could then assert that String is a member of SemiGroup. According to our
definition of SemiGroup, strings would then also have the operation “**”
defined automatically. Then "--" ** 4 would produce a string of eight
dashes "--------". Since String is a member of SemiGroup, it also is a
member of SetCategory and thus has an operation “=” for testing that two
strings are equal.

Now turn to the algebraic category hierarchy inside the front cover of this
book. Any domain that is a member of a category extending SemiGroup
is a member of SemiGroup (that is, it is a semigroup). In particular, any

3Actually, concatenation of strings in AXIOM is done by juxtaposition or by using
the operation concat. The expression "hello " "there" produces the string "hello
there".

12.4. Hierarchies · 667

domain asserted to be a Ring is a semigroup since Ring extends Monoid,
that, in turn, extends SemiGroup. The definition of Integer in AXIOM
asserts that Integer is a member of category IntegerNumberSystem, that, in
turn, asserts that it is a member of EuclideanDomain. Now EuclideanDomain
extends PrincipalIdealDomain and so on. If you trace up the hierarchy, you
see that EuclideanDomain extends Ring, and, therefore, SemiGroup. Thus
Integer is a semigroup and also exports the operations “*” and “**”.

12.6
Defaults

We actually omitted the last part of the definition of SemiGroup in Section
12.4 on page 667. Here now is its complete AXIOM definition.

SemiGroup(): Category == SetCategory with 1

"*": ($, $) -> $ 2
"**": ($, PositiveInteger) -> $ 3

add 4
import RepeatedSquaring($) 5

x: $ ** n: PositiveInteger == expt(x,n) 6

The add part at the end is used to give “default definitions” for exported
operations. Once you have a multiplication operation “*”, you can define
exponentiation for positive integer exponents using repeated multiplica-
tion:

xn = xx x · · · x︸ ︷︷ ︸
n times

This definition for “**” is called a default definition. In general, a cat-
egory can give default definitions for any operation it exports. Since
SemiGroup and all its category descendants in the hierarchy export “**”,
any descendant category may redefine “**” as well.

A domain of category SemiGroup (such as Integer) may or may not choose
to define its own “**” operation. If it does not, a default definition that
is closest (in a “tree-distance” sense of the hierarchy) to the domain is
chosen.

The part of the category definition following an “add” operation is a
capsule, as discussed in the previous chapter. The line
import RepeatedSquaring($)

references the package RepeatedSquaring($), that is, the package Repeated-
Squaring that takes “this domain” as its parameter. For example, if the
semigroup Polynomial (Integer) does not define its own exponentiation op-
eration, the definition used may come from the package RepeatedSquaring
(Polynomial (Integer)). The next line gives the definition in terms of expt
from that package.

668 · Categories

The default definitions are collected to form a “default package” for the
category. The name of the package is the same as the category but with
an ampersand (“&”) added at the end. A default package always takes an
additional argument relative to the category. Here is the definition of the
default package SemiGroup& as automatically generated by AXIOM from
the above definition of SemiGroup.

SemiGroup &($): Exports == Implementation where 1
$: SemiGroup 2
Exports == with 3

"**": ($, PositiveInteger) -> $ 4
Implementation == add 5

import RepeatedSquaring($) 6

x:$ ** n:PositiveInteger == expt(x,n) 7

12.7
Axioms

In the previous section you saw the complete AXIOM program defining
SemiGroup. According to this definition, semigroups (that is, are sets with
the operations “*” and “**”.

You might ask: “Aside from the notion of default packages, isn’t a cate-
gory just a macro, that is, a shorthand equivalent to the two operations
“*” and “**” with their types?” If a category were a macro, every time
you saw the word SemiGroup, you would rewrite it by its list of exported
operations. Furthermore, every time you saw the exported operations of
SemiGroup among the exports of a constructor, you could conclude that
the constructor exported SemiGroup.

A category is not a macro and here is why. The definition for SemiGroup
has documentation that states:

Category SemiGroup denotes the class of all multiplicative semi-
groups, that is, a set with an associative operation “*”.

Axioms:
associative("*" : ($,$)->$) -- (x*y)*z = x*(y*z)

According to the author’s remarks, the mere exporting of an operation
named “*” and “**” is not enough to qualify the domain as a SemiGroup.
In fact, a domain can be a semigroup only if it explicitly exports a “**”
and a “*” satisfying the associativity axiom.

In general, a category name implies a set of axioms, even mathematical
theorems. There are numerous axioms from Ring, for example, that are
well-understood from the literature. No attempt is made to list them all.

12.7. Axioms · 669

Nonetheless, all such mathematical facts are implicit by the use of the
name Ring.

12.8
Correctness

While such statements are only comments, AXIOM can enforce their
intention simply by shifting the burden of responsibility onto the author
of a domain. A domain belongs to category Ring only if the author asserts
that the domain belongs to Ring or to a category that extends Ring.

This principle of assertion is important for large user-extendable systems.
AXIOM has a large library of operations offering facilities in many areas.
Names such as norm and product, for example, have diverse meanings
in diverse contexts. An inescapable hindrance to users would be to force
those who wish to extend AXIOM to always invent new names for op-
erations. AXIOM allows you to reuse names, and then use context to
disambiguate one from another.

Here is another example of why this is important. Some languages, such
as APL, denote the Boolean constants true and false by the integers
1 and 0. You may want to let infix operators “+” and “*” serve as the
logical operators or and and, respectively. But note this: Boolean is not
a ring. The inverse axiom for Ring states:

Every element x has an additive inverse y such that x + y = 0.

Boolean is not a ring since true has no inverse—there is no inverse element
a such that 1 + a = 0 (in terms of booleans, (true or a) = false).
Nonetheless, AXIOM could easily and correctly implement Boolean this
way. Boolean simply would not assert that it is of category Ring. Thus
the “+” for Boolean values is not confused with the one for Ring. Since the
Polynomial constructor requires its argument to be a ring, AXIOM would
then refuse to build the domain Polynomial(Boolean). Also, AXIOM would
refuse to wrongfully apply algorithms to Boolean elements that presume
that the ring axioms for “+” hold.

12.9
Attributes

Most axioms are not computationally useful. Those that are can be
explicitly expressed by what AXIOM calls an attribute. The attribute
commutative("*"), for example, is used to assert that a domain has
commutative multiplication. Its definition is given by its documentation:

A domain R has commutative("*") if it has an operation ”*”: (R,R)
→ R such that x * y = y * x.

Just as you can test whether a domain has the category Ring, you can test
that a domain has a given attribute.

670 · Categories

Do polynomials over the
integers have commutative
multiplication?

Polynomial Integer has commutative("*")

true (1)
Type: Boolean

Do matrices over the integers
have commutative
multiplication?

Matrix Integer has commutative("*")

false (2)
Type: Boolean

Attributes are used to conditionally export and define operations for a
domain (see Section 13.3 on page 677). Attributes can also be asserted in
a category definition.

After mentioning category Ring many times in this book, it is high time
that we show you its definition:

Ring(): Category == 1

Join(Rng,Monoid,LeftModule($: Rng)) with 2
characteristic: -> NonNegativeInteger 3

coerce: Integer -> $ 4
unitsKnown 5

add 6
n:Integer 7

coerce(n) == n * 1$$ 8

There are only two new things here. First, look at the “$$” on the last
line. This is not a typographic error! The first “$” says that the 1 is
to come from some domain. The second “$” says that the domain is
“this domain.” If “$” is Fraction(Integer), this line reads coerce(n) == n
* 1$Fraction(Integer).

The second new thing is the presence of attribute “unitsKnown”. AXIOM
can always distinguish an attribute from an operation. An operation has a
name and a type. An attribute has no type. The attribute unitsKnown as-
serts a rather subtle mathematical fact that is normally taken for granted
when working with rings.4 Because programs can test for this attribute,
AXIOM can correctly handle rather more complicated mathematical struc-
tures (ones that are similar to rings but do not have this attribute).

4With this axiom, the units of a domain are the set of elements x that each have
a multiplicative inverse y in the domain. Thus 1 and -1 are units in domain Integer.
Also, for Fraction Integer, the domain of rational numbers, all non-zero elements are
units.

12.9. Attributes · 671

12.10
Parameters

Like domain constructors, category constructors can also have parame-
ters. For example, category MatrixCategory is a parameterized category for
defining matrices over a ring R so that the matrix domains can have dif-
ferent representations and indexing schemes. Its definition has the form:

MatrixCategory(R,Row,Col): Category == 1
TwoDimensionalArrayCategory(R,Row,Col) with ... 2

The category extends TwoDimensionalArrayCategory with the same argu-
ments. You cannot find TwoDimensionalArrayCategory in the algebraic hi-
erarchy listing. Rather, it is a member of the data structure hierarchy,
given inside the back cover of this book. In particular, TwoDimensionalAr-
rayCategory is an extension of HomogeneousAggregate since its elements are
all one type.

The domain Matrix(R), the class of matrices with coefficients from domain R,
asserts that it is a member of category MatrixCategory(R, Vector(R), Vector(R)).
The parameters of a category must also have types. The first parameter
to MatrixCategory R is required to be a ring. The second and third are
required to be domains of category FiniteLinearAggregate(R).5 In practice,
examples of categories having parameters other than domains are rare.

Adding the declarations for parameters to the definition for MatrixCategory,
we have:

R: Ring 1
(Row, Col): FiniteLinearAggregate(R) 2

3
MatrixCategory(R, Row, Col): Category == 4

TwoDimensionalArrayCategory(R, Row, Col) with ... 5

12.11
Conditionals

As categories have parameters, the actual operations exported by a cat-
egory can depend on these parameters. As an example, the operation
determinant from category MatrixCategory is only exported when the
underlying domain R has commutative multiplication:

if R has commutative("*") then
determinant: $ -> R

Conditionals can also define conditional extensions of a category. Here is
a portion of the definition of QuotientFieldCategory:

QuotientFieldCategory(R) : Category == ... with ... 1

5This is another extension of HomogeneousAggregate that you can see in the data
structure hierarchy.

672 · Categories

if R has OrderedSet then OrderedSet 2
if R has IntegerNumberSystem then 3

ceiling: $ -> R 4
... 5

Think of category QuotientFieldCategory(R) as denoting the domain Frac-
tion(R), the class of all fractions of the form a/b for elements of R. The first
conditional means in English: “If the elements of R are totally ordered (R
is an OrderedSet), then so are the fractions a/b”.

The second conditional is used to conditionally export an operation ceil-
ing which returns the smallest integer greater than or equal to its argu-
ment. Clearly, “ceiling” makes sense for integers but not for polynomials
and other algebraic structures. Because of this conditional, the domain
Fraction(Integer) exports an operation ceiling: Fraction Integer → Integer,
but Fraction Polynomial Integer does not.

Conditionals can also appear in the default definitions for the operations
of a category. For example, a default definition for ceiling within the
part following the “add” reads:

if R has IntegerNumberSystem then
ceiling x == ...

Here the predicate used is identical to the predicate in the Exports part.
This need not be the case. See Section 11.8 on page 657 for a more
complicated example.

12.12
Anonymous
Categories

The part of a category to the right of a with is also regarded as a
category—an “anonymous category.” Thus you have already seen a cat-
egory definition in Chapter 11. The Exports part of the package Draw-
Complex (Section 11.3 on page 651) is an anonymous category. This is not
necessary. We could, instead, give this category a name:

DrawComplexCategory(): Category == with 1
drawComplex: (C -> C,S,S,Boolean) -> VIEW3D 2
drawComplexVectorField: (C -> C,S,S) -> VIEW3D 3
setRealSteps: INT -> INT 4
setImagSteps: INT -> INT 5
setClipValue: DFLOAT-> DFLOAT 6

and then define DrawComplex by:

DrawComplex(): DrawComplexCategory == Implementation 1
where 2

... 3

12.12. Anonymous Categories · 673

There is no reason, however, to give this list of exports a name since no
other domain or package exports it. In fact, it is rare for a package to
export a named category. As you will see in the next chapter, however,
it is very common for the definition of domains to mention one or more
category before the with.

674 · Categories

CHAPTER 13

Domains
We finally come to the domain constructor. A few subtle differences
between packages and domains turn up some interesting issues. We first
discuss these differences then describe the resulting issues by illustrating
a program for the QuadraticForm constructor. After a short example of
an algebraic constructor, CliffordAlgebra, we show how you use domain
constructors to build a database query facility.

13.1
Domains vs.
Packages

Packages are special cases of domains. What is the difference between
a package and a domain that is not a package? By definition, there is
only one difference: a domain that is not a package has the symbol “$”
appearing somewhere among the types of its exported operations. The
“$” denotes “this domain.” If the “$” appears before the “->” in the type
of a signature, it means the operation takes an element from the domain
as an argument. If it appears after the “->”, then the operation returns
an element of the domain.

If no exported operations mention “$”, then evidently there is nothing of
interest to do with the objects of the domain. You might then say that a
package is a “boring” domain! But, as you saw in Chapter 11, packages
are a very useful notion indeed. The exported operations of a package
depend solely on the parameters to the package constructor and other
explicit domains.

To summarize, domain constructors are versatile structures that serve two
distinct practical purposes: Those like Polynomial and List describe classes
of computational objects; others, like SortPackage, describe packages of
useful operations. As in the last chapter, we focus here on the first kind.

675

13.2
Definitions

The syntax for defining a domain constructor is the same as for any
function in AXIOM:

DomainForm : Exports == Implementation

As this definition usually extends over many lines, a where expression is
generally used instead.

A recommended format for the definition of a domain is:
DomainForm : Exports == Implementation where

optional type declarations
Exports == [Category Assertions] with

list of exported operations
Implementation == [Add Domain] add

[Rep := Representation]
list of function definitions for exported operations

Note: The brackets [] here denote optionality.

A complete domain constructor definition for QuadraticForm is shown in
Figure 13.1. Interestingly, this little domain illustrates all the new con-
cepts you need to learn.

A domain constructor can take any number and type of parameters. Quad-
raticForm takes a positive integer n and a field K as arguments. Like a
package, a domain has a set of explicit exports and an implementation
described by a capsule. Domain constructors are documented in the same
way as package constructors.

Domain QuadraticForm(n, K), for a given positive integer n and domain K,
explicitly exports three operations:

• quadraticForm(A) creates a quadratic form from a matrix A.
• matrix(q) returns the matrix A used to create the quadratic form
q.

• q.v computes the scalar vT Av for a given vector v.

Compared with the corresponding syntax given for the definition of a
package, you see that a domain constructor has three optional parts to
its definition: Category Assertions, Add Domain, and Representation.

676 · Domains

)abbrev domain QFORM QuadraticForm 1
2

++ Description: 3
++ This domain provides modest support for 4
++ quadratic forms. 5
QuadraticForm(n, K): Exports == Implementation where 6

n: PositiveInteger 7
K: Field 8

9
The exports. Exports == AbelianGroup with 10
The export quadraticForm. quadraticForm: SquareMatrix(n,K) -> $ 11

++ \axiom{quadraticForm(m)} creates a quadratic 12
++ quadratic form from a symmetric, 13

++ square matrix \axiom{m}. 14

The export matrix. matrix: $ -> SquareMatrix(n,K) 15
++ \axiom{matrix(qf)} creates a square matrix 16

++ from the quadratic form \axiom{qf}. 17

The export elt. elt: ($, DirectProduct(n,K)) -> K 18
++ \axiom{qf(v)} evaluates the quadratic form 19

++ \axiom{qf} on the vector \axiom{v}, 20
++ producing a scalar. 21

22
The definitions of the exports Implementation == SquareMatrix(n,K) add 23
The “representation.” Rep := SquareMatrix(n,K) 24
The definition of quadraticForm m == 25
quadraticForm. not symmetric? m => error 26

"quadraticForm requires a symmetric matrix" 27

m :: $ 28
The definition of matrix. matrix q == q :: Rep 29
The definition of elt. elt(q,v) == dot(v, (matrix q * v)) 30

Figure 13.1: The QuadraticForm domain.

13.3
Category
Assertions

The Category Assertions part of your domain constructor definition lists
those categories of which all domains created by the constructor are un-
conditionally members. The word “unconditionally” means that mem-
bership in a category does not depend on the values of the parameters
to the domain constructor. This part thus defines the link between the
domains and the category hierarchies given on the inside covers of this
book. As described in Section 12.8 on page 670, it is this link that makes
it possible for you to pass objects of the domains as arguments to other
operations in AXIOM.

Every QuadraticForm domain is declared to be unconditionally a member
of category AbelianGroup. An abelian group is a collection of elements
closed under addition. Every object x of an abelian group has an additive
inverse y such that x + y = 0. The exports of an abelian group include
0, “+”, “-”, and scalar multiplication by an integer. After asserting that

13.3. Category Assertions · 677

QuadraticForm domains are abelian groups, it is possible to pass quadratic
forms to algorithms that only assume arguments to have these abelian
group properties.

In Section 12.11 on page 672, you saw that Fraction(R), a member of Quo-
tientFieldCategory(R), is a member of OrderedSet if R is a member of Ordered-
Set. Likewise, from the Exports part of the definition of ModMonic(R,
S),

UnivariatePolynomialCategory(R) with
if R has Finite then Finite

...

you see that ModMonic(R, S) is a member of Finite is R is.

The Exports part of a domain definition is the same kind of expression
that can appear to the right of an “==” in a category definition. If a do-
main constructor is unconditionally a member of two or more categories,
a Join form is used. The Exports part of the definition of FlexibleArray(S)
reads, for example:

Join(ExtensibleLinearAggregate(S),
OneDimensionalArrayAggregate(S)) with...

13.4
A Demo

Before looking at the Implementation part of QuadraticForm, let’s try some
examples.

Build a domain QF. QF := QuadraticForm(2,Fraction Integer)

QuadraticForm (2, Fraction Integer) (1)
Type: Domain

Define a matrix to be used to
construct a quadratic form.

A := matrix [[-1,1/2],[1/2,1]]
[
−1 1

2
1
2 1

]
(2)

Type: Matrix Fraction Integer

Construct the quadratic form.
A package call $QF is necessary
since there are other
QuadraticForm domains.

q : QF := quadraticForm(A)
[
−1 1

2
1
2 1

]
(3)

Type: QuadraticForm(2, Fraction Integer)

678 · Domains

Looks like a matrix. Try
computing the number of rows.
AXIOM won’t let you.

nrows q

There are 2 exposed and 0 unexposed library
operations named nrows having 1 argument(s) but
none was determined to be applicable. Use HyperDoc
Browse, or issue

)display op nrows
to learn more about the available operations.
Perhaps package-calling the operation or using
coercions on the arguments will allow you to apply
the operation.

Cannot find a definition or applicable library
operation named nrows with argument type(s)

QuadraticForm(2,Fraction Integer)

Perhaps you should use "@" to indicate the
required return type, or "$" to specify which
version of the function you need.

Create a direct product element
v. A package call is again
necessary, but AXIOM
understands your list as
denoting a vector.

v := directProduct([2,-1])$DirectProduct(2,Fraction
Integer)

[2, −1] (4)
Type: DirectProduct(2, Fraction Integer)

Compute the product vT Av. q.v

−5 (5)
Type: Fraction Integer

What is 3 times q minus q plus
q?

3*q-q+q
[
−3 3

2
3
2 3

]
(6)

Type: QuadraticForm(2, Fraction Integer)

13.5
Browse

The Browse facility of HyperDoc is useful for investigating the properties
of domains, packages, and categories. From the main HyperDoc menu,
move your mouse to Browse and click on the left mouse button. This
brings up the Browse first page. Now, with your mouse pointer somewhere
in this window, enter the string “quadraticform” into the input area (all
lower case letters will do). Move your mouse to Constructors and click.
Up comes a page describing QuadraticForm.

From here, click on Description. This gives you a page that includes a
part labeled by “Description:”. You also see the types for arguments n
and K displayed as well as the fact that QuadraticForm returns an Abelian-
Group. You can go and experiment a bit by selecting Field with your

13.5. Browse · 679

mouse. Eventually, use several times to return to the first page
on QuadraticForm.

Select Operations to get a list of operations for QuadraticForm. You
can select an operation by clicking on it to get an individual page with
information about that operation. Or you can select the buttons along
the bottom to see alternative views or get additional information on the
operations. Then return to the page on QuadraticForm.

Select Cross Reference to get another menu. This menu has buttons
for Parents, Ancestors, and others. Clicking on Parents, you see that
QuadraticForm has one parent AbelianMonoid.

13.6
Representation

The Implementation part of an AXIOM capsule for a domain constructor
uses the special variable Rep to identify the lower level data type used to
represent the objects of the domain. The Rep for quadratic forms is
SquareMatrix(n, K). This means that all objects of the domain are required
to be n by n matrices with elements from K.

The code for quadraticForm in Figure 13.1 on page 677 checks that the
matrix is symmetric and then converts it to “$”, which means, as usual,
“this domain.” Such explicit conversions are generally required by the
compiler. Aside from checking that the matrix is symmetric, the code for
this function essentially does nothing. The m :: $ on line 28 coerces m
to a quadratic form. In fact, the quadratic form you created in step (3)
of Section 13.4 on page 678 is just the matrix you passed it in disguise!
Without seeing this definition, you would not know that. Nor can you
take advantage of this fact now that you do know! When we try in the
next step of Section 13.4 on page 678 to regard q as a matrix by asking
for nrows, the number of its rows, AXIOM gives you an error message
saying, in effect, “Good try, but this won’t work!”

The definition for the matrix function could hardly be simpler: it just
returns its argument after explicitly coercing its argument to a matrix.
Since the argument is already a matrix, this coercion does no computa-
tion.

Within the context of a capsule, an object of “$” is regarded both as a
quadratic form and as a matrix.1 This makes the definition of q.v easy—
it just calls the dot product from DirectProduct to perform the indicated
operation.

1In case each of “$” and Rep have the same named operation available, the one from
$ takes precedence. Thus, if you want the one from “Rep”, you must package call it
using a “$Rep” suffix.

680 · Domains

13.7
Multiple
Representations

To write functions that implement the operations of a domain, you want
to choose the most computationally efficient data structure to represent
the elements of your domain.

A classic problem in computer algebra is the optimal choice for an in-
ternal representation of polynomials. If you create a polynomial, say
3x2 + 5, how does AXIOM hold this value internally? There are many
ways. AXIOM has nearly a dozen different representations of polynomi-
als, one to suit almost any purpose. Algorithms for solving polynomial
equations work most efficiently with polynomials represented one way,
whereas those for factoring polynomials are most efficient using another.
One often-used representation is a list of terms, each term consisting of
exponent-coefficient records written in the order of decreasing exponents.
For example, the polynomial 3x2 + 5 is represented by the list [[e:2,
c:3], [e:0, c:5]].

What is the optimal data structure for a matrix? It depends on the
application. For large sparse matrices, a linked-list structure of records
holding only the non-zero elements may be optimal. If the elements can
be defined by a simple formula f(i, j), then a compiled function for f may
be optimal. Some programmers prefer to represent ordinary matrices as
vectors of vectors. Others prefer to represent matrices by one big linear
array where elements are accessed with linearly computable indexes.

While all these simultaneous structures tend to be confusing, AXIOM
provides a helpful organizational tool for such a purpose: categories. Poly-
nomialCategory, for example, provides a uniform user interface across all
polynomial types. Each kind of polynomial implements functions for all
these operations, each in its own way. If you use only the top-level oper-
ations in PolynomialCategory you usually do not care what kind of polyno-
mial implementation is used.

Within a given domain, however, you define (at most) one representation.2

If you want to have multiple representations (that is, several domains,
each with its own representation), use a category to describe the Exports,
then define separate domains for each representation.

13.8
Add Domain

The capsule part of Implementation defines functions that implement
the operations exported by the domain—usually only some of the opera-
tions. In our demo in Section 13.4 on page 678, we asked for the value of
3*q-q+q. Where do the operations “*”, “+”, and “-” come from? There
is no definition for them in the capsule!

2You can make that representation a Union type, however. See Section 2.5 on page
108 for examples of unions.

13.7. Multiple Representations · 681

The Implementation part of a definition can optionally specify an “add-
domain” to the left of an add (for QuadraticForm, defines SquareMatrix(n,K)
is the add-domain). The meaning of an add-domain is simply this: if the
capsule part of the Implementation does not supply a function for an
operation, AXIOM goes to the add-domain to find the function. So do
“*”, “+” and “-” come from SquareMatrix(n,K)?

13.9
Defaults

In Chapter 11, we saw that categories can provide default implementa-
tions for their operations. How and when are they used? When AXIOM
finds that QuadraticForm(2, Fraction Integer) does not implement the opera-
tions “*”, “+”, and “-”, it goes to SquareMatrix(2,Fraction Integer) to find it.
As it turns out, SquareMatrix(2, Fraction Integer) does not implement any of
these operations!

What does AXIOM do then? Here is its overall strategy. First, AXIOM
looks for a function in the capsule for the domain. If it is not there,
AXIOM looks in the add-domain for the operation. If that fails, AXIOM
searches the add-domain of the add-domain, and so on. If all those fail, it
then searches the default packages for the categories of which the domain
is a member. In the case of QuadraticForm, it searches AbelianGroup, then
its parents, grandparents, and so on. If this fails, it then searches the
default packages of the add-domain. Whenever a function is found, the
search stops immediately and the function is returned. When all fails, the
system calls error to report this unfortunate news to you. To find out the
actual order of constructors searched for QuadraticForm, consult Browse:
from the QuadraticForm, click on Cross Reference, then on Lineage.

Let’s apply this search strategy for our example 3*q-q+q. The scalar
multiplication comes first. AXIOM finds a default implementation in
AbelianGroup&. Remember from Section 12.6 on page 668 that SemiGroup
provides a default definition for xn by repeated squaring? AbelianGroup
similarly provides a definition for nx by repeated doubling.

But the search of the defaults for QuadraticForm fails to find any “+” or
“*” in the default packages for the ancestors of QuadraticForm. So it now
searches among those for SquareMatrix. Category MatrixCategory, which
provides a uniform interface for all matrix domains, is a grandparent
of SquareMatrix and has a capsule defining many functions for matrices,
including matrix addition, subtraction, and scalar multiplication. The
default package MatrixCategory& is where the functions for “+” and - come
from.

You can use Browse to discover where the operations for QuadraticForm
are implemented. First, get the page describing QuadraticForm. With

682 · Domains

your mouse somewhere in this window, type a “2”, press the Tab key,
and then enter “Fraction Integer” to indicate that you want the domain
QuadraticForm(2, Fraction Integer). Now click on Operations to get a table
of operations and on “*” to get a page describing the “*” operation.
Finally, click on implementation at the bottom.

13.10
Origins

Aside from the notion of where an operation is implemented, a useful no-
tion is the origin or “home” of an operation. When an operation (such as
quadraticForm) is explicitly exported by a domain (such as Quadratic-
Form), you can say that the origin of that operation is that domain. If an
operation is not explicitly exported from a domain, it is inherited from,
and has as origin, the (closest) category that explicitly exports it. The
operations “+” and “-” of QuadraticForm, for example, are inherited from
AbelianMonoid. As it turns out, AbelianMonoid is the origin of virtually
every “+” operation in AXIOM!

Again, you can use Browse to discover the origins of operations. From
the Browse page on QuadraticForm, click on Operations, then on origins
at the bottom of the page.

The origin of the operation is the only place where on-line documentation
is given. However, you can re-export an operation to give it special docu-
mentation. Suppose you have just invented the world’s fastest algorithm
for inverting matrices using a particular internal representation for matri-
ces. If your matrix domain just declares that it exports MatrixCategory, it
exports the inverse operation, but the documentation the user gets from
Browse is the standard one from MatrixCategory. To give your version of
inverse the attention it deserves, simply export the operation explicitly
with new documentation. This redundancy gives inverse a new origin
and tells Browse to present your new documentation.

13.11
Short Forms

In AXIOM, a domain could be defined using only an add-domain and
no capsule. Although we talk about rational numbers as quotients of
integers, there is no type RationalNumber in AXIOM. To create such a
type, you could compile the following “short-form” definition:

RationalNumber() == Fraction(Integer) 1

The Exports part of this definition is missing and is taken to be equivalent
to that of Fraction(Integer). Because of the add-domain philosophy, you
get precisely what you want. The effect is to create a little stub of a
domain. When a user asks to add two rational numbers, AXIOM would

13.10. Origins · 683

ask RationalNumber for a function implementing this “+”. Since the domain
has no capsule, the domain then immediately sends its request to Fraction
(Integer).

The short form definition for domains is used to define such domains as
MultivariatePolynomial:

MultivariatePolynomial(vl: List Symbol, R: Ring) == 1
SparseMultivariatePolynomial(R, 2

OrderedVariableList vl) 3

13.12
Example 1:
Clifford Algebra

Now that we have QuadraticForm available, let’s put it to use. Given some
quadratic form Q described by an n by n matrix over a field K, the
domain CliffordAlgebra(n, K, Q) defines a vector space of dimension 2n over
K. This is an interesting domain since complex numbers, quaternions,
exterior algebras and spin algebras are all examples of Clifford algebras.

The basic idea is this: the quadratic form Q defines a basis e1, e2 . . . , en

for the vector space Kn—the direct product of K with itself n times. From
this, the Clifford algebra generates a basis of 2n elements given by all the
possible products of the ei in order without duplicates, that is, 1, e1, e2,
e1e2, e3, e1e3, e2e3, e1e2, e3, and so on.

The algebra is defined by the relations

ei ei = Q(ei)
ei ej = −ej ei for i 6= j

Now look at the snapshot of its definition given in Figure 13.2. Lines 9-10
show part of the definitions of the Exports. A Clifford algebra over a
field K is asserted to be a ring, an algebra over K, and a vector space over
K. Its explicit exports include e(n), which returns the n th unit element.

The Implementation part begins by defining a local variable Qeelist to
hold the list of all q.v where v runs over the unit vectors from 1 to the
dimension n. Another local variable dim is set to 2n, computed once and
for all. The representation for the domain is PrimitiveArray(K), which is a
basic array of elements from domain K. Line 18 defines New as shorthand
for the more lengthy expression new(dim, 0$K)$Rep, which computes a
primitive array of length 2n filled with 0’s from domain K.

Lines 19-22 define the sum of two elements x and y straightforwardly.
First, a new array of all 0’s is created, then filled with the sum of the
corresponding elements. Indexing for primitive arrays starts at 0. The
definition of the product of x and y first requires the definition of a local

684 · Domains

NNI ==> NonNegativeInteger 1
PI ==> PositiveInteger 2

3
CliffordAlgebra(n,K,q): Exports == Implementation where 4

n: PI 5
K: Field 6
q: QuadraticForm(n, K) 7

8
Exports == Join(Ring,Algebra(K),VectorSpace(K)) with 9

e: PI -> $ 10
... 11

12
Implementation == add 13
Qeelist := 14
[q.unitVector(i::PI) for i in 1..n] 15

dim := 2**n 16
Rep := PrimitiveArray K 17

New ==> new(dim, 0$K)$Rep 18
x + y == 19
z := New 20
for i in 0..dim-1 repeat z.i := x.i + y.i 21
z 22

addMonomProd: (K, NNI, K, NNI, $) -> $ 23
addMonomProd(c1, b1, c2, b2, z) == ... 24
x * y == 25
z := New 26
for ix in 0..dim-1 repeat 27
if x.ix ∼= 0 then for iy in 0..dim-1 repeat 28
if y.iy ∼= 0 29
then addMonomProd(x.ix,ix,y.iy,iy,z) 30

z 31
... 32

Figure 13.2: Part of the CliffordAlgebra domain.

function addMonomProd. AXIOM knows it is local since it is not an
exported function. The types of all local functions must be declared.

For a demonstration of CliffordAlgebra, see ‘CliffordAlgebra’ on page 378.

13.13
Example 2:
Building A Query
Facility

We now turn to an entirely different kind of application, building a query
language for a database.

Here is the practical problem to solve. The Browse facility of AXIOM
has a database for all operations and constructors which is stored on disk
and accessed by HyperDoc. For our purposes here, we regard each line of
this file as having eight fields: class, name, type, nargs, exposed,
kind, origin, and condition. Here is an example entry:

o‘determinant‘$->R‘1‘x‘d‘Matrix(R)‘has(R,commutative("*"))

13.13. Example 2: Building A Query Facility · 685

In English, the entry means:

The operation determinant: $ → R with 1 argument, is
exposed and is exported by domain Matrix(R) if R has
commutative("*").

Our task is to create a little query language that allows us to get useful
information from this database.

13.13.1
A Little Query
Language

First we design a simple language for accessing information from the
database. We have the following simple model in mind for its design.
Think of the database as a box of index cards. There is only one search
operation—it takes the name of a field and a predicate (a boolean-valued
function) defined on the fields of the index cards. When applied, the
search operation goes through the entire box selecting only those index
cards for which the predicate is true. The result of a search is a new box
of index cards. This process can be repeated again and again.

The predicates all have a particularly simple form: symbol = pattern,
where symbol designates one of the fields, and pattern is a “search string”—
a string that may contain a “*” as a wildcard. Wildcards match any sub-
string, including the empty string. Thus the pattern "*ma*t" matches
"mat", "doormat" and "smart".

To illustrate how queries are given, we give you a sneak preview of the
facility we are about to create.

Extract the database of all
AXIOM operations.

ops := getDatabase("o")

6156 (1)
Type: Database IndexCard

How many exposed
three-argument map operations
involving streams?

ops.(name="map").(nargs="3").(type="*Stream*")

3 (2)
Type: Database IndexCard

As usual, the arguments of elt (“.”) associate to the left. The first
elt produces the set of all operations with name map. The second elt
produces the set of all map operations with three arguments. The third
elt produces the set of all three-argument map operations having a type
mentioning Stream.

Another thing we’d like to do is to extract one field from each of the index
cards in the box and look at the result. Here is an example of that kind
of request.

686 · Domains

What constructors explicitly
export a determinant
operation?

elt(elt(elt(elt(ops,name="determinant"),origin),sort),unique)

["InnerMatrixLinearAlgebraFunctions", "MatrixCategory", "MatrixLinearAlgebraFunctions", "SquareMatrixCategory"] (3)
Type: DataList String

The first elt produces the set of all index cards with name determinant.
The second elt extracts the origin component from each index card.
Each origin component is the name of a constructor which directly exports
the operation represented by the index card. Extracting a component
from each index card produces what we call a datalist. The third elt,
sort, causes the datalist of origins to be sorted in alphabetic order. The
fourth, unique, causes duplicates to be removed.

Before giving you a more extensive demo of this facility, we now build the
necessary domains and packages to implement it.

13.13.2
The Database
Constructor

We work from the top down. First, we define a database, our box of index
cards, as an abstract datatype. For sake of illustration and generality, we
assume that an index card is some type S, and that a database is a box
of objects of type S. Here is the AXIOM program defining the Database
domain.

PI ==> PositiveInteger 1
Database(S): Exports == Implementation where 2
S: Object with 3

elt: ($, Symbol) -> String 4

display: $ -> Void 5

fullDisplay: $ -> Void 6
7

Exports == with 8
Select by an equation. elt: ($,QueryEquation) -> $ 9

Select by a field name. elt: ($, Symbol) -> DataList String 10

Combine two databases. "+": ($,$) -> $ 11
Subtract one from another. "-": ($,$) -> $ 12
A brief database display. display: $ -> Void 13

A full database display. fullDisplay: $ -> Void 14

A selective display. fullDisplay: ($,PI,PI) -> Void 15

Display a database. coerce: $ -> OutputForm 16
Implementation == add 17

... 18

The domain constructor takes a parameter S, which stands for the class
of index cards. We describe an index card later. Here think of an index
card as a string which has the eight fields mentioned above.

First, we tell AXIOM what operations we are going to require from index
cards. We need an elt to extract the contents of a field (such as name

13.13. Example 2: Building A Query Facility · 687

and type) as a string. For example, c.name returns a string that is the
content of the name field on the index card c. We need to display an index
card in two ways: display shows only the name and type of an operation;
fullDisplay displays all fields. The display operations return no useful
information and thus have return type Void.

Next, we tell AXIOM what operations the user can apply to the database.
This part defines our little query language. The most important operation
is db . field = pattern which returns a new database, consisting of all
index cards of db such that the field part of the index card is matched
by the string pattern called pattern. The expression field = pattern
is an object of type QueryEquation (defined in the next section).

Another elt is needed to produce a DataList object. Operation “+” is
to merge two databases together; “-” is used to subtract away common
entries in a second database from an initial database. There are three
display functions. The fullDisplay function has two versions: one that
prints all the records, the other that prints only a fixed number of records.
A coerce to OutputForm creates a display object.

The Implementation part of Database is straightforward.

Implementation == add 1
s: Symbol 2
Rep := List S 3
elt(db,equation) == ... 4
elt(db,key) == [x.key for x in db]::DataList(String) 5
display(db) == for x in db repeat display x 6
fullDisplay(db) == for x in db repeat fullDisplay x 7
fullDisplay(db, n, m) == for x in db for i in 1..m 8
repeat 9
if i >= n then fullDisplay x 10

x+y == removeDuplicates! merge(x,y) 11
x-y == mergeDifference(copy(x::Rep), 12

y::Rep)$MergeThing(S) 13
coerce(db): OutputForm == (#db):: OutputForm 14

The database is represented by a list of elements of S (index cards). We
leave the definition of the first elt operation (on line 4) until the next
section. The second elt collects all the strings with field name key into
a list. The display function and first fullDisplay function simply call
the corresponding functions from S. The second fullDisplay function
provides an efficient way of printing out a portion of a large list. The “+”
is defined by using the existing merge operation defined on lists, then
removing duplicates from the result. The “-” operation requires writing a
corresponding subtraction operation. A package MergeThing (not shown)
provides this.

688 · Domains

The coerce function converts the database to an OutputForm by comput-
ing the number of index cards. This is a good example of the independence
of the representation of an AXIOM object from how it presents itself to
the user. We usually do not want to look at a database—but do care how
many “hits” we get for a given query. So we define the output represen-
tation of a database to be simply the number of index cards our query
finds.

13.13.3
Query Equations

The predicate for our search is given by an object of type QueryEquation.
AXIOM does not have such an object yet so we have to invent it.

QueryEquation(): Exports == Implementation where 1
Exports == with 2

equation: (Symbol, String) -> $ 3

variable: $ -> Symbol 4

value: $ -> String 5
6

Implementation == add 7
Rep := Record(var:Symbol, val:String) 8
equation(x, s) == [x, s] 9
variable q == q.var 10
value q == q.val 11

AXIOM converts an input expression of the form a = b to equation(a,
b). Our equations always have a symbol on the left and a string on the
right. The Exports part thus specifies an operation equation to create
a query equation, and variable and value to select the left- and right-
hand sides. The Implementation part uses Record for a space-efficient
representation of an equation.

Here is the missing definition for the elt function of Database in the last
section:

elt(db,eq) == 1
field := variable eq 2
value := value eq 3
[x for x in db | matches?(value,x.field)] 4

Recall that a database is represented by a list. Line 4 simply runs over
that list collecting all elements such that the pattern (that is, value)
matches the selected field of the element.

13.13. Example 2: Building A Query Facility · 689

13.13.4
DataLists

Type DataList is a new type invented to hold the result of selecting one
field from each of the index cards in the box. It is useful to make datalists
extensions of lists—lists that have special elt operations defined on them
for sorting and removing duplicates.

DataList(S:OrderedSet) : Exports == Implementation where 1
Exports == ListAggregate(S) with 2

elt: ($,"unique") -> $ 3
elt: ($,"sort") -> $ 4
elt: ($,"count") -> NonNegativeInteger 5

coerce: List S -> $ 6
7

Implementation == List(S) add 8
Rep := List S 9
elt(x,"unique") == removeDuplicates(x) 10
elt(x,"sort") == sort(x) 11
elt(x,"count") == #x 12
coerce(x:List S) == x :: $ 13

The Exports part asserts that datalists belong to the category ListAggre-
gate. Therefore, you can use all the usual list operations on datalists,
such as first, rest, and concat. In addition, datalists have four explicit
operations. Besides the three elt operations, there is a coerce operation
that creates datalists from lists.

The Implementation part needs only to define four functions. All the
rest are obtained from List(S).

13.13.5
Index Cards

An index card comes from a file as one long string. We define functions
that extract substrings from the long string. Each field has a name that
is passed as a second argument to elt.

IndexCard() == Implementation where 1
Exports == with 2

elt: ($, Symbol) -> String 3

display: $ -> Void 4

fullDisplay: $ -> Void 5

coerce: String -> $ 6
Implementation == String add ... 7

We leave the Implementation part to the reader. All operations involve
straightforward string manipulations.

690 · Domains

13.13.6
Creating a Database

We must not forget one important operation: one that builds the database
in the first place! We’ll name it getDatabase and put it in a pack-
age. This function is implemented by calling the Common LISP func-
tion getBrowseDatabase(s) to get appropriate information from Browse.
This operation takes a string indicating which lines you want from the
database: "o" gives you all operation lines, and "k", all constructor lines.
Similarly, "c", "d", and "p" give you all category, domain and package
lines respectively.

OperationsQuery(): Exports == Implementation where 1
Exports == with 2

getDatabase: String -> Database(IndexCard) 3
4

Implementation == add 5
getDatabase(s) == getBrowseDatabase(s)$Lisp 6

We do not bother creating a special name for databases of index cards.
Database (IndexCard) will do. Notice that we used the package Operations-
Query to create, in effect, a new kind of domain: Database(IndexCard).

13.13.7
Putting It All
Together

To create the database facility, you put all these constructors into one
file.3 At the top of the file put)abbrev commands, giving the constructor
abbreviations you created.

)abbrev domain ICARD IndexCard 1
)abbrev domain QEQUAT QueryEquation 2
)abbrev domain MTHING MergeThing 3
)abbrev domain DLIST DataList 4
)abbrev domain DBASE Database 5
)abbrev package OPQUERY OperationsQuery 6

With all this in alql.spad, for example, compile it using

)compile alql

and then load each of the constructors:

)load ICARD QEQUAT MTHING DLIST DBASE OPQUERY

You are ready to try some sample queries.
3You could use separate files, but we are putting them all together because, organi-

zationally, that is the logical thing to do.

13.13. Example 2: Building A Query Facility · 691

13.13.8
Example Queries

Our first set of queries give some statistics on constructors in the current
AXIOM system.

How many constructors does
AXIOM have?

ks := getDatabase "k"

1048 (1)
Type: Database IndexCard

Break this down into the
number of categories, domains,
and packages.

[ks.(kind=k) for k in ["c","d","p"]]

[199, 382, 467] (2)
Type: List Database IndexCard

692 · Domains

What are all the domain
constructors that take no
parameters?

elt(ks.(kind="d").(nargs="0"),name)

["AlgebraicNumber", "AnonymousFunction", "Any", "AttributeButtons", "BasicFunctions", "BasicOperator",

"BinaryExpansion", "BinaryFile", "Bits", "Boolean", "CardinalNumber", "CharacterClass", "Character",

"Color", "Commutator", "DecimalExpansion", "DoubleFloat", "DrawOption", "Exit", "ExtAlgBasis",

"FileName", "Float", "FortranCode", "FortranScalarType", "FortranTemplate", "FortranType",

"GraphImage", "HexadecimalExpansion", "IVBaseColor", "IVBasicNode", "IVCoordinate3", "IVCoordinate4",

"IVFaceSet", "IVField", "IVGroup", "IVIndexedLineSet", "IVNodeConnection", "IVNodeObject",

"IVPointSet", "IVQuadMesh", "IVSeparator", "IVSimpleInnerNode", "IVUtilities", "IVValue",

"IndexCard", "InnerAlgebraicNumber", "InputForm", "Integer", "IntegrationFunctionsTable", "InventorDataSink",

"InventorRenderPackage", "InventorViewPort", "Library", "MachineComplex", "MachineFloat",

"MachineInteger", "NagDiscreteFourierTransformInterfacePackage", "NagEigenInterfacePackage",

"NagOptimisationInterfacePackage", "NagQuadratureInterfacePackage", "NagResultChecks",

"NagSpecialFunctionsInterfacePackage", "NonNegativeInteger", "None", "NumericalIntegrationProblem",

"NumericalODEProblem", "NumericalOptimizationProblem", "NumericalPDEProblem", "ODEIntensityFunctionsTable",

"OrdSetInts", "OutputForm", "Palette", "Partition", "Pi", "PlaneAlgebraicCurvePlot", "Plot3D",

"Plot", "PositiveInteger", "QueryEquation", "RenderTools", "Result", "RomanNumeral", "RoutinesTable",

"SExpression", "ScriptFormulaFormat", "SingleInteger", "SingletonAsOrderedSet", "String", "SubSpaceComponentProperty",

"Switch", "SymbolTable", "Symbol", "TexFormat", "TextFile", "TheSymbolTable", "ThreeDimensionalViewport",

"Timer", "TwoDimensionalViewport", "Void", "d01TransformFunctionType", "d01ajfAnnaType",

"d01akfAnnaType", "d01alfAnnaType", "d01amfAnnaType", "d01anfAnnaType", "d01apfAnnaType",

"d01aqfAnnaType", "d01asfAnnaType", "d01fcfAnnaType", "d01gbfAnnaType", "d02bbfAnnaType",

"d02bhfAnnaType", "d02cjfAnnaType", "d02ejfAnnaType", "d03eefAnnaType", "d03fafAnnaType",

"e04dgfAnnaType", "e04fdfAnnaType", "e04gcfAnnaType", "e04jafAnnaType", "e04mbfAnnaType",

"e04nafAnnaType", "e04ucfAnnaType", "TexFormat"]

(3)

Type: DataList String

13.13. Example 2: Building A Query Facility · 693

How many constructors have
“Matrix” in their name?

mk := ks.(name="*Matrix*")

26 (4)
Type: Database IndexCard

What are the names of those
that are domains?

elt(mk.(kind="d"),name)

["DenavitHartenbergMatrix", "DirectProductMatrixModule", "IndexedMatrix", "LieSquareMatrix",

"Matrix", "RectangularMatrix", "SquareMatrix", "ThreeDimensionalMatrix"]
(5)

Type: DataList String

How many operations are there
in the library?

o := getDatabase "o"

6156 (6)
Type: Database IndexCard

Break this down into categories,
domains, and packages.

[o.(kind=k) for k in ["c","d","p"]]

[1590, 1956, 2610] (7)
Type: List Database IndexCard

The query language is helpful in getting information about a particular
operation you might like to apply. While this information can be obtained
with Browse, the use of the query database gives you data that you can
manipulate in the workspace.

How many operations have
“eigen” in the name?

eigens := o.(name="*eigen*")

4 (8)
Type: Database IndexCard

What are their names? elt(eigens,name)

["eigenMatrix", "eigenvalues", "eigenvector", "eigenvectors"] (9)
Type: DataList String

Where do they come from? elt(elt(elt(eigens,origin),sort),unique)

["EigenPackage", "RadicalEigenPackage"] (10)
Type: DataList String

The operations “+” and “-” are useful for constructing small databases
and combining them. However, remember that the only matching you can
do is string matching. Thus a pattern such as "*Matrix*" on the type
field matches any type containing Matrix, MatrixCategory, SquareMatrix, and
so on.

How many operations mention
“Matrix” in their type?

tm := o.(type="*Matrix*")

353 (11)
Type: Database IndexCard

694 · Domains

How many operations come
from constructors with “Matrix”
in their name?

fm := o.(origin="*Matrix*")

192 (12)
Type: Database IndexCard

How many operations are in fm
but not in tm?

fm-tm

146 (13)
Type: Database IndexCard

13.13. Example 2: Building A Query Facility · 695

Display the operations that both
mention “Matrix” in their type
and come from a constructor
having “Matrix” in their name.

fullDisplay(fm-%)

** : (Matrix(R),NonNegativeInteger)->Matrix(R)
from StorageEfficientMatrixOperations(R) (unexposed)

clearDenominator : (Matrix(Q))->Matrix(R)
from MatrixCommonDenominator(R,Q)

coerceP :
(Vector(Matrix(R)))->Vector(Matrix(Polynomial(R)))

from CoerceVectorMatrixPackage(R) (unexposed)
coerce

:
(Vector(Matrix(R)))-

>Vector(Matrix(Fraction(Polynomial(R))
))
from CoerceVectorMatrixPackage(R) (unexposed)

coerce : ($)->Matrix(R)
from RectangularMatrix(m,n,R) (unexposed)

coerce : ($)->Matrix(R) from SquareMatrix(ndim,R)
(unexposed)
coerce : (Matrix(MachineFloat))-> $ from
FortranMatrixCategory
commonDenominator : (Matrix(Q))->R

from MatrixCommonDenominator(R,Q)
copy! : (Matrix(R),Matrix(R))->Matrix(R)

from StorageEfficientMatrixOperations(R) (unexposed)
f01brf

:
(Integer,Integer,Integer,Integer,DoubleFloat,Boolean,Boole
an,List(Boolean),Matrix(DoubleFloat),Matrix(Integer),Matri

x(Integer),Integer)->Result
from NagMatrixOperationsPackage

f01bsf
:

(Integer,Integer,Integer,Matrix(Integer),Matrix(Integer),M
atrix(Integer),Matrix(Integer),Boolean,DoubleFloat,Boolean
,Matrix(Integer),Matrix(DoubleFloat),Integer)->Result

from NagMatrixOperationsPackage
f01maf

:
(Integer,Integer,Integer,Integer,List(Boolean),Matrix(Doub
leFloat),Matrix(Integer),Matrix(Integer),DoubleFloat,Doubl

eFloat,Integer)->Result
from NagMatrixOperationsPackage

f01mcf
:

(Integer,Matrix(DoubleFloat),Integer,Matrix(Integer),Integ
er)->Result
from NagMatrixOperationsPackage

f01qcf
:

(Integer,Integer,Integer,Matrix(DoubleFloat),Integer)-
>Res

ult
from NagMatrixOperationsPackage

f01qdf
:

(String,String,Integer,Integer,Matrix(DoubleFloat),Integer
,Matrix(DoubleFloat),Integer,Integer,Matrix(DoubleFloat),I

nteger)->Result
from NagMatrixOperationsPackage

f01qef
:

(String,Integer,Integer,Integer,Integer,Matrix(DoubleFloat
),Matrix(DoubleFloat),Integer)->Result
from NagMatrixOperationsPackage

f01rcf
:

(Integer,Integer,Integer,Matrix(Complex(DoubleFloat)),Inte
ger)->Result
from NagMatrixOperationsPackage

f01rdf
:

(String,String,Integer,Integer,Matrix(Complex(DoubleFloat)
),Integer,Matrix(Complex(DoubleFloat)),Integer,Integer,Mat

rix(Complex(DoubleFloat)),Integer)->Result
from NagMatrixOperationsPackage

f01ref
:

(String,Integer,Integer,Integer,Integer,Matrix(Complex(Dou
bleFloat)),Matrix(Complex(DoubleFloat)),Integer)-

>Result
from NagMatrixOperationsPackage

hasSolution? : (Matrix(F),Vector(F))->Boolean
from LinearSystemMatrixPackage1(F)

leftScalarTimes! : (Matrix(R),R,Matrix(R))->Matrix(R)
from StorageEfficientMatrixOperations(R) (unexposed)

minus! : (Matrix(R),Matrix(R))->Matrix(R)
from StorageEfficientMatrixOperations(R) (unexposed)

minus! : (Matrix(R),Matrix(R),Matrix(R))->Matrix(R)
from StorageEfficientMatrixOperations(R) (unexposed)

particularSolution
: (Matrix(F),Vector(F))->Union(Vector(F),"failed")
from LinearSystemMatrixPackage1(F)

plus! : (Matrix(R),Matrix(R),Matrix(R))->Matrix(R)
from StorageEfficientMatrixOperations(R) (unexposed)

power!
:

(Matrix(R),Matrix(R),Matrix(R),Matrix(R),NonNegativeIntege
r)->Matrix(R)
from StorageEfficientMatrixOperations(R) (unexposed)

rank : (Matrix(F),Vector(F))->NonNegativeInteger
from LinearSystemMatrixPackage1(F)

rectangularMatrix : (Matrix(R))-> $
from RectangularMatrix(m,n,R) (unexposed)

retractIfCan :
(Matrix(Expression(Float)))->Union($,"failed")

from FortranMatrixFunctionCategory
retractIfCan

: (Matrix(Expression(Integer)))->Union($,"failed")
from FortranMatrixFunctionCategory

retractIfCan
: (Matrix(Fraction(Polynomial(Float))))-

>Union($,"failed")
from FortranMatrixFunctionCategory

retractIfCan
:
(Matrix(Fraction(Polynomial(Integer))))-

>Union($,"failed"
)
from FortranMatrixFunctionCategory

retractIfCan :
(Matrix(Polynomial(Float)))->Union($,"failed")

from FortranMatrixFunctionCategory
retractIfCan

: (Matrix(Polynomial(Integer)))->Union($,"failed")
from FortranMatrixFunctionCategory

retract : (Matrix(Expression(Float)))-> $
from FortranMatrixFunctionCategory

retract : (Matrix(Expression(Integer)))-> $
from FortranMatrixFunctionCategory

retract : (Matrix(Fraction(Polynomial(Float))))-> $
from FortranMatrixFunctionCategory

retract : (Matrix(Fraction(Polynomial(Integer))))-> $
from FortranMatrixFunctionCategory

retract : (Matrix(Polynomial(Float)))-> $
from FortranMatrixFunctionCategory

retract : (Matrix(Polynomial(Integer)))-> $
from FortranMatrixFunctionCategory

rightScalarTimes! : (Matrix(R),Matrix(R),R)->Matrix(R)
from StorageEfficientMatrixOperations(R) (unexposed)

solve
:
(Matrix(F),List(Vector(F)))-

>List(Record(particular:Union(
Vector(F),"failed"),basis:List(Vector(F))))
from LinearSystemMatrixPackage1(F)

solve
:
(Matrix(F),Vector(F))-

>Record(particular:Union(Vector(F),"
failed"),basis:List(Vector(F)))
from LinearSystemMatrixPackage1(F)

splitDenominator :
(Matrix(Q))->Record(num:Matrix(R),den:R)

from MatrixCommonDenominator(R,Q)
squareMatrix : (Matrix(R))-> $

from SquareMatrix(ndim,R) (unexposed)
times! : (Matrix(R),Matrix(R),Matrix(R))->Matrix(R)

from StorageEfficientMatrixOperations(R) (unexposed)

Type: Void

696 · Domains

How many operations involve
matrices?

m := tm+fm

499 (15)
Type: Database IndexCard

Display 4 of them. fullDisplay(m, 202, 205)

elt : ($,List(Integer),List(Integer))-> $
from MatrixCategory(R,Row,Col)

elt : ($,Integer,Integer,R)->R
from RectangularMatrixCategory(m,n,R,Row,Col)

elt
:

($,NonNegativeInteger,NonNegativeInteger,NonNegativeInteg
er)->R
from ThreeDimensionalMatrix(R)

eval
:

(Matrix(Expression(DoubleFloat)),List(Symbol),Vector(Expre
ssion(DoubleFloat)))->Matrix(Expression(DoubleFloat))

from d02AgentsPackage

Type: Void

How many distinct names of
operations involving matrices
are there?

elt(elt(elt(m,name),unique),count)

317 (17)
Type: PositiveInteger

13.13. Example 2: Building A Query Facility · 697

CHAPTER 14

Browse
This chapter discusses the Browse component of HyperDoc. We suggest
you invoke AXIOM and work through this chapter, section by section,
following our examples to gain some familiarity with Browse.

14.1
The Front Page:
Searching the
Library

To enter Browse, click on Browse on the top level page of HyperDoc to
get the front page of Browse.

Figure 14.1: The Browse front page.

To use this page, you first enter a search string into the input area at the
top, then click on one of the buttons below. We show the use of each of
the buttons by example.

699

Constructors First enter the search string Matrix into the input area and click on
Constructors. What you get is the constructor page for Matrix. We
show and describe this page in detail in Section 14.2 on page 704. By
convention, AXIOM does a case-insensitive search for a match. Thus
matrix is just as good as Matrix, has the same effect as MaTrix, and
so on. We recommend that you generally use small letters for names
however. A search string with only capital letters has a special meaning
(see Section 14.3.3 on page 719).

Click on to return to the Browse front page.

Use the symbol “*” in search strings as a wild card. A wild card matches
any substring, including the empty string. For example, enter the search
string *matrix* into the input area and click on Constructors.1 What
you get is a table of all constructors whose names contain the string
“matrix.”

Figure 14.2: Table of exposed constructors matching *matrix* .

All constructors containing the string are listed, whether exposed or unex-
posed. You can hide the names of the unexposed constructors by clicking
on the *=unexposed button in the Views panel at the bottom of the
window. (The button will change to exposed only.)

One of the names in this table is Matrix. Click on Matrix. What you get
is again the constructor page for Matrix. As you see, Browse gives you a
large network of information in which there are many ways to reach the
same pages.

1To get only categories, domains, or packages, rather than all constructors, you can
click on the corresponding button to the right of Constructors.

700 · Browse

Again click on the to return to the table of constructors whose
names contain matrix. Below the table is a Views panel. This panel
contains buttons that let you view constructors in different ways. To
learn about views of constructors, skip to Section 14.2.3 on page 712.

Click on to return to the Browse front page.

Operations Enter *matrix into the input area and click on Operations. This time
you get a table of operations whose names end with matrix or Matrix.

Figure 14.3: Table of operations matching *matrix .

If you select an operation name, you go to a page describing all the op-
erations in AXIOM of that name. At the bottom of an operation page
is another kind of Views panel, one for operation pages. To learn more
about these views, skip to Section 14.3.2 on page 715.

Click on to return to the Browse front page.

Attributes This button gives you a table of attribute names that match the search
string. Enter the search string * and click on Attributes to get a list of
all system attributes.

Click on to return to the Browse front page.

Again there is a Views panel at the bottom with buttons that let you
view the attributes in different ways.

General This button does a general search for all constructor, operation, and
attribute names matching the search string. Enter the search string
matrix into the input area. Click on General to find all constructs
that have matrix as a part of their name.

14.1. The Front Page: Searching the Library · 701

Figure 14.4: Table of AXIOM attributes.

Figure 14.5: Table of all constructs matching *matrix* .

702 · Browse

The summary gives you all the names under a heading when the number
of entries is less than 10.

Click on to return to the Browse front page.

Documentation Again enter the search key *matrix* and this time click on Documenta-
tion. This search matches any constructor, operation, or attribute name
whose documentation contains a substring matching matrix.

Figure 14.6: Table of constructs with documentation matching *matrix* .

Click on to return to the Browse front page.

Complete This search combines both General and Documentation.

Figure 14.7: Table summarizing complete search for pattern *matrix* .

14.1. The Front Page: Searching the Library · 703

14.2
The Constructor
Page

In this section we look in detail at a constructor page for domain Matrix.
Enter matrix into the input area on the main Browse page and click on
Constructors.

Figure 14.8: Constructor page for Matrix.

The header part tells you that Matrix has abbreviation MATRIX and one
argument called R that must be a domain of category Ring. Just what
domains can be arguments of Matrix? To find this out, click on the R on
the second line of the heading. What you get is a table of all acceptable
domain parameter values of R, or a table of rings in AXIOM.

Figure 14.9: Table of acceptable domain parameters to Matrix.

Click on to return to the constructor page for Matrix.

704 · Browse

If you have access to the source code of AXIOM, the third line of the
heading gives you the name of the source file containing the definition of
Matrix. Click on it to pop up an editor window containing the source code
of Matrix.

Figure 14.10: Source code for Matrix.

We recommend that you leave the editor window up while working through
this chapter as you occasionally may want to refer to it.

14.2. The Constructor Page · 705

14.2.1
Constructor Page
Buttons

We examine each button on this page in order.

Description Click here to bring up a page with a brief description of constructor Matrix.
If you have access to system source code, note that these comments can
be found directly over the constructor definition.

Figure 14.11: Description page for Matrix.

Operations Click here to get a table of operations exported by Matrix. You may wish
to widen the window to have multiple columns as below.

Figure 14.12: Table of operations from Matrix.

If you click on an operation name, you bring up a description page for

706 · Browse

the operations. For a detailed description of these pages, skip to Section
14.3.2 on page 715.

Attributes Click here to get a table of the two attributes exported by Matrix: fi-
niteAggregate and shallowlyMutable. These are two computational
properties that result from Matrix being regarded as a data structure.

Figure 14.13: Attributes from Matrix.

Examples Click here to get an examples page with examples of operations to create
and manipulate matrices.

Figure 14.14: Example page for Matrix.

Read through this section. Try selecting the various buttons. Notice that
if you click on an operation name, such as new, you bring up a description

14.2. The Constructor Page · 707

page for that operation from Matrix.

Example pages have several examples of AXIOM commands. Each exam-
ple has an active button to its left. Click on it! A pre-computed answer
is pasted into the page immediately following the command. If you click
on the button a second time, the answer disappears. This button thus
acts as a toggle: “now you see it; now you don’t.”

Note also that the AXIOM commands themselves are active. If you want
to see AXIOM execute the command, then click on it! A new AXIOM
window appears on your screen and the command is executed.

Exports Click here to see a page describing the exports of Matrix exactly as de-
scribed by the source code.

Figure 14.15: Exports of Matrix.

As you see, Matrix declares that it exports all the operations and attributes
exported by category MatrixCategory(R, Row, Col). In addition, two opera-
tions, diagonalMatrix and inverse, are explicitly exported.

To learn a little about the structure of AXIOM, we suggest you do the
following exercise. Otherwise, go on to the next section. Matrix explicitly
exports only two operations. The other operations are thus exports of
MatrixCategory. In general, operations are usually not explicitly exported
by a domain. Typically they are inherited from several different categories.
Let’s find out from where the operations of Matrix come.

1. Click on MatrixCategory, then on Exports. Here you see that
MatrixCategory explicitly exports many matrix operations. Also,
it inherits its operations from TwoDimensionalArrayCategory.

2. Click on TwoDimensionalArrayCategory, then on Exports.

708 · Browse

Here you see explicit operations dealing with rows and columns.
In addition, it inherits operations from HomogeneousAggregate.

3. Click on and then click on Object, then on Exports, where
you see there are no exports.

4. Click on repeatedly to return to the constructor page for
Matrix.

Related Operations Click here bringing up a table of operations that are exported by packages
but not by Matrix itself.

Figure 14.16: Related operations of Matrix.

To see a table of such packages, use the Relatives button on the Cross
Reference page described next.

14.2.2
Cross Reference

Click on the Cross Reference button on the main constructor page for
Matrix. This gives you a page having various cross reference information
stored under the respective buttons.

Parents The parents of a domain are the same as the categories mentioned under
the Exports button on the first page. Domain Matrix has only one parent
but in general a domain can have any number.

Ancestors The ancestors of a constructor consist of its parents, the parents of its
parents, and so on. Did you perform the exercise in the last section under
Exports? If so, you see here all the categories you found while ascending
the Exports chain for Matrix.

Relatives

14.2. The Constructor Page · 709

Figure 14.17: Cross-reference page for Matrix.

The relatives of a domain constructor are package constructors that pro-
vide operations in addition to those exported by the domain.

Try this exercise.

1. Click on Relatives, bringing up a list of packages.
2. Click on LinearSystemMatrixPackage bringing up its construc-

tor page.2

3. Click on Operations. Here you see rank, an operation also ex-
ported by Matrix itself.

4. Click on rank. This rank has two arguments and thus is different
from the rank from Matrix.

5. Click on to return to the list of operations for the package
LinearSystemMatrixPackage.

6. Click on solve to bring up a solve for linear systems of equations.
7. Click on several times to return to the cross reference page

for Matrix.

Dependents The dependents of a constructor are those domains or packages that men-
tion that constructor either as an argument or in its exports.

If you click on Dependents two entries may surprise you: Rectangular-
Matrix and SquareMatrix. This happens because Matrix, as it turns out,
appears in signatures of operations exported by these domains.

2You may want to widen your HyperDoc window to make what follows more legible.

710 · Browse

Lineage The term lineage refers to the search order for functions. If you are an
expert user or curious about how the AXIOM system works, try the
following exercise. Otherwise, you best skip this button and go on to
Clients.

Clicking on Lineage gives you a list of domain constructors: InnerIndexedT-
woDimensionalArray, MatrixCategory&, TwoDimensionalArrayCategory&, Homo-
geneousAggregate&, Aggregate&. What are these constructors and how are
they used?

We explain by an example. Suppose you create a matrix using the inter-
preter, then ask for its rank. AXIOM must then find a function imple-
menting the rank operation for matrices. The first place AXIOM looks
for rank is in the Matrix domain.

If not there, the lineage of Matrix tells AXIOM where else to look. Associ-
ated with the matrix domain are five other lineage domains. Their order
is important. AXIOM first searches the first one, InnerIndexedTwoDimen-
sionalArray. If not there, it searches the second MatrixCategory&. And so
on.

Where do these lineage constructors come from? The source code for
Matrix contains this syntax for the function body of Matrix:3

InnerIndexedTwoDimensionalArray(R,mnRow,mnCol,Row,Col)
add ...

where the “...” denotes all the code that follows. In English, this means:
“The functions for matrices are defined as those from InnerIndexedTwoDi-
mensionalArray domain augmented by those defined in ‘...’,” where the
latter take precedence.

This explains InnerIndexedTwoDimensionalArray. The other names, those
with names ending with an ampersand “&” are default packages for cate-
gories to which Matrix belongs. Default packages are ordered by the notion
of “closest ancestor.”

Clients A client of Matrix is any constructor that uses Matrix in its implementation.
For example, Complex is a client of Matrix; it exports several operations
that take matrices as arguments or return matrices as values.4

Benefactors

3InnerIndexedTwoDimensionalArray is a special domain implemented for matrix-like
domains to provide efficient implementations of two-dimensional arrays. For exam-
ple, domains of category TwoDimensionalArrayCategory can have any integer as their
minIndex. Matrices and other members of this special “inner” array have their
minIndex defined as 1.

4A constructor is a client of Matrix if it handles any matrix. For example, a con-
structor having internal (unexported) operations dealing with matrices is also a client.

14.2. The Constructor Page · 711

A benefactor of Matrix is any constructor that Matrix uses in its implemen-
tation. This information, like that for clients, is gathered from run-time
structures.5

Cross reference pages for categories have some different buttons on them.
Starting with the constructor page of Matrix, click on Ring producing
its constructor page. Click on Cross Reference, producing the cross-
reference page for Ring. Here are buttons Parents and Ancestors similar
to the notion for domains, except for categories the relationship between
parent and child is defined through category extension.

Children Category hierarchies go both ways. There are children as well as parents.
A child can have any number of parents, but always at least one. Every
category is therefore a descendant of exactly one category: Object.

Descendants These are children, children of children, and so on.

Category hierarchies are complicated by the fact that categories take pa-
rameters. Where a parameterized category fits into a hierarchy may de-
pend on values of its parameters. In general, the set of categories in
AXIOM forms a directed acyclic graph, that is, a graph with directed arcs
and no cycles.

Domains This produces a table of all domain constructors that can possibly be
rings (members of category Ring). Some domains are unconditional rings.
Others are rings for some parameters and not for others. To find out
which, select the conditions button in the views panel. For example,
DirectProduct(n, R) is a ring if R is a ring.

14.2.3
Views Of
Constructors

Below every constructor table page is a Views panel. As an example,
click on Cross Reference from the constructor page of Matrix, then on
Benefactors to produce a short table of constructor names.

The Views panel is at the bottom of the page. Two items, names and con-
ditions, are in italics. Others are active buttons. The active buttons are
those that give you useful alternative views on this table of constructors.
Once you select a view, you notice that the button turns off (becomes
italicized) so that you cannot reselect it.

names This view gives you a table of names. Selecting any of these names brings
up the constructor page for that constructor.

5The benefactors exclude constructors such as PrimitiveArray whose operations
macro-expand and so vanish from sight!

712 · Browse

abbrs This view gives you a table of abbreviations, in the same order as the
original constructor names. Abbreviations are in capitals and are limited
to 7 characters. They can be used interchangeably with constructor names
in input areas.

kinds This view organizes constructor names into the three kinds: categories,
domains and packages.

files This view gives a table of file names for the source code of the constructors
in alphabetic order after removing duplicates.

parameters This view presents constructors with the arguments. This view of the
benefactors of Matrix shows that Matrix uses as many as five different List
domains in its implementation.

filter This button is used to refine the list of names or abbreviations. Starting
with the names view, enter m* into the input area and click on filter. You
then get a shorter table with only the names beginning with m.

documentation This gives you documentation for each of the constructors.

conditions This page organizes the constructors according to predicates. The view
is not available for your example page since all constructors are uncon-
ditional. For a table with conditions, return to the Cross Reference
page for Matrix, click on Ancestors, then on conditions in the view
panel. This page shows you that CoercibleTo(OutputForm) and SetCategory
are ancestors of Matrix(R) only if R belongs to category SetCategory.

14.2.4
Giving Parameters to
Constructors

Notice the input area at the bottom of the constructor page. If you leave
this blank, then the information you get is for the domain constructor
Matrix(R), that is, Matrix for an arbitrary underlying domain R.

In general, however, the exports and other information do usually depend
on the actual value of R. For example, Matrix exports the inverse opera-
tion only if the domain R is a Field. To see this, try this from the main
constructor page:

1. Enter Integer into the input area at the bottom of the page.
2. Click on Operations, producing a table of operations. Note the

number of operation names that appear at the top of the page.
3. Click on to return to the constructor page.
4. Use the Delete or Backspace keys to erase Integer from the

input area.
5. Click on Operations to produce a new table of operations. Look

at the number of operations you get. This number is greater than
what you had before. Find, for example, the operation inverse.

14.2. The Constructor Page · 713

6. Click on inverse to produce a page describing the operation in-
verse. At the bottom of the description, you notice that the Con-
ditions line says “R has Field.” This operation is not exported by
Matrix(Integer) since Integer is not a field.
Try putting the name of a domain such as Fraction Integer (which is
a field) into the input area, then clicking on Operations. As you
see, the operation inverse is exported.

14.3
Miscellaneous
Features of
Browse

14.3.1
The Description Page
for Operations

From the constructor page of Matrix, click on Operations to bring up the
table of operations for Matrix.

Find the operation inverse in the table and click on it. This takes you
to a page showing the documentation for this operation.

Figure 14.18: Operation inverse from Matrix.

Here is the significance of the headings you see.

Arguments This lists each of the arguments of the operation in turn, paraphrasing the
signature of the operation. As for signatures, a “$” is used to designate
this domain, that is, Matrix(R).

Returns This describes the return value for the operation, analogous to the Ar-
guments part.

714 · Browse

Origin This tells you which domain or category explicitly exports the operation.
In this example, the domain itself is the Origin.

Conditions This tells you that the operation is exported by Matrix(R) only if “R has
Field,” that is, “R is a member of category Field.” When no Conditions
part is given, the operation is exported for all values of R.

Description Here are the “++” comments that appear in the source code of its Origin,
here Matrix. You find these comments in the source code for Matrix.

Figure 14.19: Operations map from Matrix.

Click on to return to the table of operations. Click on map. Here
you find three different operations named map. This should not surprise
you. Operations are identified by name and signature. There are three
operations named map, each with different signatures. What you see is
the descriptions view of the operations. If you like, select the button in
the heading of one of these descriptions to get only that operation.

Where This part qualifies domain parameters mentioned in the arguments to the
operation.

14.3.2
Views of Operations

We suggest that you go to the constructor page for Matrix and click on
Operations to bring up a table of operations with a Views panel at the
bottom.

names This view lists the names of the operations. Unlike constructors, however,
there may be several operations with the same name. The heading for the
page tells you the number of unique names and the number of distinct
operations when these numbers are different.

14.3. Miscellaneous Features of Browse · 715

filter As for constructors, you can use this button to cut down the list of oper-
ations you are looking at. Enter, for example, m* into the input area to
the right of filter then click on filter. As usual, any logical expression is
permitted. For example, use

*! or *?

to get a list of destructive operations and predicates.

documentation This gives you the most information: a detailed description of all the op-
erations in the form you have seen before. Every other button summarizes
these operations in some form.

signatures This views the operations by showing their signatures.

parameters This views the operations by their distinct syntactic forms with parame-
ters.

origins This organizes the operations according to the constructor that explicitly
exports them.

conditions This view organizes the operations into conditional and unconditional
operations.

usage This button is only available if your user-level is set to development.
The usage button produces a table of constructors that reference this
operation.6

implementation This button is only available if your user-level is set to development. If
you enter values for all domain parameters on the constructor page, then
the implementation button appears in place of the conditions button.
This button tells you what domains or packages actually implement the
various operations.7

With your user-level set to development, we suggest you try this exercise.
Return to the main constructor page for Matrix, then enter Integer into
the input area at the bottom as the value of R. Then click on Operations
to produce a table of operations. Note that the conditions part of the
Views table is replaced by implementation. Click on implementation.
After some delay, you get a page describing what implements each of the
matrix operations, organized by the various domains and packages.

generalize This button only appears for an operation page of a constructor involving
a unique operation name.

From an operations page for Matrix, select any operation name, say rank.
In the views panel, the filter button is replaced by generalize. Click on

6AXIOM requires an especially long time to produce this table, so anticipate this
when requesting this information.

7This button often takes a long time; expect a delay while you wait for an answer.

716 · Browse

Figure 14.20: Implementation domains for Matrix.

it! What you get is a description of all AXIOM operations named rank.8

Figure 14.21: All operations named rank in AXIOM.

all domains This button only appears on an operation page resulting from a search
from the front page of Browse or from selecting generalize from an op-
eration page for a constructor.

Note that the filter button in the Views panel is replaced by all domains.
Click on it to produce a table of all domains or packages that export a

8If there were more than 10 operations of the name, you get instead a page with
a Views panel at the bottom and the message to Select a view below. To get the
descriptions of all these operations as mentioned above, select the description button.

14.3. Miscellaneous Features of Browse · 717

rank operation.

Figure 14.22: Table of all domains that export rank.

We note that this table specifically refers to all the rank operations shown
in the preceding page. Return to the descriptions of all the rank oper-
ations and select one of them by clicking on the button in its heading.
Select all domains. As you see, you have a smaller table of constructors.
When there is only one constructor, you get the constructor page for that
constructor.

718 · Browse

14.3.3
Capitalization
Convention

When entering search keys for constructors, you can use capital letters to
search for abbreviations. For example, enter UTS into the input area and
click on Constructors. Up comes a page describing UnivariateTaylorSeries
whose abbreviation is UTS.

Constructor abbreviations always have three or more capital letters. For
short constructor names (six letters or less), abbreviations are not gen-
erally helpful as their abbreviation is typically the constructor name in
capitals. For example, the abbreviation for Matrix is MATRIX.

Abbreviations can also contain numbers. For example, POLY2 is the ab-
breviation for constructor PolynomialFunctions2. For default packages, the
abbreviation is the same as the abbreviation for the corresponding cate-
gory with the “&” replaced by “-”. For example, for the category default
package MatrixCategory& the abbreviation is MATCAT- since the correspond-
ing category MatrixCategory has abbreviation MATCAT.

14.3. Miscellaneous Features of Browse · 719

APPENDICES

APPENDIX A

AXIOM
System
Commands

This chapter describes system commands, the command-line facilities used to control
the AXIOM environment. The first section is an introduction and discusses the common
syntax of the commands available.

A.1
Introduction

System commands are used to perform AXIOM environment management. Among the
commands are those that display what has been defined or computed, set up multiple
logical AXIOM environments (frames), clear definitions, read files of expressions and
commands, show what functions are available, and terminate AXIOM.

Some commands are restricted: the commands

)set userlevel interpreter
)set userlevel compiler
)set userlevel development

set the user-access level to the three possible choices. All commands are available at
development level and the fewest are available at interpreter level. The default user-
level is interpreter. In addition to the)set command (discussed in Section A.21 on
page 741) you can use the HyperDoc settings facility to change the user-level.

Each command listing begins with one or more syntax pattern descriptions plus exam-
ples of related commands. The syntax descriptions are intended to be easy to read and
do not necessarily represent the most compact way of specifying all possible arguments
and options; the descriptions may occasionally be redundant.

All system commands begin with a right parenthesis which should be in the first avail-
able column of the input line (that is, immediately after the input prompt, if any).
System commands may be issued directly to AXIOM or be included in .input files.

723

A system command argument is a word that directly follows the command name and
is not followed or preceded by a right parenthesis. A system command option follows
the system command and is directly preceded by a right parenthesis. Options may
have arguments: they directly follow the option. This example may make it easier to
remember what is an option and what is an argument:

)syscmd arg1 arg2)opt1 opt1arg1 opt1arg2)opt2 opt2arg1 ...

In the system command descriptions, optional arguments and options are enclosed in
brackets (“[” and “]”). If an argument or option name is in italics, it is meant to be a
variable and must have some actual value substituted for it when the system command
call is made. For example, the syntax pattern description

)read fileName [)quietly]

would imply that you must provide an actual file name for fileName but need not use
the)quietly option. Thus

)read matrix.input

is a valid instance of the above pattern.

System command names and options may be abbreviated and may be in upper or lower
case. The case of actual arguments may be significant, depending on the particular
situation (such as in file names). System command names and options may be abbre-
viated to the minimum number of starting letters so that the name or option is unique.
Thus

)s Integer

is not a valid abbreviation for the)set command, because both)set and)show begin
with the letter “s”. Typically, two or three letters are sufficient for disambiguating
names. In our descriptions of the commands, we have used no abbreviations for either
command names or options.

In some syntax descriptions we use a vertical line “|” to indicate that you must specify
one of the listed choices. For example, in

)set output fortran on | off

only on and off are acceptable words for following boot. We also sometimes use “...”
to indicate that additional arguments or options of the listed form are allowed. Finally,
in the syntax descriptions we may also list the syntax of related commands.

A.2
)abbreviation

User Level Required: compiler

Command Syntax:

)abbreviation query [nameOrAbbrev]

)abbreviation category abbrev fullname [)quiet]

)abbreviation domain abbrev fullname [)quiet]

)abbreviation package abbrev fullname [)quiet]

)abbreviation remove nameOrAbbrev

Command Description:

724 · AXIOM System Commands

This command is used to query, set and remove abbreviations for category, domain
and package constructors. Every constructor must have a unique abbreviation. This
abbreviation is part of the name of the subdirectory under which the components of
the compiled constructor are stored. Furthermore, by issuing this command you let the
system know what file to load automatically if you use a new constructor. Abbreviations
must start with a letter and then be followed by up to seven letters or digits. Any letters
appearing in the abbreviation must be in uppercase.

When used with the query argument, this command may be used to list the name
associated with a particular abbreviation or the abbreviation for a constructor. If
no abbreviation or name is given, the names and corresponding abbreviations for all
constructors are listed.

The following shows the abbreviation for the constructor List:

)abbreviation query List

The following shows the constructor name corresponding to the abbreviation NNI:

)abbreviation query NNI

The following lists all constructor names and their abbreviations.

)abbreviation query

To add an abbreviation for a constructor, use this command with category, domain or
package. The following add abbreviations to the system for a category, domain and
package, respectively:

)abbreviation domain SET Set
)abbreviation category COMPCAT ComplexCategory
)abbreviation package LIST2MAP ListToMap

If the)quiet option is used, no output is displayed from this command. You would
normally only define an abbreviation in a library source file. If this command is issued
for a constructor that has already been loaded, the constructor will be reloaded next
time it is referenced. In particular, you can use this command to force the automatic
reloading of constructors.

To remove an abbreviation, the remove argument is used. This is usually only used
to correct a previous command that set an abbreviation for a constructor name. If,
in fact, the abbreviation does exist, you are prompted for confirmation of the removal
request. Either of the following commands will remove the abbreviation VECTOR2 and
the constructor name VectorFunctions2 from the system:

)abbreviation remove VECTOR2
)abbreviation remove VectorFunctions2

Also See: ‘)compile’ in Section A.7 on page 728 and

A.3
)boot

User Level Required: development

Command Syntax:

)boot bootExpression

Command Description:

This command is used by AXIOM system developers to execute expressions written in
the BOOT language. For example,

A.3.)boot · 725

)boot times3(x) == 3*x

creates and compiles the Common LISP function “times3” obtained by translating the
BOOT code.

Also See: ‘)fin’ in Section A.10 on page 733, ‘)lisp’ in Section A.15 on page 738,
‘)set’ in Section A.21 on page 741, and ‘)system’ in Section A.25 on page 743.

A.4
)cd

User Level Required: interpreter

Command Syntax:

)cd directory

Command Description:

This command sets the AXIOM working current directory. The current directory is
used for looking for input files (for)read), AXIOM library source files (for)compile),
saved history environment files (for)history)restore), compiled AXIOM library files
(for)library), and files to edit (for)edit). It is also used for writing spool files (via
)spool), writing history input files (via)history)write) and history environment
files (via)history)save),and compiled AXIOM library files (via)compile).

If issued with no argument, this command sets the AXIOM current directory to your
home directory. If an argument is used, it must be a valid directory name. Except for
the “)” at the beginning of the command, this has the same syntax as the operating
system cd command.

Also See: ‘)compile’ in Section A.7 on page 728, ‘)edit’ in Section A.9 on page
733, ‘)history’ in Section A.13 on page 735, ‘)library’ in Section A.14 on page 737,
‘)read’ in Section A.20 on page 740, and ‘)spool’ in Section A.23 on page 742.

A.5
)close

User Level Required: interpreter

Command Syntax:

)close

)close)quietly

Command Description:

This command is used to close down interpreter client processes. Such processes are
started by HyperDoc to run AXIOM examples when you click on their text. When
you have finished examining or modifying the example and you do not want the extra
window around anymore, issue

)close

to the AXIOM prompt in the window.

If you try to close down the last remaining interpreter client process, AXIOM will offer
to close down the entire AXIOM session and return you to the operating system by
displaying something like

This is the last AXIOM session. Do you want to kill AXIOM?

Type ”y” (followed by the Return key) if this is what you had in mind. Type ”n”
(followed by the Return key) to cancel the command.

726 · AXIOM System Commands

You can use the)quietly option to force AXIOM to close down the interpreter client
process without closing down the entire AXIOM session.

Also See: ‘)quit’ in Section A.19 on page 740 and ‘)pquit’ in Section A.18 on page
739.

A.6
)clear

User Level Required: interpreter

Command Syntax:

)clear all

)clear completely

)clear properties all

)clear properties obj1 [obj2 ...]

)clear value all

)clear value obj1 [obj2 ...]

)clear mode all

)clear mode obj1 [obj2 ...]

Command Description:

This command is used to remove function and variable declarations, definitions and
values from the workspace. To empty the entire workspace and reset the step counter
to 1, issue

)clear all

To remove everything in the workspace but not reset the step counter, issue

)clear properties all

To remove everything about the object x, issue

)clear properties x

To remove everything about the objects x, y and f, issue

)clear properties x y f

The word properties may be abbreviated to the single letter “p”.

)clear p all
)clear p x
)clear p x y f

All definitions of functions and values of variables may be removed by either

)clear value all
)clear v all

This retains whatever declarations the objects had. To remove definitions and values
for the specific objects x, y and f, issue

)clear value x y f
)clear v x y f

To remove the declarations of everything while leaving the definitions and values, issue

)clear mode all
)clear m all

A.6.)clear · 727

To remove declarations for the specific objects x, y and f, issue

)clear mode x y f
)clear m x y f

The)display names and)display properties commands may be used to see what
is currently in the workspace.

The command

)clear completely

does everything that)clear all does, and also clears the internal system function and
constructor caches.

Also See: ‘)display’ in Section A.8 on page 732, ‘)history’ in Section A.13 on page
735, and ‘)undo’ in Section A.27 on page 747.

A.7
)compile

User Level Required: compiler

Command Syntax:

)compile

)compile fileName

)compile fileName.as

)compile directory/fileName.as

)compile fileName.ao

)compile directory/fileName.ao

)compile fileName.al

)compile directory/fileName.al

)compile fileName.lsp

)compile directory/fileName.lsp

)compile fileName.spad

)compile directory/fileName.spad

)compile fileName)new

)compile fileName)old

)compile fileName)translate

)compile fileName)quiet

)compile fileName)noquiet

)compile fileName)moreargs

)compile fileName)onlyargs

)compile fileName)break

)compile fileName)nobreak

)compile fileName)library

)compile fileName)nolibrary

)compile fileName)vartrace

)compile fileName)constructor nameOrAbbrev

Command Description:

You use this command to invoke the new AXIOM library compiler or the old AXIOM
system compiler. The)compile system command is actually a combination of AXIOM
processing and a call to the Aldor compiler. It is performing double-duty, acting as a

728 · AXIOM System Commands

front-end to both the Aldor compiler and the old AXIOM system compiler. (The old
AXIOM system compiler was written in Lisp and was an integral part of the AXIOM
environment. The Aldor compiler is written in C and executed by the operating system
when called from within AXIOM.)

The command compiles files with file extensions .as, .ao and .al with the Aldor compiler
and files with file extension .spad with the old AXIOM system compiler. It also can
compile files with file extension .lsp. These are assumed to be Lisp files genererated
by the Aldor compiler. If you omit the file extension, the command looks to see if you
have specified the)new or)old option. If you have given one of these options, the
corresponding compiler is used. Otherwise, the command first looks in the standard
system directories for files with extension .as, .ao and .al and then files with extension
.spad. The first file found has the appropriate compiler invoked on it. If the command
cannot find a matching file, an error message is displayed and the command terminates.

The)translate option is used to invoke a special version of the old system compiler
that will translate a .spad file to a .as file. That is, the .spad file will be parsed and
analyzed and a file using the new syntax will be created. By default, the .as file is
created in the same directory as the .spad file. If that directory is not writable, the
current directory is used. If the current directory is not writable, an error message is
given and the command terminates. Note that)translate implies the)old option so
the file extension can safely be omitted. If)translate is given, all other options are
ignored. Please be aware that the translation is not necessarily one hundred percent
complete or correct. You should attempt to compile the output with the Aldor compiler
and make any necessary corrections.

We now describe the options for the new Aldor compiler.

The first thing)compile does is look for a source code filename among its arguments.
Thus

)compile mycode.as
)compile /u/jones/as/mycode.as
)compile mycode

all invoke)compiler on the file /u/jones/as/mycode.as if the current AXIOM working
directory is /u/jones/as. (Recall that you can set the working directory via the)cd
command. If you don’t set it explicitly, it is the directory from which you started
AXIOM.)

This is frequently all you need to compile your file. This simple command:

1. Invokes the Aldor compiler and produces Lisp output.

2. Calls the Lisp compiler if the Aldor compilation was successful.

3. Uses the)library command to tell AXIOM about the contents of your compiled
file and arrange to have those contents loaded on demand.

Should you not want the)library command automatically invoked, call)compile with
the)nolibrary option. For example,

)compile mycode.as)nolibrary

The general description of Aldor command line arguments is in the Aldor documenta-
tion. The default options used by the)compile command can be viewed and set using
the)set compiler args AXIOM system command. The current defaults are

-O -Fasy -Fao -Flsp -laxiom -Mno-AXL_W_WillObsolete -DAxiom

These options mean:

• -O: perform all optimizations,

A.7.)compile · 729

• -Fasy: generate a .asy file,

• -Fao: generate a .ao file,

• -Flsp: generate a .lsp (Lisp) file,

• -laxiom: use the axiom library libaxiom.al,

• -Mno-AXL W WillObsolete: do not display messages about older generated files
becoming obsolete, and

• -DAxiom: define the global assertion Axiom so that the Aldor libraries for gener-
ating stand-alone code are not accidentally used with AXIOM.

To supplement these default arguments, use the)moreargs option on)compile. For
example,

)compile mycode.as)moreargs "-v"

uses the default arguments and appends the -v (verbose) argument flag. The additional
argument specification must be enclosed in double quotes.

To completely replace these default arguments for a particular use of)compile, use
the)onlyargs option. For example,

)compile mycode.as)onlyargs "-v -O"

only uses the -v (verbose) and -O (optimize) arguments. The argument specification
must be enclosed in double quotes. In this example, Lisp code is not produced
and so the compilation output will not be available to AXIOM.

To completely replace the default arguments for all calls to)compile within your
AXIOM session, use)set compiler args. For example, to use the above arguments
for all compilations, issue

)set compiler args "-v -O"

Make sure you include the necessary -l and -Y arguments along with those needed for
Lisp file creation. As above, the argument specification must be enclosed in
double quotes.

By default, the)library system command exposes all domains and categories it pro-
cesses. This means that the AXIOM intepreter will consider those domains and cate-
gories when it is trying to resolve a reference to a function. Sometimes domains and
categories should not be exposed. For example, a domain may just be used privately
by another domain and may not be meant for top-level use. The)library command
should still be used, though, so that the code will be loaded on demand. In this case,
you should use the)nolibrary option on)compile and the)noexpose option in the
)library command. For example,

)compile mycode.as)nolibrary
)library mycode)noexpose

Once you have established your own collection of compiled code, you may find it handy
to use the)dir option on the)library command. This causes)library to process
all compiled code in the specified directory. For example,

)library)dir /u/jones/as/quantum

You must give an explicit directory after)dir, even if you want all compiled code in
the current working directory processed, e.g.

)library)dir .

730 · AXIOM System Commands

The)compile command works with several file extensions. We saw above what happens
when it is invoked on a file with extension .as. A .ao file is a portable binary compiled
version of a .as file, and)compile simply passes the .ao file onto Aldor. The generated
Lisp file is compiled and)library is automatically called, just as if you had specified
a .as file.

A .al file is an archive file containing .ao files. The archive is created (on Unix systems)
with the ar program. When)compile is given a .al file, it creates a directory whose
name is based on that of the archive. For example, if you issue

)compile mylib.al

the directory mylib.axldir is created. All members of the archive are unarchived into
the directory and)compile is called on each .ao file found. It is your responsibility to
remove the directory and its contents, if you choose to do so.

A .lsp file is a Lisp source file, presumably, in our context, generated by Aldor when
called with the -Flsp option. When)compile is used with a .lsp file, the Lisp file is
compiled and)library is called. You must also have present a .asy generated from
the same source file.

The following are descriptions of options for the old system compiler.

You can compile category, domain, and package constructors contained in files with file
extension .spad. You can compile individual constructors or every constructor in a file.

The full filename is remembered between invocations of this command and)edit com-
mands. The sequence of commands

)compile matrix.spad
)edit
)compile

will call the compiler, edit, and then call the compiler again on the file matrix.spad.
If you do not specify a directory, the working current directory (see Section A.4 on page
726) is searched for the file. If the file is not found, the standard system directories are
searched.

If you do not give any options, all constructors within a file are compiled. Each con-
structor should have an)abbreviation command in the file in which it is defined.
We suggest that you place the)abbreviation commands at the top of the file in the
order in which the constructors are defined. The list of commands serves as a table of
contents for the file.

The)library option causes directories containing the compiled code for each con-
structor to be created in the working current directory. The name of such a directory
consists of the constructor abbreviation and the .NRLIB file extension. For exam-
ple, the directory containing the compiled code for the MATRIX constructor is called
MATRIX.NRLIB. The)nolibrary option says that such files should not be created.
The default is)library. Note that the semantics of)library and)nolibrary for the
new Aldor compiler and for the old system compiler are completely different.

The)vartrace option causes the compiler to generate extra code for the constructor
to support conditional tracing of variable assignments. (see Section A.26 on page 744).
Without this option, this code is suppressed and one cannot use the)vars option for
the trace command.

The)constructor option is used to specify a particular constructor to compile. All
other constructors in the file are ignored. The constructor name or abbreviation follows
)constructor. Thus either

)compile matrix.spad)constructor RectangularMatrix

A.7.)compile · 731

or

)compile matrix.spad)constructor RMATRIX

compiles the RectangularMatrix constructor defined in matrix.spad.

The)break and)nobreak options determine what the old system compiler does when
it encounters an error.)break is the default and it indicates that processing should stop
at the first error. The value of the)set break variable then controls what happens.

Also See: ‘)abbreviation’ in Section A.2 on page 724, ‘)edit’ in Section A.9 on page
733, and ‘)library’ in Section A.14 on page 737.

A.8
)display

User Level Required: interpreter

Command Syntax:

)display all

)display properties

)display properties all

)display properties [obj1 [obj2 ...]]

)display value all

)display value [obj1 [obj2 ...]]

)display mode all

)display mode [obj1 [obj2 ...]]

)display names

)display operations opName

Command Description:

This command is used to display the contents of the workspace and signatures of
functions with a given name.1

The command

)display names

lists the names of all user-defined objects in the workspace. This is useful if you do not
wish to see everything about the objects and need only be reminded of their names.

The commands

)display all
)display properties
)display properties all

all do the same thing: show the values and types and declared modes of all variables in
the workspace. If you have defined functions, their signatures and definitions will also
be displayed.

To show all information about a particular variable or user functions, for example,
something named d, issue

)display properties d

To just show the value (and the type) of d, issue

1A signature gives the argument and return types of a function.

732 · AXIOM System Commands

)display value d

To just show the declared mode of d, issue

)display mode d

All modemaps for a given operation may be displayed by using)display operations.
A modemap is a collection of information about a particular reference to an operation.
This includes the types of the arguments and the return value, the location of the
implementation and any conditions on the types. The modemap may contain patterns.
The following displays the modemaps for the operation complex:

)d op complex

Also See: ‘)clear’ in Section A.6 on page 727, ‘)history’ in Section A.13 on page
735, ‘)set’ in Section A.21 on page 741, ‘)show’ in Section A.22 on page 741, and
‘)what’ in Section A.28 on page 748.

A.9
)edit

User Level Required: interpreter

Command Syntax:

)edit [filename]

Command Description:

This command is used to edit files. It works in conjunction with the)read and)compile
commands to remember the name of the file on which you are working. By specifying
the name fully, you can edit any file you wish. Thus

)edit /u/julius/matrix.input

will place you in an editor looking at the file /u/julius/matrix.input. By default,
the editor is vi, but if you have an EDITOR shell environment variable defined, that
editor will be used. When AXIOM is running under the X Window System, it will try
to open a separate xterm running your editor if it thinks one is necessary. For example,
under the Korn shell, if you issue

export EDITOR=emacs

then the emacs editor will be used by)edit.

If you do not specify a file name, the last file you edited, read or compiled will be used.
If there is no “last file” you will be placed in the editor editing an empty unnamed file.

It is possible to use the)system command to edit a file directly. For example,

)system emacs /etc/rc.tcpip

calls emacs to edit the file.

Also See: ‘)system’ in Section A.25 on page 743, ‘)compile’ in Section A.7 on page
728, and ‘)read’ in Section A.20 on page 740.

A.10
)fin

User Level Required: development

Command Syntax:

)fin

A.9.)edit · 733

Command Description:

This command is used by AXIOM developers to leave the AXIOM system and return
to the underlying Common LISP system. To return to AXIOM, issue the “(|spad|)”
function call to Common LISP.

Also See: ‘)pquit’ in Section A.18 on page 739 and ‘)quit’ in Section A.19 on page
740.

A.11
)frame

User Level Required: interpreter

Command Syntax:

)frame new frameName

)frame drop [frameName]

)frame next

)frame last

)frame names

)frame import frameName [objectName1 [objectName2 ...]]

)set message frame on | off
)set message prompt frame

Command Description:

A frame can be thought of as a logical session within the physical session that you get
when you start the system. You can have as many frames as you want, within the
limits of your computer’s storage, paging space, and so on. Each frame has its own
step number, environment and history. You can have a variable named a in one frame
and it will have nothing to do with anything that might be called a in any other frame.

Some frames are created by the HyperDoc program and these can have pretty strange
names, since they are generated automatically. To find out the names of all frames,
issue

)frame names

It will indicate the name of the current frame.

You create a new frame “quark” by issuing

)frame new quark

The history facility can be turned on by issuing either)set history on or)history
)on. If the history facility is on and you are saving history information in a file rather
than in the AXIOM environment then a history file with filename quark.axh will be
created as you enter commands. If you wish to go back to what you were doing in the
“initial” frame, use

)frame next

or

)frame last

to cycle through the ring of available frames to get back to “initial”.

If you want to throw away a frame (say “quark”), issue

)frame drop quark

734 · AXIOM System Commands

If you omit the name, the current frame is dropped.

If you do use frames with the history facility on and writing to a file, you may want to
delete some of the older history files. These are directories, so you may want to issue
a command like rm -r quark.axh to the operating system.

You can bring things from another frame by using)frame import. For example, to
bring the f and g from the frame “quark” to the current frame, issue

)frame import quark f g

If you want everything from the frame “quark”, issue

)frame import quark

You will be asked to verify that you really want everything.

There are two)set flags to make it easier to tell where you are.

)set message frame on | off

will print more messages about frames when it is set on. By default, it is off.

)set message prompt frame

will give a prompt that looks like

initial (1) ->

when you start up. In this case, the frame name and step make up the prompt.

Also See: ‘)history’ in Section A.13 on page 735 and ‘)set’ in Section A.21 on page
741.

A.12
)help

User Level Required: interpreter

Command Syntax:

)help

)help commandName

Command Description:

This command displays help information about system commands. If you issue

)help

then this very text will be shown. You can also give the name or abbreviation of a
system command to display information about it. For example,

)help clear

will display the description of the)clear system command.

All this material is available in the AXIOM User Guide and in HyperDoc. In HyperDoc,
choose the Commands item from the Reference menu.

A.13
)history

User Level Required: interpreter

Command Syntax:

A.12.)help · 735

)history)on

)history)off

)history)write historyInputFileName

)history)show [n] [both]

)history)save savedHistoryName

)history)restore [savedHistoryName]

)history)reset

)history)change n

)history)memory

)history)file

%

%%(n)

)set history on | off
Command Description:

The history facility within AXIOM allows you to restore your environment to that of
another session and recall previous computational results. Additional commands allow
you to review previous input lines and to create an .input file of the lines typed to
AXIOM.

AXIOM saves your input and output if the history facility is turned on (which is the
default). This information is saved if either of

)set history on
)history)on

has been issued. Issuing either

)set history off
)history)off

will discontinue the recording of information.

Whether the facility is disabled or not, the value of “%” in AXIOM always refers to
the result of the last computation. If you have not yet entered anything, “%” evaluates
to an object of type Variable(’%). The function “%%” may be used to refer to other
previous results if the history facility is enabled. In that case, %%(n) is the output
from step n if n > 0. If n < 0, the step is computed relative to the current step. Thus
%%(-1) is also the previous step, %%(-2), is the step before that, and so on. If an invalid
step number is given, AXIOM will signal an error.

The environment information can either be saved in a file or entirely in memory (the
default). Each frame (Section A.11 on page 734) has its own history database. When
it is kept in a file, some of it may also be kept in memory for efficiency. When the
information is saved in a file, the name of the file is of the form FRAME.axh where
“FRAME” is the name of the current frame. The history file is placed in the current
working directory (see Section A.4 on page 726). Note that these history database files
are not text files (in fact, they are directories themselves), and so are not in human-
readable format.

The options to the)history command are as follows:

)change n will set the number of steps that are saved in memory to n. This option
only has effect when the history data is maintained in a file. If you have issued
)history)memory (or not changed the default) there is no need to use)history
)change.

736 · AXIOM System Commands

)on will start the recording of information. If the workspace is not empty, you will be
asked to confirm this request. If you do so, the workspace will be cleared and
history data will begin being saved. You can also turn the facility on by issuing
)set history on.

)off will stop the recording of information. The)history)show command will not
work after issuing this command. Note that this command may be issued to
save time, as there is some performance penalty paid for saving the environment
data. You can also turn the facility off by issuing)set history off.

)file indicates that history data should be saved in an external file on disk.

)memory indicates that all history data should be kept in memory rather than saved
in a file. Note that if you are computing with very large objects it may not be
practical to kept this data in memory.

)reset will flush the internal list of the most recent workspace calculations so that
the data structures may be garbage collected by the underlying Common LISP
system. Like)history)change, this option only has real effect when history
data is being saved in a file.

)restore [savedHistoryName] completely clears the environment and restores it to a
saved session, if possible. The)save option below allows you to save a session
to a file with a given name. If you had issued)history)save jacobi the com-
mand)history)restore jacobi would clear the current workspace and load
the contents of the named saved session. If no saved session name is specified,
the system looks for a file called last.axh.

)save savedHistoryName is used to save a snapshot of the environment in a file. This
file is placed in the current working directory (see Section A.4 on page 726). Use
)history)restore to restore the environment to the state preserved in the file.
This option also creates an input file containing all the lines of input since you
created the workspace frame (for example, by starting your AXIOM session) or
last did a)clear all or)clear completely.

)show [n] [both] can show previous input lines and output results.)show will display
up to twenty of the last input lines (fewer if you haven’t typed in twenty lines).
)show n will display up to n of the last input lines.)show both will display up
to five of the last input lines and output results.)show n both will display up
to n of the last input lines and output results.

)write historyInputFile creates an .input file with the input lines typed since the
start of the session/frame or the last)clear all or)clear completely. If
historyInputFileName does not contain a period (“.”) in the filename, .input
is appended to it. For example,)history)write chaos and)history)write
chaos.input both write the input lines to a file called chaos.input in your
current working directory. If you issued one or more)undo commands,)history
)write eliminates all input lines backtracked over as a result of)undo. You can
edit this file and then use)read to have AXIOM process the contents.

Also See: ‘)frame’ in Section A.11 on page 734, ‘)read’ in Section A.20 on page 740,
‘)set’ in Section A.21 on page 741, and ‘)undo’ in Section A.27 on page 747.

A.14
)library

User Level Required: interpreter

Command Syntax:

)library libName1 [libName2 ...]

)library)dir dirName

)library)only objName1 [objlib2 ...]

A.14.)library · 737

)library)noexpose

Command Description:

This command replaces the)load system command that was available in AXIOM
releases before version 2.0. The)library command makes available to AXIOM the
compiled objects in the libraries listed.

For example, if you)compile dopler.as in your home directory, issue)library dopler
to have AXIOM look at the library, determine the category and domain constructors
present, update the internal database with various properties of the constructors, and
arrange for the constructors to be automatically loaded when needed. If the)noexpose
option has not been given, the constructors will be exposed (that is, available) in the
current frame.

If you compiled a file with the old system compiler, you will have an NRLIB present, for
example, DOPLER.NRLIB, where DOPLER is a constructor abbreviation. The command
)library DOPLER will then do the analysis and database updates as above.

To tell the system about all libraries in a directory, use)library)dir dirName where
dirName is an explicit directory. You may specify “.” as the directory, which means
the current directory from which you started the system or the one you set via the)cd
command. The directory name is required.

You may only want to tell the system about particular constructors within a library.
In this case, use the)only option. The command)library dopler)only Test1 will
only cause the Test1 constructor to be analyzed, autoloaded, etc..

Finally, each constructor in a library are usually automatically exposed when the
)library command is used. Use the)noexpose option if you not want them exposed.
At a later time you can use)set expose add constructor to expose any hidden con-
structors.

Note for AXIOM beta testers: At various times this command was called)local
and)with before the name)library became the official name.

Also See: ‘)cd’ in Section A.4 on page 726, ‘)compile’ in Section A.7 on page 728,
‘)frame’ in Section A.11 on page 734, and ‘)set’ in Section A.21 on page 741.

A.15
)lisp

User Level Required: development

Command Syntax:

)lisp [lispExpression]

Command Description:

This command is used by AXIOM system developers to have single expressions eval-
uated by the Common LISP system on which AXIOM is built. The lispExpression
is read by the Common LISP reader and evaluated. If this expression is not com-
plete (unbalanced parentheses, say), the reader will wait until a complete expression is
entered.

Since this command is only useful for evaluating single expressions, the)fin command
may be used to drop out of AXIOM into Common LISP.

Also See: ‘)system’ in Section A.25 on page 743, ‘)boot’ in Section A.3 on page 725,
and ‘)fin’ in Section A.10 on page 733.

738 · AXIOM System Commands

A.16
)load

User Level Required: interpreter

Command Description:

This command is obsolete. Use)library instead.

A.17
)ltrace

User Level Required: development

Command Syntax:

This command has the same arguments as options as the)trace command.

Command Description:

This command is used by AXIOM system developers to trace Common LISP or BOOT
functions. It is not supported for general use.

Also See: ‘)boot’ in Section A.3 on page 725, ‘)lisp’ in Section A.15 on page 738,
and ‘)trace’ in Section A.26 on page 744.

A.18
)pquit

User Level Required: interpreter

Command Syntax:

)pquit

Command Description:

This command is used to terminate AXIOM and return to the operating system. Other
than by redoing all your computations or by using the)history)restore command
to try to restore your working environment, you cannot return to AXIOM in the same
state.

)pquit differs from the)quit in that it always asks for confirmation that you want to
terminate AXIOM (the “p” is for “protected”). When you enter the)pquit command,
AXIOM responds

Please enter y or yes if you really want to leave the interactive
environment and return to the operating system:

If you respond with y or yes, you will see the message

You are now leaving the AXIOM interactive environment.
Issue the command axiom to the operating system to start a new session.

and AXIOM will terminate and return you to the operating system (or the environment
from which you invoked the system). If you responded with something other than y or
yes, then the message

You have chosen to remain in the AXIOM interactive environment.

will be displayed and, indeed, AXIOM would still be running.

Also See: ‘)fin’ in Section A.10 on page 733, ‘)history’ in Section A.13 on page
735, ‘)close’ in Section A.5 on page 726, ‘)quit’ in Section A.19 on page 740, and
‘)system’ in Section A.25 on page 743.

A.16.)load · 739

A.19
)quit

User Level Required: interpreter

Command Syntax:

)quit

)set quit protected | unprotected
Command Description:

This command is used to terminate AXIOM and return to the operating system. Other
than by redoing all your computations or by using the)history)restore command
to try to restore your working environment, you cannot return to AXIOM in the same
state.

)quit differs from the)pquit in that it asks for confirmation only if the command

)set quit protected

has been issued. Otherwise,)quit will make AXIOM terminate and return you to the
operating system (or the environment from which you invoked the system).

The default setting is)set quit protected so that)quit and)pquit behave in the
same way. If you do issue

)set quit unprotected

we suggest that you do not (somehow) assign)quit to be executed when you press,
say, a function key.

Also See: ‘)fin’ in Section A.10 on page 733, ‘)history’ in Section A.13 on page
735, ‘)close’ in Section A.5 on page 726, ‘)pquit’ in Section A.18 on page 739, and
‘)system’ in Section A.25 on page 743.

A.20
)read

User Level Required: interpreter

Command Syntax:

)read [fileName]

)read [fileName] [)quiet] [)ifthere]

Command Description:

This command is used to read .input files into AXIOM. The command

)read matrix.input

will read the contents of the file matrix.input into AXIOM. The “.input” file extension
is optional. See Section 4.1 on page 139 for more information about .input files.

This command remembers the previous file you edited, read or compiled. If you do not
specify a file name, the previous file will be read.

The)ifthere option checks to see whether the .input file exists. If it does not, the
)read command does nothing. If you do not use this option and the file does not exist,
you are asked to give the name of an existing .input file.

The)quiet option suppresses output while the file is being read.

Also See: ‘)compile’ in Section A.7 on page 728, ‘)edit’ in Section A.9 on page 733,
and ‘)history’ in Section A.13 on page 735.

740 · AXIOM System Commands

A.21
)set

User Level Required: interpreter

Command Syntax:

)set

)set label1 [... labelN]

)set label1 [... labelN] newValue

Command Description:

The)set command is used to view or set system variables that control what messages
are displayed, the type of output desired, the status of the history facility, the way
AXIOM user functions are cached, and so on. Since this collection is very large, we
will not discuss them here. Rather, we will show how the facility is used. We urge you to
explore the)set options to familiarize yourself with how you can modify your AXIOM
working environment. There is a HyperDoc version of this same facility available from
the main HyperDoc menu.

The)set command is command-driven with a menu display. It is tree-structured. To
see all top-level nodes, issue)set by itself.

)set

Variables with values have them displayed near the right margin. Subtrees of selections
have “...” displayed in the value field. For example, there are many kinds of messages,
so issue)set message to see the choices.

)set message

The current setting for the variable that displays whether computation times are dis-
played is visible in the menu displayed by the last command. To see more information,
issue

)set message time

This shows that time printing is on now. To turn it off, issue

)set message time off

As noted above, not all settings have so many qualifiers. For example, to change the
)quit command to being unprotected (that is, you will not be prompted for verifica-
tion), you need only issue

)set quit unprotected

Also See: ‘)quit’ in Section A.19 on page 740.

A.22
)show

User Level Required: interpreter

Command Syntax:

)show nameOrAbbrev

)show nameOrAbbrev)operations

)show nameOrAbbrev)attributes

Command Description: This command displays information about AXIOM domain,
package and category constructors. If no options are given, the)operations option is
assumed. For example,

A.21.)set · 741

)show POLY
)show POLY)operations
)show Polynomial
)show Polynomial)operations

each display basic information about the Polynomial domain constructor and then pro-
vide a listing of operations. Since Polynomial requires a Ring (for example, Integer) as
argument, the above commands all refer to a unspecified ring R. In the list of operations,
“$” means Polynomial(R).

The basic information displayed includes the signature of the constructor (the name
and arguments), the constructor abbreviation, the exposure status of the constructor,
and the name of the library source file for the constructor.

If operation information about a specific domain is wanted, the full or abbreviated
domain name may be used. For example,

)show POLY INT
)show POLY INT)operations
)show Polynomial Integer
)show Polynomial Integer)operations

are among the combinations that will display the operations exported by the domain
Polynomial(Integer) (as opposed to the general domain constructor Polynomial). At-
tributes may be listed by using the)attributes option.

Also See: ‘)display’ in Section A.8 on page 732, ‘)set’ in Section A.21 on page 741,
and ‘)what’ in Section A.28 on page 748.

A.23
)spool

User Level Required: interpreter

Command Syntax:

)spool [fileName]

)spool

Command Description:

This command is used to save (spool) all AXIOM input and output into a file, called a
spool file. You can only have one spool file active at a time. To start spool, issue this
command with a filename. For example,

)spool integrate.out

To stop spooling, issue)spool with no filename.

If the filename is qualified with a directory, then the output will be placed in that
directory. If no directory information is given, the spool file will be placed in the current
directory. The current directory is the directory from which you started AXIOM or is
the directory you specified using the)cd command.

Also See: ‘)cd’ in Section A.4 on page 726.

742 · AXIOM System Commands

A.24
)synonym

User Level Required: interpreter

Command Syntax:

)synonym

)synonym synonym fullCommand

)what synonyms

Command Description:

This command is used to create short synonyms for system command expressions. For
example, the following synonyms might simplify commands you often use.

)synonym save history)save
)synonym restore history)restore
)synonym mail system mail
)synonym ls system ls
)synonym fortran set output fortran

Once defined, synonyms can be used in place of the longer command expressions. Thus

)fortran on

is the same as the longer

)set fortran output on

To list all defined synonyms, issue either of

)synonyms
)what synonyms

To list, say, all synonyms that contain the substring “ap”, issue

)what synonyms ap

Also See: ‘)set’ in Section A.21 on page 741 and ‘)what’ in Section A.28 on page
748.

A.25
)system

User Level Required: interpreter

Command Syntax:

)system cmdExpression

Command Description:

This command may be used to issue commands to the operating system while remaining
in AXIOM. The cmdExpression is passed to the operating system for execution.

To get an operating system shell, issue, for example,)system sh. When you enter the

key combination, Ctrl – D (pressing and holding the Ctrl key and then pressing the

D key) the shell will terminate and you will return to AXIOM. We do not recommend
this way of creating a shell because Common LISP may field some interrupts instead
of the shell. If possible, use a shell running in another window.

If you execute programs that misbehave you may not be able to return to AXIOM. If
this happens, you may have no other choice than to restart AXIOM and restore the
environment via)history)restore, if possible.

A.24.)synonym · 743

Also See: ‘)boot’ in Section A.3 on page 725, ‘)fin’ in Section A.10 on page 733,
‘)lisp’ in Section A.15 on page 738, ‘)pquit’ in Section A.18 on page 739, and ‘)quit’
in Section A.19 on page 740.

A.26
)trace

User Level Required: interpreter

Command Syntax:

)trace

)trace)off

)trace function [options]

)trace constructor [options]

)trace domainOrPackage [options]

where options can be one or more of

)after S-expression

)before S-expression

)break after

)break before

)cond S-expression

)count

)count n

)depth n

)local op1 [... opN]

)nonquietly

)nt

)off

)only listOfDataToDisplay

)ops

)ops op1 [... opN]

)restore

)stats

)stats reset

)timer

)varbreak

)varbreak var1 [... varN]

)vars

)vars var1 [... varN]

)within executingFunction

Command Description:

This command is used to trace the execution of functions that make up the AXIOM
system, functions defined by users, and functions from the system library. Almost all
options are available for each type of function but exceptions will be noted below.

To list all functions, constructors, domains and packages that are traced, simply issue

)trace

To untrace everything that is traced, issue

744 · AXIOM System Commands

)trace)off

When a function is traced, the default system action is to display the arguments to the
function and the return value when the function is exited. Note that if a function is left
via an action such as a THROW, no return value will be displayed. Also, optimization of
tail recursion may decrease the number of times a function is actually invoked and so
may cause less trace information to be displayed. Other information can be displayed
or collected when a function is traced and this is controlled by the various options.
Most options will be of interest only to AXIOM system developers. If a domain or
package is traced, the default action is to trace all functions exported.

Individual interpreter, lisp or boot functions can be traced by listing their names after
)trace. Any options that are present must follow the functions to be traced.

)trace f

traces the function f. To untrace f, issue

)trace f)off

Note that if a function name contains a special character, it will be necessary to escape
the character with an underscore

)trace _/D_,1

To trace all domains or packages that are or will be created from a particular construc-
tor, give the constructor name or abbreviation after)trace.

)trace MATRIX
)trace List Integer

The first command traces all domains currently instantiated with Matrix. If addi-
tional domains are instantiated with this constructor (for example, if you have used
Matrix(Integer) and Matrix(Float)), they will be automatically traced. The second
command traces List(Integer). It is possible to trace individual functions in a domain
or package. See the)ops option below.

The following are the general options for the)trace command.

)break after causes a Common LISP break loop to be entered after exiting the traced
function.

)break before causes a Common LISP break loop to be entered before entering the
traced function.

)break is the same as)break before.

)count causes the system to keep a count of the number of times the traced function
is entered. The total can be displayed with)trace)stats and cleared with
)trace)stats reset.

)count n causes information about the traced function to be displayed for the first n

executions. After the n th execution, the function is untraced.

)depth n causes trace information to be shown for only n levels of recursion of the
traced function. The command

)trace fib)depth 10
will cause the display of only 10 levels of trace information for the recursive
execution of a user function fib.

)math causes the function arguments and return value to be displayed in the AXIOM
monospace two-dimensional math format.

A.26.)trace · 745

)nonquietly causes the display of additional messages when a function is traced.

)nt This suppresses all normal trace information. This option is useful if the)count
or)timer options are used and you are interested in the statistics but not the
function calling information.

)off causes untracing of all or specific functions. Without an argument, all functions,
constructors, domains and packages are untraced. Otherwise, the given functions
and other objects are untraced. To immediately retrace the untraced functions,
issue)trace)restore.

)only listOfDataToDisplay causes only specific trace information to be shown. The
items are listed by using the following abbreviations:

a display all arguments

v display return value

1 display first argument

2 display second argument

15 display the 15th argument, and so on

)restore causes the last untraced functions to be retraced. If additional options are
present, they are added to those previously in effect.

)stats causes the display of statistics collected by the use of the)count and)timer
options.

)stats reset resets to 0 the statistics collected by the use of the)count and)timer
options.

)timer causes the system to keep a count of execution times for the traced function.
The total can be displayed with)trace)stats and cleared with)trace)stats
reset.

)varbreak var1 [... varN] causes a Common LISP break loop to be entered after the
assignment to any of the listed variables in the traced function.

)vars causes the display of the value of any variable after it is assigned in the traced
function. Note that library code must have been compiled (see Section A.7 on
page 728) using the)vartrace option in order to support this option.

)vars var1 [... varN] causes the display of the value of any of the specified variables
after they are assigned in the traced function. Note that library code must have
been compiled (see Section A.7 on page 728) using the)vartrace option in order
to support this option.

)within executingFunction causes the display of trace information only if the traced
function is called when the given executingFunction is running.

The following are the options for tracing constructors, domains and packages.

)local [op1 [... opN]] causes local functions of the constructor to be traced. Note
that to untrace an individual local function, you must use the fully qualified
internal name, using the escape character “ ” before the semicolon.

)trace FRAC)local
)trace FRAC_;cancelGcd)off

)ops op1 [... opN] By default, all operations from a domain or package are traced
when the domain or package is traced. This option allows you to specify that
only particular operations should be traced. The command

)trace Integer)ops min max _+ _-

746 · AXIOM System Commands

traces four operations from the domain Integer. Since + and - are special char-
acters, it is necessary to escape them with an underscore.

Also See: ‘)boot’ in Section A.3 on page 725, ‘)lisp’ in Section A.15 on page 738,
and ‘)ltrace’ in Section A.17 on page 739.

A.27
)undo

User Level Required: interpreter

Command Syntax:

)undo

)undo integer

)undo integer [option]

)undo)redo

where option is one of

)after

)before

Command Description:

This command is used to restore the state of the user environment to an earlier point in
the interactive session. The argument of an)undo is an integer which must designate
some step number in the interactive session.

)undo n
)undo n)after

These commands return the state of the interactive environment to that immediately
after step n. If n is a positive number, then n refers to step nummber n. If n is a

negative number, it refers to the n th previous command (that is, undoes the effects of
the last −n commands).

A)clear all resets the)undo facility. Otherwise, an)undo undoes the effect of)clear
with options properties, value, and mode, and that of a previous undo. If any such
system commands are given between steps n and n + 1 (n > 0), their effect is undone
for)undo m for any 0 < m ≤ n..

The command)undo is equivalent to)undo -1 (it undoes the effect of the previous
user expression). The command)undo 0 undoes any of the above system commands
issued since the last user expression.

)undo n)before

This command returns the state of the interactive environment to that immediately
before step n. Any)undo or)clear system commands given before step n will not be
undone.

)undo)redo

This command reads the file redo.input. created by the last)undo command. This
file consists of all user input lines, excluding those backtracked over due to a previous
)undo.

Also See: ‘)history’ in Section A.13 on page 735. The command)history)write
will eliminate the “undone” command lines of your program.

A.27.)undo · 747

A.28
)what

User Level Required: interpreter

Command Syntax:

)what categories pattern1 [pattern2 ...]

)what commands pattern1 [pattern2 ...]

)what domains pattern1 [pattern2 ...]

)what operations pattern1 [pattern2 ...]

)what packages pattern1 [pattern2 ...]

)what synonym pattern1 [pattern2 ...]

)what things pattern1 [pattern2 ...]

)apropos pattern1 [pattern2 ...]

Command Description:

This command is used to display lists of things in the system. The patterns are all
strings and, if present, restrict the contents of the lists. Only those items that contain
one or more of the strings as substrings are displayed. For example,

)what synonym

displays all command synonyms,

)what synonym ver

displays all command synonyms containing the substring “ver”,

)what synonym ver pr

displays all command synonyms containing the substring “ver” or the substring “pr”.
Output similar to the following will be displayed

---------------- System Command Synonyms -----------------

user-defined synonyms satisfying patterns:
ver pr

)apr)what things
)apropos)what things
)prompt)set message prompt
)version)lisp *yearweek*

Several other things can be listed with the)what command:

categories displays a list of category constructors.

commands displays a list of system commands available at your user-level. Your user-
level is set via the)set userlevel command. To get a description of a particular
command, such as “)what”, issue)help what.

domains displays a list of domain constructors.

operations displays a list of operations in the system library. It is recommended that
you qualify this command with one or more patterns, as there are thousands of
operations available. For example, say you are looking for functions that involve
computation of eigenvalues. To find their names, try)what operations eig. A
rather large list of operations is loaded into the workspace when this command
is first issued. This list will be deleted when you clear the workspace via)clear
all or)clear completely. It will be re-created if it is needed again.

packages displays a list of package constructors.

748 · AXIOM System Commands

synonym lists system command synonyms.

things displays all of the above types for items containing the pattern strings as
substrings. The command synonym)apropos is equivalent to)what things.

Also See: ‘)display’ in Section A.8 on page 732, ‘)set’ in Section A.21 on page 741,
and ‘)show’ in Section A.22 on page 741.

A.28.)what · 749

[

A.28.)what · 751

APPENDIX B

Categories
This is a listing of all categories in the AXIOM
library at the time this book was produced. Use
the Browse facility (described in Chapter 14) to
get more information about these constructors.

This sample entry will help you read the following
table:

CategoryName{CategoryAbbreviation}:
Category1. . . CategoryN with operation1 . . . operationM

where
CategoryName is the full category name,

for example, Commuta-
tiveRing.

CategoryAbbreviation is the category abbrevia-
tion, for example, COM-
RING.

Categoryi is a category to which the
category belongs.

operationj is an operation explicitly
exported by the category.

]

AbelianGroup{ABELGRP}: CancellationAbelianMonoid
with * -

AbelianMonoidRing{AMR}: Algebra BiModule
CharacteristicNonZero CharacteristicZero CommutativeRing
IntegralDomain Ring with / coefficient degree
leadingCoefficient leadingMonomial map monomial

monomial? reductum

AbelianMonoid{ABELMON}: AbelianSemiGroup with *
Zero zero?

AbelianSemiGroup{ABELSG}: SetCategory with * +

Aggregate{AGG}: Object with # copy empty empty? eq?
less? more? size?

AlgebraicallyClosedField{ACF}: Field RadicalCategory with
rootOf rootsOf zeroOf zerosOf

AlgebraicallyClosedFunctionSpace{ACFS}:
AlgebraicallyClosedField FunctionSpace with rootOf rootsOf
zeroOf zerosOf

Algebra{ALGEBRA}: Module Ring with coerce

ArcHyperbolicFunctionCategory{AHYP}: with acosh
acoth acsch asech asinh atanh

ArcTrigonometricFunctionCategory{ATRIG}: with acos
acot acsc asec asin atan

AssociationListAggregate{ALAGG}: ListAggregate
TableAggregate with assoc

AttributeRegistry{ATTREG}: with

BagAggregate{BGAGG}: HomogeneousAggregate with bag
extract! insert! inspect

BiModule{BMODULE}: LeftModule RightModule with

BinaryRecursiveAggregate{BRAGG}: RecursiveAggregate
with elt left right setelt setleft! setright!

BinaryTreeCategory{BTCAT}: BinaryRecursiveAggregate
with node

BitAggregate{BTAGG}: OneDimensionalArrayAggregate
OrderedSet with ^ and nand nor not or xor

CachableSet{CACHSET}: OrderedSet with position

APPENDIX B · 753

setPosition

CancellationAbelianMonoid{CABMON}: AbelianMonoid
with -

CharacteristicNonZero{CHARNZ}: Ring with charthRoot

CharacteristicZero{CHARZ}: Ring with

CoercibleTo{KOERCE}: with coerce

Collection{CLAGG}: ConvertibleTo HomogeneousAggregate
with construct find reduce remove removeDuplicates select

CombinatorialFunctionCategory{CFCAT}: with binomial
factorial permutation

CombinatorialOpsCategory{COMBOPC}:
CombinatorialFunctionCategory with factorials product
summation

CommutativeRing{COMRING}: BiModule Ring with

ComplexCategory{COMPCAT}: CharacteristicNonZero
CharacteristicZero CommutativeRing ConvertibleTo
DifferentialExtension EuclideanDomain Field
FullyEvalableOver FullyLinearlyExplicitRingOver
FullyRetractableTo IntegralDomain MonogenicAlgebra
OrderedSet PolynomialFactorizationExplicit RadicalCategory
TranscendentalFunctionCategory with abs argument complex
conjugate exquo imag imaginary norm polarCoordinates
rational rational? rationalIfCan real

ConvertibleTo{KONVERT}: with convert

DequeueAggregate{DQAGG}: QueueAggregate
StackAggregate with bottom! dequeue extractBottom!
extractTop! height insertBottom! insertTop! reverse! top!

DictionaryOperations{DIOPS}: BagAggregate Collection
with dictionary remove! select!

Dictionary{DIAGG}: DictionaryOperations with

DifferentialExtension{DIFEXT}: DifferentialRing
PartialDifferentialRing Ring with D differentiate

DifferentialPolynomialCategory{DPOLCAT}:
DifferentialExtension Evalable InnerEvalable
PolynomialCategory RetractableTo with degree
differentialVariables initial isobaric? leader makeVariable
order separant weight weights

DifferentialRing{DIFRING}: Ring with D differentiate

DifferentialVariableCategory{DVARCAT}: OrderedSet
RetractableTo with D coerce differentiate makeVariable
order variable weight

DirectProductCategory{DIRPCAT}: AbelianSemiGroup
Algebra BiModule CancellationAbelianMonoid CoercibleTo
CommutativeRing DifferentialExtension Finite
FullyLinearlyExplicitRingOver FullyRetractableTo
IndexedAggregate OrderedAbelianMonoidSup OrderedRing
VectorSpace with * directProduct dot unitVector

DivisionRing{DIVRING}: Algebra EntireRing with ** inv

DoublyLinkedAggregate{DLAGG}: RecursiveAggregate
with concat! head last next previous setnext! setprevious!
tail

ElementaryFunctionCategory{ELEMFUN}: with ** exp
log

EltableAggregate{ELTAGG}: Eltable with elt qelt qsetelt!
setelt

Eltable{ELTAB}: with elt

EntireRing{ENTIRER}: BiModule Ring with

EuclideanDomain{EUCDOM}: PrincipalIdealDomain with
divide euclideanSize extendedEuclidean multiEuclidean
quo rem sizeLess?

Evalable{EVALAB}: with eval

ExpressionSpace{ES}: Evalable InnerEvalable OrderedSet
RetractableTo with belong? box definingPolynomial
distribute elt eval freeOf? height is? kernel kernels
mainKernel map minPoly operator operators paren subst
tower

ExtensibleLinearAggregate{ELAGG}: LinearAggregate with
concat! delete! insert! merge! remove! removeDuplicates!
select!

ExtensionField{XF}: CharacteristicZero Field
FieldOfPrimeCharacteristic RetractableTo VectorSpace with
Frobenius algebraic? degree extensionDegree
inGroundField? transcendenceDegree transcendent?

FieldOfPrimeCharacteristic{FPC}: CharacteristicNonZero
Field with discreteLog order primeFrobenius

Field{FIELD}: DivisionRing EuclideanDomain
UniqueFactorizationDomain with /

FileCategory{FILECAT}: SetCategory with close! iomode
name open read! reopen! write!

FileNameCategory{FNCAT}: SetCategory with coerce
directory exists? extension filename name new readable?
writable?

FiniteAbelianMonoidRing{FAMR}: AbelianMonoidRing
FullyRetractableTo with coefficients content exquo ground
ground? mapExponents minimumDegree
numberOfMonomials primitivePart

FiniteAlgebraicExtensionField{FAXF}: ExtensionField
FiniteFieldCategory RetractableTo with basis coordinates
createNormalElement definingPolynomial degree
extensionDegree generator minimalPolynomial norm
normal? normalElement represents trace

FiniteFieldCategory{FFIELDC}: FieldOfPrimeCharacteristic
Finite StepThrough with charthRoot conditionP
createPrimitiveElement discreteLog
factorsOfCyclicGroupSize order primitive?

754 · Categories

primitiveElement representationType
tableForDiscreteLogarithm

FiniteLinearAggregate{FLAGG}: LinearAggregate
OrderedSet with copyInto! merge position reverse reverse!
sort sort! sorted?

FiniteRankAlgebra{FINRALG}: Algebra
CharacteristicNonZero CharacteristicZero with
characteristicPolynomial coordinates discriminant
minimalPolynomial norm rank regularRepresentation
represents trace traceMatrix

FiniteRankNonAssociativeAlgebra{FINAALG}:
NonAssociativeAlgebra with JacobiIdentity?
JordanAlgebra? alternative? antiAssociative?
antiCommutative? associative? associatorDependence
commutative? conditionsForIdempotents coordinates
flexible? jordanAdmissible? leftAlternative?
leftCharacteristicPolynomial leftDiscriminant
leftMinimalPolynomial leftNorm leftRecip
leftRegularRepresentation leftTrace leftTraceMatrix
leftUnit leftUnits lieAdmissible? lieAlgebra?
noncommutativeJordanAlgebra? powerAssociative? rank
recip represents rightAlternative?
rightCharacteristicPolynomial rightDiscriminant
rightMinimalPolynomial rightNorm rightRecip
rightRegularRepresentation rightTrace rightTraceMatrix
rightUnit rightUnits someBasis structuralConstants unit

FiniteSetAggregate{FSAGG}: Dictionary Finite
SetAggregate with cardinality complement max min
universe

Finite{FINITE}: SetCategory with index lookup random size

FloatingPointSystem{FPS}: RealNumberSystem with base
bits decreasePrecision digits exponent float
increasePrecision mantissa max order precision

FramedAlgebra{FRAMALG}: FiniteRankAlgebra with basis
convert coordinates discriminant regularRepresentation
represents traceMatrix

FramedNonAssociativeAlgebra{FRNAALG}:
FiniteRankNonAssociativeAlgebra with apply basis
conditionsForIdempotents convert coordinates elt
leftDiscriminant leftRankPolynomial
leftRegularRepresentation leftTraceMatrix represents
rightDiscriminant rightRankPolynomial
rightRegularRepresentation rightTraceMatrix
structuralConstants

FreeAbelianMonoidCategory{FAMONC}:
CancellationAbelianMonoid RetractableTo with * +
coefficient highCommonTerms mapCoef mapGen nthCoef
nthFactor size terms

FullyEvalableOver{FEVALAB}: Eltable Evalable
InnerEvalable with map

FullyLinearlyExplicitRingOver{FLINEXP}:

LinearlyExplicitRingOver with

FullyPatternMatchable{FPATMAB}: Object
PatternMatchable with

FullyRetractableTo{FRETRCT}: RetractableTo with

FunctionFieldCategory{FFCAT}: MonogenicAlgebra with D
absolutelyIrreducible? branchPoint?
branchPointAtInfinity? complementaryBasis differentiate
elt genus integral? integralAtInfinity? integralBasis
integralBasisAtInfinity integralCoordinates
integralDerivationMatrix integralMatrix
integralMatrixAtInfinity integralRepresents
inverseIntegralMatrix inverseIntegralMatrixAtInfinity
nonSingularModel normalizeAtInfinity
numberOfComponents primitivePart ramified?
ramifiedAtInfinity? rationalPoint? rationalPoints
reduceBasisAtInfinity represents singular?
singularAtInfinity? yCoordinates

FunctionSpace{FS}: AbelianGroup AbelianMonoid Algebra
CharacteristicNonZero CharacteristicZero ConvertibleTo
ExpressionSpace Field FullyLinearlyExplicitRingOver
FullyPatternMatchable FullyRetractableTo Group Monoid
PartialDifferentialRing Patternable RetractableTo Ring with
** / applyQuote coerce convert denom denominator eval
ground ground? isExpt isMult isPlus isPower isTimes
numer numerator univariate variables

GcdDomain{GCDDOM}: IntegralDomain with gcd lcm

GradedAlgebra{GRALG}: GradedModule with One product

GradedModule{GRMOD}: RetractableTo SetCategory with
* + - Zero degree

Group{GROUP}: Monoid with ** / commutator conjugate
inv

HomogeneousAggregate{HOAGG}: Aggregate
SetCategory with any? count every? map map! member?
members parts

HyperbolicFunctionCategory{HYPCAT}: with cosh coth
csch sech sinh tanh

IndexedAggregate{IXAGG}: EltableAggregate
HomogeneousAggregate with entries entry? fill! first index?
indices maxIndex minIndex swap!

IndexedDirectProductCategory{IDPC}: SetCategory with
leadingCoefficient leadingSupport map monomial reductum

InnerEvalable{IEVALAB}: with eval

IntegerNumberSystem{INS}: CharacteristicZero
CombinatorialFunctionCategory ConvertibleTo
DifferentialRing EuclideanDomain LinearlyExplicitRingOver
OrderedRing PatternMatchable RealConstant RetractableTo
StepThrough UniqueFactorizationDomain with addmod base
bit? copy dec even? hash inc invmod length mask mulmod
odd? positiveRemainder powmod random rational

APPENDIX B · 755

rational? rationalIfCan shift submod symmetricRemainder

IntegralDomain{INTDOM}: Algebra CommutativeRing
EntireRing with associates? exquo unit? unitCanonical
unitNormal

KeyedDictionary{KDAGG}: Dictionary with key? keys
remove! search

LazyStreamAggregate{LZSTAGG}: StreamAggregate with
complete explicitEntries? explicitlyEmpty? extend frst
lazy? lazyEvaluate numberOfComputedEntries remove rst
select

LeftAlgebra{LALG}: LeftModule Ring with coerce

LeftModule{LMODULE}: AbelianGroup with *

LinearAggregate{LNAGG}: Collection IndexedAggregate
with concat delete elt insert map new setelt

LinearlyExplicitRingOver{LINEXP}: Ring with
reducedSystem

LiouvillianFunctionCategory{LFCAT}:
PrimitiveFunctionCategory TranscendentalFunctionCategory
with Ci Ei Si dilog erf li

ListAggregate{LSAGG}: ExtensibleLinearAggregate
FiniteLinearAggregate StreamAggregate with list

MatrixCategory{MATCAT}: TwoDimensionalArrayCategory
with * ** + - / antisymmetric? coerce determinant
diagonal? diagonalMatrix elt exquo horizConcat inverse
listOfLists matrix minordet nullSpace nullity rank
rowEchelon scalarMatrix setelt setsubMatrix! square?
squareTop subMatrix swapColumns! swapRows!
symmetric? transpose vertConcat zero

Module{MODULE}: BiModule with

MonadWithUnit{MONADWU}: Monad with ** One
leftPower leftRecip one? recip rightPower rightRecip

Monad{MONAD}: SetCategory with * ** leftPower
rightPower

MonogenicAlgebra{MONOGEN}: CommutativeRing
ConvertibleTo DifferentialExtension Field Finite
FiniteFieldCategory FramedAlgebra
FullyLinearlyExplicitRingOver FullyRetractableTo with
convert definingPolynomial derivationCoordinates
generator lift reduce

MonogenicLinearOperator{MLO}: Algebra BiModule Ring
with coefficient degree leadingCoefficient minimumDegree
monomial reductum

Monoid{MONOID}: SemiGroup with ** One one? recip

MultiDictionary{MDAGG}: DictionaryOperations with
duplicates insert! removeDuplicates!

MultiSetAggregate{MSAGG}: MultiDictionary
SetAggregate with

MultivariateTaylorSeriesCategory{MTSCAT}: Evalable
InnerEvalable PartialDifferentialRing PowerSeriesCategory
RadicalCategory TranscendentalFunctionCategory with
coefficient extend integrate monomial order polynomial

NonAssociativeAlgebra{NAALG}: Module
NonAssociativeRng with plenaryPower

NonAssociativeRing{NASRING}: MonadWithUnit
NonAssociativeRng with characteristic coerce

NonAssociativeRng{NARNG}: AbelianGroup Monad with
antiCommutator associator commutator

Object{OBJECT}: with

OctonionCategory{OC}: Algebra CharacteristicNonZero
CharacteristicZero ConvertibleTo Finite FullyEvalableOver
FullyRetractableTo OrderedSet with abs conjugate imagE
imagI imagJ imagK imagi imagj imagk inv norm octon
rational rational? rationalIfCan real

OneDimensionalArrayAggregate{A1AGG}:
FiniteLinearAggregate with

OrderedAbelianGroup{OAGROUP}: AbelianGroup
OrderedCancellationAbelianMonoid with

OrderedAbelianMonoidSup{OAMONS}:
OrderedCancellationAbelianMonoid with sup

OrderedAbelianMonoid{OAMON}: AbelianMonoid
OrderedAbelianSemiGroup with

OrderedAbelianSemiGroup{OASGP}: AbelianMonoid
OrderedSet with

OrderedCancellationAbelianMonoid{OCAMON}:
CancellationAbelianMonoid OrderedAbelianMonoid with

OrderedFinite{ORDFIN}: Finite OrderedSet with

OrderedMonoid{ORDMON}: Monoid OrderedSet with

OrderedMultiSetAggregate{OMAGG}: MultiSetAggregate
PriorityQueueAggregate with min

OrderedRing{ORDRING}: OrderedAbelianGroup
OrderedMonoid Ring with abs negative? positive? sign

OrderedSet{ORDSET}: SetCategory with < max min

PAdicIntegerCategory{PADICCT}: CharacteristicZero
EuclideanDomain with approximate complete digits extend
moduloP modulus order quotientByP sqrt

PartialDifferentialRing{PDRING}: Ring with D differentiate

PartialTranscendentalFunctions{PTRANFN}: with
acosIfCan acoshIfCan acotIfCan acothIfCan acscIfCan
acschIfCan asecIfCan asechIfCan asinIfCan asinhIfCan
atanIfCan atanhIfCan cosIfCan coshIfCan cotIfCan
cothIfCan cscIfCan cschIfCan expIfCan logIfCan
nthRootIfCan secIfCan sechIfCan sinIfCan sinhIfCan
tanIfCan tanhIfCan

756 · Categories

Patternable{PATAB}: ConvertibleTo Object with

PatternMatchable{PATMAB}: SetCategory with
patternMatch

PermutationCategory{PERMCAT}: Group OrderedSet with
< cycle cycles elt eval orbit

PlottablePlaneCurveCategory{PPCURVE}: CoercibleTo
with listBranches xRange yRange

PlottableSpaceCurveCategory{PSCURVE}: CoercibleTo
with listBranches xRange yRange zRange

PointCategory{PTCAT}: VectorCategory with convert
cross dimension extend length point

PolynomialCategory{POLYCAT}: ConvertibleTo Evalable
FiniteAbelianMonoidRing FullyLinearlyExplicitRingOver
GcdDomain InnerEvalable OrderedSet PartialDifferentialRing
PatternMatchable PolynomialFactorizationExplicit
RetractableTo with coefficient content degree discriminant
isExpt isPlus isTimes mainVariable minimumDegree
monicDivide monomial monomials multivariate
primitiveMonomials primitivePart resultant squareFree
squareFreePart totalDegree univariate variables

PolynomialFactorizationExplicit{PFECAT}:
UniqueFactorizationDomain with charthRoot conditionP
factorPolynomial factorSquareFreePolynomial
gcdPolynomial solveLinearPolynomialEquation
squareFreePolynomial

PowerSeriesCategory{PSCAT}: AbelianMonoidRing with
complete monomial pole? variables

PrimitiveFunctionCategory{PRIMCAT}: with integral

PrincipalIdealDomain{PID}: GcdDomain with
expressIdealMember principalIdeal

PriorityQueueAggregate{PRQAGG}: BagAggregate with
max merge merge!

QuaternionCategory{QUATCAT}: Algebra
CharacteristicNonZero CharacteristicZero ConvertibleTo
DifferentialExtension DivisionRing EntireRing
FullyEvalableOver FullyLinearlyExplicitRingOver
FullyRetractableTo OrderedSet with abs conjugate imagI
imagJ imagK norm quatern rational rational?
rationalIfCan real

QueueAggregate{QUAGG}: BagAggregate with back
dequeue! enqueue! front length rotate!

QuotientFieldCategory{QFCAT}: Algebra
CharacteristicNonZero CharacteristicZero ConvertibleTo
DifferentialExtension Field FullyEvalableOver
FullyLinearlyExplicitRingOver FullyPatternMatchable
OrderedRing OrderedSet Patternable
PolynomialFactorizationExplicit RealConstant RetractableTo
StepThrough with / ceiling denom denominator floor
fractionPart numer numerator random wholePart

RadicalCategory{RADCAT}: with ** nthRoot sqrt

RealConstant{REAL}: ConvertibleTo with

RealNumberSystem{RNS}: CharacteristicZero
ConvertibleTo Field OrderedRing PatternMatchable
RadicalCategory RealConstant RetractableTo with abs ceiling
floor fractionPart norm round truncate wholePart

RectangularMatrixCategory{RMATCAT}: BiModule
HomogeneousAggregate Module with / antisymmetric?
column diagonal? elt exquo listOfLists map matrix
maxColIndex maxRowIndex minColIndex minRowIndex
ncols nrows nullSpace nullity qelt rank row rowEchelon
square? symmetric?

RecursiveAggregate{RCAGG}: HomogeneousAggregate
with children cyclic? elt leaf? leaves node? nodes
setchildren! setelt setvalue! value

RetractableTo{RETRACT}: with coerce retract
retractIfCan

RightModule{RMODULE}: AbelianGroup with *

Ring{RING}: LeftModule Monoid Rng with characteristic
coerce

Rng{RNG}: AbelianGroup SemiGroup with

SegmentCategory{SEGCAT}: SetCategory with BY
SEGMENT convert hi high incr lo low segment

SegmentExpansionCategory{SEGXCAT}:
SegmentCategory with expand map

SemiGroup{SGROUP}: SetCategory with * **

SetAggregate{SETAGG}: Collection SetCategory with <
brace difference intersect subset? symmetricDifference
union

SetCategory{SETCAT}: CoercibleTo Object with =

SExpressionCategory{SEXCAT}: SetCategory with #
atom? car cdr convert destruct elt eq expr float float?
integer integer? list? null? pair? string string? symbol
symbol? uequal

SpecialFunctionCategory{SPFCAT}: with Beta Gamma
abs airyAi airyBi besselI besselJ besselK besselY digamma
polygamma

SquareMatrixCategory{SMATCAT}: Algebra BiModule
DifferentialExtension FullyLinearlyExplicitRingOver
FullyRetractableTo Module RectangularMatrixCategory with
* ** determinant diagonal diagonalMatrix
diagonalProduct inverse minordet scalarMatrix trace

StackAggregate{SKAGG}: BagAggregate with depth pop!
push! top

StepThrough{STEP}: SetCategory with init nextItem

StreamAggregate{STAGG}: LinearAggregate
UnaryRecursiveAggregate with explicitlyFinite?

APPENDIX B · 757

possiblyInfinite?

StringAggregate{SRAGG}: OneDimensionalArrayAggregate
with coerce elt leftTrim lowerCase lowerCase! match
match? position prefix? replace rightTrim split substring?
suffix? trim upperCase upperCase!

StringCategory{STRICAT}: StringAggregate with string

TableAggregate{TBAGG}: IndexedAggregate
KeyedDictionary with map setelt table

ThreeSpaceCategory{SPACEC}: SetCategory with check
closedCurve closedCurve? coerce components composite
composites copy create3Space curve curve? enterPointData
lllip lllp llprop lp lprop merge mesh mesh?
modifyPointData numberOfComponents
numberOfComposites objects point point? polygon
polygon? subspace

TranscendentalFunctionCategory{TRANFUN}:
ArcHyperbolicFunctionCategory
ArcTrigonometricFunctionCategory
ElementaryFunctionCategory HyperbolicFunctionCategory
TrigonometricFunctionCategory with pi

TrigonometricFunctionCategory{TRIGCAT}: with cos
cot csc sec sin tan

TwoDimensionalArrayCategory{ARR2CAT}:
HomogeneousAggregate with column elt fill! map map!
maxColIndex maxRowIndex minColIndex minRowIndex
ncols new nrows parts qelt qsetelt! row setColumn!
setRow! setelt

UnaryRecursiveAggregate{URAGG}: RecursiveAggregate
with concat concat! cycleEntry cycleLength cycleSplit!
cycleTail elt first last rest second setelt setfirst! setlast!
setrest! split! tail third

UniqueFactorizationDomain{UFD}: GcdDomain with
factor prime? squareFree squareFreePart

UnivariateLaurentSeriesCategory{ULSCAT}: Field
RadicalCategory TranscendentalFunctionCategory
UnivariatePowerSeriesCategory with integrate
multiplyCoefficients rationalFunction

UnivariateLaurentSeriesConstructorCategory
{ULSCCAT}: QuotientFieldCategory RetractableTo
UnivariateLaurentSeriesCategory with coerce degree laurent
removeZeroes taylor taylorIfCan taylorRep

UnivariatePolynomialCategory{UPOLYC}:
DifferentialExtension DifferentialRing Eltable
EuclideanDomain PolynomialCategory StepThrough with D
composite differentiate discriminant divideExponents elt
integrate makeSUP monicDivide multiplyExponents order
pseudoDivide pseudoQuotient pseudoRemainder resultant
separate subResultantGcd unmakeSUP vectorise

UnivariatePowerSeriesCategory{UPSCAT}:
DifferentialRing Eltable PowerSeriesCategory with

approximate center elt eval extend multiplyExponents
order series terms truncate variable

UnivariatePuiseuxSeriesCategory{UPXSCAT}: Field
RadicalCategory TranscendentalFunctionCategory
UnivariatePowerSeriesCategory with integrate
multiplyExponents

UnivariatePuiseuxSeriesConstructorCategory
{UPXSCCA}: RetractableTo UnivariatePuiseuxSeriesCategory
with coerce degree laurent laurentIfCan laurentRep
puiseux rationalPower

UnivariateTaylorSeriesCategory{UTSCAT}:
RadicalCategory TranscendentalFunctionCategory
UnivariatePowerSeriesCategory with ** coefficients integrate
multiplyCoefficients polynomial quoByVar series

VectorCategory{VECTCAT}:
OneDimensionalArrayAggregate with * + - dot zero

VectorSpace{VSPACE}: Module with / dimension

758 · Categories

[

APPENDIX B · 759

APPENDIX C

Domains
This is a listing of all domains in the AXIOM li-
brary at the time this book was produced. Use the
Browse facility (described in Chapter 14) to get
more information about these constructors.

This sample entry will help you read the following
table:

DomainName{DomainAbbreviation}:
Category1. . . CategoryN with operation1 . . . operationM

where
DomainName is the full domain name, for

example, Integer.
DomainAbbreviation is the domain abbreviation,

for example, INT.
Categoryi is a category to which the

domain belongs.
operationj is an operation exported by

the domain.

]

AlgebraGivenByStructuralConstants{ALGSC}:
FramedNonAssociativeAlgebra LeftModule with 0 * ** + - =
JacobiIdentity? JordanAlgebra? alternative?
antiAssociative? antiCommutative? antiCommutator
apply associative? associator associatorDependence basis
coerce commutative? commutator
conditionsForIdempotents convert coordinates elt flexible?
jordanAdmissible? leftAlternative?
leftCharacteristicPolynomial leftDiscriminant
leftMinimalPolynomial leftNorm leftPower

leftRankPolynomial leftRecip leftRegularRepresentation
leftTrace leftTraceMatrix leftUnit leftUnits lieAdmissible?
lieAlgebra? noncommutativeJordanAlgebra? plenaryPower
powerAssociative? rank recip represents rightAlternative?
rightCharacteristicPolynomial rightDiscriminant
rightMinimalPolynomial rightNorm rightPower
rightRankPolynomial rightRecip
rightRegularRepresentation rightTrace rightTraceMatrix
rightUnit rightUnits someBasis structuralConstants unit
zero?

AlgebraicFunctionField{ALGFF}: FunctionFieldCategory
with 0 1 * ** + - / = D absolutelyIrreducible? associates?
basis branchPoint? branchPointAtInfinity? characteristic
characteristicPolynomial charthRoot coerce
complementaryBasis convert coordinates
definingPolynomial derivationCoordinates differentiate
discriminant divide elt euclideanSize expressIdealMember
exquo extendedEuclidean factor gcd generator genus
integral? integralAtInfinity? integralBasis
integralBasisAtInfinity integralCoordinates
integralDerivationMatrix integralMatrix
integralMatrixAtInfinity integralRepresents inv
inverseIntegralMatrix inverseIntegralMatrixAtInfinity
knownInfBasis lcm lift minimalPolynomial multiEuclidean
nonSingularModel norm normalizeAtInfinity
numberOfComponents one? prime? primitivePart
principalIdeal quo ramified? ramifiedAtInfinity? rank
rationalPoint? rationalPoints recip reduce
reduceBasisAtInfinity reducedSystem
regularRepresentation rem represents retract retractIfCan
singular? singularAtInfinity? sizeLess? squareFree
squareFreePart trace traceMatrix unit? unitCanonical
unitNormal yCoordinates zero?

AlgebraicNumber{AN}: AlgebraicallyClosedField
CharacteristicZero ConvertibleTo DifferentialRing
ExpressionSpace LinearlyExplicitRingOver RealConstant
RetractableTo with 0 1 * ** + - / < = D associates? belong?

APPENDIX C · 761

box characteristic coerce convert definingPolynomial
denom differentiate distribute divide elt euclideanSize eval
expressIdealMember exquo extendedEuclidean factor
freeOf? gcd height inv is? kernel kernels lcm mainKernel
map max min minPoly multiEuclidean nthRoot numer
one? operator operators paren prime? principalIdeal quo
recip reduce reducedSystem rem retract retractIfCan
rootOf rootsOf sizeLess? sqrt squareFree squareFreePart
subst tower unit? unitCanonical unitNormal zero? zeroOf
zerosOf

AnonymousFunction{ANON}: SetCategory with = coerce

AntiSymm{ANTISYM}: LeftAlgebra RetractableTo with 0 1
* ** + - = characteristic coefficient coerce degree exp
generator homogeneous? leadingBasisTerm
leadingCoefficient map one? recip reductum retract
retractIfCan retractable? zero?

Any{ANY}: SetCategory with = any coerce domain
domainOf obj objectOf showTypeInOutput

ArrayStack{ASTACK}: StackAggregate with # = any?
arrayStack bag coerce copy count depth empty empty? eq?
every? extract! insert! inspect less? map map! member?
members more? parts pop! push! size? top

AssociatedJordanAlgebra{JORDAN}: CoercibleTo
FiniteRankNonAssociativeAlgebra
FramedNonAssociativeAlgebra NonAssociativeAlgebra with 0
* ** + - = JacobiIdentity? JordanAlgebra? alternative?
antiAssociative? antiCommutative? antiCommutator
apply associative? associator associatorDependence basis
coerce commutative? commutator
conditionsForIdempotents convert coordinates elt flexible?
jordanAdmissible? leftAlternative?
leftCharacteristicPolynomial leftDiscriminant
leftMinimalPolynomial leftNorm leftPower
leftRankPolynomial leftRecip leftRegularRepresentation
leftTrace leftTraceMatrix leftUnit leftUnits lieAdmissible?
lieAlgebra? noncommutativeJordanAlgebra? plenaryPower
powerAssociative? rank recip represents rightAlternative?
rightCharacteristicPolynomial rightDiscriminant
rightMinimalPolynomial rightNorm rightPower
rightRankPolynomial rightRecip
rightRegularRepresentation rightTrace rightTraceMatrix
rightUnit rightUnits someBasis structuralConstants unit
zero?

AssociatedLieAlgebra{LIE}: CoercibleTo
FiniteRankNonAssociativeAlgebra
FramedNonAssociativeAlgebra NonAssociativeAlgebra with 0
* ** + - = JacobiIdentity? JordanAlgebra? alternative?
antiAssociative? antiCommutative? antiCommutator
apply associative? associator associatorDependence basis
coerce commutative? commutator
conditionsForIdempotents convert coordinates elt flexible?
jordanAdmissible? leftAlternative?
leftCharacteristicPolynomial leftDiscriminant

leftMinimalPolynomial leftNorm leftPower
leftRankPolynomial leftRecip leftRegularRepresentation
leftTrace leftTraceMatrix leftUnit leftUnits lieAdmissible?
lieAlgebra? noncommutativeJordanAlgebra? plenaryPower
powerAssociative? rank recip represents rightAlternative?
rightCharacteristicPolynomial rightDiscriminant
rightMinimalPolynomial rightNorm rightPower
rightRankPolynomial rightRecip
rightRegularRepresentation rightTrace rightTraceMatrix
rightUnit rightUnits someBasis structuralConstants unit
zero?

AssociationList{ALIST}: AssociationListAggregate with # =
any? assoc bag child? children coerce concat concat!
construct copy copyInto! count cycleEntry cycleLength
cycleSplit! cycleTail cyclic? delete delete! dictionary
distance elt empty empty? entries entry? eq? every?
explicitlyFinite? extract! fill! find first index? indices
insert insert! inspect key? keys last leaf? less? list map
map! maxIndex member? members merge merge!
minIndex more? new node? nodes parts position
possiblyInfinite? qelt qsetelt! reduce remove remove!
removeDuplicates removeDuplicates! rest reverse reverse!
search second select select! setchildren! setelt setfirst!
setlast! setrest! setvalue! size? sort sort! sorted? split!
swap! table tail third value

BalancedBinaryTree{BBTREE}: BinaryTreeCategory with #
= any? balancedBinaryTree children coerce copy count
cyclic? elt empty empty? eq? every? leaf? leaves left less?
map map! mapDown! mapUp! member? members more?
node node? nodes parts right setchildren! setelt setleaves!
setleft! setright! setvalue! size? value

BalancedPAdicInteger{BPADIC}: PAdicIntegerCategory
with 0 1 * ** + - = approximate associates? characteristic
coerce complete digits divide euclideanSize
expressIdealMember exquo extend extendedEuclidean gcd
lcm moduloP modulus multiEuclidean one? order
principalIdeal quo quotientByP recip rem sizeLess? sqrt
unit? unitCanonical unitNormal zero?

BalancedPAdicRational{BPADICRT}:
QuotientFieldCategory with 0 1 * ** + - / = D approximate
associates? characteristic coerce continuedFraction denom
denominator differentiate divide euclideanSize
expressIdealMember exquo extendedEuclidean factor
fractionPart gcd inv lcm map multiEuclidean numer
numerator one? prime? principalIdeal quo recip
reducedSystem rem removeZeroes retract retractIfCan
sizeLess? squareFree squareFreePart unit? unitCanonical
unitNormal wholePart zero?

BasicOperator{BOP}: OrderedSet with < = arity assert
coerce comparison copy deleteProperty! display equality
has? input is? max min name nary? nullary? operator
properties property setProperties setProperty unary?
weight

762 · Domains

BinaryExpansion{BINARY}: QuotientFieldCategory with 0
1 * ** + - / < = D abs associates? binary ceiling
characteristic coerce convert denom denominator
differentiate divide euclideanSize expressIdealMember
exquo extendedEuclidean factor floor fractionPart gcd init
inv lcm map max min multiEuclidean negative? nextItem
numer numerator one? patternMatch positive? prime?
principalIdeal quo random recip reducedSystem rem retract
retractIfCan sign sizeLess? squareFree squareFreePart
unit? unitCanonical unitNormal wholePart zero?

BinarySearchTree{BSTREE}: BinaryTreeCategory with # =
any? binarySearchTree children coerce copy count cyclic?
elt empty empty? eq? every? insert! insertRoot! leaf?
leaves left less? map map! member? members more? node
node? nodes parts right setchildren! setelt setleft! setright!
setvalue! size? split value

BinaryTournament{BTOURN}: BinaryTreeCategory with #
= any? binaryTournament children coerce copy count
cyclic? elt empty empty? eq? every? insert! leaf? leaves
left less? map map! member? members more? node node?
nodes parts right setchildren! setelt setleft! setright!
setvalue! size? value

BinaryTree{BTREE}: BinaryTreeCategory with # = any?
binaryTree children coerce copy count cyclic? elt empty
empty? eq? every? leaf? leaves left less? map map!
member? members more? node node? nodes parts right
setchildren! setelt setleft! setright! setvalue! size? value

Bits{BITS}: BitAggregate with # < = ^ and any? bits coerce
concat construct convert copy copyInto! count delete elt
empty empty? entries entry? eq? every? fill! find first
index? indices insert less? map map! max maxIndex
member? members merge min minIndex more? nand new
nor not or parts position qelt qsetelt! reduce remove
removeDuplicates reverse reverse! select setelt size? sort
sort! sorted? swap! xor

Boolean{BOOLEAN}: ConvertibleTo Finite OrderedSet with
< = ^ and coerce convert false implies index lookup max
min nand nor not or random size true xor

CardinalNumber{CARD}: CancellationAbelianMonoid
Monoid OrderedSet RetractableTo with 0 1 * ** + - < =
Aleph coerce countable? finite?
generalizedContinuumHypothesisAssumed
generalizedContinuumHypothesisAssumed? max min one?
recip retract retractIfCan zero?

CartesianTensor{CARTEN}: GradedAlgebra with 0 1 * + -
= coerce contract degree elt kroneckerDelta
leviCivitaSymbol product rank ravel reindex retract
retractIfCan transpose unravel

CharacterClass{CCLASS}: ConvertibleTo
FiniteSetAggregate SetCategory with # < = alphabetic
alphanumeric any? bag brace cardinality charClass coerce
complement construct convert copy count dictionary

difference digit empty empty? eq? every? extract! find
hexDigit index insert! inspect intersect less? lookup
lowerCase map map! max member? members min more?
parts random reduce remove remove! removeDuplicates
select select! size size? subset? symmetricDifference union
universe upperCase

Character{CHAR}: OrderedFinite with < = alphabetic?
alphanumeric? char coerce digit? escape hexDigit? index
lookup lowerCase lowerCase? max min ord quote random
size space upperCase upperCase?

CliffordAlgebra{CLIF}: Algebra Ring VectorSpace with 0 1
* ** + - / = characteristic coefficient coerce dimension e
monomial one? recip zero?

Color{COLOR}: AbelianSemiGroup with * + = blue coerce
color green hue numberOfHues red yellow

Commutator{COMM}: SetCategory with = coerce
mkcomm

Complex{COMPLEX}: ComplexCategory with 0 1 * ** + -
/ < = D abs acos acosh acot acoth acsc acsch argument
asec asech asin asinh associates? atan atanh basis
characteristic characteristicPolynomial charthRoot coerce
complex conditionP conjugate convert coordinates cos cosh
cot coth createPrimitiveElement csc csch
definingPolynomial derivationCoordinates differentiate
discreteLog discriminant divide elt euclideanSize eval exp
expressIdealMember exquo extendedEuclidean factor
factorPolynomial factorSquareFreePolynomial
factorsOfCyclicGroupSize gcd gcdPolynomial generator
imag imaginary index init inv lcm lift log lookup map max
min minimalPolynomial multiEuclidean nextItem norm
nthRoot one? order pi polarCoordinates prime?
primeFrobenius primitive? primitiveElement principalIdeal
quo random rank rational rational? rationalIfCan real
recip reduce reducedSystem regularRepresentation rem
representationType represents retract retractIfCan sec sech
sin sinh size sizeLess? solveLinearPolynomialEquation sqrt
squareFree squareFreePart squareFreePolynomial
tableForDiscreteLogarithm tan tanh trace traceMatrix
unit? unitCanonical unitNormal zero?

ContinuedFraction{CONTFRAC}: Algebra Field with 0 1 *
** + - / = approximants associates? characteristic coerce
complete continuedFraction convergents denominators
divide euclideanSize expressIdealMember exquo extend
extendedEuclidean factor gcd inv lcm multiEuclidean
numerators one? partialDenominators partialNumerators
partialQuotients prime? principalIdeal quo recip
reducedContinuedFraction reducedForm rem sizeLess?
squareFree squareFreePart unit? unitCanonical
unitNormal wholePart zero?

Database{DBASE}: SetCategory with + - = coerce display
elt fullDisplay

DoubleFloat{DFLOAT}: ConvertibleTo DifferentialRing

APPENDIX C · 763

FloatingPointSystem TranscendentalFunctionCategory with 0
1 * ** + - / < = D abs acos acosh acot acoth acsc acsch
asec asech asin asinh associates? atan atanh base bits
ceiling characteristic coerce convert cos cosh cot coth csc
csch decreasePrecision differentiate digits divide
euclideanSize exp exp1 exponent expressIdealMember
exquo extendedEuclidean factor float floor fractionPart gcd
hash increasePrecision inv lcm log log10 log2 mantissa max
min multiEuclidean negative? norm nthRoot one? order
patternMatch pi positive? precision prime? principalIdeal
quo rationalApproximation recip rem retract retractIfCan
round sec sech sign sin sinh sizeLess? sqrt squareFree
squareFreePart tan tanh truncate unit? unitCanonical
unitNormal wholePart zero?

DataList{DLIST}: ListAggregate with # < = any? children
coerce concat concat! construct convert copy copyInto!
count cycleEntry cycleLength cycleSplit! cycleTail cyclic?
datalist delete delete! elt empty empty? entries entry? eq?
every? explicitlyFinite? fill! find first index? indices insert
insert! last leaf? leaves less? list map map! max maxIndex
member? members merge merge! min minIndex more?
new node? nodes parts position possiblyInfinite? qelt
qsetelt! reduce remove remove! removeDuplicates
removeDuplicates! rest reverse reverse! second select
select! setchildren! setelt setfirst! setlast! setrest! setvalue!
size? sort sort! sorted? split! swap! tail third value

DecimalExpansion{DECIMAL}: QuotientFieldCategory with
0 1 * ** + - / < = D abs associates? ceiling characteristic
coerce convert decimal denom denominator differentiate
divide euclideanSize expressIdealMember exquo
extendedEuclidean factor floor fractionPart gcd init inv
lcm map max min multiEuclidean negative? nextItem
numer numerator one? patternMatch positive? prime?
principalIdeal quo random recip reducedSystem rem retract
retractIfCan sign sizeLess? squareFree squareFreePart
unit? unitCanonical unitNormal wholePart zero?

DenavitHartenbergMatrix{DHMATRIX}: MatrixCategory
with # * ** + - / = antisymmetric? any? coerce column
copy count determinant diagonal? diagonalMatrix elt
empty empty? eq? every? exquo fill! horizConcat identity
inverse less? listOfLists map map! matrix maxColIndex
maxRowIndex member? members minColIndex
minRowIndex minordet more? ncols new nrows nullSpace
nullity parts qelt qsetelt! rank rotatex rotatey rotatez row
rowEchelon scalarMatrix scale setColumn! setRow! setelt
setsubMatrix! size? square? squareTop subMatrix
swapColumns! swapRows! symmetric? translate transpose
vertConcat zero

Dequeue{DEQUEUE}: DequeueAggregate with # = any?
back bag bottom! coerce copy count depth dequeue
dequeue! empty empty? enqueue! eq? every? extract!
extractBottom! extractTop! front height insert!
insertBottom! insertTop! inspect length less? map map!
member? members more? parts pop! push! reverse!

rotate! size? top top!

DeRhamComplex{DERHAM}: LeftAlgebra RetractableTo
with 0 1 * ** + - = characteristic coefficient coerce degree
exteriorDifferential generator homogeneous?
leadingBasisTerm leadingCoefficient map one? recip
reductum retract retractIfCan retractable?
totalDifferential zero?

DifferentialSparseMultivariatePolynomial{DSMP}:
DifferentialPolynomialCategory RetractableTo with 0 1 * ** +
- / < = D associates? characteristic charthRoot coefficient
coefficients coerce conditionP content convert degree
differentialVariables differentiate discriminant eval exquo
factor factorPolynomial factorSquareFreePolynomial gcd
gcdPolynomial ground ground? initial isExpt isPlus
isTimes isobaric? lcm leader leadingCoefficient
leadingMonomial mainVariable makeVariable map
mapExponents max min minimumDegree monicDivide
monomial monomial? monomials multivariate
numberOfMonomials one? order patternMatch prime?
primitiveMonomials primitivePart recip reducedSystem
reductum resultant retract retractIfCan separant
solveLinearPolynomialEquation squareFree squareFreePart
squareFreePolynomial totalDegree unit? unitCanonical
unitNormal univariate variables weight weights zero?

DirectProductMatrixModule{DPMM}:
DirectProductCategory LeftModule with 0 1 # * ** + - / < =
D abs any? characteristic coerce copy count differentiate
dimension directProduct dot elt empty empty? entries
entry? eq? every? fill! first index index? indices less?
lookup map map! max maxIndex member? members min
minIndex more? negative? one? parts positive? qelt
qsetelt! random recip reducedSystem retract retractIfCan
setelt sign size size? sup swap! unitVector zero?

DirectProductModule{DPMO}: DirectProductCategory
LeftModule with 0 1 # * ** + - / < = D abs any?
characteristic coerce copy count differentiate dimension
directProduct dot elt empty empty? entries entry? eq?
every? fill! first index index? indices less? lookup map
map! max maxIndex member? members min minIndex
more? negative? one? parts positive? qelt qsetelt! random
recip reducedSystem retract retractIfCan setelt sign size
size? sup swap! unitVector zero?

DirectProduct{DIRPROD}: DirectProductCategory with 0 1
* ** + - / < = D abs any? characteristic coerce copy
count differentiate dimension directProduct dot elt empty
empty? entries entry? eq? every? fill! first index index?
indices less? lookup map map! max maxIndex member?
members min minIndex more? negative? one? parts
positive? qelt qsetelt! random recip reducedSystem retract
retractIfCan setelt sign size size? sup swap! unitVector
zero?

DistributedMultivariatePolynomial{DMP}:
PolynomialCategory with 0 1 * ** + - / < = D associates?

764 · Domains

characteristic charthRoot coefficient coefficients coerce
conditionP const content convert degree differentiate
discriminant eval exquo factor factorPolynomial
factorSquareFreePolynomial gcd gcdPolynomial ground
ground? isExpt isPlus isTimes lcm leadingCoefficient
leadingMonomial mainVariable map mapExponents max
min minimumDegree monicDivide monomial monomial?
monomials multivariate numberOfMonomials one? prime?
primitiveMonomials primitivePart recip reducedSystem
reductum reorder resultant retract retractIfCan
solveLinearPolynomialEquation squareFree squareFreePart
squareFreePolynomial totalDegree unit? unitCanonical
unitNormal univariate variables zero?

DrawOption{DROPT}: SetCategory with = adaptive clip
coerce colorFunction coordinate coordinates curveColor
option option? pointColor range ranges space style title
toScale tubePoints tubeRadius unit var1Steps var2Steps

ElementaryFunctionsUnivariateLaurentSeries{EFULS}:
PartialTranscendentalFunctions with ** acos acosIfCan
acosh acoshIfCan acot acotIfCan acoth acothIfCan acsc
acscIfCan acsch acschIfCan asec asecIfCan asech
asechIfCan asin asinIfCan asinh asinhIfCan atan atanIfCan
atanh atanhIfCan cos cosIfCan cosh coshIfCan cot
cotIfCan coth cothIfCan csc cscIfCan csch cschIfCan exp
expIfCan log logIfCan nthRootIfCan sec secIfCan sech
sechIfCan sin sinIfCan sinh sinhIfCan tan tanIfCan tanh
tanhIfCan

ElementaryFunctionsUnivariatePuiseuxSeries{EFUPXS}:
PartialTranscendentalFunctions with ** acos acosIfCan
acosh acoshIfCan acot acotIfCan acoth acothIfCan acsc
acscIfCan acsch acschIfCan asec asecIfCan asech
asechIfCan asin asinIfCan asinh asinhIfCan atan atanIfCan
atanh atanhIfCan cos cosIfCan cosh coshIfCan cot
cotIfCan coth cothIfCan csc cscIfCan csch cschIfCan exp
expIfCan log logIfCan nthRootIfCan sec secIfCan sech
sechIfCan sin sinIfCan sinh sinhIfCan tan tanIfCan tanh
tanhIfCan

EqTable{EQTBL}: TableAggregate with # = any? bag
coerce construct copy count dictionary elt empty empty?
entries entry? eq? every? extract! fill! find first index?
indices insert! inspect key? keys less? map map! maxIndex
member? members minIndex more? parts qelt qsetelt!
reduce remove remove! removeDuplicates search select
select! setelt size? swap! table

Equation{EQ}: CoercibleTo InnerEvalable Object
SetCategory with * ** + - = coerce equation eval lhs map
rhs

EuclideanModularRing{EMR}: EuclideanDomain with 0 1
* ** + - = associates? characteristic coerce divide
euclideanSize exQuo expressIdealMember exquo
extendedEuclidean gcd inv lcm modulus multiEuclidean
one? principalIdeal quo recip reduce rem sizeLess? unit?
unitCanonical unitNormal zero?

Exit{EXIT}: SetCategory with = coerce

Expression{EXPR}: AlgebraicallyClosedFunctionSpace
CombinatorialOpsCategory FunctionSpace
LiouvillianFunctionCategory RetractableTo
SpecialFunctionCategory TranscendentalFunctionCategory
with 0 1 * ** + - / < = Beta Ci D Ei Gamma Si abs acos
acosh acot acoth acsc acsch airyAi airyBi applyQuote asec
asech asin asinh associates? atan atanh belong? besselI
besselJ besselK besselY binomial box characteristic
charthRoot coerce commutator conjugate convert cos cosh
cot coth csc csch definingPolynomial denom denominator
differentiate digamma dilog distribute divide elt erf
euclideanSize eval exp expressIdealMember exquo
extendedEuclidean factor factorial factorials freeOf? gcd
ground ground? height integral inv is? isExpt isMult
isPlus isPower isTimes kernel kernels lcm li log mainKernel
map max min minPoly multiEuclidean nthRoot numer
numerator one? operator operators paren patternMatch
permutation pi polygamma prime? principalIdeal product
quo recip reduce reducedSystem rem retract retractIfCan
rootOf rootsOf sec sech sin sinh sizeLess? sqrt squareFree
squareFreePart subst summation tan tanh tower unit?
unitCanonical unitNormal univariate variables zero?
zeroOf zerosOf

ExtAlgBasis{EAB}: OrderedSet with < = Nul coerce degree
exponents max min

Factored{FR}: Algebra DifferentialExtension Eltable
Evalable FullyEvalableOver FullyRetractableTo GcdDomain
InnerEvalable IntegralDomain RealConstant
UniqueFactorizationDomain with 0 1 * ** + - = D associates?
characteristic coerce convert differentiate elt eval expand
exponent exquo factor factorList factors flagFactor gcd
irreducibleFactor lcm makeFR map nilFactor nthExponent
nthFactor nthFlag numberOfFactors one? prime?
primeFactor rational rational? rationalIfCan recip retract
retractIfCan sqfrFactor squareFree squareFreePart unit
unit? unitCanonical unitNormal unitNormalize zero?

FileName{FNAME}: FileNameCategory with = coerce
directory exists? extension filename name new readable?
writable?

File{FILE}: FileCategory with = close! coerce iomode name
open read! readIfCan! reopen! write!

FiniteDivisor{FDIV}: AbelianGroup with 0 * + - = algsplit
coerce divisor finiteBasis generator ideal lSpaceBasis
mkBasicDiv principal? reduce zero?

FiniteFieldCyclicGroupExtensionByPolynomial{FFCGP}:
FiniteAlgebraicExtensionField with 0 1 * ** + - / = Frobenius
algebraic? associates? basis characteristic charthRoot
coerce conditionP coordinates createNormalElement
createPrimitiveElement definingPolynomial degree
dimension discreteLog divide euclideanSize
expressIdealMember exquo extendedEuclidean
extensionDegree factor factorsOfCyclicGroupSize gcd

APPENDIX C · 765

generator getZechTable inGroundField? index init inv lcm
lookup minimalPolynomial multiEuclidean nextItem norm
normal? normalElement one? order prime?
primeFrobenius primitive? primitiveElement principalIdeal
quo random recip rem representationType represents
retract retractIfCan size sizeLess? squareFree
squareFreePart tableForDiscreteLogarithm trace
transcendenceDegree transcendent? unit? unitCanonical
unitNormal zero?

FiniteFieldCyclicGroupExtension{FFCGX}:
FiniteAlgebraicExtensionField with 0 1 * ** + - / = Frobenius
algebraic? associates? basis characteristic charthRoot
coerce conditionP coordinates createNormalElement
createPrimitiveElement definingPolynomial degree
dimension discreteLog divide euclideanSize
expressIdealMember exquo extendedEuclidean
extensionDegree factor factorsOfCyclicGroupSize gcd
generator getZechTable inGroundField? index init inv lcm
lookup minimalPolynomial multiEuclidean nextItem norm
normal? normalElement one? order prime?
primeFrobenius primitive? primitiveElement principalIdeal
quo random recip rem representationType represents
retract retractIfCan size sizeLess? squareFree
squareFreePart tableForDiscreteLogarithm trace
transcendenceDegree transcendent? unit? unitCanonical
unitNormal zero?

FiniteFieldCyclicGroup{FFCG}:
FiniteAlgebraicExtensionField with 0 1 * ** + - / = Frobenius
algebraic? associates? basis characteristic charthRoot
coerce conditionP coordinates createNormalElement
createPrimitiveElement definingPolynomial degree
dimension discreteLog divide euclideanSize
expressIdealMember exquo extendedEuclidean
extensionDegree factor factorsOfCyclicGroupSize gcd
generator getZechTable inGroundField? index init inv lcm
lookup minimalPolynomial multiEuclidean nextItem norm
normal? normalElement one? order prime?
primeFrobenius primitive? primitiveElement principalIdeal
quo random recip rem representationType represents
retract retractIfCan size sizeLess? squareFree
squareFreePart tableForDiscreteLogarithm trace
transcendenceDegree transcendent? unit? unitCanonical
unitNormal zero?

FiniteFieldExtensionByPolynomial{FFP}:
FiniteAlgebraicExtensionField with 0 1 * ** + - / =
Frobenius algebraic? associates? basis characteristic
charthRoot coerce conditionP coordinates
createNormalElement createPrimitiveElement
definingPolynomial degree dimension discreteLog divide
euclideanSize expressIdealMember exquo
extendedEuclidean extensionDegree factor
factorsOfCyclicGroupSize gcd generator inGroundField?
index init inv lcm lookup minimalPolynomial
multiEuclidean nextItem norm normal? normalElement
one? order prime? primeFrobenius primitive?

primitiveElement principalIdeal quo random recip rem
representationType represents retract retractIfCan size
sizeLess? squareFree squareFreePart
tableForDiscreteLogarithm trace transcendenceDegree
transcendent? unit? unitCanonical unitNormal zero?

FiniteFieldExtension{FFX}: FiniteAlgebraicExtensionField
with 0 1 * ** + - / = Frobenius algebraic? associates? basis
characteristic charthRoot coerce conditionP coordinates
createNormalElement createPrimitiveElement
definingPolynomial degree dimension discreteLog divide
euclideanSize expressIdealMember exquo
extendedEuclidean extensionDegree factor
factorsOfCyclicGroupSize gcd generator inGroundField?
index init inv lcm lookup minimalPolynomial
multiEuclidean nextItem norm normal? normalElement
one? order prime? primeFrobenius primitive?
primitiveElement principalIdeal quo random recip rem
representationType represents retract retractIfCan size
sizeLess? squareFree squareFreePart
tableForDiscreteLogarithm trace transcendenceDegree
transcendent? unit? unitCanonical unitNormal zero?

FiniteFieldNormalBasisExtensionByPolynomial{FFNBP}:
FiniteAlgebraicExtensionField with 0 1 * ** + - / = Frobenius
algebraic? associates? basis characteristic charthRoot
coerce conditionP coordinates createNormalElement
createPrimitiveElement definingPolynomial degree
dimension discreteLog divide euclideanSize
expressIdealMember exquo extendedEuclidean
extensionDegree factor factorsOfCyclicGroupSize gcd
generator getMultiplicationMatrix getMultiplicationTable
inGroundField? index init inv lcm lookup
minimalPolynomial multiEuclidean nextItem norm
normal? normalElement one? order prime?
primeFrobenius primitive? primitiveElement principalIdeal
quo random recip rem representationType represents
retract retractIfCan size sizeLess? sizeMultiplication
squareFree squareFreePart tableForDiscreteLogarithm
trace transcendenceDegree transcendent? unit?
unitCanonical unitNormal zero?

FiniteFieldNormalBasisExtension{FFNBX}:
FiniteAlgebraicExtensionField with 0 1 * ** + - / = Frobenius
algebraic? associates? basis characteristic charthRoot
coerce conditionP coordinates createNormalElement
createPrimitiveElement definingPolynomial degree
dimension discreteLog divide euclideanSize
expressIdealMember exquo extendedEuclidean
extensionDegree factor factorsOfCyclicGroupSize gcd
generator getMultiplicationMatrix getMultiplicationTable
inGroundField? index init inv lcm lookup
minimalPolynomial multiEuclidean nextItem norm
normal? normalElement one? order prime?
primeFrobenius primitive? primitiveElement principalIdeal
quo random recip rem representationType represents
retract retractIfCan size sizeLess? sizeMultiplication
squareFree squareFreePart tableForDiscreteLogarithm

766 · Domains

trace transcendenceDegree transcendent? unit?
unitCanonical unitNormal zero?

FiniteFieldNormalBasis{FFNB}:
FiniteAlgebraicExtensionField with 0 1 * ** + - / = Frobenius
algebraic? associates? basis characteristic charthRoot
coerce conditionP coordinates createNormalElement
createPrimitiveElement definingPolynomial degree
dimension discreteLog divide euclideanSize
expressIdealMember exquo extendedEuclidean
extensionDegree factor factorsOfCyclicGroupSize gcd
generator getMultiplicationMatrix getMultiplicationTable
inGroundField? index init inv lcm lookup
minimalPolynomial multiEuclidean nextItem norm
normal? normalElement one? order prime?
primeFrobenius primitive? primitiveElement principalIdeal
quo random recip rem representationType represents
retract retractIfCan size sizeLess? sizeMultiplication
squareFree squareFreePart tableForDiscreteLogarithm
trace transcendenceDegree transcendent? unit?
unitCanonical unitNormal zero?

FiniteField{FF}: FiniteAlgebraicExtensionField with 0 1 * **
+ - / = Frobenius algebraic? associates? basis
characteristic charthRoot coerce conditionP coordinates
createNormalElement createPrimitiveElement
definingPolynomial degree dimension discreteLog divide
euclideanSize expressIdealMember exquo
extendedEuclidean extensionDegree factor
factorsOfCyclicGroupSize gcd generator inGroundField?
index init inv lcm lookup minimalPolynomial
multiEuclidean nextItem norm normal? normalElement
one? order prime? primeFrobenius primitive?
primitiveElement principalIdeal quo random recip rem
representationType represents retract retractIfCan size
sizeLess? squareFree squareFreePart
tableForDiscreteLogarithm trace transcendenceDegree
transcendent? unit? unitCanonical unitNormal zero?

FlexibleArray{FARRAY}: ExtensibleLinearAggregate
OneDimensionalArrayAggregate with # < = any? coerce
concat concat! construct convert copy copyInto! count
delete delete! elt empty empty? entries entry? eq? every?
fill! find first flexibleArray index? indices insert insert!
less? map map! max maxIndex member? members merge
merge! min minIndex more? new parts physicalLength
physicalLength! position qelt qsetelt! reduce remove
remove! removeDuplicates removeDuplicates! reverse
reverse! select select! setelt shrinkable size? sort sort!
sorted? swap!

Float{FLOAT}: CoercibleTo ConvertibleTo DifferentialRing
FloatingPointSystem TranscendentalFunctionCategory with 0
1 * ** + - / < = D abs acos acosh acot acoth acsc acsch
asec asech asin asinh associates? atan atanh base bits
ceiling characteristic coerce convert cos cosh cot coth csc
csch decreasePrecision differentiate digits divide
euclideanSize exp exp1 exponent expressIdealMember

exquo extendedEuclidean factor float floor fractionPart gcd
increasePrecision inv lcm log log10 log2 mantissa max min
multiEuclidean negative? norm normalize nthRoot one?
order outputFixed outputFloating outputGeneral
outputSpacing patternMatch pi positive? precision prime?
principalIdeal quo rationalApproximation recip relerror
rem retract retractIfCan round sec sech shift sign sin sinh
sizeLess? sqrt squareFree squareFreePart tan tanh
truncate unit? unitCanonical unitNormal wholePart zero?

FractionalIdeal{FRIDEAL}: Group with 1 * ** / = basis
coerce commutator conjugate denom ideal inv minimize
norm numer one? randomLC recip

Fraction{FRAC}: QuotientFieldCategory with 0 1 * ** + - /
< = D abs associates? ceiling characteristic charthRoot
coerce conditionP convert denom denominator differentiate
divide elt euclideanSize eval expressIdealMember exquo
extendedEuclidean factor factorPolynomial
factorSquareFreePolynomial floor fractionPart gcd
gcdPolynomial init inv lcm map max min multiEuclidean
negative? nextItem numer numerator one? patternMatch
positive? prime? principalIdeal quo random recip
reducedSystem rem retract retractIfCan sign sizeLess?
solveLinearPolynomialEquation squareFree squareFreePart
squareFreePolynomial unit? unitCanonical unitNormal
wholePart zero?

FramedModule{FRMOD}: Monoid with 1 * ** = basis
coerce module norm one? recip

FreeAbelianGroup{FAGROUP}: AbelianGroup
FreeAbelianMonoidCategory Module OrderedSet with 0 * + -
< = coefficient coerce highCommonTerms mapCoef
mapGen max min nthCoef nthFactor retract retractIfCan
size terms zero?

FreeAbelianMonoid{FAMONOID}:
FreeAbelianMonoidCategory with 0 * + - = coefficient coerce
highCommonTerms mapCoef mapGen nthCoef nthFactor
retract retractIfCan size terms zero?

FreeGroup{FGROUP}: Group RetractableTo with 1 * ** /
= coerce commutator conjugate factors inv mapExpon
mapGen nthExpon nthFactor one? recip retract
retractIfCan size

FreeModule{FM}: BiModule IndexedDirectProductCategory
Module with 0 * + - = coerce leadingCoefficient
leadingSupport map monomial reductum zero?

FreeMonoid{FMONOID}: Monoid OrderedSet
RetractableTo with 1 * ** < = coerce divide factors hclf hcrf
lquo mapExpon mapGen max min nthExpon nthFactor
one? overlap recip retract retractIfCan rquo size

FreeNilpotentLie{FNLA}: NonAssociativeAlgebra with 0 *
** + - = antiCommutator associator coerce commutator
deepExpand dimension generator leftPower rightPower
shallowExpand zero?

APPENDIX C · 767

FunctionCalled{FUNCTION}: SetCategory with = coerce
name

GeneralDistributedMultivariatePolynomial{GDMP}:
PolynomialCategory with 0 1 * ** + - / < = D associates?
characteristic charthRoot coefficient coefficients coerce
conditionP const content convert degree differentiate
discriminant eval exquo factor factorPolynomial
factorSquareFreePolynomial gcd gcdPolynomial ground
ground? isExpt isPlus isTimes lcm leadingCoefficient
leadingMonomial mainVariable map mapExponents max
min minimumDegree monicDivide monomial monomial?
monomials multivariate numberOfMonomials one? prime?
primitiveMonomials primitivePart recip reducedSystem
reductum reorder resultant retract retractIfCan
solveLinearPolynomialEquation squareFree squareFreePart
squareFreePolynomial totalDegree unit? unitCanonical
unitNormal univariate variables zero?

GeneralSparseTable{GSTBL}: TableAggregate with # =
any? bag coerce construct copy count dictionary elt empty
empty? entries entry? eq? every? extract! fill! find first
index? indices insert! inspect key? keys less? map map!
maxIndex member? members minIndex more? parts qelt
qsetelt! reduce remove remove! removeDuplicates search
select select! setelt size? swap! table

GenericNonAssociativeAlgebra{GCNAALG}:
FramedNonAssociativeAlgebra LeftModule with 0 * ** + - =
JacobiIdentity? JordanAlgebra? alternative?
antiAssociative? antiCommutative? antiCommutator
apply associative? associator associatorDependence basis
coerce commutative? commutator
conditionsForIdempotents convert coordinates elt flexible?
generic genericLeftDiscriminant
genericLeftMinimalPolynomial genericLeftNorm
genericLeftTrace genericLeftTraceForm
genericRightDiscriminant genericRightMinimalPolynomial
genericRightNorm genericRightTrace
genericRightTraceForm jordanAdmissible? leftAlternative?
leftCharacteristicPolynomial leftDiscriminant
leftMinimalPolynomial leftNorm leftPower
leftRankPolynomial leftRecip leftRegularRepresentation
leftTrace leftTraceMatrix leftUnit leftUnits lieAdmissible?
lieAlgebra? noncommutativeJordanAlgebra? plenaryPower
powerAssociative? rank recip represents rightAlternative?
rightCharacteristicPolynomial rightDiscriminant
rightMinimalPolynomial rightNorm rightPower
rightRankPolynomial rightRecip
rightRegularRepresentation rightTrace rightTraceMatrix
rightUnit rightUnits someBasis structuralConstants unit
zero?

GraphImage{GRIMAGE}: SetCategory with = appendPoint
coerce component graphImage key makeGraphImage point
pointLists putColorInfo ranges units

HashTable{HASHTBL}: TableAggregate with # = any? bag
coerce construct copy count dictionary elt empty empty?

entries entry? eq? every? extract! fill! find first index?
indices insert! inspect key? keys less? map map! maxIndex
member? members minIndex more? parts qelt qsetelt!
reduce remove remove! removeDuplicates search select
select! setelt size? swap! table

Heap{HEAP}: PriorityQueueAggregate with # = any? bag
coerce copy count empty empty? eq? every? extract! heap
insert! inspect less? map map! max member? members
merge merge! more? parts size?

HexadecimalExpansion{HEXADEC}:
QuotientFieldCategory with 0 1 * ** + - / < = D abs
associates? ceiling characteristic coerce convert denom
denominator differentiate divide euclideanSize
expressIdealMember exquo extendedEuclidean factor floor
fractionPart gcd hex init inv lcm map max min
multiEuclidean negative? nextItem numer numerator one?
patternMatch positive? prime? principalIdeal quo random
recip reducedSystem rem retract retractIfCan sign
sizeLess? squareFree squareFreePart unit? unitCanonical
unitNormal wholePart zero?

IndexCard{ICARD}: OrderedSet with < = coerce display elt
fullDisplay max min

IndexedBits{IBITS}: BitAggregate with # < = And Not Or
^ and any? coerce concat construct convert copy copyInto!
count delete elt empty empty? entries entry? eq? every?
fill! find first index? indices insert less? map map! max
maxIndex member? members merge min minIndex more?
nand new nor not or parts position qelt qsetelt! reduce
remove removeDuplicates reverse reverse! select setelt size?
sort sort! sorted? swap! xor

IndexedDirectProductAbelianGroup{IDPAG}:
AbelianGroup IndexedDirectProductCategory with 0 * + - =
coerce leadingCoefficient leadingSupport map monomial
reductum zero?

IndexedDirectProductAbelianMonoid{IDPAM}:
AbelianMonoid IndexedDirectProductCategory with 0 * + =
coerce leadingCoefficient leadingSupport map monomial
reductum zero?

IndexedDirectProductObject{IDPO}:
IndexedDirectProductCategory with = coerce
leadingCoefficient leadingSupport map monomial reductum

IndexedDirectProductOrderedAbelianMonoidSup
{IDPOAMS}: IndexedDirectProductCategory
OrderedAbelianMonoidSup with 0 * + - < = coerce
leadingCoefficient leadingSupport map max min monomial
reductum sup zero?

IndexedDirectProductOrderedAbelianMonoid{IDPOAM}:
IndexedDirectProductCategory OrderedAbelianMonoid with 0
* + < = coerce leadingCoefficient leadingSupport map max
min monomial reductum zero?

IndexedExponents{INDE}: IndexedDirectProductCategory

768 · Domains

OrderedAbelianMonoidSup with 0 * + - < = coerce
leadingCoefficient leadingSupport map max min monomial
reductum sup zero?

IndexedFlexibleArray{IFARRAY}:
ExtensibleLinearAggregate OneDimensionalArrayAggregate
with # < = any? coerce concat concat! construct convert
copy copyInto! count delete delete! elt empty empty?
entries entry? eq? every? fill! find first flexibleArray
index? indices insert insert! less? map map! max
maxIndex member? members merge merge! min minIndex
more? new parts physicalLength physicalLength! position
qelt qsetelt! reduce remove remove! removeDuplicates
removeDuplicates! reverse reverse! select select! setelt
shrinkable size? sort sort! sorted? swap!

IndexedList{ILIST}: ListAggregate with # < = any? child?
children coerce concat concat! construct convert copy
copyInto! count cycleEntry cycleLength cycleSplit!
cycleTail cyclic? delete delete! distance elt empty empty?
entries entry? eq? every? explicitlyFinite? fill! find first
index? indices insert insert! last leaf? less? list map map!
max maxIndex member? members merge merge! min
minIndex more? new node? nodes parts position
possiblyInfinite? qelt qsetelt! reduce remove remove!
removeDuplicates removeDuplicates! rest reverse reverse!
second select select! setchildren! setelt setfirst! setlast!
setrest! setvalue! size? sort sort! sorted? split! swap! tail
third value

IndexedMatrix{IMATRIX}: MatrixCategory with # * ** + -
/ = antisymmetric? any? coerce column copy count
determinant diagonal? diagonalMatrix elt empty empty?
eq? every? exquo fill! horizConcat inverse less? listOfLists
map map! matrix maxColIndex maxRowIndex member?
members minColIndex minRowIndex minordet more?
ncols new nrows nullSpace nullity parts qelt qsetelt! rank
row rowEchelon scalarMatrix setColumn! setRow! setelt
setsubMatrix! size? square? squareTop subMatrix
swapColumns! swapRows! symmetric? transpose
vertConcat zero

IndexedOneDimensionalArray{IARRAY1}:
OneDimensionalArrayAggregate with # < = any? coerce
concat construct convert copy copyInto! count delete elt
empty empty? entries entry? eq? every? fill! find first
index? indices insert less? map map! max maxIndex
member? members merge min minIndex more? new parts
position qelt qsetelt! reduce remove removeDuplicates
reverse reverse! select setelt size? sort sort! sorted? swap!

IndexedString{ISTRING}: StringAggregate with # < = any?
coerce concat construct copy copyInto! count delete elt
empty empty? entries entry? eq? every? fill! find first hash
index? indices insert leftTrim less? lowerCase lowerCase!
map map! match? max maxIndex member? members
merge min minIndex more? new parts position prefix? qelt
qsetelt! reduce remove removeDuplicates replace reverse
reverse! rightTrim select setelt size? sort sort! sorted?

split substring? suffix? swap! trim upperCase upperCase!

IndexedTwoDimensionalArray{IARRAY2}:
TwoDimensionalArrayCategory with # = any? coerce column
copy count elt empty empty? eq? every? fill! less? map
map! maxColIndex maxRowIndex member? members
minColIndex minRowIndex more? ncols new nrows parts
qelt qsetelt! row setColumn! setRow! setelt size?

IndexedVector{IVECTOR}: VectorCategory with # * + - <
= any? coerce concat construct convert copy copyInto!
count delete dot elt empty empty? entries entry? eq?
every? fill! find first index? indices insert less? map map!
max maxIndex member? members merge min minIndex
more? new parts position qelt qsetelt! reduce remove
removeDuplicates reverse reverse! select setelt size? sort
sort! sorted? swap! zero

InfiniteTuple{ITUPLE}: CoercibleTo with coerce construct
filterUntil filterWhile generate map select

InnerFiniteField{IFF}: FiniteAlgebraicExtensionField with 0
1 * ** + - / = Frobenius algebraic? associates? basis
characteristic charthRoot coerce conditionP coordinates
createNormalElement createPrimitiveElement
definingPolynomial degree dimension discreteLog divide
euclideanSize expressIdealMember exquo
extendedEuclidean extensionDegree factor
factorsOfCyclicGroupSize gcd generator inGroundField?
index init inv lcm lookup minimalPolynomial
multiEuclidean nextItem norm normal? normalElement
one? order prime? primeFrobenius primitive?
primitiveElement principalIdeal quo random recip rem
representationType represents retract retractIfCan size
sizeLess? squareFree squareFreePart
tableForDiscreteLogarithm trace transcendenceDegree
transcendent? unit? unitCanonical unitNormal zero?

InnerFreeAbelianMonoid{IFAMON}:
FreeAbelianMonoidCategory with 0 * + - = coefficient coerce
highCommonTerms mapCoef mapGen nthCoef nthFactor
retract retractIfCan size terms zero?

InnerIndexedTwoDimensionalArray{IIARRAY2}:
TwoDimensionalArrayCategory with # = any? coerce column
copy count elt empty empty? eq? every? fill! less? map
map! maxColIndex maxRowIndex member? members
minColIndex minRowIndex more? ncols new nrows parts
qelt qsetelt! row setColumn! setRow! setelt size?

InnerPAdicInteger{IPADIC}: PAdicIntegerCategory with 0 1
* ** + - = approximate associates? characteristic coerce
complete digits divide euclideanSize expressIdealMember
exquo extend extendedEuclidean gcd lcm moduloP
modulus multiEuclidean one? order principalIdeal quo
quotientByP recip rem sizeLess? sqrt unit? unitCanonical
unitNormal zero?

InnerPrimeField{IPF}: ConvertibleTo
FiniteAlgebraicExtensionField FiniteFieldCategory with 0 1 *

APPENDIX C · 769

** + - / = Frobenius algebraic? associates? basis
characteristic charthRoot coerce conditionP convert
coordinates createNormalElement createPrimitiveElement
definingPolynomial degree dimension discreteLog divide
euclideanSize expressIdealMember exquo
extendedEuclidean extensionDegree factor
factorsOfCyclicGroupSize gcd generator inGroundField?
index init inv lcm lookup minimalPolynomial
multiEuclidean nextItem norm normal? normalElement
one? order prime? primeFrobenius primitive?
primitiveElement principalIdeal quo random recip rem
representationType represents retract retractIfCan size
sizeLess? squareFree squareFreePart
tableForDiscreteLogarithm trace transcendenceDegree
transcendent? unit? unitCanonical unitNormal zero?

InnerTaylorSeries{ITAYLOR}: IntegralDomain Ring with 0 1
* ** + - = associates? characteristic coefficients coerce
exquo one? order pole? recip series unit? unitCanonical
unitNormal zero?

InputForm{INFORM}: ConvertibleTo SExpressionCategory
with 0 1 # * ** + / = atom? binary car cdr coerce compile
convert declare destruct elt eq expr flatten float float?
function integer integer? interpret lambda list? null? pair?
string string? symbol symbol? uequal unparse

IntegerMod{ZMOD}: CommutativeRing ConvertibleTo
Finite StepThrough with 0 1 * ** + - = characteristic coerce
convert index init lookup nextItem one? random recip size
zero?

Integer{INT}: ConvertibleTo IntegerNumberSystem with 0 1
* ** + - < = D abs addmod associates? base binomial bit?
characteristic coerce convert copy dec differentiate divide
euclideanSize even? expressIdealMember exquo
extendedEuclidean factor factorial gcd hash inc init
invmod lcm length mask max min mulmod multiEuclidean
negative? nextItem odd? one? patternMatch permutation
positive? positiveRemainder powmod prime?
principalIdeal quo random rational rational? rationalIfCan
recip reducedSystem rem retract retractIfCan shift sign
sizeLess? squareFree squareFreePart submod
symmetricRemainder unit? unitCanonical unitNormal
zero?

IntegrationResult{IR}: Module RetractableTo with 0 * + -
= D coerce differentiate elem? integral logpart mkAnswer
notelem ratpart retract retractIfCan zero?

Kernel{KERNEL}: CachableSet ConvertibleTo Patternable
with < = argument coerce convert height is? kernel max
min name operator position setPosition symbolIfCan

KeyedAccessFile{KAFILE}: FileCategory TableAggregate
with # = any? bag close! coerce construct copy count
dictionary elt empty empty? entries entry? eq? every?
extract! fill! find first index? indices insert! inspect iomode
key? keys less? map map! maxIndex member? members
minIndex more? name open pack! parts qelt qsetelt! read!

reduce remove remove! removeDuplicates reopen! search
select select! setelt size? swap! table write!

LaurentPolynomial{LAUPOL}: CharacteristicNonZero
CharacteristicZero ConvertibleTo DifferentialExtension
EuclideanDomain FullyRetractableTo IntegralDomain
RetractableTo with 0 1 * ** + - = D associates?
characteristic charthRoot coefficient coerce convert degree
differentiate divide euclideanSize expressIdealMember
exquo extendedEuclidean gcd lcm leadingCoefficient
monomial monomial? multiEuclidean one? order
principalIdeal quo recip reductum rem retract retractIfCan
separate sizeLess? trailingCoefficient unit? unitCanonical
unitNormal zero?

Library{LIB}: TableAggregate with # = any? bag coerce
construct copy count dictionary elt empty empty? entries
entry? eq? every? extract! fill! find first index? indices
insert! inspect key? keys less? library map map! maxIndex
member? members minIndex more? pack! parts qelt
qsetelt! reduce remove remove! removeDuplicates search
select select! setelt size? swap! table

LieSquareMatrix{LSQM}: CoercibleTo
FramedNonAssociativeAlgebra SquareMatrixCategory with 0
1 # * ** + - / = D JacobiIdentity? JordanAlgebra?
alternative? antiAssociative? antiCommutative?
antiCommutator antisymmetric? any? apply associative?
associator associatorDependence basis characteristic coerce
column commutative? commutator
conditionsForIdempotents convert coordinates copy count
determinant diagonal diagonal? diagonalMatrix
diagonalProduct differentiate elt empty empty? eq? every?
exquo flexible? inverse jordanAdmissible? leftAlternative?
leftCharacteristicPolynomial leftDiscriminant
leftMinimalPolynomial leftNorm leftPower
leftRankPolynomial leftRecip leftRegularRepresentation
leftTrace leftTraceMatrix leftUnit leftUnits less?
lieAdmissible? lieAlgebra? listOfLists map map! matrix
maxColIndex maxRowIndex member? members
minColIndex minRowIndex minordet more? ncols
noncommutativeJordanAlgebra? nrows nullSpace nullity
one? parts plenaryPower powerAssociative? qelt rank recip
reducedSystem represents retract retractIfCan
rightAlternative? rightCharacteristicPolynomial
rightDiscriminant rightMinimalPolynomial rightNorm
rightPower rightRankPolynomial rightRecip
rightRegularRepresentation rightTrace rightTraceMatrix
rightUnit rightUnits row rowEchelon scalarMatrix size?
someBasis square? structuralConstants symmetric? trace
unit zero?

LinearOrdinaryDifferentialOperator{LODO}:
MonogenicLinearOperator with 0 1 * ** + - = D
characteristic coefficient coerce degree elt leadingCoefficient
leftDivide leftExactQuotient leftGcd leftLcm leftQuotient
leftRemainder minimumDegree monomial one? recip
reductum rightDivide rightExactQuotient rightGcd

770 · Domains

rightLcm rightQuotient rightRemainder zero?

ListMonoidOps{LMOPS}: RetractableTo SetCategory with
= coerce leftMult listOfMonoms makeMulti makeTerm
makeUnit mapExpon mapGen nthExpon nthFactor
outputForm plus retract retractIfCan reverse reverse!
rightMult size

ListMultiDictionary{LMDICT}: MultiDictionary with # =
any? bag coerce construct convert copy count dictionary
duplicates duplicates? empty empty? eq? every? extract!
find insert! inspect less? map map! member? members
more? parts reduce remove remove! removeDuplicates
removeDuplicates! select select! size? substitute

List{LIST}: ListAggregate with # < = any? append child?
children coerce concat concat! cons construct convert copy
copyInto! count cycleEntry cycleLength cycleSplit!
cycleTail cyclic? delete delete! distance elt empty empty?
entries entry? eq? every? explicitlyFinite? fill! find first
index? indices insert insert! last leaf? less? list map map!
max maxIndex member? members merge merge! min
minIndex more? new nil node? nodes null parts position
possiblyInfinite? qelt qsetelt! reduce remove remove!
removeDuplicates removeDuplicates! rest reverse reverse!
second select select! setDifference setIntersection setUnion
setchildren! setelt setfirst! setlast! setrest! setvalue! size?
sort sort! sorted? split! swap! tail third value

LocalAlgebra{LA}: Algebra OrderedRing with 0 1 * ** + -
/ < = abs characteristic coerce denom max min negative?
numer one? positive? recip sign zero?

Localize{LO}: Module OrderedAbelianGroup with 0 * + - /
< = coerce denom max min numer zero?

MakeCachableSet{MKCHSET}: CachableSet CoercibleTo
with < = coerce max min position setPosition

MakeOrdinaryDifferentialRing{MKODRING}: CoercibleTo
DifferentialRing with 0 1 * ** + - = D characteristic coerce
differentiate one? recip zero?

Matrix{MATRIX}: MatrixCategory with # * ** + - / =
antisymmetric? any? coerce column copy count
determinant diagonal? diagonalMatrix elt empty empty?
eq? every? exquo fill! horizConcat inverse less? listOfLists
map map! matrix maxColIndex maxRowIndex member?
members minColIndex minRowIndex minordet more?
ncols new nrows nullSpace nullity parts qelt qsetelt! rank
row rowEchelon scalarMatrix setColumn! setRow! setelt
setsubMatrix! size? square? squareTop subMatrix
swapColumns! swapRows! symmetric? transpose
vertConcat zero

ModMonic{MODMON}: Finite
UnivariatePolynomialCategory with 0 1 * ** + - / < = An D
UnVectorise Vectorise associates? characteristic
charthRoot coefficient coefficients coerce composite
computePowers conditionP content degree differentiate
discriminant divide divideExponents elt euclideanSize eval

expressIdealMember exquo extendedEuclidean factor
factorPolynomial factorSquareFreePolynomial gcd
gcdPolynomial ground ground? index init integrate isExpt
isPlus isTimes lcm leadingCoefficient leadingMonomial lift
lookup mainVariable makeSUP map mapExponents max
min minimumDegree modulus monicDivide monomial
monomial? monomials multiEuclidean multiplyExponents
multivariate nextItem numberOfMonomials one? order
pow prime? primitiveMonomials primitivePart
principalIdeal pseudoDivide pseudoQuotient
pseudoRemainder quo random recip reduce reducedSystem
reductum rem resultant retract retractIfCan separate
setPoly size sizeLess? solveLinearPolynomialEquation
squareFree squareFreePart squareFreePolynomial
subResultantGcd totalDegree unit? unitCanonical
unitNormal univariate unmakeSUP variables vectorise
zero?

ModularField{MODFIELD}: Field with 0 1 * ** + - / =
associates? characteristic coerce divide euclideanSize
exQuo expressIdealMember exquo extendedEuclidean
factor gcd inv lcm modulus multiEuclidean one? prime?
principalIdeal quo recip reduce rem sizeLess? squareFree
squareFreePart unit? unitCanonical unitNormal zero?

ModularRing{MODRING}: Ring with 0 1 * ** + - =
characteristic coerce exQuo inv modulus one? recip reduce
zero?

MoebiusTransform{MOEBIUS}: Group with 1 * ** / =
coerce commutator conjugate eval inv moebius one? recip
scale shift

MonoidRing{MRING}: Algebra CharacteristicNonZero
CharacteristicZero Finite RetractableTo Ring with 0 1 * ** +
- = characteristic charthRoot coefficient coefficients coerce
index leadingCoefficient leadingMonomial lookup map
monomial monomial? monomials numberOfMonomials
one? random recip reductum retract retractIfCan size
terms zero?

Multiset{MSET}: MultiSetAggregate with # < = any? bag
brace coerce construct convert copy count dictionary
difference duplicates empty empty? eq? every? extract!
find insert! inspect intersect less? map map! member?
members more? multiset parts reduce remove remove!
removeDuplicates removeDuplicates! select select! size?
subset? symmetricDifference union

MultivariatePolynomial{MPOLY}: PolynomialCategory
with 0 1 * ** + - / < = D associates? characteristic
charthRoot coefficient coefficients coerce conditionP
content convert degree differentiate discriminant eval
exquo factor factorPolynomial factorSquareFreePolynomial
gcd gcdPolynomial ground ground? isExpt isPlus isTimes
lcm leadingCoefficient leadingMonomial mainVariable map
mapExponents max min minimumDegree monicDivide
monomial monomial? monomials multivariate
numberOfMonomials one? prime? primitiveMonomials

APPENDIX C · 771

primitivePart recip reducedSystem reductum resultant
retract retractIfCan solveLinearPolynomialEquation
squareFree squareFreePart squareFreePolynomial
totalDegree unit? unitCanonical unitNormal univariate
variables zero?

NewDirectProduct{NDP}: DirectProductCategory with 0 1
* ** + - / < = D abs any? characteristic coerce copy
count differentiate dimension directProduct dot elt empty
empty? entries entry? eq? every? fill! first index index?
indices less? lookup map map! max maxIndex member?
members min minIndex more? negative? one? parts
positive? qelt qsetelt! random recip reducedSystem retract
retractIfCan setelt sign size size? sup swap! unitVector
zero?

NewDistributedMultivariatePolynomial{NDMP}:
PolynomialCategory with 0 1 * ** + - / < = D associates?
characteristic charthRoot coefficient coefficients coerce
conditionP const content convert degree differentiate
discriminant eval exquo factor factorPolynomial
factorSquareFreePolynomial gcd gcdPolynomial ground
ground? isExpt isPlus isTimes lcm leadingCoefficient
leadingMonomial mainVariable map mapExponents max
min minimumDegree monicDivide monomial monomial?
monomials multivariate numberOfMonomials one? prime?
primitiveMonomials primitivePart recip reducedSystem
reductum reorder resultant retract retractIfCan
solveLinearPolynomialEquation squareFree squareFreePart
squareFreePolynomial totalDegree unit? unitCanonical
unitNormal univariate variables zero?

None{NONE}: SetCategory with = coerce

NonNegativeInteger{NNI}: Monoid
OrderedAbelianMonoidSup with 0 1 * ** + - < = coerce
divide exquo gcd max min one? quo recip rem sup zero?

Octonion{OCT}: FullyRetractableTo OctonionCategory with
0 1 * ** + - < = abs characteristic charthRoot coerce
conjugate convert elt eval imagE imagI imagJ imagK imagi
imagj imagk index inv lookup map max min norm octon
one? random rational rational? rationalIfCan real recip
retract retractIfCan size zero?

OneDimensionalArray{ARRAY1}:
OneDimensionalArrayAggregate with # < = any? coerce
concat construct convert copy copyInto! count delete elt
empty empty? entries entry? eq? every? fill! find first
index? indices insert less? map map! max maxIndex
member? members merge min minIndex more? new
oneDimensionalArray parts position qelt qsetelt! reduce
remove removeDuplicates reverse reverse! select setelt size?
sort sort! sorted? swap!

OnePointCompletion{ONECOMP}: AbelianGroup
FullyRetractableTo OrderedRing SetCategory with 0 1 * ** +
- < = abs characteristic coerce finite? infinite? infinity max
min negative? one? positive? rational rational?
rationalIfCan recip retract retractIfCan sign zero?

Operator{OP}: Algebra CharacteristicNonZero
CharacteristicZero Eltable RetractableTo Ring with 0 1 * ** +
- = characteristic charthRoot coerce elt evaluate one?
opeval recip retract retractIfCan zero?

OppositeMonogenicLinearOperator{OMLO}:
DifferentialRing MonogenicLinearOperator with 0 1 * ** + -
= D characteristic coefficient coerce degree differentiate
leadingCoefficient minimumDegree monomial one? op po
recip reductum zero?

OrderedCompletion{ORDCOMP}: AbelianGroup
FullyRetractableTo OrderedRing SetCategory with 0 1 * ** +
- < = abs characteristic coerce finite? infinite? max min
minusInfinity negative? one? plusInfinity positive?
rational rational? rationalIfCan recip retract retractIfCan
sign whatInfinity zero?

OrderedDirectProduct{ODP}: DirectProductCategory with
0 1 # * ** + - / < = D abs any? characteristic coerce copy
count differentiate dimension directProduct dot elt empty
empty? entries entry? eq? every? fill! first index index?
indices less? lookup map map! max maxIndex member?
members min minIndex more? negative? one? parts
positive? qelt qsetelt! random recip reducedSystem retract
retractIfCan setelt sign size size? sup swap! unitVector
zero?

OrderedVariableList{OVAR}: ConvertibleTo OrderedFinite
with < = coerce convert index lookup max min random size
variable

OrderlyDifferentialPolynomial{ODPOL}:
DifferentialPolynomialCategory RetractableTo with 0 1 * ** +
- / < = D associates? characteristic charthRoot coefficient
coefficients coerce conditionP content degree
differentialVariables differentiate discriminant eval exquo
factor factorPolynomial factorSquareFreePolynomial gcd
gcdPolynomial ground ground? initial isExpt isPlus
isTimes isobaric? lcm leader leadingCoefficient
leadingMonomial mainVariable makeVariable map
mapExponents max min minimumDegree monicDivide
monomial monomial? monomials multivariate
numberOfMonomials one? order prime?
primitiveMonomials primitivePart recip reducedSystem
reductum resultant retract retractIfCan separant
solveLinearPolynomialEquation squareFree squareFreePart
squareFreePolynomial totalDegree unit? unitCanonical
unitNormal univariate variables weight weights zero?

OrderlyDifferentialVariable{ODVAR}:
DifferentialVariableCategory with < = D coerce differentiate
makeVariable max min order retract retractIfCan variable
weight

OrdinaryDifferentialRing{ODR}: Algebra DifferentialRing
Field with 0 1 * ** + - / = D associates? characteristic
coerce differentiate divide euclideanSize
expressIdealMember exquo extendedEuclidean factor gcd
inv lcm multiEuclidean one? prime? principalIdeal quo

772 · Domains

recip rem sizeLess? squareFree squareFreePart unit?
unitCanonical unitNormal zero?

OrdSetInts{OSI}: OrderedSet with < = coerce max min
value

OutputForm{OUTFORM}: SetCategory with * ** + - / <
<= = > >= D SEGMENT ^= and assign blankSeparate box
brace bracket center coerce commaSeparate differentiate
div dot elt empty exquo hconcat height hspace infix infix?
int label left matrix message messagePrint not or
outputForm over overbar paren pile postfix prefix presub
presuper prime print prod quo quote rarrow rem right root
rspace scripts semicolonSeparate slash string sub subHeight
sum super superHeight supersub vconcat vspace width zag

PAdicInteger{PADIC}: PAdicIntegerCategory with 0 1 * **
+ - = approximate associates? characteristic coerce
complete digits divide euclideanSize expressIdealMember
exquo extend extendedEuclidean gcd lcm moduloP
modulus multiEuclidean one? order principalIdeal quo
quotientByP recip rem sizeLess? sqrt unit? unitCanonical
unitNormal zero?

PAdicRationalConstructor{PADICRC}:
QuotientFieldCategory with 0 1 * ** + - / < = D abs
approximate associates? ceiling characteristic charthRoot
coerce conditionP continuedFraction convert denom
denominator differentiate divide elt euclideanSize eval
expressIdealMember exquo extendedEuclidean factor
factorPolynomial factorSquareFreePolynomial floor
fractionPart gcd gcdPolynomial init inv lcm map max min
multiEuclidean negative? nextItem numer numerator one?
patternMatch positive? prime? principalIdeal quo random
recip reducedSystem rem removeZeroes retract
retractIfCan sign sizeLess? solveLinearPolynomialEquation
squareFree squareFreePart squareFreePolynomial unit?
unitCanonical unitNormal wholePart zero?

PAdicRational{PADICRAT}: QuotientFieldCategory with 0 1
* ** + - / = D approximate associates? characteristic
coerce continuedFraction denom denominator differentiate
divide euclideanSize expressIdealMember exquo
extendedEuclidean factor fractionPart gcd inv lcm map
multiEuclidean numer numerator one? prime?
principalIdeal quo recip reducedSystem rem removeZeroes
retract retractIfCan sizeLess? squareFree squareFreePart
unit? unitCanonical unitNormal wholePart zero?

Palette{PALETTE}: SetCategory with = bright coerce dark
dim hue light pastel shade

ParametricPlaneCurve{PARPCURV}: with coordinate
curve

ParametricSpaceCurve{PARSCURV}: with coordinate
curve

ParametricSurface{PARSURF}: with coordinate surface

PartialFraction{PFR}: Algebra Field with 0 1 * ** + - / =

associates? characteristic coerce compactFraction divide
euclideanSize expressIdealMember exquo
extendedEuclidean factor firstDenom firstNumer gcd inv
lcm multiEuclidean nthFractionalTerm
numberOfFractionalTerms one? padicFraction
padicallyExpand partialFraction prime? principalIdeal quo
recip rem sizeLess? squareFree squareFreePart unit?
unitCanonical unitNormal wholePart zero?

Partition{PRTITION}: ConvertibleTo
OrderedCancellationAbelianMonoid with 0 * + - < = coerce
conjugate convert max min partition pdct powers zero?

PatternMatchListResult{PATLRES}: SetCategory with =
atoms coerce failed failed? lists makeResult new

PatternMatchResult{PATRES}: SetCategory with =
addMatch addMatchRestricted coerce construct destruct
failed failed? getMatch insertMatch new satisfy? union

Pattern{PATTERN}: RetractableTo SetCategory with 0 1 *
** + / = addBadValue coerce constant? convert copy depth
elt generic? getBadValues hasPredicate? hasTopPredicate?
inR? isExpt isList isOp isPlus isPower isQuotient isTimes
multiple? optional? optpair patternVariable predicates
quoted? resetBadValues retract retractIfCan setPredicates
setTopPredicate symbol? topPredicate variables
withPredicates

PendantTree{PENDTREE}: BinaryRecursiveAggregate with
= any? children coerce copy count cyclic? elt empty
empty? eq? every? leaf? leaves left less? map map!
member? members more? node? nodes parts ptree right
setchildren! setelt setleft! setright! setvalue! size? value

PermutationGroup{PERMGRP}: SetCategory with < <= =
base coerce degree elt generators
initializeGroupForWordProblem member? movedPoints
orbit orbits order permutationGroup random
strongGenerators wordInGenerators
wordInStrongGenerators wordsForStrongGenerators

Permutation{PERM}: PermutationCategory with 1 * ** / <
= coerce coerceImages coerceListOfPairs
coercePreimagesImages commutator conjugate cycle
cyclePartition cycles degree elt eval even? fixedPoints inv
listRepresentation max min movedPoints numberOfCycles
odd? one? orbit order recip sign sort

Pi{HACKPI}: CharacteristicZero CoercibleTo ConvertibleTo
Field RealConstant RetractableTo with 0 1 * ** + - / =
associates? characteristic coerce convert divide
euclideanSize expressIdealMember exquo
extendedEuclidean factor gcd inv lcm multiEuclidean one?
pi prime? principalIdeal quo recip rem retract retractIfCan
sizeLess? squareFree squareFreePart unit? unitCanonical
unitNormal zero?

PlaneAlgebraicCurvePlot{ACPLOT}:
PlottablePlaneCurveCategory with coerce listBranches
makeSketch refine xRange yRange

APPENDIX C · 773

Plot3D{PLOT3D}: PlottableSpaceCurveCategory with
adaptive3D? coerce debug3D listBranches maxPoints3D
minPoints3D numFunEvals3D plot pointPlot refine
screenResolution3D setAdaptive3D setMaxPoints3D
setMinPoints3D setScreenResolution3D tRange tValues
xRange yRange zRange zoom

Plot{PLOT}: PlottablePlaneCurveCategory with adaptive?
coerce debug listBranches maxPoints minPoints
numFunEvals parametric? plot plotPolar pointPlot refine
screenResolution setAdaptive setMaxPoints setMinPoints
setScreenResolution tRange xRange yRange zoom

Point{POINT}: PointCategory with # * + - < = any? coerce
concat construct convert copy copyInto! count cross delete
dimension dot elt empty empty? entries entry? eq? every?
extend fill! find first index? indices insert length less? map
map! max maxIndex member? members merge min
minIndex more? new parts point position qelt qsetelt!
reduce remove removeDuplicates reverse reverse! select
setelt size? sort sort! sorted? swap! zero

PolynomialIdeals{IDEAL}: SetCategory with * ** + =
backOldPos coerce contract dimension element?
generalPosition generators groebner groebner?
groebnerIdeal ideal in? inRadical? intersect leadingIdeal
quotient relationsIdeal saturate zeroDim?

PolynomialRing{PR}: FiniteAbelianMonoidRing with 0 1 *
** + - / = associates? characteristic charthRoot coefficient
coefficients coerce content degree exquo ground ground?
leadingCoefficient leadingMonomial map mapExponents
minimumDegree monomial monomial?
numberOfMonomials one? primitivePart recip reductum
retract retractIfCan unit? unitCanonical unitNormal zero?

Polynomial{POLY}: PolynomialCategory with 0 1 * ** + - /
< = D associates? characteristic charthRoot coefficient
coefficients coerce conditionP content convert degree
differentiate discriminant eval exquo factor
factorPolynomial factorSquareFreePolynomial gcd
gcdPolynomial ground ground? integrate isExpt isPlus
isTimes lcm leadingCoefficient leadingMonomial
mainVariable map mapExponents max min
minimumDegree monicDivide monomial monomial?
monomials multivariate numberOfMonomials one?
patternMatch prime? primitiveMonomials primitivePart
recip reducedSystem reductum resultant retract
retractIfCan solveLinearPolynomialEquation squareFree
squareFreePart squareFreePolynomial totalDegree unit?
unitCanonical unitNormal univariate variables zero?

PositiveInteger{PI}: AbelianSemiGroup Monoid OrderedSet
with 1 * ** + < = coerce gcd max min one? recip

PrimeField{PF}: ConvertibleTo
FiniteAlgebraicExtensionField FiniteFieldCategory with 0 1 *
** + - / = Frobenius algebraic? associates? basis
characteristic charthRoot coerce conditionP convert
coordinates createNormalElement createPrimitiveElement

definingPolynomial degree dimension discreteLog divide
euclideanSize expressIdealMember exquo
extendedEuclidean extensionDegree factor
factorsOfCyclicGroupSize gcd generator inGroundField?
index init inv lcm lookup minimalPolynomial
multiEuclidean nextItem norm normal? normalElement
one? order prime? primeFrobenius primitive?
primitiveElement principalIdeal quo random recip rem
representationType represents retract retractIfCan size
sizeLess? squareFree squareFreePart
tableForDiscreteLogarithm trace transcendenceDegree
transcendent? unit? unitCanonical unitNormal zero?

PrimitiveArray{PRIMARR}: OneDimensionalArrayAggregate
with # < = any? coerce concat construct convert copy
copyInto! count delete elt empty empty? entries entry?
eq? every? fill! find first index? indices insert less? map
map! max maxIndex member? members merge min
minIndex more? new parts position qelt qsetelt! reduce
remove removeDuplicates reverse reverse! select setelt size?
sort sort! sorted? swap!

Product{PRODUCT}: AbelianGroup AbelianMonoid
CancellationAbelianMonoid Finite Group Monoid
OrderedAbelianMonoidSup OrderedSet SetCategory with 0 1
* ** + - / < = coerce commutator conjugate index inv
lookup makeprod max min one? random recip selectfirst
selectsecond size sup zero?

QuadraticForm{QFORM}: AbelianGroup with 0 * + - =
coerce elt matrix quadraticForm zero?

QuasiAlgebraicSet{QALGSET}: CoercibleTo SetCategory
with = coerce definingEquations definingInequation empty?
idealSimplify quasiAlgebraicSet setStatus simplify

Quaternion{QUAT}: QuaternionCategory with 0 1 * ** + -
< = D abs characteristic charthRoot coerce conjugate
convert differentiate elt eval imagI imagJ imagK inv map
max min norm one? quatern rational rational?
rationalIfCan real recip reducedSystem retract
retractIfCan zero?

QueryEquation{QEQUAT}: with equation value variable

Queue{QUEUE}: QueueAggregate with # = any? back bag
coerce copy count dequeue! empty empty? enqueue! eq?
every? extract! front insert! inspect length less? map map!
member? members more? parts queue rotate! size?

RadicalFunctionField{RADFF}: FunctionFieldCategory with
0 1 * ** + - / = D absolutelyIrreducible? associates? basis
branchPoint? branchPointAtInfinity? characteristic
characteristicPolynomial charthRoot coerce
complementaryBasis convert coordinates
definingPolynomial derivationCoordinates differentiate
discriminant divide elt euclideanSize expressIdealMember
exquo extendedEuclidean factor gcd generator genus
integral? integralAtInfinity? integralBasis
integralBasisAtInfinity integralCoordinates

774 · Domains

integralDerivationMatrix integralMatrix
integralMatrixAtInfinity integralRepresents inv
inverseIntegralMatrix inverseIntegralMatrixAtInfinity lcm
lift minimalPolynomial multiEuclidean nonSingularModel
norm normalizeAtInfinity numberOfComponents one?
prime? primitivePart principalIdeal quo ramified?
ramifiedAtInfinity? rank rationalPoint? rationalPoints
recip reduce reduceBasisAtInfinity reducedSystem
regularRepresentation rem represents retract retractIfCan
singular? singularAtInfinity? sizeLess? squareFree
squareFreePart trace traceMatrix unit? unitCanonical
unitNormal yCoordinates zero?

RadixExpansion{RADIX}: QuotientFieldCategory with 0 1 *
** + - / < = D abs associates? ceiling characteristic coerce
convert cycleRagits denom denominator differentiate
divide euclideanSize expressIdealMember exquo
extendedEuclidean factor floor fractRadix fractRagits
fractionPart gcd init inv lcm map max min multiEuclidean
negative? nextItem numer numerator one? patternMatch
positive? prefixRagits prime? principalIdeal quo random
recip reducedSystem rem retract retractIfCan sign
sizeLess? squareFree squareFreePart unit? unitCanonical
unitNormal wholePart wholeRadix wholeRagits zero?

RectangularMatrix{RMATRIX}: CoercibleTo
RectangularMatrixCategory VectorSpace with 0 # * + - / =
antisymmetric? any? coerce column copy count diagonal?
dimension elt empty empty? eq? every? exquo less?
listOfLists map map! matrix maxColIndex maxRowIndex
member? members minColIndex minRowIndex more?
ncols nrows nullSpace nullity parts qelt rank
rectangularMatrix row rowEchelon size? square?
symmetric? zero?

Reference{REF}: Object SetCategory with = coerce deref
elt ref setelt setref

RewriteRule{RULE}: Eltable RetractableTo SetCategory
with = coerce elt lhs pattern quotedOperators retract
retractIfCan rhs rule suchThat

RomanNumeral{ROMAN}: IntegerNumberSystem with 0 1
* ** + - < = D abs addmod associates? base binomial bit?
characteristic coerce convert copy dec differentiate divide
euclideanSize even? expressIdealMember exquo
extendedEuclidean factor factorial gcd hash inc init
invmod lcm length mask max min mulmod multiEuclidean
negative? nextItem odd? one? patternMatch permutation
positive? positiveRemainder powmod prime?
principalIdeal quo random rational rational? rationalIfCan
recip reducedSystem rem retract retractIfCan roman shift
sign sizeLess? squareFree squareFreePart submod
symmetricRemainder unit? unitCanonical unitNormal
zero?

RuleCalled{RULECOLD}: SetCategory with = coerce name

Ruleset{RULESET}: Eltable SetCategory with = coerce elt
rules ruleset

ScriptFormulaFormat1{FORMULA1}: Object with coerce

ScriptFormulaFormat{FORMULA}: SetCategory with =
coerce convert display epilogue formula new prologue
setEpilogue! setFormula! setPrologue!

SegmentBinding{SEGBIND}: SetCategory with = coerce
equation segment variable

Segment{SEG}: SegmentCategory
SegmentExpansionCategory with = BY SEGMENT coerce
convert expand hi high incr lo low map segment

SemiCancelledFraction{SCFRAC}: ConvertibleTo
QuotientFieldCategory with 0 1 * ** + - / < = D abs
associates? ceiling characteristic charthRoot coerce
conditionP convert denom denominator differentiate divide
elt euclideanSize eval expressIdealMember exquo
extendedEuclidean factor factorPolynomial
factorSquareFreePolynomial floor fractionPart gcd
gcdPolynomial init inv lcm map max min multiEuclidean
negative? nextItem normalize numer numerator one?
patternMatch positive? prime? principalIdeal quo random
recip reducedSystem rem retract retractIfCan sign
sizeLess? solveLinearPolynomialEquation squareFree
squareFreePart squareFreePolynomial unit? unitCanonical
unitNormal wholePart zero?

SequentialDifferentialPolynomial{SDPOL}:
DifferentialPolynomialCategory RetractableTo with 0 1 * ** +
- / < = D associates? characteristic charthRoot coefficient
coefficients coerce conditionP content degree
differentialVariables differentiate discriminant eval exquo
factor factorPolynomial factorSquareFreePolynomial gcd
gcdPolynomial ground ground? initial isExpt isPlus
isTimes isobaric? lcm leader leadingCoefficient
leadingMonomial mainVariable makeVariable map
mapExponents max min minimumDegree monicDivide
monomial monomial? monomials multivariate
numberOfMonomials one? order prime?
primitiveMonomials primitivePart recip reducedSystem
reductum resultant retract retractIfCan separant
solveLinearPolynomialEquation squareFree squareFreePart
squareFreePolynomial totalDegree unit? unitCanonical
unitNormal univariate variables weight weights zero?

SequentialDifferentialVariable{SDVAR}:
DifferentialVariableCategory with < = D coerce differentiate
makeVariable max min order retract retractIfCan variable
weight

Set{SET}: FiniteSetAggregate with # < = any? bag brace
cardinality coerce complement construct convert copy
count dictionary difference empty empty? eq? every?
extract! find index insert! inspect intersect less? lookup
map map! max member? members min more? parts
random reduce remove remove! removeDuplicates select
select! size size? subset? symmetricDifference union
universe

APPENDIX C · 775

SExpressionOf{SEXOF}: SExpressionCategory with # =
atom? car cdr coerce convert destruct elt eq expr float
float? integer integer? list? null? pair? string string?
symbol symbol? uequal

SExpression{SEX}: SExpressionCategory with # = atom?
car cdr coerce convert destruct elt eq expr float float?
integer integer? list? null? pair? string string? symbol
symbol? uequal

SimpleAlgebraicExtension{SAE}: MonogenicAlgebra with
0 1 * ** + - / = D associates? basis characteristic
characteristicPolynomial charthRoot coerce conditionP
convert coordinates createPrimitiveElement
definingPolynomial derivationCoordinates differentiate
discreteLog discriminant divide euclideanSize
expressIdealMember exquo extendedEuclidean factor
factorsOfCyclicGroupSize gcd generator index init inv lcm
lift lookup minimalPolynomial multiEuclidean nextItem
norm one? order prime? primeFrobenius primitive?
primitiveElement principalIdeal quo random rank recip
reduce reducedSystem regularRepresentation rem
representationType represents retract retractIfCan size
sizeLess? squareFree squareFreePart
tableForDiscreteLogarithm trace traceMatrix unit?
unitCanonical unitNormal zero?

SingletonAsOrderedSet{SAOS}: OrderedSet with < =
coerce create max min

SingleInteger{SINT}: IntegerNumberSystem with 0 1 * **
+ - < = And D Not Or ^ abs addmod and associates? base
binomial bit? characteristic coerce convert copy dec
differentiate divide euclideanSize even?
expressIdealMember exquo extendedEuclidean factor
factorial gcd hash inc init invmod lcm length mask max
min mulmod multiEuclidean negative? nextItem not odd?
one? or patternMatch permutation positive?
positiveRemainder powmod prime? principalIdeal quo
random rational rational? rationalIfCan recip
reducedSystem rem retract retractIfCan shift sign sizeLess?
squareFree squareFreePart submod symmetricRemainder
unit? unitCanonical unitNormal xor zero?

SparseMultivariatePolynomial{SMP}: PolynomialCategory
with 0 1 * ** + - / < = D associates? characteristic
charthRoot coefficient coefficients coerce conditionP
content convert degree differentiate discriminant eval
exquo factor factorPolynomial factorSquareFreePolynomial
gcd gcdPolynomial ground ground? isExpt isPlus isTimes
lcm leadingCoefficient leadingMonomial mainVariable map
mapExponents max min minimumDegree monicDivide
monomial monomial? monomials multivariate
numberOfMonomials one? patternMatch prime?
primitiveMonomials primitivePart recip reducedSystem
reductum resultant retract retractIfCan
solveLinearPolynomialEquation squareFree squareFreePart
squareFreePolynomial totalDegree unit? unitCanonical
unitNormal univariate variables zero?

SparseMultivariateTaylorSeries{SMTS}:
MultivariateTaylorSeriesCategory with 0 1 * ** + - / = D
acos acosh acot acoth acsc acsch asec asech asin asinh
associates? atan atanh characteristic charthRoot
coefficient coerce complete cos cosh cot coth csc csch
csubst degree differentiate eval exp exquo extend fintegrate
integrate leadingCoefficient leadingMonomial log map
monomial monomial? nthRoot one? order pi pole?
polynomial recip reductum sec sech sin sinh sqrt tan tanh
unit? unitCanonical unitNormal variables zero?

SparseTable{STBL}: TableAggregate with # = any? bag
coerce construct copy count dictionary elt empty empty?
entries entry? eq? every? extract! fill! find first index?
indices insert! inspect key? keys less? map map! maxIndex
member? members minIndex more? parts qelt qsetelt!
reduce remove remove! removeDuplicates search select
select! setelt size? swap! table

SparseUnivariatePolynomial{SUP}:
UnivariatePolynomialCategory with 0 1 * ** + - / < = D
associates? characteristic charthRoot coefficient coefficients
coerce composite conditionP content degree differentiate
discriminant divide divideExponents elt euclideanSize eval
expressIdealMember exquo extendedEuclidean factor
factorPolynomial factorSquareFreePolynomial gcd
gcdPolynomial ground ground? init integrate isExpt isPlus
isTimes lcm leadingCoefficient leadingMonomial
mainVariable makeSUP map mapExponents max min
minimumDegree monicDivide monomial monomial?
monomials multiEuclidean multiplyExponents multivariate
nextItem numberOfMonomials one? order outputForm
prime? primitiveMonomials primitivePart principalIdeal
pseudoDivide pseudoQuotient pseudoRemainder quo recip
reducedSystem reductum rem resultant retract
retractIfCan separate sizeLess?
solveLinearPolynomialEquation squareFree squareFreePart
squareFreePolynomial subResultantGcd totalDegree unit?
unitCanonical unitNormal univariate unmakeSUP
variables vectorise zero?

SparseUnivariateTaylorSeries{SUTS}:
UnivariateTaylorSeriesCategory with 0 1 * ** + - / = D acos
acosh acot acoth acsc acsch approximate asec asech asin
asinh associates? atan atanh center characteristic
charthRoot coefficient coefficients coerce complete cos cosh
cot coth csc csch degree differentiate elt eval exp exquo
extend integrate leadingCoefficient leadingMonomial log
map monomial monomial? multiplyCoefficients
multiplyExponents nthRoot one? order pi pole?
polynomial quoByVar recip reductum sec sech series sin
sinh sqrt tan tanh terms truncate unit? unitCanonical
unitNormal variable variables zero?

SquareMatrix{SQMATRIX}: CoercibleTo
SquareMatrixCategory with 0 1 # * ** + - / = D
antisymmetric? any? characteristic coerce column copy
count determinant diagonal diagonal? diagonalMatrix

776 · Domains

diagonalProduct differentiate elt empty empty? eq? every?
exquo inverse less? listOfLists map map! matrix
maxColIndex maxRowIndex member? members
minColIndex minRowIndex minordet more? ncols nrows
nullSpace nullity one? parts qelt rank recip reducedSystem
retract retractIfCan row rowEchelon scalarMatrix size?
square? squareMatrix symmetric? trace transpose zero?

Stack{STACK}: StackAggregate with # = any? bag coerce
copy count depth empty empty? eq? every? extract!
insert! inspect less? map map! member? members more?
parts pop! push! size? stack top

Stream{STREAM}: LazyStreamAggregate with # = any?
child? children coerce complete concat concat! cons
construct convert copy count cycleEntry cycleLength
cycleSplit! cycleTail cyclic? delay delete distance elt empty
empty? entries entry? eq? every? explicitEntries?
explicitlyEmpty? explicitlyFinite? extend fill! filterUntil
filterWhile find findCycle first frst generate index? indices
insert last lazy? lazyEvaluate leaf? less? map map!
maxIndex member? members minIndex more? new node?
nodes numberOfComputedEntries output parts
possiblyInfinite? qelt qsetelt! reduce remove
removeDuplicates repeating repeating? rest rst second
select setchildren! setelt setfirst! setlast! setrest! setvalue!
showAll? showAllElements size? split! swap! tail third
value

StringTable{STRTBL}: TableAggregate with # = any? bag
coerce construct copy count dictionary elt empty empty?
entries entry? eq? every? extract! fill! find first index?
indices insert! inspect key? keys less? map map! maxIndex
member? members minIndex more? parts qelt qsetelt!
reduce remove remove! removeDuplicates search select
select! setelt size? swap! table

String{STRING}: StringCategory with # < = any? coerce
concat construct copy copyInto! count delete elt empty
empty? entries entry? eq? every? fill! find first index?
indices insert leftTrim less? lowerCase lowerCase! map
map! match? max maxIndex member? members merge
min minIndex more? new parts position prefix? qelt
qsetelt! reduce remove removeDuplicates replace reverse
reverse! rightTrim select setelt size? sort sort! sorted? split
string substring? suffix? swap! trim upperCase upperCase!

SubSpaceComponentProperty{COMPPROP}:
SetCategory with = close closed? coerce copy new solid
solid?

SubSpace{SUBSPACE}: SetCategory with = addPoint
addPoint2 addPointLast birth child children
closeComponent coerce deepCopy defineProperty
extractClosed extractIndex extractPoint extractProperty
internal? leaf? level merge modifyPoint new
numberOfChildren parent pointData root? separate
shallowCopy subspace traverse

SuchThat{SUCH}: SetCategory with = coerce construct lhs

rhs

Symbol{SYMBOL}: ConvertibleTo OrderedSet
PatternMatchable with < = argscript coerce convert elt list
max min name new patternMatch resetNew script
scripted? scripts string subscript superscript

SymmetricPolynomial{SYMPOLY}:
FiniteAbelianMonoidRing with 0 1 * ** + - / = associates?
characteristic charthRoot coefficient coefficients coerce
content degree exquo ground ground? leadingCoefficient
leadingMonomial map mapExponents minimumDegree
monomial monomial? numberOfMonomials one?
primitivePart recip reductum retract retractIfCan unit?
unitCanonical unitNormal zero?

Tableau{TABLEAU}: Object with coerce listOfLists tableau

Table{TABLE}: TableAggregate with # = any? bag coerce
construct copy count dictionary elt empty empty? entries
entry? eq? every? extract! fill! find first index? indices
insert! inspect key? keys less? map map! maxIndex
member? members minIndex more? parts qelt qsetelt!
reduce remove remove! removeDuplicates search select
select! setelt size? swap! table

TaylorSeries{TS}: MultivariateTaylorSeriesCategory with 0 1
* ** + - / = D acos acosh acot acoth acsc acsch asec asech
asin asinh associates? atan atanh characteristic
charthRoot coefficient coerce complete cos cosh cot coth
csc csch degree differentiate eval exp exquo extend
fintegrate integrate leadingCoefficient leadingMonomial log
map monomial monomial? nthRoot one? order pi pole?
polynomial recip reductum sec sech sin sinh sqrt tan tanh
unit? unitCanonical unitNormal variables zero?

TexFormat1{TEX1}: Object with coerce

TexFormat{TEX}: SetCategory with = coerce convert
display epilogue new prologue setEpilogue! setPrologue!
setTex! tex

TextFile{TEXTFILE}: FileCategory with = close! coerce
endOfFile? iomode name open read! readIfCan! readLine!
readLineIfCan! reopen! write! writeLine!

ThreeDimensionalViewport{VIEW3D}: SetCategory with =
axes clipSurface close coerce colorDef controlPanel
diagonals dimensions drawStyle eyeDistance hitherPlane
intensity key lighting makeViewport3D modifyPointData
move options outlineRender perspective reset resize rotate
showClipRegion showRegion subspace title translate
viewDeltaXDefault viewDeltaYDefault viewPhiDefault
viewThetaDefault viewZoomDefault viewpoint viewport3D
write zoom

ThreeSpace{SPACE3}: ThreeSpaceCategory with = check
closedCurve closedCurve? coerce components composite
composites copy create3Space curve curve? enterPointData
lllip lllp llprop lp lprop merge mesh mesh?
modifyPointData numberOfComponents

APPENDIX C · 777

numberOfComposites objects point point? polygon
polygon? subspace

Tree{TREE}: RecursiveAggregate with # = any? children
coerce copy count cyclic? elt empty empty? eq? every?
leaf? leaves less? map map! member? members more?
node? nodes parts setchildren! setelt setvalue! size? tree
value

TubePlot{TUBE}: with closed? getCurve listLoops open?
setClosed tube

Tuple{TUPLE}: CoercibleTo SetCategory with = coerce
length select

TwoDimensionalArray{ARRAY2}:
TwoDimensionalArrayCategory with # = any? coerce column
copy count elt empty empty? eq? every? fill! less? map
map! maxColIndex maxRowIndex member? members
minColIndex minRowIndex more? ncols new nrows parts
qelt qsetelt! row setColumn! setRow! setelt size?

TwoDimensionalViewport{VIEW2D}: SetCategory with =
axes close coerce connect controlPanel dimensions
getGraph graphState graphStates graphs key
makeViewport2D move options points putGraph region
reset resize scale show title translate units viewport2D
write

UnivariateLaurentSeriesConstructor{ULSCONS}:
UnivariateLaurentSeriesConstructorCategory with 0 1 * ** + -
/ < = D abs acos acosh acot acoth acsc acsch approximate
asec asech asin asinh associates? atan atanh ceiling center
characteristic charthRoot coefficient coerce complete
conditionP convert cos cosh cot coth csc csch degree denom
denominator differentiate divide elt euclideanSize eval exp
expressIdealMember exquo extend extendedEuclidean
factor factorPolynomial factorSquareFreePolynomial floor
fractionPart gcd gcdPolynomial init integrate inv laurent
lcm leadingCoefficient leadingMonomial log map max min
monomial monomial? multiEuclidean multiplyCoefficients
multiplyExponents negative? nextItem nthRoot numer
numerator one? order patternMatch pi pole? positive?
prime? principalIdeal quo random rationalFunction recip
reducedSystem reductum rem removeZeroes retract
retractIfCan sec sech series sign sin sinh sizeLess?
solveLinearPolynomialEquation sqrt squareFree
squareFreePart squareFreePolynomial tan tanh taylor
taylorIfCan taylorRep terms truncate unit? unitCanonical
unitNormal variable variables wholePart zero?

UnivariateLaurentSeries{ULS}:
UnivariateLaurentSeriesConstructorCategory with 0 1 * ** +
- / = D acos acosh acot acoth acsc acsch approximate asec
asech asin asinh associates? atan atanh center
characteristic charthRoot coefficient coerce complete cos
cosh cot coth csc csch degree denom denominator
differentiate divide elt euclideanSize eval exp
expressIdealMember exquo extend extendedEuclidean
factor gcd integrate inv laurent lcm leadingCoefficient

leadingMonomial log map monomial monomial?
multiEuclidean multiplyCoefficients multiplyExponents
nthRoot numer numerator one? order pi pole? prime?
principalIdeal quo rationalFunction recip reducedSystem
reductum rem removeZeroes retract retractIfCan sec sech
series sin sinh sizeLess? sqrt squareFree squareFreePart
tan tanh taylor taylorIfCan taylorRep terms truncate unit?
unitCanonical unitNormal variable variables zero?

UnivariatePolynomial{UP}: UnivariatePolynomialCategory
with 0 1 * ** + - / < = D associates? characteristic
charthRoot coefficient coefficients coerce composite
conditionP content degree differentiate discriminant divide
divideExponents elt euclideanSize eval
expressIdealMember exquo extendedEuclidean factor
factorPolynomial factorSquareFreePolynomial gcd
gcdPolynomial ground ground? init integrate isExpt isPlus
isTimes lcm leadingCoefficient leadingMonomial
mainVariable makeSUP map mapExponents max min
minimumDegree monicDivide monomial monomial?
monomials multiEuclidean multiplyExponents multivariate
nextItem numberOfMonomials one? order prime?
primitiveMonomials primitivePart principalIdeal
pseudoDivide pseudoQuotient pseudoRemainder quo recip
reducedSystem reductum rem resultant retract
retractIfCan separate sizeLess?
solveLinearPolynomialEquation squareFree squareFreePart
squareFreePolynomial subResultantGcd totalDegree unit?
unitCanonical unitNormal univariate unmakeSUP
variables vectorise zero?

UnivariatePuiseuxSeriesConstructor{UPXSCONS}:
UnivariatePuiseuxSeriesConstructorCategory with 0 1 * ** +
- / = D acos acosh acot acoth acsc acsch approximate asec
asech asin asinh associates? atan atanh center
characteristic charthRoot coefficient coerce complete cos
cosh cot coth csc csch degree differentiate divide elt
euclideanSize eval exp expressIdealMember exquo extend
extendedEuclidean factor gcd integrate inv laurent
laurentIfCan laurentRep lcm leadingCoefficient
leadingMonomial log map monomial monomial?
multiEuclidean multiplyExponents nthRoot one? order pi
pole? prime? principalIdeal puiseux quo rationalPower
recip reductum rem retract retractIfCan sec sech series sin
sinh sizeLess? sqrt squareFree squareFreePart tan tanh
terms truncate unit? unitCanonical unitNormal variable
variables zero?

UnivariatePuiseuxSeries{UPXS}:
UnivariatePuiseuxSeriesConstructorCategory with 0 1 * ** +
- / = D acos acosh acot acoth acsc acsch approximate asec
asech asin asinh associates? atan atanh center
characteristic charthRoot coefficient coerce complete cos
cosh cot coth csc csch degree differentiate divide elt
euclideanSize eval exp expressIdealMember exquo extend
extendedEuclidean factor gcd integrate inv laurent
laurentIfCan laurentRep lcm leadingCoefficient
leadingMonomial log map monomial monomial?

778 · Domains

multiEuclidean multiplyExponents nthRoot one? order pi
pole? prime? principalIdeal puiseux quo rationalPower
recip reductum rem retract retractIfCan sec sech series sin
sinh sizeLess? sqrt squareFree squareFreePart tan tanh
terms truncate unit? unitCanonical unitNormal variable
variables zero?

UnivariateTaylorSeries{UTS}:
UnivariateTaylorSeriesCategory with 0 1 * ** + - / = D acos
acosh acot acoth acsc acsch approximate asec asech asin
asinh associates? atan atanh center characteristic
charthRoot coefficient coefficients coerce complete cos cosh
cot coth csc csch degree differentiate elt eval evenlambert
exp exquo extend generalLambert integrate invmultisect
lagrange lambert leadingCoefficient leadingMonomial log
map monomial monomial? multiplyCoefficients
multiplyExponents multisect nthRoot oddlambert one?
order pi pole? polynomial quoByVar recip reductum revert
sec sech series sin sinh sqrt tan tanh terms truncate unit?
unitCanonical unitNormal univariatePolynomial variable
variables zero?

UniversalSegment{UNISEG}: SegmentCategory
SegmentExpansionCategory with = BY SEGMENT coerce
convert expand hasHi hi high incr lo low map segment

Variable{VARIABLE}: CoercibleTo SetCategory with =
coerce variable

Vector{VECTOR}: VectorCategory with # * + - < = any?
coerce concat construct convert copy copyInto! count
delete dot elt empty empty? entries entry? eq? every? fill!
find first index? indices insert less? map map! max
maxIndex member? members merge min minIndex more?
new parts position qelt qsetelt! reduce remove
removeDuplicates reverse reverse! select setelt size? sort
sort! sorted? swap! vector zero

Void{VOID}: with coerce void

APPENDIX C · 779

[

APPENDIX C · 781

APPENDIX D

Packages
This is a listing of all packages in the AXIOM li-
brary at the time this book was produced. Use the
Browse facility (described in Chapter 14) to get
more information about these constructors.

This sample entry will help you read the following
table:

PackageName{PackageAbbreviation}:
Category1. . . CategoryN with operation1 . . . operationM

where
PackageName is the full package name, for

example, PadeApproximant-
Package.

PackageAbbreviation is the package abbreviation,
for example, PADEPAC.

Categoryi is a category to which the
package belongs.

operationj is an operation exported by
the package.

]

AlgebraicFunction{AF}: with ** belong?
definingPolynomial inrootof iroot minPoly operator rootOf

AlgebraicHermiteIntegration{INTHERAL}: with
HermiteIntegrate

AlgebraicIntegrate{INTALG}: with algintegrate
palginfieldint palgintegrate

AlgebraicIntegration{INTAF}: with algint

AlgebraicManipulations{ALGMANIP}: with ratDenom
ratPoly rootKerSimp rootSimp rootSplit

AlgebraicMultFact{ALGMFACT}: with factor

AlgebraPackage{ALGPKG}: with basisOfCenter
basisOfCentroid basisOfCommutingElements
basisOfLeftAnnihilator basisOfLeftNucleus
basisOfLeftNucloid basisOfMiddleNucleus basisOfNucleus
basisOfRightAnnihilator basisOfRightNucleus
basisOfRightNucloid biRank doubleRank leftRank
radicalOfLeftTraceForm rightRank weakBiRank

AlgFactor{ALGFACT}: with doublyTransitive? factor split

AnyFunctions1{ANY1}: with coerce retract retractIfCan
retractable?

ApplyRules{APPRULE}: with applyRules localUnquote

AttachPredicates{PMPRED}: with suchThat

BalancedFactorisation{BALFACT}: with
balancedFactorisation

BasicOperatorFunctions1{BOP1}: with constantOpIfCan
constantOperator derivative evaluate

BezoutMatrix{BEZOUT}: with bezoutDiscriminant
bezoutMatrix bezoutResultant

BoundIntegerRoots{BOUNDZRO}: with integerBound

CartesianTensorFunctions2{CARTEN2}: with map
reshape

ChangeOfVariable{CHVAR}: with chvar eval goodPoint
mkIntegral radPoly rootPoly

CharacteristicPolynomialPackage{CHARPOL}: with
characteristicPolynomial

APPENDIX D · 783

CoerceVectorMatrixPackage{CVMP}: with coerce
coerceP

CombinatorialFunction{COMBF}: with ** belong?
binomial factorial factorials iibinom iidprod iidsum iifact
iiperm iipow ipow operator permutation product
summation

CommonDenominator{CDEN}: with clearDenominator
commonDenominator splitDenominator

CommonOperators{COMMONOP}: with operator

CommuteUnivariatePolynomialCategory{COMMUPC}:
with swap

ComplexFactorization{COMPFACT}: with factor

ComplexFunctions2{COMPLEX2}: with map

ComplexIntegerSolveLinearPolynomialEquation
{CINTSLPE}: with solveLinearPolynomialEquation

ComplexRootFindingPackage{CRFP}: with
complexZeros divisorCascade factor graeffe norm
pleskenSplit reciprocalPolynomial rootRadius schwerpunkt
setErrorBound startPolynomial

ComplexRootPackage{CMPLXRT}: with complexZeros

ConstantLODE{ODECONST}: with constDsolve

CoordinateSystems{COORDSYS}: with bipolar
bipolarCylindrical cartesian conical cylindrical elliptic
ellipticCylindrical oblateSpheroidal parabolic
parabolicCylindrical paraboloidal polar prolateSpheroidal
spherical toroidal

CRApackage{CRAPACK}: with chineseRemainder
modTree multiEuclideanTree

CycleIndicators{CYCLES}: with SFunction alternating
cap complete cup cyclic dihedral elementary eval graphs
powerSum skewSFunction wreath

CyclicStreamTools{CSTTOOLS}: with
computeCycleEntry computeCycleLength cycleElt

CyclotomicPolynomialPackage{CYCLOTOM}: with
cyclotomic cyclotomicDecomposition
cyclotomicFactorization

DegreeReductionPackage{DEGRED}: with expand
reduce

DiophantineSolutionPackage{DIOSP}: with dioSolve

DirectProductFunctions2{DIRPROD2}: with map reduce
scan

DiscreteLogarithmPackage{DLP}: with
shanksDiscLogAlgorithm

DisplayPackage{DISPLAY}: with bright center copies
newLine say sayLength

DistinctDegreeFactorize{DDFACT}: with distdfact

exptMod factor irreducible? separateDegrees
separateFactors tracePowMod

DoubleResultantPackage{DBLRESP}: with
doubleResultant

DrawNumericHack{DRAWHACK}: with coerce

DrawOptionFunctions0{DROPT0}: with adaptive
clipBoolean coordinate curveColorPalette
pointColorPalette ranges space style title toScale
tubePoints tubeRadius units var1Steps var2Steps

DrawOptionFunctions1{DROPT1}: with option

EigenPackage{EP}: with characteristicPolynomial
eigenvalues eigenvector eigenvectors inteigen

ElementaryFunctionODESolver{ODEEF}: with solve

ElementaryFunctionSign{SIGNEF}: with sign

ElementaryFunctionStructurePackage{EFSTRUC}: with
normalize realElementary rischNormalize validExponential

ElementaryFunctionsUnivariateTaylorSeries{EFUTS}:
with ** acos acosh acot acoth acsc acsch asec asech asin
asinh atan atanh cos cosh cot coth csc csch exp log sec
sech sin sincos sinh sinhcosh tan tanh

ElementaryFunction{EF}: with acos acosh acot acoth
acsc acsch asec asech asin asinh atan atanh belong? cos
cosh cot coth csc csch exp iiacos iiacosh iiacot iiacoth iiacsc
iiacsch iiasec iiasech iiasin iiasinh iiatan iiatanh iicos iicosh
iicot iicoth iicsc iicsch iiexp iilog iisec iisech iisin iisinh iitan
iitanh log operator pi sec sech sin sinh specialTrigs tan
tanh

ElementaryIntegration{INTEF}: with lfextendedint
lfextlimint lfinfieldint lfintegrate lflimitedint

ElementaryRischDE{RDEEF}: with rischDE

EllipticFunctionsUnivariateTaylorSeries{ELFUTS}: with
cn dn sn sncndn

EquationFunctions2{EQ2}: with map

ErrorFunctions{ERROR}: with error

EuclideanGroebnerBasisPackage{GBEUCLID}: with
euclideanGroebner euclideanNormalForm

EvaluateCycleIndicators{EVALCYC}: with eval

ExpressionFunctions2{EXPR2}: with map

ExpressionSpaceFunctions1{ES1}: with map

ExpressionSpaceFunctions2{ES2}: with map

ExpressionSpaceODESolver{EXPRODE}: with seriesSolve

ExpressionToUnivariatePowerSeries{EXPR2UPS}: with
laurent puiseux series taylor

ExpressionTubePlot{EXPRTUBE}: with
constantToUnaryFunction tubePlot

784 · Packages

FactoredFunctions2{FR2}: with map

FactoredFunctions{FACTFUNC}: with log nthRoot

FactoredFunctionUtilities{FRUTIL}: with mergeFactors
refine

FactoringUtilities{FACUTIL}: with completeEval degree
lowerPolynomial normalDeriv raisePolynomial ran
variables

FindOrderFinite{FORDER}: with order

FiniteDivisorFunctions2{FDIV2}: with map

FiniteFieldFunctions{FFF}: with
createMultiplicationMatrix createMultiplicationTable
createZechTable sizeMultiplication

FiniteFieldHomomorphisms{FFHOM}: with coerce

FiniteFieldPolynomialPackage2{FFPOLY2}: with
rootOfIrreduciblePoly

FiniteFieldPolynomialPackage{FFPOLY}: with
createIrreduciblePoly createNormalPoly
createNormalPrimitivePoly createPrimitiveNormalPoly
createPrimitivePoly leastAffineMultiple
nextIrreduciblePoly nextNormalPoly
nextNormalPrimitivePoly nextPrimitiveNormalPoly
nextPrimitivePoly normal? numberOfIrreduciblePoly
numberOfNormalPoly numberOfPrimitivePoly primitive?
random reducedQPowers

FiniteFieldSolveLinearPolynomialEquation{FFSLPE}:
with solveLinearPolynomialEquation

FiniteLinearAggregateFunctions2{FLAGG2}: with map
reduce scan

FiniteLinearAggregateSort{FLASORT}: with heapSort
quickSort shellSort

FiniteSetAggregateFunctions2{FSAGG2}: with map
reduce scan

FloatingComplexPackage{FLOATCP}: with
complexRoots complexSolve

FloatingRealPackage{FLOATRP}: with realRoots solve

FractionalIdealFunctions2{FRIDEAL2}: with map

FractionFunctions2{FRAC2}: with map

FunctionalSpecialFunction{FSPECF}: with Beta Gamma
abs airyAi airyBi belong? besselI besselJ besselK besselY
digamma iiGamma iiabs operator polygamma

FunctionFieldCategoryFunctions2{FFCAT2}: with map

FunctionFieldIntegralBasis{FFINTBAS}: with
integralBasis

FunctionSpaceAssertions{PMASSFS}: with assert
constant multiple optional

FunctionSpaceAttachPredicates{PMPREDFS}: with
suchThat

FunctionSpaceComplexIntegration{FSCINT}: with
complexIntegrate internalIntegrate

FunctionSpaceFunctions2{FS2}: with map

FunctionSpaceIntegration{FSINT}: with integrate

FunctionSpacePrimitiveElement{FSPRMELT}: with
primitiveElement

FunctionSpaceReduce{FSRED}: with bringDown
newReduc

FunctionSpaceSum{SUMFS}: with sum

FunctionSpaceToUnivariatePowerSeries{FS2UPS}: with
exprToGenUPS exprToUPS

FunctionSpaceUnivariatePolynomialFactor{FSUPFACT}:
with ffactor qfactor

GaussianFactorizationPackage{GAUSSFAC}: with factor
prime? sumSquares

GeneralHenselPackage{GHENSEL}: with HenselLift
completeHensel

GeneralPolynomialGcdPackage{GENPGCD}: with
gcdPolynomial randomR

GenerateUnivariatePowerSeries{GENUPS}: with laurent
puiseux series taylor

GenExEuclid{GENEEZ}: with compBound reduction
solveid tablePow testModulus

GenUFactorize{GENUFACT}: with factor

GenusZeroIntegration{INTG0}: with palgLODE0
palgRDE0 palgextint0 palgint0 palglimint0

GosperSummationMethod{GOSPER}: with
GospersMethod

GraphicsDefaults{GRDEF}: with adaptive
clipPointsDefault drawToScale maxPoints minPoints
screenResolution

GrayCode{GRAY}: with firstSubsetGray nextSubsetGray

GroebnerFactorizationPackage{GBF}: with
factorGroebnerBasis groebnerFactorize

GroebnerInternalPackage{GBINTERN}: with credPol
critB critBonD critM critMTonD1 critMonD1 critT
critpOrder fprindINFO gbasis hMonic lepol makeCrit
minGbasis prinb prindINFO prinpolINFO prinshINFO
redPo redPol sPol updatD updatF virtualDegree

GroebnerPackage{GB}: with groebner normalForm

GroebnerSolve{GROEBSOL}: with genericPosition
groebSolve testDim

HallBasis{HB}: with generate inHallBasis? lfunc

APPENDIX D · 785

HeuGcd{HEUGCD}: with content contprim gcd gcdcofact
gcdcofactprim gcdprim lintgcd

IdealDecompositionPackage{IDECOMP}: with
primaryDecomp prime? radical zeroDimPrimary?
zeroDimPrime?

IncrementingMaps{INCRMAPS}: with increment
incrementBy

InfiniteTupleFunctions2{ITFUN2}: with map

InfiniteTupleFunctions3{ITFUN3}: with map

Infinity{INFINITY}: with infinity minusInfinity
plusInfinity

InnerAlgFactor{IALGFACT}: with factor

InnerCommonDenominator{ICDEN}: with
clearDenominator commonDenominator splitDenominator

InnerMatrixLinearAlgebraFunctions{IMATLIN}: with
determinant inverse nullSpace nullity rank rowEchelon

InnerMatrixQuotientFieldFunctions{IMATQF}: with
inverse nullSpace nullity rank rowEchelon

InnerModularGcd{INMODGCD}: with modularGcd
reduction

InnerMultFact{INNMFACT}: with factor

InnerNormalBasisFieldFunctions{INBFF}: with * ** /
basis dAndcExp expPot index inv lookup
minimalPolynomial norm normal? normalElement pol
qPot random repSq setFieldInfo trace xn

InnerNumericEigenPackage{INEP}: with charpol
innerEigenvectors

InnerNumericFloatSolvePackage{INFSP}: with
innerSolve innerSolve1 makeEq

InnerPolySign{INPSIGN}: with signAround

InnerPolySum{ISUMP}: with sum

InnerTrigonometricManipulations{ITRIGMNP}: with
F2FG FG2F GF2FG explogs2trigs trigs2explogs

InputFormFunctions1{INFORM1}: with interpret
packageCall

IntegerCombinatoricFunctions{COMBINAT}: with
binomial factorial multinomial partition permutation
stirling1 stirling2

IntegerFactorizationPackage{INTFACT}: with
BasicMethod PollardSmallFactor factor squareFree

IntegerLinearDependence{ZLINDEP}: with
linearDependenceOverZ linearlyDependentOverZ?
solveLinearlyOverQ

IntegerNumberTheoryFunctions{INTHEORY}: with
bernoulli chineseRemainder divisors euler eulerPhi

fibonacci harmonic jacobi legendre moebiusMu
numberOfDivisors sumOfDivisors sumOfKthPowerDivisors

IntegerPrimesPackage{PRIMES}: with nextPrime
prevPrime prime? primes

IntegerRetractions{INTRET}: with integer integer?
integerIfCan

IntegerRoots{IROOT}: with approxNthRoot approxSqrt
perfectNthPower? perfectNthRoot perfectSqrt
perfectSquare?

IntegralBasisTools{IBATOOL}: with diagonalProduct
idealiser leastPower

IntegrationResultFunctions2{IR2}: with map

IntegrationResultRFToFunction{IRRF2F}: with
complexExpand complexIntegrate expand integrate split

IntegrationResultToFunction{IR2F}: with
complexExpand expand split

IntegrationTools{INTTOOLS}: with kmax ksec mkPrim
union vark varselect

InverseLaplaceTransform{INVLAPLA}: with
inverseLaplace

IrredPolyOverFiniteField{IRREDFFX}: with
generateIrredPoly

IrrRepSymNatPackage{IRSN}: with
dimensionOfIrreducibleRepresentation
irreducibleRepresentation

KernelFunctions2{KERNEL2}: with constantIfCan
constantKernel

Kovacic{KOVACIC}: with kovacic

LaplaceTransform{LAPLACE}: with laplace

LeadingCoefDetermination{LEADCDET}: with distFact
polCase

LinearDependence{LINDEP}: with linearDependence
linearlyDependent? solveLinear

LinearPolynomialEquationByFractions{LPEFRAC}: with
solveLinearPolynomialEquationByFractions

LinearSystemMatrixPackage{LSMP}: with aSolution
hasSolution? rank solve

LinearSystemPolynomialPackage{LSPP}: with linSolve

LinGrobnerPackage{LGROBP}: with anticoord
choosemon computeBasis coordinate groebgen
intcompBasis linGenPos minPol totolex transform

LiouvillianFunction{LF}: with Ci Ei Si belong? dilog erf
integral li operator

ListFunctions2{LIST2}: with map reduce scan

ListFunctions3{LIST3}: with map

786 · Packages

ListToMap{LIST2MAP}: with match

MakeBinaryCompiledFunction{MKBCFUNC}: with
binaryFunction compiledFunction

MakeFloatCompiledFunction{MKFLCFN}: with
makeFloatFunction

MakeFunction{MKFUNC}: with function

MakeRecord{MKRECORD}: with makeRecord

MakeUnaryCompiledFunction{MKUCFUNC}: with
compiledFunction unaryFunction

MappingPackage1{MAPPKG1}: with ** coerce
fixedPoint id nullary recur

MappingPackage2{MAPPKG2}: with const constant
curry diag

MappingPackage3{MAPPKG3}: with * constantLeft
constantRight curryLeft curryRight twist

MappingPackageInternalHacks1{MAPHACK1}: with iter
recur

MappingPackageInternalHacks2{MAPHACK2}: with
arg1 arg2

MappingPackageInternalHacks3{MAPHACK3}: with
comp

MatrixCategoryFunctions2{MATCAT2}: with map
reduce

MatrixCommonDenominator{MCDEN}: with
clearDenominator commonDenominator splitDenominator

MatrixLinearAlgebraFunctions{MATLIN}: with
determinant inverse minordet nullSpace nullity rank
rowEchelon

MergeThing{MTHING}: with mergeDifference

MeshCreationRoutinesForThreeDimensions{MESH}:
with meshFun2Var meshPar1Var meshPar2Var ptFunc

ModularDistinctDegreeFactorizer{MDDFACT}: with
ddFact exptMod factor gcd separateFactors

ModularHermitianRowReduction{MHROWRED}: with
rowEch rowEchelon

MonoidRingFunctions2{MRF2}: with map

MoreSystemCommands{MSYSCMD}: with
systemCommand

MPolyCatFunctions2{MPC2}: with map reshape

MPolyCatFunctions3{MPC3}: with map

MPolyCatRationalFunctionFactorizer{MPRFF}: with
factor pushdown pushdterm pushucoef pushuconst pushup
totalfract

MRationalFactorize{MRATFAC}: with factor

MultFiniteFactorize{MFINFACT}: with factor

MultipleMap{MMAP}: with map

MultivariateFactorize{MULTFACT}: with factor

MultivariateLifting{MLIFT}: with corrPoly lifting lifting1

MultivariateSquareFree{MULTSQFR}: with squareFree
squareFreePrim

NonCommutativeOperatorDivision{NCODIV}: with
leftDivide leftExactQuotient leftGcd leftLcm leftQuotient
leftRemainder

NoneFunctions1{NONE1}: with coerce

NonLinearFirstOrderODESolver{NODE1}: with solve

NonLinearSolvePackage{NLINSOL}: with solve
solveInField

NPCoef{NPCOEF}: with listexp npcoef

NumberFieldIntegralBasis{NFINTBAS}: with
discriminant integralBasis

NumberFormats{NUMFMT}: with FormatArabic
FormatRoman ScanArabic ScanRoman

NumberTheoreticPolynomialFunctions{NTPOLFN}: with
bernoulliB cyclotomic eulerE

NumericalOrdinaryDifferentialEquations{NUMODE}:
with rk4 rk4a rk4f rk4qc

NumericalQuadrature{NUMQUAD}: with aromberg
asimpson atrapezoidal romberg rombergo simpson
simpsono trapezoidal trapezoidalo

NumericComplexEigenPackage{NCEP}: with
characteristicPolynomial complexEigenvalues
complexEigenvectors

NumericContinuedFraction{NCNTFRAC}: with
continuedFraction

NumericRealEigenPackage{NREP}: with
characteristicPolynomial realEigenvalues realEigenvectors

NumericTubePlot{NUMTUBE}: with tube

Numeric{NUMERIC}: with complexNumeric numeric

OctonionCategoryFunctions2{OCTCT2}: with map

ODEIntegration{ODEINT}: with expint int

ODETools{ODETOOLS}: with particularSolution
variationOfParameters wronskianMatrix

OneDimensionalArrayFunctions2{ARRAY12}: with map
reduce scan

OnePointCompletionFunctions2{ONECOMP2}: with
map

OperationsQuery{OPQUERY}: with getDatabase

APPENDIX D · 787

OrderedCompletionFunctions2{ORDCOMP2}: with map

OrderingFunctions{ORDFUNS}: with pureLex reverseLex
totalLex

OrthogonalPolynomialFunctions{ORTHPOL}: with
ChebyshevU chebyshevT hermiteH laguerreL legendreP

OutputPackage{OUT}: with output

PadeApproximantPackage{PADEPAC}: with pade

PadeApproximants{PADE}: with pade padecf

ParadoxicalCombinatorsForStreams{YSTREAM}: with Y

PartitionsAndPermutations{PARTPERM}: with
conjugate conjugates partitions permutations sequences
shuffle shufflein

PatternFunctions1{PATTERN1}: with addBadValue
badValues predicate satisfy? suchThat

PatternFunctions2{PATTERN2}: with map

PatternMatchAssertions{PMASS}: with assert constant
multiple optional

PatternMatchFunctionSpace{PMFS}: with patternMatch

PatternMatchIntegerNumberSystem{PMINS}: with
patternMatch

PatternMatchKernel{PMKERNEL}: with patternMatch

PatternMatchListAggregate{PMLSAGG}: with
patternMatch

PatternMatchPolynomialCategory{PMPLCAT}: with
patternMatch

PatternMatchPushDown{PMDOWN}: with fixPredicate
patternMatch

PatternMatchQuotientFieldCategory{PMQFCAT}: with
patternMatch

PatternMatchResultFunctions2{PATRES2}: with map

PatternMatchSymbol{PMSYM}: with patternMatch

PatternMatchTools{PMTOOLS}: with patternMatch
patternMatchTimes

PatternMatch{PATMATCH}: with Is is?

Permanent{PERMAN}: with permanent

PermutationGroupExamples{PGE}: with abelianGroup
alternatingGroup cyclicGroup dihedralGroup janko2
mathieu11 mathieu12 mathieu22 mathieu23 mathieu24
rubiksGroup symmetricGroup youngGroup

PiCoercions{PICOERCE}: with coerce

PlotFunctions1{PLOT1}: with plot plotPolar

PlotTools{PLOTTOOL}: with calcRanges

PointFunctions2{PTFUNC2}: with map

PointPackage{PTPACK}: with color hue phiCoord
rCoord shade thetaCoord xCoord yCoord zCoord

PointsOfFiniteOrderRational{PFOQ}: with order torsion?
torsionIfCan

PointsOfFiniteOrderTools{PFOTOOLS}: with badNum
doubleDisc getGoodPrime mix polyred

PointsOfFiniteOrder{PFO}: with order torsion?
torsionIfCan

PolToPol{POLTOPOL}: with dmpToNdmp dmpToP
ndmpToDmp ndmpToP pToDmp pToNdmp

PolyGroebner{PGROEB}: with lexGroebner
totalGroebner

PolynomialAN2Expression{PAN2EXPR}: with coerce

PolynomialCategoryLifting{POLYLIFT}: with map

PolynomialCategoryQuotientFunctions{POLYCATQ}:
with isExpt isPlus isPower isTimes mainVariable
multivariate univariate variables

PolynomialFactorizationByRecursionUnivariate{PFBRU}:
with bivariateSLPEBR factorByRecursion
factorSFBRlcUnit factorSquareFreeByRecursion randomR
solveLinearPolynomialEquationByRecursion

PolynomialFactorizationByRecursion{PFBR}: with
bivariateSLPEBR factorByRecursion factorSFBRlcUnit
factorSquareFreeByRecursion randomR
solveLinearPolynomialEquationByRecursion

PolynomialFunctions2{POLY2}: with map

PolynomialGcdPackage{PGCD}: with gcd gcdPrimitive

PolynomialInterpolationAlgorithms{PINTERPA}: with
LagrangeInterpolation

PolynomialInterpolation{PINTERP}: with interpolate

PolynomialNumberTheoryFunctions{PNTHEORY}: with
bernoulli chebyshevT chebyshevU cyclotomic euler
fixedDivisor hermite laguerre legendre

PolynomialRoots{POLYROOT}: with froot qroot rroot

PolynomialSolveByFormulas{SOLVEFOR}: with aCubic
aLinear aQuadratic aQuartic aSolution cubic linear
mapSolve quadratic quartic solve

PolynomialSquareFree{PSQFR}: with squareFree

PolynomialToUnivariatePolynomial{POLY2UP}: with
univariate

PowerSeriesLimitPackage{LIMITPS}: with complexLimit
limit

PrimitiveArrayFunctions2{PRIMARR2}: with map reduce
scan

PrimitiveElement{PRIMELT}: with primitiveElement

788 · Packages

PrimitiveRatDE{ODEPRIM}: with denomLODE

PrimitiveRatRicDE{ODEPRRIC}: with changevar
constantCoefficientRicDE denomRicDE
leadingCoefficientRicDE polyRicDE singRicDE

PrintPackage{PRINT}: with print

PureAlgebraicIntegration{INTPAF}: with palgLODE
palgRDE palgextint palgint palglimint

PureAlgebraicLODE{ODEPAL}: with algDsolve

QuasiAlgebraicSet2{QALGSET2}: with radicalSimplify

QuaternionCategoryFunctions2{QUATCT2}: with map

QuotientFieldCategoryFunctions2{QFCAT2}: with map

RadicalEigenPackage{REP}: with eigenMatrix
gramschmidt normalise orthonormalBasis
radicalEigenvalues radicalEigenvector radicalEigenvectors

RadicalSolvePackage{SOLVERAD}: with contractSolve
radicalRoots radicalSolve

RadixUtilities{RADUTIL}: with radix

RandomNumberSource{RANDSRC}: with randnum
reseed size

RationalFactorize{RATFACT}: with factor

RationalFunctionDefiniteIntegration{DEFINTRF}: with
integrate

RationalFunctionFactorizer{RFFACTOR}: with
factorFraction

RationalFunctionFactor{RFFACT}: with factor

RationalFunctionIntegration{INTRF}: with
extendedIntegrate infieldIntegrate internalIntegrate
limitedIntegrate

RationalFunctionLimitPackage{LIMITRF}: with
complexLimit limit

RationalFunctionSign{SIGNRF}: with sign

RationalFunctionSum{SUMRF}: with sum

RationalFunction{RF}: with coerce eval mainVariable
multivariate univariate variables

RationalIntegration{INTRAT}: with extendedint infieldint
integrate limitedint

RationalLODE{ODERAT}: with ratDsolve

RationalRetractions{RATRET}: with rational rational?
rationalIfCan

RationalRicDE{ODERTRIC}: with changevar
constantCoefficientRicDE polyRicDE ricDsolve singRicDE

RatODETools{RTODETLS}: with genericPolynomial

RealSolvePackage{REALSOLV}: with realSolve solve

RealZeroPackageQ{REAL0Q}: with realZeros refine

RealZeroPackage{REAL0}: with midpoint midpoints
realZeros refine

RectangularMatrixCategoryFunctions2{RMCAT2}: with
map reduce

ReducedDivisor{RDIV}: with order

ReduceLODE{ODERED}: with reduceLODE

ReductionOfOrder{REDORDER}: with ReduceOrder

RepeatedDoubling{REPDB}: with double

RepeatedSquaring{REPSQ}: with expt

RepresentationPackage1{REP1}: with
antisymmetricTensors createGenericMatrix
permutationRepresentation symmetricTensors
tensorProduct

RepresentationPackage2{REP2}: with areEquivalent?
completeEchelonBasis createRandomElement
cyclicSubmodule isAbsolutelyIrreducible? meatAxe
scanOneDimSubspaces split
standardBasisOfCyclicSubmodule

ResolveLatticeCompletion{RESLATC}: with coerce

RetractSolvePackage{RETSOL}: with solveRetract

SAERationalFunctionAlgFactor{SAERFFC}: with factor

SegmentBindingFunctions2{SEGBIND2}: with map

SegmentFunctions2{SEG2}: with map

SimpleAlgebraicExtensionAlgFactor{SAEFACT}: with
factor

DoubleFloatSpecialFunctions{DFLOATSFUN}: with Beta
Gamma airyAi airyBi besselI besselJ besselK besselY
digamma hypergeometric0F1 logGamma polygamma

SortedCache{SCACHE}: with cache clearCache
enterInCache

SparseUnivariatePolynomialFunctions2{SUP2}: with
map

SpecialOutputPackage{SPECOUT}: with
outputAsFortran outputAsScript outputAsTex

StorageEfficientMatrixOperations{MATSTOR}: with **
copy! leftScalarTimes! minus! plus! power!
rightScalarTimes! times!

StreamFunctions1{STREAM1}: with concat

StreamFunctions2{STREAM2}: with map reduce scan

StreamFunctions3{STREAM3}: with map

StreamTaylorSeriesOperations{STTAYLOR}: with * + - /
addiag coerce compose deriv eval evenlambert gderiv
generalLambert int integers integrate invmultisect lagrange

APPENDIX D · 789

lambert lazyGintegrate lazyIntegrate mapdiv mapmult
monom multisect nlde oddintegers oddlambert power
powern recip revert

StreamTranscendentalFunctions{STTF}: with ** acos
acosh acot acoth acsc acsch asec asech asin asinh atan
atanh cos cosh cot coth csc csch exp log sec sech sin sincos
sinh sinhcosh tan tanh

SubResultantPackage{SUBRESP}: with primitivePart
subresultantVector

SymmetricFunctions{SYMFUNC}: with symFunc

SymmetricGroupCombinatoricFunctions{SGCF}: with
coleman inverseColeman listYoungTableaus
makeYoungTableau nextColeman nextLatticePermutation
nextPartition numberOfImproperPartitions subSet
unrankImproperPartitions0 unrankImproperPartitions1

SystemODESolver{ODESYS}: with solveInField
triangulate

SystemSolvePackage{SYSSOLP}: with solve
triangularSystems

TableauxBumpers{TABLBUMP}: with bat bat1 bumprow
bumptab bumptab1 inverse lex maxrow mr slex tab tab1
untab

TangentExpansions{TANEXP}: with tanAn tanNa
tanSum

ToolsForSign{TOOLSIGN}: with direction nonQsign sign

TopLevelDrawFunctionsForAlgebraicCurves
{DRAWCURV}: with draw

TopLevelDrawFunctionsForCompiledFunctions
{DRAWCFUN}: with draw makeObject recolor

TopLevelDrawFunctions{DRAW}: with draw makeObject

TopLevelThreeSpace{TOPSP}: with createThreeSpace

TranscendentalHermiteIntegration{INTHERTR}: with
HermiteIntegrate

TranscendentalIntegration{INTTR}: with expextendedint
expintegrate expintfldpoly explimitedint primextendedint
primextintfrac primintegrate primintegratefrac
primintfldpoly primlimintfrac primlimitedint

TranscendentalManipulations{TRMANIP}: with cos2sec
cosh2sech cot2tan cot2trig coth2tanh coth2trigh csc2sin
csch2sinh expand expandLog expandPower htrigs
removeCosSq removeCoshSq removeSinSq removeSinhSq
sec2cos sech2cosh simplify simplifyExp sin2csc sinh2csch
tan2cot tan2trig tanh2coth tanh2trigh

TranscendentalRischDE{RDETR}: with DSPDE SPDE
baseRDE expRDE primRDE

TransSolvePackageService{SOLVESER}: with
decomposeFunc unvectorise

TransSolvePackage{SOLVETRA}: with solve

TriangularMatrixOperations{TRIMAT}: with
LowTriBddDenomInv UpTriBddDenomInv

TrigonometricManipulations{TRIGMNIP}: with
complexElementary complexNormalize imag real real?
trigs

TubePlotTools{TUBETOOL}: with * + - cosSinInfo cross
dot loopPoints point unitVector

TwoDimensionalPlotClipping{CLIP}: with clip
clipParametric clipWithRanges

TwoFactorize{TWOFACT}: with generalSqFr
generalTwoFactor twoFactor

UnivariateFactorize{UNIFACT}: with factor
factorSquareFree genFact henselFact henselfact quadratic
sqroot trueFactors

UnivariateLaurentSeriesFunctions2{ULS2}: with map

UnivariatePolynomialCategoryFunctions2{UPOLYC2}:
with map

UnivariatePolynomialCommonDenominator{UPCDEN}:
with clearDenominator commonDenominator
splitDenominator

UnivariatePolynomialFunctions2{UP2}: with map

UnivariatePolynomialSquareFree{UPSQFREE}: with
BumInSepFFE squareFree squareFreePart

UnivariatePuiseuxSeriesFunctions2{UPXS2}: with map

UnivariateTaylorSeriesFunctions2{UTS2}: with map

UnivariateTaylorSeriesODESolver{UTSODE}: with
mpsode ode ode1 ode2 stFunc1 stFunc2 stFuncN

UniversalSegmentFunctions2{UNISEG2}: with map

UserDefinedPartialOrdering{UDPO}: with getOrder
largest less? more? setOrder userOrdered?

UserDefinedVariableOrdering{UDVO}: with
getVariableOrder resetVariableOrder setVariableOrder

VectorFunctions2{VECTOR2}: with map reduce scan

ViewDefaultsPackage{VIEWDEF}: with
axesColorDefault lineColorDefault pointColorDefault
pointSizeDefault tubePointsDefault tubeRadiusDefault
unitsColorDefault var1StepsDefault var2StepsDefault
viewDefaults viewPosDefault viewSizeDefault
viewWriteAvailable viewWriteDefault

ViewportPackage{VIEW}: with coerce drawCurves
graphCurves

WeierstrassPreparation{WEIER}: with cfirst clikeUniv
crest qqq sts2stst weierstrass

WildFunctionFieldIntegralBasis{WFFINTBS}: with

790 · Packages

integralBasis listSquaredFactors

APPENDIX D · 791

[

APPENDIX D · 793

APPENDIX E

Operations
This appendix contains a partial list of AXIOM
operations with brief descriptions. For more de-
tails, use the Browse facility of HyperDoc: enter
the name of the operation for which you want more
information in the input area on the main Browse
menu and then click on Operations.

]

#aggregate

#a returns the number of items in a.

x∗∗y
x ∗ ∗y returns x to the power y. Also, this operation
returns, if x is:

an equation: a new equation by raising both sides of x
to the power y.

a float or small float: sign (x)exp (y log(|x|)).
See also InputForm and OutputForm.

x∗y
The binary operator ∗ denotes multiplication. Its meaning
depends on the type of its arguments:

if x and y are members of a ring (more generally, a
domain of category SemiGroup), x ∗ y returns the
product of x and y.

if r is an integer and x is an element of a ring, or if r is
a scalar and x is a vector, matrix, or direct product:
r ∗ x returns the left multiplication of r by x. More
generally, if r is an integer and x is a member of a
domain of category AbelianMonoid, or r is a member of
domain R and x is a domain of category Module(R),
GradedModule, or GradedAlgebra defined over R, r ∗ x

returns the left multiplication of r by x. Here x can be
a vector, a matrix, or a direct product. Similarly, x ∗ n
returns the right integer multiple of x.

if a and b are monad elements, the product of a and b
(see Monad).

if A and B are matrices, returns the product of A and
B. If v is a row vector, v ∗A returns the product of v
and A. If v is column vector, A ∗ v returns the product
of A with column vector v. In each case, the operation
calls error if the dimensions are incompatible.

if s is an integer or float and c is a color, s ∗ c returns
the weighted shade scaled by s.

if s and t are Cartesian tensors, s ∗ t is the inner
product of the tensors s and t. This contracts the last
index of s with the first index of t, that is,
t ∗ s = contract(t, rank t, s, 1),

t ∗ s =
∑N

k=1
t([i1, .., iN , k] ∗ s[k, j1, .., jM]).

if eq is an equation, r ∗ eq multiplies both sides of eq by
r.

if I and J are ideals, the product of ideals.

See also OutputForm, Monad, LeftModule, RightModule,
and FreeAbelianMonoidCategory,

See also InputForm and OutputForm.

x+y

The binary operator + denotes addition. Its meaning
depends on the type of its arguments. If x and y are:

members of a ring (more generally, of a domain of
category AbelianSemiGroup): the sum of x and y.

matrices: the matrix sum if x and y have the same
dimensions, and error otherwise.

vectors: the component-wise sum if x and y have the
same length, and error otherwise.

colors: a color which additively mixes colors x and y.

APPENDIX E · 795

equations: an equation created by adding the respective
left- and right-hand sides of x and y.

elements of graded module or algebra: the sum of x and
y in the module of elements of the same degree as x and
y.

ideals: the ideal generated by the union of x and y.

See also FreeAbelianMonoidCategory, InputForm and
OutputForm.

[x]−y

−x returns the negative (additive inverse) of x, where x is
a member of a ring (more generally, a domain of category
AbelianGroup). Also, x may be a matrix, a vector, or a
member of a graded module.
x− y returns x + (−y).
See also CancellationAbelianMonoid and OutputForm.

x/y

The binary operator / generally denotes binary division.
Its precise meaning, however, depends on the type of its
arguments:

x and y are elements of a group: multiplies x by the
inverse inv (y) of y.

x and y are elements of a field: divides x by y, calling
error if y = 0.

x is a matrix or a vector and y is a scalar: divides each
element of x by y.

x and y are floats or small floats: divides x by y.

x and y are fractions: returns the quotient as another
fraction.

x and y are polynomials: returns the quotient as a
fraction of polynomials.

See also AbelianMonoidRing, InputForm and OutputForm.

0
The additive identity element for a ring (more generally,
for an AbelianMonoid). Also, for a graded module or
algebra, the zero of degree 0 (see GradedModule). See also
InputForm.

1
The multiplicative identity element for a ring (more
generally, for a Monoid and MonadWithUnit). or a graded
algebra. See also InputForm.

x<y

The binary operator < denotes the boolean-valued “less
than” function. Its meaning depends on the type of its
arguments. The operation x < y for x and y:

elements of a totally ordered set (such as integer and
floating point numbers): tests if x is less than y.

sets: tests if all the elements of x are also elements of y.

permutations: tests if x is less than y; see Permutation
for details. Note: this order relation is total if and only
if the underlying domain is of category Finite or
OrderedSet.
permutation groups: tests if x is a proper subgroup of y.

See also OutputForm.

x=y

The meaning of binary operator x = y depends on the
value expected of the operation. If the value is expected to
be:

a boolean: x = y tests that x and y are equal.

an equation: x = y creates an equation.

See also OutputForm.

abelianGroup (listOfPositiveIntegers)

abelianGroup ([p1, . . . , pk]) constructs the abelian group
that is the direct product of cyclic groups with order pi.

absolutelyIrreducible? ()

absolutelyIrreducible? ()$F tests if the algebraic
function field F remains irreducible over the algebraic
closure of the ground field. See FunctionFieldCategory using
Browse.

abs (element)

abs (x) returns the absolute value of x, an element of an
OrderedRing or a Complex, Quaternion, or Octonion value.

acos (expression)
acosIfCan (expression)

Argument x can be a Complex, Float, DoubleFloat, or
Expression value or a series.
acos (x) returns the arccosine of x.
acosIfCan (x) returns acos (x) if possible, and "failed"
otherwise.

acosh (expression)
acoshIfCan (expression)

Argument x can be a Complex, Float, DoubleFloat, or
Expression value or a series.
acosh (x) returns the hyperbolic arccosine of x.
acoshIfCan (x) returns acosh (x) if possible, and
"failed" otherwise.

acoth (expression)
acothIfCan (expression)

Argument x can be a Complex, Float, DoubleFloat, or
Expression value or a series.
acoth (x) returns the hyperbolic arccotangent of x.
acothIfCan (x) returns acoth (x) if possible, and
"failed" otherwise.

acot (expression)

796 · Operations

acotIfCan (expression)

Argument x can be a Complex, Float, DoubleFloat, or
Expression value or a series.
acot (x) returns the arccotangent of x.
acotIfCan (x) returns acot (x) if possible, and "failed"
otherwise.

acsch (expression)
acschIfCan (expression)

Argument x can be a Complex, Float, DoubleFloat, or
Expression value or a series.
acsch (x) returns the hyperbolic arccosecant of x.
acschIfCan (x) returns acsch (x) if possible, and
"failed" otherwise.

acsc (expression)
acscIfCan (expression)

Argument x can be a Complex, Float, DoubleFloat, or
Expression value or a series.
acsc (x) returns the arccosecant of x.
acscIfCan (x) returns acsc (x) if possible, and "failed"
otherwise.

adaptive ([boolean])

adaptive () tests whether plotting will be done adaptively.

adaptive (true) turns adaptive plotting on;
adaptive (false) turns it off. Note: this command can be
expressed by the draw option adaptive == b.

addmod (integer, integer, integer)

addmod (a, b, p), 0 ≤ a, b < p > 1, means a + b mod p.

airyAi (complexDoubleFloat)
airyBi (complexDoubleFloat)

airyAi (x) is the Airy function Ai(x) satisfying the
differential equation Ai′′(x)− xAi(x) = 0.
airyBi (x) is the Airy function Bi(x) satisfying the
differential equation Bi′′(x)− xBi(x) = 0.

Aleph (nonNegativeInteger)

Aleph (n) provides the named (infinite) cardinal number.

algebraic? ()

algebraic? (a) tests whether an element a is algebraic
with respect to the ground field F .

alphabetic ()
alphabetic? (character)

alphabetic () returns the class of all characters ch for
which alphabetic? (ch) is true.
alphabetic? (ch) tests if ch is an alphabetic character
a. . .z, A. . .B.

alphanumeric ()

alphanumeric? (character)

alphanumeric () returns the class of all characters ch for
which alphanumeric? (ch) is true.
alphanumeric? (ch) tests if ch is either an alphabetic
character a. . .z, A. . .B or digit 0. . .9.

alternating (integer)

alternating (n) is the cycle index of the alternating group
of degree n. See CycleIndicators for details.

alternatingGroup (listOfIntegers)

alternatingGroup (li) constructs the alternating group
acting on the integers in the list li. If n is odd, the
generators are in general the (n− 2)-cycle (li.3, . . . , li.n)
and the 3-cycle (li.1, li.2, li.3). If n is even, the generators
are the product of the 2-cycle (li.1, li.2) with (n− 2)-cycle
(li.3, . . . , li.n) and the 3-cycle (li.1, li.2, li.3). Duplicates in
the list will be removed.
alternatingGroup (n) constructs the alternating group
An acting on the integers 1, . . . , n. If n is odd, the
generators are in general the (n− 2)-cycle (3, . . . , n) and
the 3-cycle (1, 2, 3). If n is even, the generators are the
product of the 2-cycle (1, 2) with (n− 2)-cycle (3, . . . , n)
and the 3-cycle (1, 2, 3) if n is even.

alternative? ()

alternative? ()$F tests if
2associator(a, a, b) = 0 = 2associator(a, b, b) for all a, b
in the algebra F . Note: in general, 2a = 0 does not
necessarily imply a = 0.

and (boolean, boolean)

x and y returns the logical and of two BitAggregates x and
y.
b1 and b2 returns the logical and of Boolean b1 and b2.
si1 and si2 returns the bit-by-bit logical and of the small
integers si1 and si2.
See also OutputForm.

approximants (continuedFraction)

approximants (cf) returns the stream of approximants of
the continued fraction cf . If the continued fraction is finite,
then the stream will be infinite and periodic with period 1.

approximate (series, integer)

approximate (s, r) returns a truncated power series as an
expression in the coefficient domain of the power series.
For example, if R is Fraction Polynomial Integer and s is a
series over R, then approximate(s, r) returns the power
series s truncated after the exponent r term.

approximate (pAdicInteger, integer)

approximate (x, n), x a p-adic integer, returns an integer
y such that y = x mod pn when n is positive, and 0
otherwise.

APPENDIX E · 797

approxNthRoot (integer, nonNegativeInteger)

approxNthRoot (n, p) returns an integer approximation i

to n1/p such that −1 < i− n1/p < 1.

approxSqrt (integer)

approxSqrt (n) returns an integer approximation i to√
(n) such that −1 < i−

√
(n) < 1. A variable precision

Newton iteration is used with running time O(log(n)2).

areEquivalent? (listOfMatrices, listOfMatrices [,
randomElements?, numberOfTries])

areEquivalent? (lM, lM ′, b, numberOfTries) tests
whether the two lists of matrices, assumed of the same
square shape, can be simultaneously conjugated by a
non-singular matrix. If these matrices represent the same
group generators, the representations are equivalent. The
algorithm tries numberOfTries times to create elements
in the generated algebras in the same fashion. For details,
consult Browse.
areEquivalent? (aG0, aG1, numberOfTries) calls
areEquivalent? (aG0, aG1, true, 25).
areEquivalent? (aG0, aG1) calls areEquivalent? (aG0,
aG1, true, 25).

argscript (symbol, listOfOutputForms)

argscript (f, [o1, . . . , on]) returns a new symbol with f
with scripts o1, . . . , on.

argument (complexExpression)

argument (c) returns the angle made by complex
expression c with the positive real axis.

arity (basicOperator)

arity (op) returns n if op is n-ary, and "failed" if op has
arbitrary arity.

asec (expression)
asecIfCan (expression)

Argument x can be a Complex, Float, DoubleFloat, or
Expression value or a series.
asec (x) returns the arcsecant of x.
asecIfCan (x) returns asec (x) if possible, and "failed"
otherwise.

asech (expression)
asechIfCan (expression)

Argument x can be a Complex, Float, DoubleFloat, or
Expression value or a series.
asech (x) returns the hyperbolic arcsecant of x.
asechIfCan (x) returns asech (x) if possible, and
"failed" otherwise.

asin (expression)
asinIfCan (expression)

Argument x can be a Complex, Float, DoubleFloat, or

Expression value or a series.
asin (x) returns the arcsine of x.
asinIfCan (x) returns asin (x) if possible, and "failed"
otherwise.

asinh (expression)
asinhIfCan (expression)

Argument x can be a Complex, Float, DoubleFloat, or
Expression value or a series.
asinh (x) returns the hyperbolic arcsine of x.
asinhIfCan (x) returns asinh (x) if possible, and
"failed" otherwise.

assign (outputForm, outputForm)

assign (f, g) creates an OutputForm object for the
assignment f :=g.

associates? (element, element)

associates? (x, y) tests whether x and y are associates,
that is, that x and y differ by a unit factor.

associative? ()

associative? ()$F tests if multiplication in F is
associative, where F is a FiniteRankNonAssociativeAlgebra.

associatorDependence ()

associatorDependence ()$F computes associator
identities for F . Consult FiniteRankNonAssociativeAlgebra
using Browse for details..

associator (element, element, element)

associator (a, b, c) returns (ab)c− a(bc), where a, b, and c
are all members of a domain of category NonAssociateRng.

assoc (element, associationList)

assoc (k, al) returns the element x in the AssociationList al
stored under key k, or "failed" if no such element exists.

atan (expression [, phase])
atanIfCan (expression)

Argument x can be a Complex, Float, DoubleFloat, or
Expression value or a series.
atan (x) returns the arctangent of x.
atan (x, y) computes the arc tangent from x with phase y.
atanIfCan (x) returns the atan (x) if possible, and
"failed" otherwise.

atanh (expression)
atanhIfCan (expression)

Argument x can be a Complex, Float, DoubleFloat, or
Expression value or a series.
atanh (x) returns the hyperbolic arctangent of x.
atanhIfCan (x) returns atanh (x) if possible, and
"failed" otherwise.

798 · Operations

atom? (sExpression)

atom? (s) tests if x is atomic, where x is an SExpression or
OutputForm.

antiCommutator (element, element)

antiCommutator (x, y) returns xy + yx, where x and y
are elements of a non-associative ring, possibly without
identity. See NonAssociativeRng using Browse.

antisymmetric? (matrix)

antisymmetric? (m) tests if the matrix m is square and
antisymmetric, that is, mi,j = −mj,i for all i and j.

antisymmetricTensors (matrices, positiveInteger)

antisymmetricTensors (A, n), where A is an m by m
matrix, returns a matrix obtained by applying to A the
irreducible, polynomial representation of the general linear
group GLm corresponding to the partition
(1, 1, . . . , 1, 0, 0, . . . , 0) of n. A call to error occurs if n is
greater than m. Note: this corresponds to the
symmetrization of the representation with the sign
representation of the symmetric group Sn. The carrier
spaces of the representation are the antisymmetric tensors
of the n-fold tensor product.
antisymmetricTensors (lA, n), where lA is a list of m by
m matrices, similarly applies the representation of GLm to
each matrix A of lA, returning a list of matrices.

any? (predicate, aggregate)

any? (pred, a) tests if predicate pred (x) is true for any
element x of aggregate a. Note: for collections, any?(p, u)
= reduce(or, map(p, u), false, true).

any (type, object)

any (type, object) is a technical function for creating an
object of Any. Argument type is a LISP form for the type
of object.

append (list, list)

append (l1, l2) appends the elements of list l1 onto the
front of list l2. See also concat.

axesColorDefault ([palette])

axesColorDefault (p) sets the default color of the axes in
a two-dimensional viewport to the palette p.
axesColorDefault () returns the default color of the axes
in a two-dimensional viewport.

back (queue)

back (q) returns the element at the back of the queue, or
calls error if q is empty.

bag ([bag])

bag ([x, y, . . . , z]) creates a bag with elements x, y, . . ., z.

balancedBinaryTree (nonNegativeInteger, element)

balancedBinaryTree (n, s) creates a balanced binary tree
with n nodes, each with value s.

base (group)

base (gp) returns a base for the group gp. Consult
PermutationGroup using Browse for details.

basis ()

basis ()$R returns a fixed basis of R or a subspace of R.
See FiniteAlgebraicExtensionField, FramedAlgebra,
FramedNonAssociativeAlgebra using Browse for details.

basisOfCenter ()

basisOfCenter ()$R returns a basis of the space of all x
in R satisfying commutator (x, a) = 0 and associator (x,
a, b) = associator (a, x, b) = associator (a, b, x) = 0 for
all a, b in R. Domain R is a domain of category
FramedNonAssociativeAlgebra.

basisOfCentroid ()

basisOfCentroid ()$R returns a basis of the centroid of
R, that is, the endomorphism ring of R considered as
(R, R)-bimodule. Domain R is a domain of category
FramedNonAssociativeAlgebra.

basisOfCommutingElements ()

basisOfCommutingElements ()$R returns a basis of the
space of all x of R satisfying commutator (x, a) = 0 for
all a in R. Domain R is a domain of category
FramedNonAssociativeAlgebra.

basisOfLeftAnnihilator (element)
basisOfRightAnnihilator (element)

These operations return a basis of the space of all x in R of
category FramedNonAssociativeAlgebra, satisfying

basisOfLeftAnnihilator (a): 0 = xa.

basisOfRightAnnihilator (a): 0 = ax.

basisOfNucleus ()
basisOfLeftNucleus ()
basisOfMiddleNucleus ()
basisOfRightNucleus ()

Each operation returns a basis of the space of all x of R, a
domain of category FramedNonAssociativeAlgebra,
satisfying for all a and b:

basisOfNucleus ()$R: associator (x, a, b) =
associator (a, x, b) = associator (a, b, x) = 0;

basisOfLeftNucleus ()$R: associator (x, a, b) = 0;

basisOfMiddleNucleus ()$R: associator (a, x, b) = 0;

basisOfRightNucleus ()$R: associator (a, b, x) = 0.

basisOfLeftNucloid ()

APPENDIX E · 799

basisOfRightNucloid ()

Each operation returns a basis of the space of
endomorphisms of R, a domain of category
FramedNonAssociativeAlgebra, considered as:

basisOfLeftNucloid (): a right module.

basisOfRightNucloid (): a left module.

Note: if R has a unit, the left and right nucloid coincide
with the left and right nucleus.

belong? (operator)

belong? (op)$R tests if op is known as an operator to R.
For example, R is an Expression domain or
AlgebraicNumber.

bernoulli (integer)

bernoulli (n) returns the n th Bernoulli number, that is,

B(n, 0) where B(n, x) is the n th Bernoulli polynomial.

besselI (complexDoubleFloat, complexDoubleFloat)
besselJ (complexDoubleFloat, complexDoubleFloat)
besselK (complexDoubleFloat, complexDoubleFloat)
besselY (complexDoubleFloat, complexDoubleFloat)

besselI (v, x) is the modified Bessel function of the first
kind, I(v, x), satisfying the differential equation
x2w′′(x) + xw′(x)− (x2 + v2)w(x) = 0.

besselJ (v, x) is the Bessel function of the second kind,
J(v, x), satisfying the differential equation
x2w′′(x) + xw′(x) + (x2 − v2)w(x) = 0.

besselK (v, x) is the modified Bessel function of the first
kind, K(v, x), satisfying the differential equation
x2w′′(x) + xw′(x)− (x2 + v2)w(x) = 0. Note: The default
implementation uses the relation
K(v, x) = π/2(I(−v, x)− I(v, x))/ sin(vπ) so is not valid
for integer values of v.

besselY (v, x) is the Bessel function of the second kind,
Y (v, x), satisfying the differential equation
x2w′′(x) + xw′(x) + (x2 − v2)w(x) = 0. Note: The default
implementation uses the relation
Y (v, x) = (J(v, x) cos(vπ)− J(−v, x))/ sin(vπ) so is not
valid for integer values of v.

Beta (complexDoubleFloat, complexDoubleFloat)

Beta (x, y) is the Euler beta function, B(x, y), defined by

Beta (x, y)
∫ 1

0
tx−1(1− t)y−1dt. Note: this function is

defined by Beta (x, y) = Γ(x)Γ(y)
Γ(x+y)

.

binaryTournament (listOfElements)

binaryTournament (ls) creates a BinaryTournament tree
with the elements of ls as values at the nodes.

binaryTree (value)

binaryTree (x) creates a binary tree consisting of one

node for which the value is x and the left and right
subtrees are empty.

binary (various)

binary (rn) converts rational number rn to a binary
expansion.
binary (op, [a1, . . . , an]) returns the input form
corresponding to a1op . . . opan, where op and the ai’s are of
type InputForm.

binomial (integerNumber, integerNumber)

binomial (x, y) returns the binomial coefficient
C(x, y) = x!/(y!(x− y)!), where x ≥ y ≥ 0, the number of
combinations of x objects taken y at a time. Arguments x
and y can come from any Expression or
IntegerNumberSystem domain.

bipolar (x)
bipolarCylindrical (x)

bipolar (a) returns a function for transforming bipolar
coordinates to Cartesian coordinates; this function maps
the point (u, v) to (x = a sinh(v)/(cosh(v)− cos(u)), y =
a sin(u)/(cosh(v)− cos(u))).
bipolarCylindrical (a) returns a function for
transforming bipolar cylindrical coordinates to Cartesian
coordinates; this function maps the point (u, v, z) to
(x = a sinh(v)/(cosh(v)− cos(u)), y =
a sin(u)/(cosh(v)− cos(u)), z).

biRank (element)

biRank (x)$R, where R is a domain of category
FramedNonAssociativeAlgebra, returns the number of
linearly independent elements among x, xbi, bix, bixbj ,
i, j = 1, . . . , n, where b = [b1, . . . , bn] is the fixed basis for
R. Note: if R has a unit, then doubleRank,
weakBiRank and biRank coincide.

bit? (integer, integer)

bit? (i, n) tests if the n th bit of i is a 1.

bits ()

bits () returns the precision of floats in bits. Also see
precision.

blankSeparate (listOfOutputForms)

blankSeparate (lo), where lo is a list of objects of type
OutputForm (normally unexposed), returns a single output
form consisting of the elements of lo separated by blanks.

blue ()

blue () returns the position of the blue hue from total hues.

bottom! (dequeue)

bottom! (q) removes then returns the element at the
bottom (back) of the dequeue q.

800 · Operations

box (expression)

box (e), where e is an expression, returns e with a box
around it that prevents e from being evaluated when
operators are applied to it. For example, log (1) returns 0,
but log (box(1)) returns the formal kernel log (1).
box (f1, . . . , fn), where the fi are expressions, returns
(f1, . . . , fn) with a box around them that prevents the fi

from being evaluated when operators are applied to them,
and makes them applicable to a unary operator. For
example, atan (box[x, 2]) returns the formal kernel
atan (x, 2).
box (o), where o is an object of type OutputForm (normally
unexposed), returns an output form enclosing o in a box.

brace (outputForm)

brace (o), where o is an object of type OutputForm
(normally unexposed), returns an output form enclosing o
in braces.

bracket (outputForm)

bracket (o), where o is an object of type OutputForm
(normally unexposed), returns an output form enclosing o
in brackets.

branchPoint (element)
branchPointAtInfinity? ()

branchPoint? (a)$F tests if x = a is a branch point of the
algebraic function field F .
branchPointAtInfinity? ()$F tests if the algebraic
function field F has a branch point at infinity.

bright (color)

bright (c) sets the shade of a hue, c, above dim but below
pastel.
bright (ls) sets the font property of a list of strings ls to
bold-face type.

cap (symmetricPolynomial, symmetricPolynomial)

cap (s1, s2), introduced by Redfield, is the scalar product
of two cycle indices, where the si are SymmetricPolynomials
with rational number coefficients. See also cup. See
CycleIndicators for details.

cardinality (finiteSetAggregate)

cardinality (u) returns the number of elements of u. Note:
cardinality(u) = #u.

car (sExpression)

car (se) returns a1 when se is the SExpression object
(a1, . . . , an).

cdr (sExpression)

cdr (se) returns (a2, . . . , an) when se is the SExpression
object (a1, . . . , an).

ceiling (floatOrRationalNumber)

Argument x is a floating point number or fraction of
numbers.
ceiling (x) returns the smallest integral element above x.

center (stringsOrSeries)

center (s) returns the point about which the series s is
expanded.
center (ls, n, s) takes a list of strings ls, and centers them
within a list of strings which is n characters long. The
remaining spaces are filled with strings composed of as
many repetitions as possible of the last string parameter s.
center (s1, n, s2) is equivalent to center ([s1], n, s2).

char (character)

char (i) returns a Character object with integer code i.
Note: ord(char(i)) = i.
char (s) returns the unique character of a string s of
length one.

characteristic ()

characteristic ()$R returns the characteristic of ring R:
the smallest positive integer n such that nx = 0 for all x in
the ring, or zero if no such n exists.

characteristicPolynomial (matrix [, symbol])

characteristicPolynomial (a) returns the characteristic
polynomial of the regular representation of a with respect
to any basis.
characteristicPolynomial (m) returns the characteristic
polynomial of the matrix m expressed as polynomial with
a new symbol as variable.
characteristicPolynomial (m, sy) is similar except that
the resulting polynomial has variable sy.
characteristicPolynomial (m, r), where r is a member of
the coefficient domain of matrix m, evaluates the
characteristic polynomial at r. In particular, if r is the
polynomial ′x, then it returns the characteristic polynomial
expressed as a polynomial in ′x.

charClass (strings)

charClass (s) creates a character class containing exactly
the characters given in the string s.
charClass (ls) creates a character class which contains
exactly the characters given in the list ls of strings.

charthRoot (element)

charthRoot (r), where r is an element of domain with

characteristic p 6= 0, returns the p th root of r, or
"failed" if none exists in the domain.
charthRoot (f)$R takes the p th root of finite field
element f , where p is the characteristic of the finite field R.
Note: such a root is always defined in finite fields.

APPENDIX E · 801

chebyshevT (positiveInteger, element)

chebyshevT (n, x) returns the n th Chebyshev polynomial
of the first kind, Tn(x), defined by
(1− tx)/(1− 2tx + t2) =

∑∞
n=0

Tn(x) tn.

children (recursiveAggregate)

children (u) returns a list of the children of aggregate u.

chineseRemainder (listOfElements, listOfModuli)
chineseRemainder (integer, modulus, integer, modulus)

chineseRemainder (lv, lm) where lv is a list of values
[v1, . . . , vn] and lm is a list of moduli [m1, . . . , mn], returns
m such that m = ni mod pi; the pi must be relatively
prime.
chineseRemainder (n1, p1, n2, p2) is equivalent to
chineseRemainder ([n1, n2], [p1, p2]), where all arguments
are integers.

clearDenominator (fraction)

clearDenominator ([q1, . . . ,]) returns [p1, . . . ,] such that
qi = pi/d where d is a common denominator for the qi’s.
clearDenominator (A), where A is a matrix of fractions,
returns matrix B such that A = B/d where d is a common
denominator for the elements of A.
clearDenominator (p) returns polynomial q such that
p = q/d where d is a common denominator for the
coefficients of polynomial p.

clip (rangeOrBoolean)

clip (b) turns two-dimensional clipping on if b is true, and
off if b is false. This command may be given as a draw
option: clip == b.
clip ([a..b]) defines the range for user-defined clipping.
This command may be given as a draw option: range ==
[a..b].

clipPointsDefault ([boolean])

clipPointsDefault () tests if automatic clipping is to be
done.
clipPointsDefault (b) turns on automatic clipping for
b = true, and off if b = false. This command may be given
as a draw option: clip == b.

close (filename)

close (v) closes the viewport window of the given
two-dimensional or three-dimensional viewport v and
terminates the corresponding Unix process. Argument v is
a member of domain TwoDimensionalViewport or
ThreeDimensionalViewport.

close! (filename)

close! (fn) returns the file fn closed to input and output.

closedCurve? (threeSpace)

closedCurve? (sp) tests if the ThreeSpace object sp
contains a single closed curve component.

closedCurve (listsOfPoints [, listOfPoints])

closedCurve (lpt) returns a ThreeSpace object containing
a single closed curve described by the list of points lpt of
the form [p0, p1, . . . , pn, p0].
closedCurve (sp) returns a closed curve as a list of points,
where sp must be a ThreeSpace object containing a single
closed curve.
closedCurve (sp, lpt) returns ThreeSpace object with the
closed curve denoted by lpt added. Argument lpt is a list
of points of the form [p0, p1, . . . , pn, p0].

coefficient (polynomialOrSeries, nonNegativeInteger)

coefficient (p, n) extracts the coefficient of the monomial
with exponent n from polynomial p, or returns zero if
exponent is not present.
coefficient (u, x, n) returns the coefficient of variable x to
the power n in u, a multivariate polynomial or series.
coefficient (u, [x1, . . . ,], [n1, . . . ,]) returns the coefficient
of xn1

1 · · ·xnk
k in u, a multivariate series or polynomial.

Also defined for domain CliffordAlgebra and categories
AbelianMonoidRing, FreeAbelianCategory, and
MonogenicLinearOperator.
coefficient (s, n) returns the terms of total degree n of
series s as a polynomial.

coefficients (polynomialOrStream)

coefficients (p) returns the list of non-zero coefficients of
polynomial p starting with the coefficient of the maximum
degree.
coefficients (s) returns a stream of coefficients
[a0, a1, a2, . . .] for the stream s: a0 + a1x + a2x

2 + · · ·.
Note: the entries of the stream may be zero.

coerceImages (listOfElements)

coerceImages (ls) coerces the list ls to a permutation
whose image is given by ls and whose preimage is fixed to
be [1, . . . , n]. Note: coerceImages (ls)
=coercePreimagesImages([1, . . . , n], ls).

coerceListOfPairs (listOfPairsOfElements)

coerceListOfPairs (lls) coerces a list of pairs lls to a
permutation, or calls error if not consistent, that is, the
set of the first elements coincides with the set of second
elements.

coercePreimagesImages (listOfListOfElements)

coercePreimagesImages (lls) coerces the representation
lls of a permutation as a list of preimages and images to a
permutation.

coleman (listOfIntegers, listOfIntegers, listOfIntegers)

coleman (alpha, beta, pi) generates the Coleman-matrix of
a certain double coset of the symmetric group given by an
representing element pi and alpha and beta. The matrix
has nonnegative entries, row sums alpha and column sums
beta. Consult SymmetricGroupCombinatoricFunctions using

802 · Operations

Browse for details.

color (integer)

color (i) returns a color of the indicated hue i.

colorDef (viewPort, color, color)

colorDef (v, c1, c2) sets the range of colors along the
colormap so that the lower end of the colormap is defined
by c1 and the top end of the colormap is defined by c2 for
the given three-dimensional viewport v.

colorFunction (smallFloatFunction)

colorFunction (fn) specifies the color for
three-dimensional plots. Function fn can take one to three
DoubleFloat arguments and always returns a DoubleFloat
value. If one argument, the color is based upon the
z-component of plot. If two arguments, the color is based
on two parameter values. If three arguments, the color is
based on the x, y, and z components. This command may
be given as a draw option: colorFunction == fn.

column (matrix, positiveInteger)

column (M, j) returns the j th column of the matrix or
TwoDimensionalArrayCategory object M , or calls error if
the index is outside the proper range.

commaSeparate (listOfOutputForms)

commaSeparate (lo), where lo is a list of objects of type
OutputForm (normally unexposed), returns an output form
which separates the elements of lo by commas.

commonDenominator (fraction)

commonDenominator ([q1, . . . ,]) returns a common
denominator for the qi’s.
commonDenominator (A), where A is a matrix of
fractions, returns a common denominator for the elements
of A.
commonDenominator (p) returns a common
denominator for the coefficients of polynomial p.

commutative? ()

commutative? ()$R tests if multiplication in the algebra
R is commutative.

commutator (groupElement, groupElement)

commutator (p, q) computes inv (p) ∗ inv(q) ∗ p ∗ q where
p and q are members of a Group domain.
commutator (a, b) returns ab− ba where a and b are
members of a NonAssociativeRing domain.

compactFraction (partialFraction)

compactFraction (u) normalizes the partial fraction u to
a compact representation where it has only one fractional
term per prime in the denominator.

comparison (basicOperator, property)

comparison (op, p) attaches p as the "%less?" property to
op. If op1 and op2 have the same name, and one of them
has a "%less?" property p, then p(op1, op2) is called to
decide whether op1 < op2.

compile (symbol, listOfTypes)

compile (f, [T1, . . . , Tn]) forces the interpreter to compile
the function with name f with signature
(T1, . . . , Tn)− > T , where T is a type determined by type
analysis of the function body of f . If the compilation is
successful, the operation returns the name f . The
operation calls error if f is not defined beforehand in the
interpreter, or if the Ti’s are not valid types, or if the
compiler fails. See also function, interpret, lambda, and
compiledFunction.

compiledFunction (expression, symbol [, symbol])

Argument expression may be of any type that is coercible
to type InputForm (most commonly used types). These
functions must be package called to define the type of the
function produced.
compiledFunction (expr, x)$P , where P is
MakeUnaryCompiledFunction(E, S, T), returns an anonymous
function of type ST defined by defined by x 7→ expr. The
anonymous function is compiled and directly applicable to
objects of type S.
compiledFunction (expr, x, y)$P , where P is
MakeBinaryCompiledFunction(E, A, B, T) returns an
anonymous function of type (A, B) → T defined by
(x, y) 7→ expr. The anonymous function is compiled and is
then directly applicable to objects of type (A, B).
See also compile, function, and lambda.

complement (finiteSetElement)

complement (u) returns the complement of the finite set
u, that is, the set of all values not in u.

complementaryBasis (vector)

complementaryBasis (b1, . . . , bn) returns the

complementary basis (b
′
1, . . . , b

′
n) of (b1, . . . , bn) for a

domain of category FunctionFieldCategory.

complete (streamOrInteger)

complete (u) causes all terms of a stream or continued
fraction u to be computed. If not called on a finite stream
or continued fraction, this function will compute until
interrupted.

complete (n) is the n th complete homogeneous
symmetric function expressed in terms of power sums.
Alternatively, it is the cycle index of the symmetric group
of degree n. See CycleIndicators for details.

completeEchelonBasis (vectorOfVectors)

completeEchelonBasis (vv) returns a completed basis

APPENDIX E · 803

from vv, a vector of vectors of domain elements. Consult
RepresentationPackage2 using Browse for details.

complex (element, element)

complex (x, y) creates the complex expression x + %i*y.

complexEigenvalues (matrix, precision)

complexEigenvalues (m, eps) computes the eigenvalues
of the matrix m to precision eps, chosen as a float or a
rational number so as to agree with the type of the
coefficients of the matrix m.

complexEigenvectors (matrix, precision)

complexEigenvectors (m, eps) (m, a matrix) returns a
list of records, each containing a complex eigenvalue, its
algebraic multiplicity, and a list of associated eigenvectors.
All results are expressed as complex floats or rationals with
precision eps.

complexElementary (expression [, symbol])

complexElementary (e) rewrites e in terms of the two
fundamental complex transcendental elementary functions:
log, exp.
complexElementary (e, x) does the same but only
rewrites kernels of e involving x.

complexExpand (integrationResult)

complexExpand (ir), where ir is an IntegrationResult,
returns the expanded complex function corresponding to
ir.

complexIntegrate (expression, variable)

complexIntegrate (f, x) returns
∫

f(x)dx where x is
viewed as a complex variable.

complexLimit (expression, equation)

complexLimit (f(x), x = a) computes the complex limit
of f as its argument x approaches a.

complexNormalize (expression [, symbol])

complexNormalize (e) rewrites e using the least possible
number of complex independent kernels.
complexNormalize (e, x) rewrites e using the least
possible number of complex independent kernels involving
x.

complexNumeric (expression [, positiveInteger])

complexNumeric (u) returns a complex approximation of
u, where u is a polynomial or an expression.
complexNumeric (u, n) does the same but requires
accuracy to be up to n decimal places.

complexRoots (rationalFunctions [, options])

complexRoots (rf, eps) finds all the complex solutions of
a univariate rational function with rational number
coefficients with precision given by eps. The complex

solutions are returned either as rational numbers or floats
depending on whether eps is a rational number or a float.
complexRoots (lrf, lv, eps) similarly finds all the complex
solutions of a list of rational functions with rational
number coefficients with respect the variables appearing in
lv. Solutions are computed to precision eps and returned as
a list of values corresponding to the order of variables in lv.

complexSolve (eq, x)

See solve (u, v).

complexZeros (polynomial, floatOrRationaNumber)

complexZeros (poly, eps) finds the complex zeros of the
univariate polynomial poly to precision eps. Solutions are
returned either as complex floats or rationals depending on
the type of eps.

components (threeSpace)

components (sp) takes the ThreeSpace object sp, and
returns a list of ThreeSpace objects, each having a single
component.

composite (polynomial, polynomial)

composite (p, q), for polynomials p and q, returns f if p =
f(q), and "failed" if no such f exists.
composite (lsp), where lsp is a list [sp1, sp2, . . . , spn] of
ThreeSpace objects, returns a single ThreeSpace object
containing the union of all objects in the parameter list
grouped as a single composite.

composites (threeSpace)

composites (sp) takes the ThreeSpace object sp and
returns a list of ThreeSpace objects, one for each single
composite of sp. If sp has no defined composites
(composites need to be explicitly created), the list returned
is empty. Note that not all the components need to be part
of a composite.

concat (aggregate, aggregate)
concat! (aggregate, aggregate)

concat (u, x) returns list u with additional element x at
the end. Note: equivalent to concat (u, [x]).
concat (u, v) returns an aggregate consisting of the
elements of u followed by the elements of v.
concat (u), where u is a list of aggregates [a, b,. . . , c],
returns a single aggregate consisting of the elements of a
followed by those of b followed . . . by the elements of c.
concat! (u, x), where u is extensible, destructively adds
element x to the end of aggregate u; if u is a stream, it
must be finite.
concat! (u, v) destructively appends v to the end of u; if u
is a stream, it must be finite.

conditionP (matrix)

conditionP (M), given a matrix M representing a
homogeneous system of equations over a field F with

804 · Operations

characteristic p, returns a non-zero vector whose p th

power is a non-trivial solution to these equations, or
"failed" if no such vector exists.

conditionsForIdempotents ()

conditionsForIdempotents () determines a complete list
of polynomial equations for the coefficients of idempotents
with respect to the R-module basis. See also
FramedNonAssociativeAlgebra for an alternate definition.

conical (smallFloat, smallFloat)

conical (a, b) returns a function of two parameters for
mapping conical coordinates to Cartesian coordinates. The
function maps the point (λ, µ, ν) to x = λµν/(ab),

y = λ/a
√

((mu2 − a2)(ν2 − a2)/(a2 − b2)),

z = λ/b
√

((mu2 − b2)(nu2 − b2)/(b2 − a2)).

conjugate (element [, element])

conjugate (u) returns the conjugate of a complex,
quaternion, or octonian expression u. For example, if u is
the complex expression x + %iy, conjugate (u) returns
x−%iy.
conjugate (pt) returns the conjugate of a partition pt. See
PartitionsAndPermutations using Browse.
conjugate (p, q) returns inv (q) ∗ p ∗ q for elements p and q
of a group. Note: this operation is called right action by
conjugation.

conjugates (streamOfPartitions)

conjugates (lp) is the stream of conjugates of a stream of
partitions lp.

connect (twoDimensionalViewport, positiveInteger,
string)

connect (v, n, s) displays the lines connecting the graph
points in field n of the two-dimensional viewport v if
s = ”on”, and does not display the lines if s = ”off”.

constant (variableOrfunction)
constantLeft (function, element)
constantRight (function, element)

These operations add an argument to a function and must
be package-called from package P as indicated. See also
curry, curryLeft, and curryRight.
constant (f)$P returns the function g such that
g(a) = f(), where function f has type → C and a has type
A. The function must be package-called from P =
MappingPackage2(A, C).
constantRight (f)$P returns the function g such that
g(a, b) = f(a), where function f has type A → C and b has
type B. This function must be package-called from P =
MappingPackage3(A, B, C).
constantLeft (f)$P returns the function g such that
g(a, b) = f(b), where function f has type B → C and a has
type A. The function must be package-called from P =

MappingPackage3(A, B, C).
constant (x) tells the pattern matcher that x should
match the symbol ′x and no other quantity, or calls error
if x is not a symbol.

constantOperator (property)
constantOpIfCan (f)

constantOperator (f) returns a nullary operator op such
that op() always evaluate to f .
constantOpIfCan (op) returns f if op is the constant
nullary operator always returning f , and "failed"
otherwise.

construct (element, ..)

construct (x, y, . . . , z)$R returns the collection of
elements x, y, . . . , z from domain R ordered as given. This
is equivalently written as [x, y, . . . , z]. The qualification R
may be omitted for domains of type List. Infinite tuples
such as [xi for i in 1..] are converted to a Stream object.

cons (element, listOrStream)

cons (x, u), where u is a list or stream, creates a new list
or stream whose first element is x and whose rest is u.
Equivalent to concat (x, u).

content (polynomial [, symbol])

content (p) returns the greatest common divisor (gcd) of
the coefficients of polynomial p.
content (p, v), where p is a multivariate polynomial type,
returns the gcd of the coefficients of the polynomial p
viewed as a univariate polynomial with respect to the
variable v. For example, if p = 7x2y + 14xy2, the gcd of
the coefficients with respect to x is 7y.

continuedFraction (fractionOrFloat [, options])

continuedFraction (f) converts the floating point
number f to a reduced continued fraction.
continuedFraction (r) converts the fraction r with
components of type R to a continued fraction over R.
continuedFraction (r, s, s′), where s and s′ are streams
over a domain R, constructs a continued fraction in the
following way: if s = [a1, a2,. . .] and s′ = [b1, b2,. . .] then
the result is the continued fraction
r + a1/(b1 + a2/(b2+. . .)).

contract (idealOrTensors [, options])

contract (I, lvar) contracts the ideal I to the polynomial
ring F [lvar].
contract (t, i, j) is the contraction of tensor t which sums

along the i th and j th indices. For example, if
r = contract(t, 1, 3) for a rank 4 tensor t, then r is the rank

2 (= 4− 2) tensor given by r(i, j) =
∑dim

h=1
t(h, i, h, j).

contract (t, i, s, j) is the inner product of tensors s and t
which sums along the k1st index of t and the k2st index of
s. For example, if r = contract(s, 2, t, 1) for rank 3 tensors

APPENDIX E · 805

s and t, then r is the rank 4 (= 3 + 3− 2) tensor given by

r(i, j, k, l) =
∑dim

h=1
s(i, h, j)t(h, k, l).

contractSolve (equation, symbol)

contractSolve (eq, x) finds the solutions expressed in
terms of radicals of the equation of rational functions eq
with respect to the symbol x. The result contains new
symbols for common subexpressions in order to reduce the
size of the output. Alternatively, an expression u may be
given for eq in which case the equation eq is defined as
u = 0

controlPanel (viewport, string)

controlPanel (v, s) displays the control panel of the given
two-dimensional or three-dimensional viewport v if
s = ”on”, or hides the control panel if s = ”off”.

convergents (continuedFraction)

convergents (cf) returns the stream of the convergents of
the continued fraction cf . If the continued fraction is
finite, then the stream will be finite.

coordinate (curveOrSurface, nonNegativeInteger)

coordinate (u, n) returns the n th coordinate function for
the curve or surface u. See ParametericPlaneCurve,
ParametricSpaceCurve, and ParametericSurface, using
Browse.

coordinates (pointOrvector [, basis])

coordinates (pt) specifies a change of coordinate systems
of point pt. This option is expressed in the form
coordinates == pt.

The following operations return a matrix representation of
the coordinates of an argument vector v of the form
[v1 . . . vn] with respect to the basis a domain R. The

coordinates of vi are contained in the i th row of the
matrix returned.
coordinates (v, b) returns the matrix representation with
respect to the basis b for vector v of elements from domain
R of category FiniteRankNonAssociativeAlgebra or
FiniteRankAlgebra. If a second argument is not given, the
basis is taken to be the fixed basis of R.
coordinates (v)$R, returns a matrix representation for v
with respect to a fixed basis for domain R of category
FiniteAlgebraicExtensionField, FramedNonAssociativeAlgebra,
or FramedAlgebra.

copies (integer, string)

copies (n, s) returns a string composed of n copies of
string s.

copy (aggregate)

copy (u) returns a top-level (non-recursive) copy of an
aggregate u. Note: for lists, copy(u) == [x for x in u].

copyInto! (aggregate, aggregate, integer)

copyInto! (u, v, p) returns linear aggregate u with
elements of u replaced by the successive elements of v
starting at index p. Arguments u and v can be elements of
any FiniteLinearAggregate.

cos (expression)
cosIfCan (expression)

Argument x can be a Complex, Float, DoubleFloat, or
Expression value or a series.
cos (x) returns the cosine of x.
cosIfCan (x) returns cos (x) if possible, and "failed"
otherwise.

cos2sec (expression)

cos2sec (e) converts every cos (u) appearing in e into
1/ sec(u).

cosh2sech (expression)

cosh2sech (e) converts every cosh (u) appearing in e into
1/sech(u).

cosh (expression)
coshIfCan (expression)

Argument x can be a Complex, Float, DoubleFloat, or
Expression value or a series.
cosh (x) returns the hyperbolic cosine of x.
coshIfCan (x) returns cosh (x) if possible, and "failed"
otherwise.

cot (expression)

Argument x can be a Complex, Float, DoubleFloat, or
Expression value or a series.
cot (x) returns the cotangent of x.
cotIfCan (x) returns cot (x) if possible, and "failed"
otherwise.

cot2tan (expression)

cot2tan (expression) converts every cot(u) appearing in e
into 1/ tan(u).

cot2trig (expression)

cot2trig (expression) converts every cot(u) appearing in e
into cos(u)/ sin(u).

coth (expression)
cothIfCan (expression)

Argument x can be a Complex, Float, DoubleFloat, or
Expression value or a series.
coth (x) returns the hyperbolic cotangent of x.
cothIfCan (x) returns coth (x) if possible, and "failed"
otherwise.

coth2tanh (expression)

coth2tanh (expression) converts every coth(u) appearing
in e into 1/tanh(u).

806 · Operations

coth2trigh (expression)

coth2trigh (expression) converts every coth(u) appearing
in e into cosh(u)/sinh(u).

count (predicate, aggregate)

count (pred, u) returns the number of elements x in u such
that pred (x) is true. For collections, count(p, u) =
reduce(+, [1 for x in u | p(x)], 0).
count (x, u) returns the number of occurrences of x in u.
For collections, count(x, u) = reduce(+, [x=y for y in
u], 0).

countable? (cardinal)

countable? (u) tests if the cardinal number u is countable,
that is, if u ≤Aleph0.

createThreeSpace ()

createThreeSpace ()$ThreeSpace(R) creates a ThreeSpace
object capable of holding point, curve, mesh components
or any combination of the three. The ring R is usually
DoubleFloat. If you do not package call this function,
DoubleFloat is assumed.
createThreeSpace (s) creates a ThreeSpace object
containing objects pre-defined within some SubSpace s.

createGenericMatrix (nonNegativeInteger)

createGenericMatrix (n) creates a square matrix of
dimension n whose entry at the i-th row and j-th column
is the indeterminate xi,j (double subscripted). See
RepresentationPackage1 using Browse.

createIrreduciblePoly (nonNegativeInteger)

createIrreduciblePoly (n)$FFPOLY(GF) generates a monic
irreducible polynomial of degree n over the finite field GF .

createNormalElement ()

createNormalElement ()$F computes a normal element
over the ground field of a finite algebraic extension field F ,
that is, an element a such that

aqi

, 0 ≤ i < extensionDegree()$F is an F -basis, where q
is the size of the ground field.

createNormalPrimitivePoly (element)

createNormalPrimitivePoly (n)$FFPOLY(GF) generates a
normal and primitive polynomial of degree n over the field
GF .

createPrimitiveElement ()

createPrimitiveElement ()$F computes a generator of
the (cyclic) multiplicative group of a finite field F .

createRandomElement (listOfMatrices, matrix)

createRandomElement (lm, m) creates a random
element of the group algebra generated by lm, where lm is
a list of matrices and m is a matrix. See
RepresentationPackage2 using Browse.

csc2sin (expression)

csc2sin (expression) converts every csc (u) appearing in f
into 1/sin(u).

csch2sinh (expression)

csch2sinh (expression) converts every csch (u) appearing
in f into 1/sinh(u).

csch (expression)
cschIfCan (expression)

Argument x can be a Complex, Float, DoubleFloat, or
Expression value or a series.
csch (x) returns the hyperbolic cosecant of x.
cschIfCan (x) returns csch (x) if possible, and "failed"
otherwise.

cscIfCan (expression)

Argument x can be a Complex, Float, DoubleFloat, or
Expression value or a series.
csc (x) returns the cosecant of x.
cscIfCan (x) returns csc (x) if possible, and "failed"
otherwise.

cup (symmetricPolynomial, symmetricPolynomial)

cup (s1, s2), introduced by Redfield, is the scalar product
of two cycle indices, where the si are of type
SymmetricPolynomial with rational number coefficients. See
also cap. See CycleIndicators for details.

curry (function)
curryLeft (function, element)
curryRight (function, element)

These functions drop an argument from a function.
curry (f, a) returns the function g such that g() = f(a),
where function f has type A → C and element a has type
A.
curryRight (f, b) returns the function g such that
g(a) = f(a, b), where function f has type (A, B) → C and
element b has type B.
curryLeft (f, a) is the function g such that g(b) = f(a, b),
where function f has type (A, B) → C and element a has
type A.
See also constant, constantLeft, and constantRight.

curve (listOfPoints [, options])

curve ([p0, p1,. . . , pn]) creates a space curve defined by the
list of points p0 through pn and returns a ThreeSpace
object whose component is the curve.
curve (sp) checks to see if the ThreeSpace object sp is
composed of a single curve defined by a list of points; if so,
the list of points defining the curve is returned. Otherwise,
the operation calls error.
curve (c1, c2) creates a plane curve from two component
functions c1 and c2. See ComponentFunction using Browse.
curve(sp, [[p0], [p1],. . . , [pn]]) adds a space curve defined by
a list of points p0 through pn to a ThreeSpace object sp.

APPENDIX E · 807

Each pi is from a domain PointDomain (m, R), where R
is the Ring over which the point elements are defined and
m is the dimension of the points.
curve (s, [p0, p1,. . . , pn]) adds the space curve component
designated by the list of points p0 through pn to the
ThreeSpace object sp.
curve (c1, c2, c3) creates a space curve from three
component functions c1, c2, and c3.

curve? (threeSpace)

curve? (sp) tests if the ThreeSpace object sp contains a
single curve object.

curveColor (float)

curveColor (p) specifies a color index for two-dimensional
graph curves from the palette p. This option is expressed
in the form curveColor == p.

cycle (listOfPermutations)

cycle (ls) converts a cycle ls, a list with no repetitions, to
the permutation, which maps ls.i to ls.(i + 1) (index
modulo the length of the list).

cycleEntry (aggregate)

cycleEntry (u) returns the head of a top-level cycle
contained in aggregate u, or empty () if none exists.

cycleLength (aggregate)

cycleLength (u) returns the length of a top-level cycle
contained in aggregate u, or 0 if u has no such cycle.

cyclePartition (permutation)

cyclePartition (p) returns the cycle structure of a
permutation p including cycles of length 1. The
permutation is assumed to be a member of Permutation(S)
where S is a finite set.

cycleRagits (radixExpansion)

cycleRagits (rx) returns the cyclic part of the ragits of
the fractional part of a radix expansion. For example, if
x = 3/28 = 0.10714285714285 . . ., then cycleRagits(x) =
[7, 1, 4, 2, 8, 5].

cycleSplit! (aggregate)

cycleSplit! (u) splits the recursive aggregate (for example,
a list) u into two aggregates by dropping off the cycle. The
value returned is the cycle entry, or nil if none exists. For
example, if w = concat(u, v) is the cyclic list where v is
the head of the cycle, cycleSplit! (w) will drop v off w.
Thus w is destructively changed to u, and v is returned.

cycles (listOfListOfElements)

cycles (lls) coerces a list of list of cycles lls to a
permutation. Each cycle, represented as a list ls with no
repetitions, is coerced to the permutation, which maps ls.i
to ls.(i + 1) (index modulo the length of the list). These

permutations are then multiplied.

cycleTail (aggregate)

cycleTail (u) returns the last node in the cycle of a
recursive aggregate (for example, a list) u, or empty if none
exists.

cyclic (integer)

cyclic (n) returns the cycle index of the cyclic group of
degree n. CycleIndicators for details.

cyclic? (aggregate)

cyclic? (u) tests if recursive aggregate (for example, a list)
u has a cycle.

cyclicGroup (listOfIntegers)

cyclicGroup ([i1, . . . , ik]) constructs the cyclic group of
order k acting on the list of integers i1, . . . , ik. Note:
duplicates in the list will be removed.

cyclicGroup (positiveInteger)

cyclicGroup (n) constructs the cyclic group of order n
acting on the integers 1, . . . , n, n > 0.

cyclicSubmodule (listOfMatrices, vector)

cyclicSubmodule (lm, v), where lm is a list of n by n
square matrices and v is a vector of size n, generates a
basis in echelon form. Consult RepresentationPackage2
using Browse for details.

cylindrical (point)

cylindrical (pt) transforms pt from polar coordinates to
Cartesian coordinates, by mapping the point (r, theta, z) to
x = r cos(theta), y = r sin(theta), z.

D (expression [, options])

D (x) returns the derivative of x. This function is a simple
differential operator where no variable needs to be
specified.
D (x, [s1, . . . sn]) computes successive partial derivatives,
that is, D(. . .D(x, s1) . . . , sn).
D (u, x) computes the partial derivative of u with respect
to x.
D (u, deriv[, n]) differentiates u n times using a derivation
which extends deriv on R. Argument n defaults to 1.
D (p, d, x′) extends the R-derivation d to an extension R in
R[x] where Dx is given by x′, and returns Dp.
D(x, [s1, . . . , sn], [n1, . . . , nm]) computes multiple partial
derivatives, that is, D (. . .D(x, s1, n1) . . . , sn, nm).
D (u, x, n) computes multiple partial derivatives, that is,

n th derivative of u with respect to x.
D (of [, n]), where of is an object of type OutputForm

(normally unexposed), returns an output form for the n th

derivative of f , for example, f ′, f ′′

, f ′′′, f iv, and so on.

808 · Operations

D ()$A provides the operator corresponding to the
derivation in the differential ring A.

dark (color)

dark (color) returns the shade of the indicated hue of color
to its lowest value.

ddFact (polynomial, primeInteger)

ddFact (q, p) computes a distinct degree factorization of
the polynomial q modulo the prime p, that is, such that
each factor is a product of irreducibles of the same degrees.

decimal (rationalNumber)

decimal (rn) converts a rational number rn to a decimal
expansion.

declare (listOfInputForms)

declare (t) returns a name f such that f has been declared
to the interpreter to be of type t, but has not been
assigned a value yet.

decreasePrecision (integer)

decreasePrecision (n)$R decreases the current precision
by n decimal digits.

definingPolynomial ()

definingPolynomial ()$R returns the minimal
polynomial for a MonogenicAlgebra domain R, that is, one
which generator ()$R satisfies.
definingPolynomial (x) returns an expression p such that
p(x) = 0, where x is an AlgebraicNumber or an object of
type Expression.

degree (polynomial [, symbol])

The meaning of degree(u[, s]) depends on the type of u.

if u is a polynomial: degree (u, x) returns the degree of
polynomial u with respect to the variable x. Similarly,
degree (u, lv), where lv is a list of variables, returns a
list of degrees of polynomial u with respect to each of
the variables in lv.

if u is an element of an AbelianMonoidRing or
GradedModule domain: degree (u) returns the
maximum of the exponents of the terms of u.

if u is a series: degree (u) returns the degree of the
leading term of u.

if u is an element of a domain of category ExtensionField:
degree (u) returns the degree of the minimal
polynomial of u if u is algebraic with respect to the
ground field F , and %infinity otherwise.

if u is a permutation: degree (u) returns the number of
points moved by the permutation.

if u is a permutation group: degree (u) returns the
number of points moved by all permutations of the
group u. For additional information on degree, consult
Browse.

delete (aggregate, integerOrSegment)

delete (u, i) returns a copy of linear aggregate u with the

i th element deleted. Note: for lists, delete(a, i) ==
concat(a(0..i-1), a(i + 1, ..)).

delete (u, i..j) returns a copy of u with the i th through

j th element deleted. Note: for lists, delete(a, i..j) =
concat(a(0..i-1), a(j+1..)).

delete! (u, i) destructively deletes the i th element of u.
delete! (u, i..j) destructively deletes elements u.i through
u.j of u.

deleteProperty (basicOperator, string)

deleteProperty (op, s) destructively removes property s
from op.

denom (expression)
denominator (expression)

Argument x can be from domain Fraction(R) for some
domain R, or of type Expression if the result is of type R.
denom (x) returns the denominator of x as an object of
domain R; if x is of type Expression, it returns an object of
domain SMP(R, Kernel(Expression R)).
denominator (x) returns the denominator of x as an
element of Fraction(R); if x is of type Expression, it returns
an object of domain Expression(R).

denominators (fractionOrContinuedFraction)

denominator (frac) is the denominator of the fraction
frac.
denominators (cf) returns the stream of denominators of
the approximants of the continued fraction x. If the
continued fraction is finite, then the stream will be finite.

depth (stack)

depth (st) returns the number of elements of stack st.

dequeue (queue)
dequeue! (queue)

dequeue ([x, y, . . . , z]) creates a dequeue with first (top or
front) element x, second element y, . . ., and last (bottom
or back) element z.
dequeue! (q) destructively extracts the first (top) element
from queue q. The element previously second in the queue
becomes the first element. A call to error occurs if q is
empty.

derivationCoordinates (vectorOfElements,
derivationFunction)

derivationCoordinates (v, ′) returns a matrix M such
that v′ = Mv. Argument v is a vector of elements from R,
a domain of category MonogenicAlgebra over a ring R.
Argument ′ is a derivation function defined on R.

derivative (basicOperator [, property])

derivative (op) returns the value of the "%diff" property

APPENDIX E · 809

of op if it has one, and "failed" otherwise.
derivative (op, dprop) attaches dprop as the "%diff"
property of op. Note: if op has a "%diff" property f , then
applying a derivation D to op(a) returns f(a)D(a).
Argument op must be unary.
derivative (op, [f1, . . . , fn]) attaches [f1, . . . , fn] as the
"%diff" property of op. Note: if op has such a "%diff"
property, then applying a derivation D to op(a1, . . . , an)
returns f1(a1, . . . , an)D(a1) + · · ·+ fn(a1, . . . , an)D(an).
See also D.

destruct (sExpression)

destruct (se), where se is the SExpression (a1, . . . , an),
returns the list [a1, . . . , an].

determinant (matrix)

determinant (m) returns the determinant of the matrix
m, or calls error if the matrix is not square. Note: the
underlying coefficient domain of m is assumed to have a
commutative “*”.

diagonal (matrix)

diagonal (m), where m is a square matrix, returns a
vector consisting of the diagonal elements of m.
diagonal (f), where f is a function of type (A, A) → T is
the function g such that g(a) = f(a, a). See
MappingPackage for related functions.

diagonal? (matrix)

diagonal? (m) tests if the matrix m is square and
diagonal.

diagonalMatrix (listOfElements)

diagonalMatrix (l), where l is a list or vector of elements,
returns a (square) diagonal matrix with those elements of l
on the diagonal.
diagonalMatrix ([m1, . . . , mk]) creates a block diagonal
matrix M with block matrices m1, . . . , mk down the
diagonal, with 0 block matrices elsewhere.

diagonalProduct (matrix)

diagonalProduct (m) returns the product of the elements
on the diagonal of the matrix m.

dictionary ()

dictionary ()$R creates an empty dictionary of type R.
dictionary ([x, y, . . . , z]) creates a dictionary consisting of
entries x, y, . . . , z.

difference (setAggregate, element)

difference (u, x) returns the set aggregate u with element
x removed.
difference (u, v) returns the set aggregate w consisting of
elements in set aggregate u but not in set aggregate v.

differentialVariables (differentialPolynomial)

differentialVariables (p) returns a list of differential
indeterminates occurring in a differential polynomial p.

differentiate (expression [, options])

See D.

digamma (complexDoubleFloat)

digamma (x) is the function, ψ(x), defined by
ψ(x) = Γ′(x)/Γ(x). Argument x is either a small float or a
complex small float.

digit ()

digit () returns the class of all characters for which digit?
is true.

digit? (character)

digit? (ch) tests if character c is a digit character, that is,
one of 0..9.

digits ([positiveInteger])

digits () returns the current precision of floats in numbers
of digits.
digits (n) set the precision of floats to n digits.
digits (x) returns a stream of p-adic digits of p-adic integer
n. See PAdicInteger using Browse.

dihedral (integer)

dihedral (n) is the cycle index of the dihedral group of
degree n.

dihedralGroup (listOfIntegers)

dihedralGroup ([i1, . . . , ik]) constructs the dihedral group
of order 2k acting on the integers i1, . . . , ik. Note:
duplicates in the list will be removed.
dihedralGroup (n) constructs the dihedral group of order
2n acting on integers 1, . . . , n.

dilog (expression)

dilog (x) returns the dilogarithm of x, that is,∫
log(x)/(1− x)dx.

dim (color)

dim (c) sets the shade of a hue c, above dark but below
bright.

dimension ([various])

dimension ()$R returns the dimensionality of the vector
space or rank of Lie algebra R.
dimension (I) gives the dimension of the ideal I.
dimension (s) returns the dimension of the point category
s.

dioSolve (equation)

dioSolve (eq) computes a basis of all minimal solutions for
a linear homomogeneous Diophantine equation eq, then all

810 · Operations

minimal solutions of the inhomogeneous equation.
Alternatively, an expression u may be given for eq in which
case the equation eq is defined as u = 0.

directory (filename)

directory (f) returns the directory part of the file name.

directProduct (vector)

directProduct (v) converts the vector v to become a
direct product

discreteLog (finiteFieldElement)

discreteLog (a)$F computes the discrete logarithm of a
with respect to primitiveElement ()$F of the field F .

discreteLog (finiteFieldElement, finiteFieldElement)

discreteLog (b, a) computes s such that bs = a if such an
s exists.

discriminant (polynomial [, symbol])

discriminant (p[, x]) returns the discriminant of the
polynomial p with respect to the variable x. If x is
univariate, the second argument may be omitted.
discriminant ()$R returns
determinant (traceMatrix()$R) of a FramedAlgebra
domain R.
discriminant ([v1, .., vn]) returns
determinant (traceMatrix([v1, .., vn])) where the vi each
have n elements.

display (text [, width])

display (t[, w]), where t is either IBM SCRIPT Formula
Format or TEX text, outputs t so that each line has length
≤ w. The default value of w is that length set by the
system command)set output length.
display (op, f) attaches f as the "%display" property of
op.
display (op) returns the "%display" property of op if it
has one attached, and "failed" otherwise.
Value f either has type OutputForm → OutputForm or else
List(OutputForm) → OutputForm. Argument op must be
unary. Note: if op has a "%display" property f of the
former type, then op(a) gets converted to OutputForm as
f(a). If f has the latter type, then op(a1, . . . , an) gets
converted to OutputForm as f(a1, . . . , an).

distance (aggregate, aggregate)

distance (u, v), where u and v are recursive aggregates
(for example, lists) returns the path length (an integer)
from node u to v.

distdfact (polynomial, boolean)

distdfact (p, squareFreeF lag) produces the complete
factorization of the polynomial p returning an internal data
structure. If argument squareFreeF lag is true, the
polynomial is assumed square free.

distribute (expression [, f])

distribute (f [, g]) expands all the kernels in f that contain
g in their arguments and that are formally enclosed by a
box or a paren expression. By default, g is the list of all
kernels in f .

divide (element, element)

divide (x, y) divides x by y producing a record containing
a quotient and remainder, where the remainder is smaller
(see sizeLess?) than the divisor y.

divideExponents (polynomial, nonNegativeInteger)

divideExponents (p, n) returns a new polynomial
resulting from dividing all exponents of the polynomial p
by the non negative integer n, or "failed" if no exponent
is exactly divisible by n.

divisors (integer)

divisors (i) returns a list of the divisors of integer i.

domain (typeAnyObject)

domain (a) returns the type of the original object that
was converted to Any as object of type SExpression

domainOf (typeAnyObject)

domainOf (a) returns a printable form of the type of the
original type of a, an object of type Any.

dot (vector, vector)

dot (v1, v2) computes the inner product of the vectors v1

and v2, or calls error if x and y are not of the same
length.
dot (of), where of is an object of type OutputForm
(normally unexposed), returns an output form with one
dot overhead (ẋ).

doubleRank (element)

doubleRank (x), where x is an element of a domain R of
category FramedNonAssociativeAlgebra, determines the
number of linearly independent elements in b1x, . . . , bnx,
where b = [b1, . . . , bn] is the fixed basis for R.

doublyTransitive? ()

doublyTransitive? (p) tests if polynomial p, is irreducible
over the field K generated by its coefficients, and if
p(X)/(X − a) is irreducible over K(a) where p(a) = 0.

draw (functionOrExpression, range [, options])

f , g, and h below denote user-defined functions which map
one or more DoubleFloat values to a DoubleFloat value.

draw (f, a..b) draws the two-dimensional graph of y = f(x)
as x ranges from min (a, b) to max (a, b).

draw (curve(f, g), a..b) draws the two-dimensional graph
of the parametric curve x = f(t), y = g(t) as t ranges from
min (a, b) to max (a, b).

APPENDIX E · 811

draw (f, a..b, c..d) draws the three-dimensional graph of
z = f(x, y) as x ranges from min (a, b) to max (a, b) and y
ranges from min (c, d) to max (c, d).

draw (curve(f, g, h), a..b) draws a three-dimensional graph
of the parametric curve x = f(t), y = g(t), z = h(t) as t
ranges from min (a, b) to max (a, b).

draw (surface(f, g, h), a..b, c..d) draws the
three-dimensional graph of the parametric surface
x = f(u, v), y = g(u, v), z = h(u, v) as u ranges from
min (a, b) to max (a, b) and v ranges from min (c, d) to
max (c, d).

Arguments f , g, and h below denote an Expression
involving the variables indicated as arguments. For
example, f(x, y) denotes an expression involving the
variables x and y.

draw (f(x), x = a..b) draws the two-dimensional graph of
y = f(x) as x ranges from min (a, b) to max (a, b).

draw (curve(f(t), g(t)), t = a..b) draws the
two-dimensional graph of the parametric curve
x = f(t), y = g(t) as t ranges from min (a, b) to max (a, b).

draw (f(x, y), x = a..b, y = c..d) draws the
three-dimensional graph of z = f(x, y) as x ranges from
min (a, b) to max (a, b) and y ranges from min (c, d) to
max (c, d).

draw (curve(f(t), g(t), h(t)), t = a..b) draws the
three-dimensional graph of the parametric curve x = f(t),
y = g(t), z = h(t) as t ranges from min (a, b) to max (a, b).

draw(surface(f(u, v), g(u, v), h(u, v)), u = a..b, v = c..d)
draws the three-dimensional graph of the parametric
surface x = f(u, v), y = g(u, v), z = h(u, v) as u ranges
from min (a, b) to max (a, b) and v ranges from min (c, d)
to max (c, d).

Each of the draw operations optionally take options given
as extra arguments.
adaptive== true turns on adaptive plotting.
clip== true turns on two-dimensional clipping.
colorFunction== f specifies the color based on a function.

coordinates== p specifies a change of coordinate systems
of point p: bipolar, bipolarCylindrical, conical, elliptic,
ellipticCylindrical, oblateSpheroidal, parabolic,
parabolicCylindrical, paraboloidal, prolateSpheroidal,
spherical, and toroidal.
curveColor== p specifies a color index for two-dimensional
graph curves from the pallete p.
pointColor== p specifies a color index for two-dimensional
graph points from the palette p.
range== [a..b] provides a user-specified range for implicit
curve plots.

space== sp adds the current graph to ThreeSpace object
sp.
style== s specifies the drawing style in which the graph
will be plotted: wire, solid, shade, smooth.
title== s titles the graph with string s.
toScale== true causes the graph to be drawn to scale.
tubePoints== n specifies the number of points n defining
the circle which creates the tube around a
three-dimensional curve. The default value is 6.
tubeRadius== r specifies a Float radius r for a tube plot
around a three-dimensional curve.
unit== [f1, f2] marks off the units of a two-dimensional
graph in increments f1 along the x-axis, f2 along the
y-axis.
var1Steps== n indicates the number of subdivisions n of
the first range variable.
var2Steps== n indicates the number of subdivisions n of
the second range variable.

drawToScale ([boolean])

drawToScale () tests if plots are currently to be drawn to
scale.
drawToScale (true) causes plots to be drawn to scale.
drawToScale (false) causes plots to be drawn to fill up
the viewport window. The default setting is false.

duplicates (dictionary)

duplicates (d) returns a list of values which have
duplicates in d

Ei (variable)

Ei (x) returns the exponential integral of x:
∫

exp(x)/xdx.

eigenMatrix (matrix)

eigenMatrix (A) returns the matrix B such that
BA(inverse B) is diagonal, or "failed" if no such B
exists.

eigenvalues (matrix)

eigenvalues (A), where A is a matrix with rational
function coefficients, returns the eigenvalues of the matrix
A which are expressible as rational functions over the
rational numbers.

eigenvector (eigenvalue, matrix)

eigenvector (eigval, A) returns the eigenvectors belonging
to the eigenvalue eigval for the matrix A.

eigenvectors (matrix)

eigenvectors (A) returns the eigenvalues and eigenvectors
for the matrix A. The rational eigenvalues and the
corresponding eigenvectors are explicitly computed. The
non-rational eigenvalues are defined via their minimal
polynomial. Their corresponding eigenvectors are
expressed in terms of a “generic” root of this polynomial.

812 · Operations

element? (polynomial, ideal)

element? (f, I) tests if the polynomial f belongs to the
ideal I.

elementary (integer)

elementary (n) is the n th elementary symmetric function
expressed in terms of power sums. See CycleIndicators for
details.

elliptic (scaleFactor)

elliptic (r) returns a function for transforming elliptic
coordinates to Cartesian coordinates. The function
returned will map the point (u, v) to x = r cosh(u) cos(v),
y = r sinh(u) sin(v).

ellipticCylindrical (scaleFactor)

ellipticCylindrical (r) returns a function for transforming
elliptic cylindrical coordinates to Cartesian coordinates as
a function of the scale factor r. The function returned will
map the point (u, v, z) to x = r cosh(u) cos(v),
y = r sinh(u) sin(v), z.

elt (structure, various [, . . .])

elt (u, v), usually written as u.v or u(v), regards the
structure u as a function and applies structure u to
argument v. Many types export elt with multiple
arguments; elt (u, v, w . . .) is generally written u(v, w . . .).
The interpretation of u depends on its type. If u is:

an indexed aggregate such as a list, stream, vector, or
string: u.i, 1 ≤ i ≤ maxIndex(u), is equivalently

written u(i) and returns the i th element of u. Also,
u(i, y) returns u(i) if i is an appropriate index for u,
and y otherwise.

a linear aggregate: u(i..j) returns the aggregate of
elements of u(k) for k = i, i + 1, . . . , j in that order.

a basic operator: u(x) applies the unary operator u to
x; similarly, u.[x1, . . . , xn] applies the n-ary operator u
to x1, . . . , xn. Also, u(x, y), u(x, y, z), and u(x, y, z, w)
respectively apply the binary, ternary, or 4-ary operator
u to arguments.

a univariate polynomial or rational function: u(y)
evaluates the rational function or polynomial with the
distinguished variable replaced by the value of y; this
value may either be another rational function or
polynomial or a member of the underlying coefficient
domain.

a list: u.first is equivalent to first (u) and returns the
first element of list u. Also, u.last is equivalent to
last (u) and returns the last element of list u. Both of
these call error if u is the empty list. Similarly, u.rest
is equivalent to rest (u) and returns the list u beginning
at its second element, or calls error if u has less than
two elements.

a library: u(name) returns the entry in the library

stored under the key name.

a linear ordinary differential operator: u(x) applies the
differential operator u to the value x.

a matrix or two-dimensional array: u(i, j[, x]),
1 ≤ i ≤ nrows(u), 1 ≤ j ≤ ncols(m), returns the

element in the i th row and j th column of the matrix
m. If the indices are out of range and an extra
argument x is provided, then x is returned; otherwise,
error is called. Also, u([i1, . . . , im], [j1, . . . , jm]) returns
the m-by-n matrix consisting of elements u(ik, jl) of u.

a permutation group: u(i) returns the i-th generator of
the group u.

a point: u.i returns the i th component of the point u.

a rewrite rule: u(f [, n]) applies rewrite rule u to
expression f at most n times, where n = ∞ by default.
When the left-hand side of u matches a subexpression of
f , the subexpression is replaced by the right-hand side
of u producing a new f . After n iterations or when no
further match occurs, the transformed f is returned.

a ruleset: u(f [, n]) applies ruleset u to expression f at
most n times, where n = ∞ by default. Similar to last
case, except that on each iteration, each rule in the
ruleset is applied in turn in attempt to find a match.

an SExpression (a1, . . . , an . b) (where b denotes the
cdr of the last node): u.i returns ai; similarly
u.[i1, . . . , im] returns (ai1 , . . . , aim).

a univariate series: u(r) returns the coefficient of the
term of degree r in u.

a symbol: u[a1, . . . , an] returns u subscripted by
a1, . . . , an.

a cartesian tensor: u(r) gives a component of a rank 1
tensor; u([i1, . . . , ln]) gives a component of a rank n
tensor; u() gives the component of a rank 0 tensor.
Also: u(i, j), u(i, j, k), and u(i, j, k, l) gives a component
of a rank 2, 3, and 4 tensors respectively.

See also QuadraticForm, FramedNonAssociativeAlgebra,
and FunctionFieldCategory.

empty ()

empty ()$R creates an aggregate of type R with 0
elements.

empty? (aggregate)

empty? (u) tests if aggregate u has 0 elements.

endOfFile? (file)

endOfFile? (f) tests whether the file f is positioned after
the end of all text. If the file is open for output, then this
test always returns true.

enqueue! (value, queue)

enqueue! (x, q) inserts x into the queue q at the back end.

APPENDIX E · 813

enterPointData (space, listOfPoints)

enterPointData (s, [p0, p1, . . . , pn]) adds a list of points
from p0 through pn to the ThreeSpace s, and returns the
index of the start of the list.

entry? (value, aggregate)

entry? (x, u), where u is an indexed aggregate (such as a
list, vector, or string), tests if x equals u.i for some index i.

epilogue (formattedObject)

epilogue (t) extracts the epilogue section of an IBM
SCRIPT Formula Format or TEX formatted object t.

eq (sExpression, sExpression)

eq(s, t), for SExpressions s and t returns true if EQ(s, t) is
true in Common LISP.

eq? (aggregate, aggregate)

eq? (u, v) tests if two aggregates u and v are same objects
in the AXIOM store.

equality (operator, function)

equality (op, f) attaches f as the "%equal?" property to
op. Argument f must be a boolean-valued “equality”
function defined on BasicOperator objects. If op1 and op2
have the same name, and one of them has an "%equal?"
property f , then f(op1, op2) is called to decide whether
op1 and op2 should be considered equal.

equation (expression, expression)

equation (a, b) creates the equation a = b.
equation (v, a..b), also written: v = a..b, creates a segment
binding value with variable v and segment a..b.

erf (variable)

erf (x) returns the error function of x: 2√
(π)

∫
exp−x2

dx.

error (string [, string])

error (msg) displays error message msg and terminates.
Argument msg is either a string or a list of strings.
error (name, msg) is similar except that the error message
is preceded by a message saying that the error occured in a
function named name.

euclideanGroebner (ideal [, string, string])

euclideanGroebner (lp[, ”info”, ”redcrit]) computes a
Gröbner basis for a polynomial ideal over a Euclidean
domain generated by the list of polynomials lp. If the
string "info" is given as a second argument, a summary is
given of the critical pairs. If the string "redcrit" is given
as a third argument, the critical pairs are printed.

euclideanNormalForm (polynomial, groebnerBasis)

euclideanNormalForm (poly, gb) reduces the polynomial
poly modulo the precomputed Gröbner basis gb giving a

canonical representative of the residue class.

euclideanSize (element)

euclideanSize (x) returns the Euclidean size of the
element x, or calls error if x is zero.

eulerPhi (positiveInteger)

eulerPhi (n) returns the number of integers between 1 and
n (including 1) which are relatively prime to n. This is the
Euler phi function φ(n), also called the totient function.

euler (positiveInteger)

euler (n) returns the n th Euler number. This is

2nE(n, 1/2), where E(n, x) is the n th Euler polynomial.

eval (expression [, options])

Many domains have forms of the eval defined. Here are
some the most common forms.
eval (f) unquotes all the quoted operators in f .
eval (f, x = v) replaces symbol or expression x by v in f ; if
x is an expression, it must be retractable to a single Kernel.

eval (f, [x1 = v1, . . . , xn = vn]) returns f with symbols or
expressions xi replaced by vi in parallel; if xi is an
expression, it must be retractable to a single Kernel.
eval (f, [x1, . . . , xn]) unquotes all the quoted operations in
f whose name is one of the xi.’s.
eval (f, x) unquotes all quoted operators in f whose name
is x.
eval (e, s, f) replaces every subexpression of e of the form
s(a1, . . . , an) by f(a1, . . . , an). The function f can have
type Expression → Expression if s is a unary operator;
otherwise f must have signature List(Expression) →
Expression.
eval (e, [s1, . . . , sn], [f1, . . . , fn]), replaces every
subexpression of e of the form si(a1, . . . , ani) by
fi(a1, . . . , ani). If all the si’s are unary operators, the
functions fi can have signature Expression → Expression;
otherwise, the fi must have signature List(Expression) →
Expression.
eval (p, el), where p is a permutation, returns the image of
element el under p.
eval (s), where s is of type SymmetricPolynomial with
rational number coefficients, returns the sum of the
coefficients of a cycle index. See CycleIndicators for details.
eval (f, s), where s is of type SymmetricPolynomial with
rational number coefficients and f is a function of type
Integer → Algebra Fraction Integer, evaluates the cycle index
s by applying the function f to each integer in a monomial
partition, forms their product and sums the results over all
monomials. See EvaluateCycleIndicators for details.

evaluate (operator, function)

evaluate (op) returns the value of the "%eval" property of
BasicOperator object op if it has one, and "failed"

814 · Operations

otherwise.
evaluate (op, f) attaches f as the "%eval" property of op.
If op has an "%eval" property f , then applying op to a
returns the result of f(a). If f takes a single argument,
then applying op to a value a returns the result f(a). If f
takes a list of arguments, then applying op to a1, . . . , an

returns the result of f(a1, . . . , an).
Argument f may also be an anonymous function of the
form u +− > g(u). In this case, g must be additive, that
is, g(a + b) = g(a) + g(b) for any a and b in R. This implies
that g(na) = ng(a) for any a in R and integer n > 0.

even? (integerNumber)

even? (n) tests if integer n is even.
even? (p) tests if permutation p is an even permutation,
that is, that the sign (p) = 1.

every? (predicate, aggregate)

every? (pred, u) tests if pred(x) is true for all elements x of
u.

exists? (file)

exists? (f) tests if the file f exists in the file system.

exp (expression)
expIfCan (x)

exp (x) returns %e to the power x.
expIfCan (z) returns exp(z) if possible, and "failed"
otherwise.

exp1 ()

exp1 ()$R returns exp 1: 2.7182818284 . . . either a float or
a small float according to whether R = Float or R =
DoubleFloat.

expand (expression)

expand (f) performs the following expansions on
Expression f :

Logs of products are expanded into sums of logs.

Trigonometric and hyperbolic trigonometric functions of
sums are expanded into sums of products of
trigonometric and hyperbolic trigonometric functions.

Formal powers of the form (a/b)c are expanded into

acb(−c).

expand (ir), where ir is an IntegrationResult, returns the
list of possible real functions corresponding to ir.
expand (lseg), where lseg is a list of segments, returns a
list with all segments expanded. For example, expand
[1..4, 7..9] = [1, 2, 3, 4, 7, 8, 9].
expand (l..h by k) returns a list of explicit elements. For
example, expand(1..5 by 2) = [1, 3, 5].
expand (f) returns an unfactored form of factored object
f .

expandLog (expression)

expandLog (f) converts every log (a/b) appearing in
Expression f into log(a)− log(b).

expandPower (expression)

expandPower (f) converts every power (a/b)c appearing
in Expression f into acb−c.

explicitEntries? (stream)

explicitEntries? (s) tests if the stream s has explicitly
computed entries.

explicitlyEmpty? (stream)

explicitlyEmpty? (s) tests if the stream is an (explicitly)
empty stream. Note: this is a null test which will not cause
lazy evaluation.

explicitlyFinite? (stream)

explicitlyFinite? (s) tests if the stream s has a finite
number of elements. Note: for many datatypes,
explicitlyFinite?(s) = not possiblyInfinite?(s).

exponent (floatOrFactored)

exponent (fl) returns the exponent part of a float or
small float fl.
exponent (u), where u is a factored object, returns the
exponent of the first factor of u, or 0 if the factored object
consists solely of a unit.

expressIdealMember (listOfIdeals, ideal)

expressIdealMember ([f1, . . . , fn], h) returns a
representation of ideal h as a linear combination of the
ideals fi or "failed" if h is not in the ideal generated by
the fi.

exptMod (polynomial, nonNegativeInteger, polynomial [,
prime])

exptMod (u, k, v[, p]) raises the polynomial u to the k th

power modulo the polynomial v. If a prime p is given, the
power is also computed modulo that prime.

exquo (element, element)

exquo (a, b) either returns an element c such that cb = a
or "failed" if no such element can be found. Values a and
b are members of a domain of category IntegralDomain.
exquo (A, r) returns the exact quotient of the elements of
matrix A by coefficient r, or calls error if this is not
possible.

extend (stream, integer)

extend (ps, n), where ps is a power series, causes all terms
of ps of degree ≤ n to be computed.
extend (st, n), where st is a stream, causes entries to be
computed so that st has at least n explicit entries, or so
that all entries of st are finite with length ≤ n.

APPENDIX E · 815

extendedEuclidean (element, element [, element])

Argments x, y, and z are members of a domain of category
EuclideanDomain.
extendedEuclidean (x, y) returns a record rec containing
three fields: coef1, coef2, and generator where
rec.coef1 ∗ x + rec.coef2 ∗ y = rec.generator and
rec.generator is a gcd of x and y. The gcd is unique only
up to associates if canonicalUnitNormal is not asserted.
Note: See principalIdeal for a version of this operation
which accepts an arbitrary length list of arguments.
extendedEuclidean (x, y, z) either returns a record rec of
two fields coef1 and coef2 where
rec.coef1 ∗ x + rec.coef2 ∗ y = z, and "failed" if z cannot
be expressed as such a linear combination of x and y.

extendedIntegrate (rationalFnct, symbol, rationalFnct)

extendedIntegrate (f, x, g) returns fractions [h, c] such
that dc/dx = 0 and dh/dx = f − cg if (h, c) exist, and
"failed" otherwise.

extensionDegree ()

extensionDegree ()$F returns the degree of the field
extension F if the extension is algebraic, and infinity if it
is not.

extension (filename)

extension (fn) returns the type part of the file name fn
as a string.

extract! (bag)

extract! (bg) destructively removes a (random) item from
bag bg.

extractBottom! (dequeue)

extractBottom! (d) destructively extracts the bottom
(back) element from the dequeue d, or calls error if d is
empty.

extractTop! (dequeue)

extractTop! (d) destructively extracts the top (front)
element from the dequeue d, or calls error if d is empty.

e (positiveInteger)

e (n) produces the appropriate unit element of a
CliffordAlgebra.

factor (polynomial [, numbers])

factor (x) returns the factorization of x into irreducibles,
where x is a member of any domain of category
UniqueFactorizationDomain.
factor (p, lan), where p is a polynomial and lan is a list of
algebraic numbers, factors p over the extension generated
by the algebraic numbers given by the list lan.
factor (upoly, prime), where upoly is a univariate
polynomial and prime is a prime integer, returns the list of
factors of upoly modulo the integer prime p, or calls error

if upoly is not square-free modulo p.

factorFraction (fraction)

factorFraction (r) factors the numerator and the
denominator of the polynomial fraction r.

factorGroebnerBasis (listOfPolynomials [, boolean])

factorGroebnerBasis (basis[, f lag]) checks whether the
basis contains reducible polynomials and uses these to split
the basis. Information about partial results is given if a
second argument of true is given.

factorials (expression [, symbol])

factorials (f [, x]) rewrites the permutations and binomials
in f in terms of factorials. If a symbol x is given as a
second argument, the operation rewrites only those terms
involving x.

factorial (expression)

factorial (n), where n is an integer, returns the integer
value of n! =

∏n

1
i.

factorial (n), where n is an expression, returns a formal
expression denoting n! Note: n! = n(n− 1)! when n > 0;
also, 0! = 1.

factorList (factoredForm)

factorList (f), for a factored form f , returns list of
records. Each record corresponds to a factor of f and has
three fields: flg, fctr, and xpnt. The fctr lists the factor
and xpnt, the exponent. The flg is one of the strings:
"nil", "sqfr", "irred", or "prime".

factorPolynomial (polynomial)

factorPolynomial (p) returns the factorization of a sparse
univariate polynomial p as a factored form.

factors (factoredForm)

factors (u) returns a list of the factors of a factored form u
in a form as a list suitable for iteration. Each element in
the list is a record containing both a factor and exponent
field.

factorsOfCyclicGroupSize ()

factorsOfCyclicGroupSize () returns the factorization of
size ()− 1

factorSquareFreePolynomial (polynomial)

factorSquareFreePolynomial (p) factors the univariate
polynomial p into irreducibles, where p is known to be
square free and primitive with respect to its main variable.

fibonacci (nonNegativeInteger)

fibonacci (n) returns the n th Fibonacci number. The
Fibonacci numbers F [n] are defined by F [0] = F [1] = 1
and F [n] = F [n− 1] + F [n− 2]. The algorithm has
running time O(log(n)3).

816 · Operations

filename (directory, name, extension)

filename (d, n, e) creates a file name with string d as its
directory, string n as its name and string e as its extension.

fill! (aggregate, value)

fill! (a, x) replaces each entry in aggregate a by x. The
modified a is returned. If a is a domain of category
TwoDimensionalArrayCategory such as a matrix, fill! (a,
x) sets every element of a to x.

filterUntil (predicate, stream)

filterUntil (p, s) returns [x0, x1, . . . , xn], where stream
s = [x0, x1, x2, ..] and n is the smallest index such that
p(xn) = true.

filterWhile (predicate, stream)

filterWhile (pred, s) returns [x0, x1, . . . , x(n−1)] where
s = [x0, x1, x2, ..] and n is the smallest index such that
p(xn) = false.

find (predicate, aggregate)

find (pred, u) returns the first x in u such that pred (x) is
true, and "failed" if no such x exists.

findCycle (nonNegativeInteger, stream)

findCycle (n, st) determines if stream st is periodic within
n terms. The operation returns a record with three fields:
cycle?, prefix, and period. If cycle? has value true, period
denotes the period of the cycle, and prefix gives the
number of terms in the stream before the cycle begins.

finite? (cardinalNumber)

finite? (f) tests if expression f is finite.
finite? (a) tests if cardinal number a is a finite cardinal,
that is, an integer.

fintegrate (taylorSeries, symbol, coefficient)

fintegrate (s, v, c) integrates the series s with respect to
variable v and having c as the constant of integration.

first (aggregate [, nonNegativeInteger])

first (u) returns the first element x of aggregate u.
first (u, n) returns a copy of the first n elements of u.

fixedPoint (function [, positiveInteger])

fixedPoint (f), a function of type A → A, is the fixed
point of function f . That is,
fixedPoint (f) = f(fixedPoint(f)).
fixedPoint (f, n), where f is a function of type List(A) →
List(A) and n is a positive integer, is the fixed point of
function f which is assumed to transform a list of length n.

fixedPoints (permutation)

fixedPoints (p) returns the points fixed by the
permutation p.

flagFactor (base, exponent, flag)

flagFactor (base, exponent, flag) creates a factored object
with a single factor whose base is asserted to be properly
described by the information flag: one of the strings
"nil", "sqfr", "irred", and "prime".

flatten (inputForm)

flatten (s) returns an input form corresponding to s with
all the nested operations flattened to triples using new
local variables. This operation is used to optimize
compiled code.

flexible? ()

flexible? ()$R tests if 2associator(a, b, a) = 0 for all a, b
in a domain R of category FiniteRankNonAssociativeAlgebra.
Note: only this can be tested since, in general, it is not
known whether 2a = 0 implies a = 0.

flexibleArray (listOfElements)

flexibleArray (ls) creates a flexible array from a list of
elements ls.

float? (sExpression)

float? (s) is true if s is an atom and belongs o Flt.

float (integer, integer [, positiveinteger])

float (a, e) returns abase()e as a float.
float (a, e, b) returns abe as a float.

floor (rationalNumber)

floor (fr), where fr is a fraction, returns the largest
integral element below fr.
floor (fl), where fl is a float, returns the largest integer
<= fl.

formula (formulaFormat)

formula (t) extracts the formula section of an IBM
SCRIPT Formula formatted object t.

fractionPart (fraction)

fractionPart (x) returns the fractional part of x.
Argument x can be a fraction, a radix (binary, decimal, or
hexadecimal) expansion, or a float. Note: x = whole(x) +
fractionPart(x).

fractRadix (listOfIntegers, listOfIntegers)

fractRadix (pre, cyc) creates a fractional radix expansion
from a list of prefix ragits and a list of cyclic ragits. For
example, fractRadix ([1], [6]) will return 0.16666666

fractRagits (radixExpansion)

fractRagits (rx) returns the ragits of the fractional part
of a radix expansion as a stream of integers.

freeOf? (expression, kernel)

freeOf? (x, k) tests if expression x does not contain any

APPENDIX E · 817

operator whose name is the symbol or kernel k.

Frobenius (element)

Frobenius (a)$F returns aq where q is the size ()$F of
extension field F .

front (queue)

front (q) returns the element at the front of the queue, or
calls error if q is empty.

frst (stream)

frst (s) returns the first element of stream s. Warning: this
function should only be called after a empty? test has been
made since there is no error check.

function (expression, name [, options])

Most domains provide an operation which converts objects
to type InputForm. Argument e below denotes an object
from such a domain. These operations create
user-functions from already computed results.
function (e, f) creates a function f() == e.
function (e, f, [x1, . . . , xn]) creates a function
f(x1, . . . , xn) == e.
function (e, f, x) creates a function f(x) == e.
function (e, f, x, y) creates a function f(x, y) == e.
function (expr, [x1, . . . , xn], f), where expr is an input
form and where f and the xi’s are symbols, returns the
input form corresponding to f(x1, . . . , xn) == i. See also
unparse.

Gamma (smallFloat)

Gamma (x) is the Euler gamma function, Gamma (x),

defined by Γ(x) =
∫∞
0

t(x−1) ∗ exp(−t)dt.

gcdPolynomial (polynomial, polynomial)

gcdPolynomial (p, q) returns the gcd of the univariate
polynomials p and q.

gcd (element [, element, element])

gcd (x, y) returns the greatest common divisor of x and y.
Arguments x and y are elements of a domain of category
GcdDomain.
gcd ([x1, . . . , xn]) returns the common gcd of the elements
of the list of xi.
gcd (p1, p2, prime) computes the gcd of the univariate
polynomials p1 and p2 modulo the prime integer prime.

generalizedContinuumHypothesisAssumed? ([bool])

generalizedContinuumHypothesisAssumed? () tests
if the hypothesis is currently assumed.
generalizedContinuumHypothesisAssumed (bool)
dictates that the hypothesis is or is not to be assumed,
according to whether bool is true or false.

generalPosition (ideal, listOfVariables)

generalPosition (I, listvar) performs a random linear

transformation on the variables in listvar and returns the
transformed ideal I along with the change of basis matrix.

generate (function [, element])

generate (f), where f is a function of no arguments,
creates an infinite stream all of whose elements are equal to
the value of f(). Note: generate (f) = [f(), f(), f(), . . .].
generate (f, x), where f is a function of one argument,
creates an infinite stream whose first element is x and
whose n th element (n > 1) is f applied to the previous
element. Note: generate (f, x) = [x, f(x), f(f(x)), . . .].
See also HallBasis.

generator ()

generator ()$R returns a root of the defining polynomial
of a domain of category FiniteAlgebraicExtensionField R.
This element generates the field as an algebra over the
ground field.
See also MonogenicAlgebra and FreeNilpotentLie.

generators (ideal)

generators (I) returns a list of generators for the ideal I.
generators (gp) returns the generators of a permutation
group gp.

genus ()

genus ()$R returns the genus of the algebraic function
field R. If R has several absolutely irreducible components,
then the genus of one of them is returned.

getMultiplicationMatrix ()
getMultiplicationTable ()

getMultiplicationMatrix ()$R returns a matrix
multiplication table for domain FiniteFieldNormalBasis(p, n),
a finite extension field of degree n over the domain
PrimeField(p) with p elements. Each element of the matrix
is a member of the underlying prime field.
getMultiplicationTable ()$R is similar except that the
multiplication table for the normal basis of the field is
represented by a vector of lists of records, each record
having two fields: value, an element of the prime field over
which the domain is built, and index, a small integer. This
table is used to perform multiplications between field
elements.

getVariableOrder ()

getVariableOrder () returns [[b1, . . . , bm], [a1, . . . , an]]
such that the ordering on the variables was given by
setVariableOrder ([b1, . . . , bm], [a1, . . . , an]).

getZechTable ()

getZechTable ()$F returns the Zech logarithm table of
the field F where F is some domain
FiniteFieldCyclicGroup(p, extdeg). This table is used to
perform additions in the field quickly.

818 · Operations

gramschmidt (listOfMatrices)

Argument lv has the form of a list of matrices of elements
of type Expression.
gramschmidt (lv) converts the list of column vectors lv
into a set of orthogonal column vectors of Euclidean length
1 using the Gram-Schmidt algorithm.

graphs (integer)

graphs (n) is the cycle index of the group induced on the
edges of a graph by applying the symmetric function to the
n nodes. See CycleIndicators for details.

green ()

green () returns the position of the green hue from total
hues.

groebner (listOfPolynomials)

groebner (lp) computes a Gröbner basis for a polynomial
ideal generated by the list of polynomials lp.
groebner (I) returns a set of generators of ideal I that are
a Gröbner basis for I.
groebner (lp, infoflag) computes a Gröbner basis for a
polynomial ideal generated by the list of polynomials lp.
Argument infoflag is used to get information on the
computation. If infoflag is "info", then summary
information is displayed for each s-polynomial generated.
If infoflag is "redcrit", the reduced critical pairs are
displayed. To get the display of both kinds of information,
use groebner (lp, ”info”, ”redcrit”).

groebner? (ideal)

groebner? (I) tests if the generators of the ideal I are a
Gröbner basis.

groebnerIdeal (listOfPolynomials)

groebnerIdeal (lp) constructs the ideal generated by the
list of polynomials lp assumed to be a Gröbner basis. Note:
this operation avoids a Gröbner basis computation.

groebnerFactorize (listOfPolynomials [options])

groebnerFactorize (lp[, bool]) returns a list of list of
polynomials, each inner list denoting a Gröbner basis. The
union of the solutions of the bases is the solution of the
system of equations given by lp. Information about partial
results is printed if a second argument is given with value
true.
groebnerFactorize (lp, nonZeroRestrictions[, bool]),
where nonZeroRestrictions is a list of polynomials, is
similar. Here, however, the solutions to the system of
equations are computed under the restriction that the
polynomials in the second argument do not vanish.
Information about partial results is printed if a third
argument with value true is given.

ground (expression)

ground? (expression)

ground (p) retracts expression polynomial p to the
coefficient ring, or calls error if such a retraction is not
possible.
ground? (p) tests if an expression or polynomial p is a
member of the coefficient ring. See also ground?.

harmonic (positiveInteger)

harmonic (n) returns the n th harmonic number, defined
by H[n] =

∑n

k=1
1/k.

has (domain, property)

has (R, prop) tests if domain R has property prop.
Argument prop is either a category, operation, an
attribute, or a combination of these. For example, Integer
has Ring and Integer has commutative("*").

has? (operation, property)

has? (op, s) tests if property s is attached to op.

hash (number)

hash (n) returns the hash code for n, an integer or a float.

hasHi (segment)

hasHi (seg) tests whether the segment seg has an upper
bound. For example, hasHi (1..) = false.

hasSolution? (matrix, vector)

hasSolution? (A, B) tests if the linear system AX = B
has a solution, where A is a matrix and B is a (column)
vector.

hconcat (outputForms [, outputForm])

hconcat (o1, o2), where o1 and o2 are objects of type
OutputForm (normally unexposed), returns an output form
for the horizontal concatenation of forms o1 and o2.
hconcat (lof), where lof is a list of objects of type
OutputForm (normally unexposed), returns an output form
for the horizontal concatenation of the elements of lof .

heap (listOfElements)

heap (ls) creates a Heap of elements consisting of the
elements of ls.

heapSort (predicate, aggregate)

heapSort (pred, agg) sorts the aggregate agg with the
ordering function pred using the heapsort algorithm.

height (expression)

height (f), where f is an expression, returns the highest
nesting level appearing in f . Constants have height 0.
Symbols have height 1. For any operator op and
expressions f1, . . . , fn, op(f1, . . . , fn) has height equal to
1 + max(height(f1), . . . , height(fn)).
height (d) returns the number of elements in dequeue d.
Note: height (d) = #d.

APPENDIX E · 819

hermiteH (nonNegativeInteger, element)

hermiteH (n, x) is the n th Hermite polynomial, H[n](x),
defined by exp (2tx− t2) =

∑∞
n=0

H[n](x)tn/n!.

hexDigit ()

hexDigit () returns the class of all characters for which
hexDigit? is true.

hexDigit? (character)

hexDigit? (c) tests if c is a hexadecimal numeral, that is,
one of 0..9, a..f or A..F .

hex (rationalNumber)

hex (r) converts a rational number to a hexadecimal
expansion.

hi (segment)

hi (s) returns the second endpoint of segment s. For
example, hi (l..h) = h.

horizConcat (matrix, matrix)

horizConcat (x, y) horizontally concatenates two matrices
with an equal number of rows. The entries of y appear to
the right of the entries of x. The operation calls error if
the matrices do not have the same number of rows.

htrigs (expression)

htrigs (f) converts all the exponentials in expression f
into hyperbolic sines and cosines.

hue (palette)

hue (p) returns the hue field of the indicated palette p.

hue (color)

hue (c) returns the hue index of the indicated color c.

hypergeometric0F1 (complexDF, complexSF)

hypergeometric0F1 (c, z) is the hypergeometric function
0F1(c; z). Arguments c and z are both either small floats
or complex small floats.

ideal (polyList)

ideal (polyList) constructs the ideal generated by the list
of polynomials polyList.

imag (expression)
imagi (quaternionOrOctonion)
imagI (octonion)

imag (x) extracts the imaginary part of a complex value or
expression x.
imagI (q) extracts the i part of quaternion q. Similarly,
operations imagJ, and imagK are used to extract the j
and k parts.
imagi (o) extracts the i part of octonion o. Similarly,
imagj, imagk, imagE, imagI, imagJ, and imagK are
used to extract other parts.

implies (boolean, boolean)

implies (a, b) tests if boolean value a implies boolean value
b. The result is true except when a is true and b is false.

in? (ideal, ideal)

in? (I, J) tests if the ideal I is contained in the ideal J .

inHallBasis (integer, integer, integer, integer)

inHallBasis?(n, leftCandidate, rightCandidate, left)
tests to see if a new element should be added to the P .
Hall basis being constructed. The list
[leftCandidate, wt, rightCandidate] is included in the
basis if in the unique factorization of rightCandidate, we
have left factor leftOfRight, and
leftOfRight <= leftCandidate

increasePrecision (integer)

increasePrecision (n) increases the current precision by
n decimal digits.

index (positiveInteger)

index (i) takes a positive integer i less than or equal to

size () and returns the i th element of the set. This
operation establishes a bijection between the elements of
the finite set and 1..size().

index? (index, aggregate)

index? (i, u) tests if i is an index of aggregate u. For
example, index?(2, [1, 2, 3]) is true but index?(4,
[1, 2, 3]) is false.

infieldIntegrate (rationalFunction, symbol)

infieldIntegrate (f, x), where f is a fraction of

polynomials, returns a fraction g such that dg
dx

= f if g
exists, and "failed" otherwise.

infinite? (orderedCompletion)

infinite? (x) tests if x is infinite, where x is a member of
the ordered completion of a domain. See
OrderedCompletion using Browse.

infinity ()

infinity () returns infinity denoting +∞ as a one point
completion of the integers. See OnePointCompletion using
Browse. See also minusInfinity and plusInfinitity.

infix (outputForm, outputForms [, OutputForm])

infix (o, lo), where o is an object of type OutputForm
(normally unexposed) and lo is a list of objects of type
OutputForm, creates a form depicting the nary application
of infix operation o to a tuple of arguments lo.
infix (o, a, b), where o, a, and b are objects of type
OutputForm (normally unexposed), creates an output form
which displays as: a op b.

820 · Operations

initial (differentialPolynomial)

initial (p) returns the leading coefficient of differential
polynomial p expressed as a univariate polynomial in its
leader.

initializeGroupForWordProblem (group [, integer,
integer])

initializeGroupForWordProblem (gp[, n, m]) initializes
the group gp for the word problem. Consult
PermutationGroup using Browse for details.

input (operator [, function])

input (op) returns the "%input" property of op if it has
one attached, and "failed" otherwise.
input (op, f) attaches f as the "%input" property of op. If
op has a "%input" property f , then op(a1, . . . , an) is
converted to InputForm using f(a1, . . . , an). Argument f
must be a function with signature List(InputForm) →
InputForm.

inRadical? (polynomial, ideal)

inRadical? (f, I) tests if some power of the polynomial f
belongs to the ideal I.

insert (x, aggregate [, integer])

insert (x, u, i) returns a copy of u having x as its i th

element.
insert (v, u, k) returns a copy of u having v inserted

beginning at the i th element.
insert! (x, u) destructively inserts item x into bag u.
insert! (x, u) destructively inserts item x as a leaf into
binary search tree or binary tournament u.
insert! (x, u, i) destructively inserts x into aggregate u at
position i.
insert! (v, u, i) destructively inserts aggregate v into u at
position i.
insert! (x, d, n) destructively inserts n copies of x into
dictionary d.

insertBottom! (element, queue)

insertBottom! (x, d) destructively inserts x into the
dequeue d at the bottom (back) of the dequeue.

insertTop! (element, dequeue)

insertTop! (x, d) destructively inserts x into the dequeue d
at the top (front). The element previously at the top of the
dequeue becomes the second in the dequeue, and so on.

integer (expression)
integer? (expression)
integerIfCan (expression)

integer (x) returns x as an integer, or calls error if this is
not possible.
integer? (x) tests if expression x is an integer.
integerIfCan (x) returns expression x as of type Integer or

else "failed" if it cannot.

integerPart (float)

integerPart (fl) returns the integer part of the mantissa
of float fl.

integral (expression, symbol)
integral (expression, segmentBinding)

integral (f, x) returns the formal integral
∫

fdx.
integral (f, x = a..b) returns the formal definite integral∫ b

a
f(x)dx.

integralBasis ()
integralBasisAtInfinity ()

Domain F is the domain of functions on a fixed curve. See
FunctionFieldCategory using Browse.
integralBasisAtInfinity ()$F returns the local integral
basis at infinity.
integralBasis ()$F returns the integral basis for the curve.

integralCoordinates (function)

integralCoordinates (f), where f is a function on a
curve defined by domain F , returns the coordinates of f
with respect to the integralBasis ()$F as polynomials Ai

together with a common denominator d. Specifically, the
operation returns a record having selector num with value
[A1, . . . , An] and selector den with value d such that
f = (A1w1 + . . . + Anwn)/d where (w1, . . . , wn) is the
integral basis. See FunctionFieldCategory using Browse.

integralDerivationMatrix (function)

integralDerivationMatrix (d) extends the derivation d
and returns the coordinates of the derivative of f with
respect to the integralBasis ()$F as a matrix of
polynomials and a common denominator Q. Specifically,
the operation returns a record having selector num with

value M and selector den with value Q such that the i th

row of M divided by Q form the coordinates of f with
respect to integral basis (w1, . . . , wn). See
FunctionFieldCategory using Browse.

integralMatrix ()
integralMatrixAtInfinity ()

Domain F is a domain of functions on a fixed curve. These
operations return a matrix which transform the natural
basis to an integral basis. See FunctionFieldCategory using
Browse.
integralMatrix () returns M such that
(w1, . . . , wn) = M(1, y, . . . , yn−1), where (w1, . . . , wn) is
the integral basis returned by integralBasis ()$F .
integralMatrixAtInfinity ()$F returns matrix M which
transforms the natural basis such that
(v1, . . . , vn) = M(1, y, . . . , yn−1) where (v1, . . . , vn) is the
local integral basis at infinity returned by
integralBasisAtInfinity ()$F .

APPENDIX E · 821

integralRepresents (vector, commonDenominator)

integralRepresents ([A1, . . . , An], d) is the inverse of the
operation integralCoordinates defined for domain F , a
domain of functions on a fixed curve. Given the
coordinates as polynomials [A1, . . . , An] over a common
denominator d, this operation returns the function
represented as(A1w1 + . . . + Anwn)/d where (w1, . . . , wn)
is the integral basisreturned by integralBasis ()$F .See
FunctionFieldCategory using Browse.

integrate (expression)
integrate (expression, variable [, options])

integrate (f) returns the integral of a univariate
polynomial or power series f with respect to its
distinguished variable.
integrate (f, x) returns the integral of f(x)dx, where x is
viewed as a real variable.
integrate (f, x = a..b[, ”noPole”]) returns the integral of
f(x)dx from a to b. If it is not possible to check whether f
has a pole for x between a and b, then a third argument
"noPole" will make this function assume thatf has no such
pole.This operation calls error if f has a pole for x
between a and b or if a third argument different from
"noPole" is given.

interpret (inputForm)

interpret (f) passes f of type InputForm to the interpreter.

interpret (f)$P , where P is the package
InputFormFunctions1(R) for some type R, passes f of type
InputForm to the interpreter, and transforms the result into
an object of type R.

intersect (elements [, element])

intersect (li), where li is a list of ideals, computes the
intersection of the list of ideals li.
intersect (u, v), where u and v are sets, returns the set w
consisting of elements common to both sets u and v. See
also Multiset.
intersect (I, J), where I and J are ideals, computes the
intersection of the ideals I and J .

inv (element)

inv (x) returns the multiplicative inverse of x, where x is
an element of a domain of category Group or DivisionRing,
or calls error if x is 0.

inverse (matrix)

inverse (A) returns the inverse of the matrix A, or
"failed" if the matrix is not invertible, or calls error if
the matrix is not square.

inverseColeman (listOfIntegers, listOfIntegers, matrix)

inverseColeman (alpha, beta, C) returns the
lexicographically smallest permutation in a double coset of
the symmetric group corresponding to a non-negative

Coleman-matrix. Consult
SymmetricGroupCombinatoricFunctions using Browse for
details.

inverseIntegralMatrix ()
inverseIntegralMatrixAtInfinity ()

Domain F is a domain of functions on a fixed curve. These
operations return a matrix which transform an integral
basis to a natural basis. See FunctionFieldCategory using
Browse.
inverseIntegralMatrix ()$F returns M such that
M(w1, . . . , wn) = (1, y, . . . , yn−1) where (w1, . . . , wn) is the
integral basis returned by integralBasis ()$F . See also
integralMatrix.
inverseIntegralMatrixAtInfinity () returns M such

that M(v1, . . . , vn) = (1, y, . . . , y(n− 1)) where (v1, . . . , vn)
is the local integral basis at infinity returned by
integralBasisAtInfinity ()$F . See also
integralMatrixAtInfinity.

inverseLaplace (expression, symbol, symbol)

inverseLaplace (f, s, t) returns the Inverse Laplace
transform of f(s) using t as the new variable, or "failed"
if unable to find a closed form.

invmod (positiveInteger, positiveInteger)

invmod (a, b), for relatively prime positive integers a and b
such that a < b, returns 1/a mod b.

iomode (file)

iomode (f) returns the status of the file f as one of the
following strings: "input", "output" or "closed".

irreducible? (polynomial)

irreducible? (p) tests whether the polynomial p is
irreducible.

irreducibleFactor (element, integer)

irreducibleFactor (base, exponent) creates a factored
object with a single factor whose base is asserted to be
irreducible (flag = "irred").

irreducibleRepresentation (listOfIntegers [,
permutations])

irreducibleRepresentation (lambda[, pi]) returns a
matrix giving the irreducible representation corresponding
to partition lambda, represented as a list of integers, in
Young’s natural form of the permutation pi in the
symmetric group whose elements permute 1, 2, . . . , n. If a
second argument is not given, the permutation is taken to
be the following two generators of the symmetric group,
namely (12) (2-cycle) and (12 . . . n) ((n)-cycle).

is? (expression, pattern)

is? (expr, pat) tests if the expression expr matches the
pattern pat.

822 · Operations

is? (expression, op) tests if expression is a kernel and is its
operator is op.

isAbsolutelyIrreducible? (listOfMatrices, integer)

isAbsolutelyIrreducible? (aG, numberOfTries) uses
Norton’s irreducibility test to check for absolute
irreduciblity. Consult RepresentationPackage2 using Browse
for details.

isExpt (expression [, operator])

isExpt (p[, op]) returns a record with two fields: var
denoting a kernel x, and exponent denoting an integer n, if
expression p has the form p = xn and n 6= 0. If a second
argument op is given, x must have the form op(a) for some
a.

isMult (expression)

isMult (p) returns a record with two fields: coef denoting
an integer n, and var denoting a kernel x, if p has the form
n ∗ x and n 6= 0, and "failed" if this is not possible.

isobaric? (differentialPolynomial)

isobaric? (p) tests if every differential monomial appearing
in the differential polynomial p has the same weight.

isPlus (expression)

isPlus (p) returns [m1, . . . , mn] if p has the form
m1 + . . . + mn for n > 1 and mi 6= 0, and "failed" if this
is not possible.

isTimes (expression)

isTimes (p) returns [a1, . . . , an] if p has the form
a1 ∗ . . . ∗ an for n > 1 and mi 6= 1, and "failed" if this is
not possible.

Is (subject, pattern)

Is(expr, pat) matches the pattern pat on the expression
expr and returns a list of matches [v1 = e1, . . . , vn = en] or
"failed" if matching fails. An empty list is returned if
either expr is exactly equal to pat or if pat does not match
expr.

jacobi (integer, integer)

jacobi (a, b) returns the Jacobi symbol J(a/b). When b is
odd, J(a/b) =

∏
p∈factors(b)

L(a/p). Note: by convention, 0

is returned if gcd (a, b) 6= 1.

jacobiIdentity? ()

jacobiIdentity? () tests if (ab)c + (bc)a + (ca)b = 0 for all
a, b, c in a domain of FiniteRankNonAssociativeAlgebra. For
example, this relation holds for crossed products of
three-dimensional vectors.

janko2 ([listOfIntegers])

janko2 () constructs the janko group acting on the integers
1, . . . , 100.

janko2 ([li]) constructs the janko group acting on the 100
integers given in the list li. The default value of li is
[1, . . . , 100]. This operation removes duplicates in the list
and calls error if li does not have exactly 100 distinct
entries.

jordanAdmissible? ()
jordanAlgebra? ()

jordanAdmissible? ()$F , where F is a member of
FiniteRankNonAssociativeAlgebra(R) over a commutative ring
R, tests if 2 is invertible in R and if the algebra defined by
{a, b} defined by (1/2)(ab + ba) is a Jordan algebra, that is,
satisfies the Jordan identity.
jordanAlgebra? ()$F tests if the algebra is commutative,
that characteristic ()$F 6= 2, and (ab)a2 − a(ba2) = 0 for
all a and b in the algebra (Jordan identity). Example: for
every associative algebra (A, +, @), you can construct a
Jordan algebra (A, +, ∗), where a ∗ b := (a@b + b@a)/2.

kernel (operator, expression)

kernel (op, x) constructs op(x) without evaluating it.
kernel (op, [f1, . . . , fn]) constructs op(f1, . . . , fn) without
evaluating it.

kernels (expression)

kernels (f) returns the list of all the top-level kernels
appearing in expression f , but not the ones appearing in
the arguments of the top-level kernels.

key? (key, dictionary)
keys (dictionary)

key? (k, d) tests if k is a key in dictionary d. Dictionary d
is an element of a domain of category KeyedDictionary(K, E),
where K and E denote the domains of keys and entries.
keys (d) returns the list the keys in table d.

kroneckerDelta ([integer, integer])

kroneckerDelta () is the rank 2 tensor defined by
kroneckerDelta (i, j) = 1 if i = j, and 0 otherwise.

label (outputForm, outputForm)

label (o1, o2), where o1 and o2 are objects of type
OutputForm (normally unexposed), returns an output form
displaying equation o2 with label o1.

laguerreL (nonNegativeInteger, x)
laguerreL (nonNegativeInteger, nonNegativeInteger, x)

laguerreL (n, x) is the n th Laguerre polynomial, L[n](x),
defined by exp(−tx

1−t
)/(1− t) =

∑∞
n=0

L[n](x)tn/n!.

laguerreL (m, n, x) is the associated Laguerre polynomial,

Lm[n](x), defined as the m th derivative of L[n](x).

lambda (inputForm, listOfSymbols)

lambda (i, [x1, . . . xn]) returns the input form
corresponding to (x1, . . . , xn) 7→ i if n > 1. See also

APPENDIX E · 823

compiledFunction, flatten, and unparse.

laplace (expression, symbol, symbol)

laplace (f, t, s) returns the Laplace transform of f(t),
defined by

∫∞
t=0

exp(−st)f(t)dt. If the transform cannot be

computed, the formal object laplace (f, t, s) is returned.

last (indexedAggregate [, nonNegativeInteger])

last (u) returns the last element of u.
last (u, n) returns a copy of the last n (n ≥ 0) elements of
u.

laurent (expression)
laurentIfCan (expression)

laurent (u) converts u to a Laurent series, or calls error if
this is not possible.
laurentIfCan (u) converts the Puiseux series u to a
Laurent series, or returns "failed" if this is not possible.
laurent (f, x = a) expands the expression f as a Laurent
series in powers of (x− a).
laurent (f, n) expands the expression f as a Laurent series
in powers of x; at least n terms are computed.
laurent (n 7→ an, x = a, n0..[n1]) returns a Laurent series
defined by

∑n1
n=n0

an(x− a)n, where n1 is ∞ by default.

laurent (an, n, x = a, n0..[n1]) returns a Laurent series
defined by

∑n1
n=n0

an(x− a)n, where n1 is ∞ by default.

laurentRep (expression)

laurentRep (f(x)) returns g(x) where the Puiseux series
f(x) = g(xr) is represented by [r, g(x)].

lazy? (stream)

lazy? (s) tests if the first node of the stream s is a lazy
evaluation mechanism which could produce an additional
entry to s.

lazyEvaluate (stream)

lazyEvaluate (s) causes one lazy evaluation of stream s.
Caution: s must be a “lazy node” satisfying
lazy? (s) = true, as there is no error check. A call to this
function may or may not produce an explicit first entry.

lcm (elements [, element])

lcm (x, y) returns the least common multiple of x and y.
lcm (lx) returns the least common multiple of the elements
of the list lx.

ldexquo (lodOperator, lodOperator)

ldexquo (a, b) returns q such that a = b ∗ q, or "failed" if
no such q exists.

leftDivide (lodOperator, lodOperator)
leftQuotient (lodOperator, lodOperator)
leftRemainder (lodOperator, lodOperator)

leftDivide (a, b) returns a record with two fields:

“quotient” q and “remainder” r such that a = bq + r and
the degree of r is less than the degree of b. This operation
is called “left division.” Operation leftQuotient (a, b)
returns q, and leftRemainder (a, b) returns r.

leader (differentialPolynomial)

leader (p) returns the derivative of the highest rank
appearing in the differential polynomial p, or calls error if
p is in the ground ring.

leadingCoefficient (polynomial)

leadingCoefficient (p) returns the coefficient of the
highest degree term of polynomial p. See also
IndexedDirectProductCategory and
MonogenicLinearOperator.

leadingIdeal (ideal)

leadingIdeal (I) is the ideal generated by the leading
terms of the elements of the ideal I.

leadingMonomial (polynomial)

leadingMonomial (p) returns the monomial of
polynomial p with the highest degree.

leaf? (aggregate)
leafValues (aggregate)
leaves (aggregate)

These operations apply to a recursive aggregate a. See, for
example, BinaryTree.
leaf? (a) tests if a is a terminal node.
leaves (a) returns the list of values at the leaf nodes in
left-to-right order.

left (binaryRecursiveAggregate)

left (a) returns the left child of binary aggregate a.

leftAlternative? ()

leftAlternative? ()$F , where F is a domain of
FiniteRankNonAssociativeAlgebra, tests if
2 ∗ associator(a, a, b) = 0 for all a, b in F . Note: in
general, you do not know whether 2 ∗ a = 0 implies a = 0.

leftCharacteristicPolynomial (polynomial)

leftCharacteristicPolynomial (p)$F returns the
characteristic polynomial of the left regular representation
of p of domain F with respect to any basis. Argument p is
a member of a domain of category
FiniteRankNonAssociativeAlgebra(R) where R is a
commutative ring.

leftDiscriminant ([listOfVectors])

leftDiscriminant ([v1, . . . , vn])$F where F is a domain of
category FramedNonAssociativeAlgebra over a commutative
ring R, returns the determinant of the n-by-n matrix

whose element at the i th row and j th column is given by
the left trace of the product vi ∗ vj . Same as

824 · Operations

determinant(leftTraceMatrix ([v1, . . . , vn])). If no
argument is given, v1, . . . , vn are taken to elements of the
fixed R-basis.

leftGcd (lodOperator, lodOperator)

leftGcd (a, b) computes the value g of highest degree such
that a = aa ∗ g and b = bb ∗ g for some values aa and bb.
The value g is computed using left-division.

leftLcm (lodOperator, lodOperator)

leftLcm (a, b) computes the value m of lowest degree such
that m = a ∗ aa = b ∗ bb for some values aa and bb. The
value m is computed using left-division.

leftMinimalPolynomial (element)

leftMinimalPolynomial (a) returns the polynomial
determined by the smallest non-trivial linear combination
of left powers of a, an element of a domain of category
FiniteRankNonAssociativeAlgebra. Note: the polynomial has
no a constant term because, in general, the algebra has no
unit.

leftNorm (element)

leftNorm (a) returns the determinant of the left regular
representation of a, an element of a domain of category
FiniteRankNonAssociativeAlgebra.

leftPower (monad, nonNegativeInteger)

leftPower (a, n) returns the n th left power of monad a,
that is, leftPower (a, n) := aleftPower(a, n− 1). If the
monad has a unit then leftPower (a, 0) := 1. Otherwise,
define leftPower (a, 1) = a See Monad and MonadWithUnit
for details. See also leftRecip.

leftRankPolynomial ()

leftRankPolynomial ()$F calculates the left minimal
polynomial of a generic element of an algebra of domain F ,
a domain of category FramedNonAssociativeAlgebra over a
commutative ring R. This generic element is an element of
the algebra defined by the same structural constants over
the polynomial ring in symbolic coefficients with respect to
the fixed basis.

leftRank (element)

leftRank (x) returns the number of linearly independent
elements in xb1, . . . , xbn, where b = [b1, . . . , bn] is a basis.
Argument x is an element of a domain of category
FramedNonAssociativeAlgebra over a commutative ring R.

leftRecip (element)

leftRecip (a) returns an element that is a left inverse of a,
or "failed", if there is no unit element, such an element
does not exist, or the left reciprocal cannot be determined
(see unitsKnown).

leftRecip (element)

leftRecip (a) returns an element, which is a left inverse of
a, or "failed" if such an element doesn’t exist or cannot
be determined (see unitsKnown).

leftRegularRepresentation (element [,
vectorOfElements])

This operation is defined on a domain F of category
NonAssociativeAlgebra.
leftRegularRepresentation(a[, [v1, . . . , vn]]) returns the
matrix of the linear map defined by left multiplication by a
with respect to the basis [v1, . . . , vn]. If a second argument
is missing, the basis is taken to be the fixed basis for F .

leftTraceMatrix ([vectorOfElements])

This operation is defined on a domain F of category
NonAssociativeAlgebra.
leftTraceMatrix ([v]), where v is an optional vector
[v1, . . . , vn], returns the n-by-n matrix M such that Mi,j is
the left trace of the product vi ∗ vj of elements from the
basis [v1, . . . , vn]. If the argument is missing, the basis is
taken to be the fixed basis for F .

leftTrace (element)

leftTrace (a) returns the trace of the left regular
representation of a, an element of a domain of category
FiniteRankNonAssociativeAlgebra.

leftTrim (string, various)

leftTrim (s, c) returns string s with all leading characters
c deleted. For example, leftTrim(" abc ", " ") returns
"abc ".
leftTrim (s, cc) returns s with all leading characters in cc
deleted. For example, leftTrim("(abc)", charClass
"()") returns "abc".

leftUnit ()
leftUnits ()

These operations are defined on a domain F of category
NonAssociativeAlgebra.
leftUnit ()$F returns a left unit of the algebra (not
necessarily unique), or "failed" if there is none.
leftUnits ()$F returns the affine space of all left units of
an algebra F , or "failed" if there is none, where F is a
domain of category FiniteRankNonAssociativeAlgebra. The
normal result is returned as a record with selector
particular for an element of F , and basis for a list of
elements of F .

legendreSymbol (integer, integer)

legendreSymbol (a, p) returns the Legendre symbol

L(a/p), L(a/p) = (−1)(p−1)/2 mod p for prime p. This is 0
if a = 0, 1 if a is a quadratic residue mod p, and −1
otherwise. Note: because the primality test is expensive,
use jacobi (a, p) if you know that p is prime.

APPENDIX E · 825

LegendreP (nonNegativeInteger, element)

LegendreP (n, x) is the n th Legendre polynomial,
P [n](x), defined by 1√

(1−2xt+t2)
=

∑∞
n=0

P [n](x)tn.

length (various)

length (a) returns the length of integer a in digits.

less? (aggregate, nonNegativeInteger)

less? (u, n) tests if u has less than n elements.

leviCivitaSymbol ()

leviCivitaSymbol () is the rank dim tensor defined by
leviCivitaSymbol ()(i1, . . . idim), which is +1, −1 or 0
according to whether the permutation i1, . . . , idim is an
even permutation, an odd permutation, or not a
permutation of i0, . . . , i0 + dim− 1, respectively, where i0
is the minimum index.

lexGroebner (listOfPolynomials, listOfSymbols)

lexGroebner (lp, lv) computes a Gröbner basis for the list
of polynomials lp in lexicographic order. The variables lv
are ordered by their position in the list lp.

lhs (equationOrRewriteRule)

lhs (x) returns the left hand side of an equation or
rewrite-rule.

library (filename)

library (name) creates a new library file with filename
name.

lieAdmissible? ()

lieAdmissible? ()$F tests if the algebra defined by the
commutators is a Lie algebra. The domain F is a member
of the category FiniteRankNonAssociativeAlgebra(R). The
property of anticommutativity follows from the definition.

lieAlgebra? ()

lieAlgebra? ()$F tests if the algebra of F is
anticommutative and that the Jacobi identity
(a ∗ b) ∗ c + (b ∗ c) ∗ a + (c ∗ a) ∗ b = 0 is satisfied for all a, b,
c in F .

light (color)

light (c) sets the shade of a hue c to its highest value.

limit (expression, equation [, direction])

limit (f(x), x = a) computes the real two-sided limit of f
as its argument x approaches a.
limit (f(x), x = a, ”left”) computes the real limit of f as
its argument x approaches a from the left.
limit (f(x), x = a, ”right”) computes the corresponding
limit as x approaches a from the right.

limitedIntegrate (rationalFunction, symbol,

listOfRationalFunctions)

limitedIntegrate (f, x, [g1, . . . , gn]) returns fractions
[h, [ci, gi]] such that the gi’s are among [g1, . . . , gn],
dci/dx = 0, and d(h +

∑
i
ciloggi)/dx = f if possible,

"failed" otherwise.

linearDependenceOverZ (vector)
linearlyDependentOverZ? (vector)

linearlyDependenceOverZ ([v1, . . . , vn]) tests if the
elements vi of a ring (typically algebraic numbers or
Expressions) are linearly dependent over the integers. If so,
the operation returns [c1, . . . , cn] such that
c1v1 + · · ·+ cnvn = 0 (for which not all the ci’s are 0). If
linearly independent over the integers, "failed" is
returned.
linearlyDependentOverZ? ([v1, . . . , vn]) returns true if
the vi’s are linearly dependent over the integers, and false
otherwise.

lineColorDefault ([palette])

lineColorDefault () returns the default color of lines
connecting points in a two-dimensional viewport.
lineColorDefault (p) sets the default color of lines
connecting points in a two-dimensional viewport to the
palette p.

linSolve (listOfPolynomials, listOfVariables)

linSolve (lp, lvar) finds the solutions of the linear system
of polynomials lp = 0 with respect to the list of symbols
lvar.

li (expression)

li(x) returns the logarithmic integral of x defined by,∫
dx

log(x)
.

list (element)

list (x) creates a list consisting of the one element x.

list? (sExpression)

list? (s) tests if SExpression value s is a Lisp list, possibly
the null list.

listBranches (listOfListsOfPoints)

listBranches (c) returns a list of lists of points
representing the branches of the curve c.

listRepresentation (permutation)

listRepresentation (p) produces a representation rep of
the permutation p as a list of preimages and images i, that
is, permutation p maps (rep.preimage).k to (rep.image).k
for all indices k.

listYoungTableaus (listOfIntegers)

listYoungTableaus (lambda), where lambda is a proper
partition, generates the list of all standard tableaus of
shape lambda by means of lattice permutations. The

826 · Operations

numbers of the lattice permutation are interpreted as
column labels.

listOfComponents (threeSpace)

listOfComponents (sp) returns a list of list of list of
points for threeSpace object sp assumed to be composed of
a list of components, each a list of curves, which in turn is
each a list of points, or calls error if this is not possible.

listOfCurves (sp) returns a list of list of subspace
component properties for threeSpace object sp assumed to
be a list of curves, each of which is a list of subspace
components, or calls error if this is not possible.

lo (segment)

lo (s) returns the first endpoint of s. For example,
lo(l..h) = l.

log (expression)
logIfCan (expression)

log (x) returns the natural logarithm of x.
logIfCan (z) returns log (z) if possible, and "failed"
otherwise.

log2 ([float])

log2 () returns ln(2) = 0.6931471805
log2 (x) computes the base 2 logarithm for x.

log10 ([float])

log10 () returns ln(10) = 2.3025809299
log10 (x) computes the base 10 logarithm for x.

logGamma (float)

logGamma (x) is the natural log of Γ(x). Note: this can
often be computed even if Γ(x) cannot.

lowerCase ([string])
lowerCase? (character)

lowerCase () returns the class of all characters for which
lowerCase? is true.
lowerCase (c) returns a corresponding lower case
alphabetic character c if c is an upper case alphabetic
character, and c otherwise.
lowerCase (s) returns the string with all characters in
lower case.
lowerCase? (c) tests if character c is an lower case letter,
that is, one of a. . . z.

listOfProperties (threeSpace)

listOfProperties (sp) returns a list of subspace
component properties for sp of type ThreeSpace, or calls
error if this is not possible.

listOfPoints (threeSpace)

listOfPoints (sp), where sp is a ThreeSpace object, returns
the list of points component contained in sp.

mainKernel (expression)

mainKernel (f) returns a kernel of f with maximum
nesting level, or "failed" if f has no kernels (that is, f is
a constant).

mainVariable (polynomial)

mainVariable (u) returns the variable of highest ordering
that actually occurs in the polynomial p, or "failed" if no
variables are present. Argument u can be either a
polynomial or a rational function.

makeFloatFunction (expression, symbol [, symbol])

Argument expr may be of any type that is coercible to
type InputForm (objects of the most common types can be
so coerced).
makeFloatFunction (expr, x) returns an anonymous
function of type Float → Float defined by x 7→ expr.
makeFloatFunction (expr, x, y) returns an anonymous
function of type (Float, Float) → Float defined by
(x, y) 7→ expr.

makeVariable (element)

makeVariable (s), where s is a symbol, differential
indeterminate, or a differential polynomial, returns a
function f defined on the non-negative integers such that

f(n) returns the n th derivative of s.

makeVariable (s, n) returns the n th derivative of a
differential indeterminate s as an algebraic indeterminate.

makeObject (functions, range [, range])

Arguments f , g, and h appearing below with arguments
(for example, f(x, y)) denote symbolic expressions
involving those arguments.

Arguments f , g, and h appearing below as symbols
without arguments denote user-defined functions which
map one or more DoubleFloat values to DoubleFloat values.

Values a, b, c, and d denote numerical values.

makeObject (curve(f, g, h), a..b) returns the space sp of
the domain ThreeSpace with the addition of the graph of
the parametric curve x = f(t), y = g(t), z = h(t) as t
ranges from min (a, b) to max (a, b).

makeObject (curve(f(t), g(t), h(t)), t = a..b) returns the
space sp of the domain ThreeSpace with the addition of the
graph of the parametric curve x = f(t), y = g(t), z = h(t)
as t ranges from min (a, b) to max (a, b).

makeObject (f, a..b, c..d) returns the space sp of the
domain ThreeSpace with the addition of the graph of
z = f(x, y) as x ranges from min (a, b) to max (a, b) and y
ranges from min (c, d) to max (c, d).

makeObject (f(x, y), x = a..b, y = c..d) returns the space
sp of the domain ThreeSpace with the addition of the graph
of z = f(x, y) as x ranges from min (a, b) to max (a, b) and
y ranges from min (c, d) to max (c, d).

APPENDIX E · 827

makeObject (surface(f, g, h), a..b, c..d) returns the space
sp of the domain ThreeSpace with the addition of the graph
of the parametric surface x = f(u, v), y = g(u, v),
z = h(u, v) as u ranges from min (a, b) to max (a, b) and v
ranges from min (c, d) to max (c, d).

makeObject(surface(f(u, v), g(u, v), h(u, v)), u = a..b, v =
c..d) returns the space sp of the domain ThreeSpace with
the addition of the graph of the parametric surface
x = f(u, v), y = g(u, v), z = h(u, v) as u ranges from
min (a, b) to max (a, b) and v ranges from min (c, d) to
max (c, d).

makeYoungTableau (listOfIntegers, listOfIntegers)

makeYoungTableau (lambda, gitter) computes for a
given lattice permutation gitter and for an improper
partition lambda the corresponding standard tableau of
shape lambda. See listYoungTableaus.

mantissa (float)

mantissa (x) returns the mantissa part of x.

map (function, structure [, structure])
map! (function, structure)

map (fn, u) maps the one-argument function fn onto the
components of a structure, returning a new structure.
Most structures allow f to have different source and target
domains. Specifically, the function f is mapped onto the
following components of the structure as follows. If u is:

a series: the coefficients of the series.

a polynomial: the coefficients of the non-zero
monomials.

a direct product of elements: the elements.

an aggregate, tuple, table, or a matrix: all its elements.

an operation of the form op(a1, . . . , an): each ai,
returning op(f(a1), . . . , f(an)).

a fraction: the numerator and denominator.

complex: the real and imaginary parts.

a quaternion or octonion: the real and all imaginary
parts.

a finite or infinite series or stream: all the coefficients.

a factored object: onto all the factors.

a segment a..b or a segment binding of the form
x = a..b: each of the elements from a to b.

an equation: both sides of the equation.

map (fn, u, v) maps the two argument function fn onto
the components of a structure, returning a new structure.
Arguments u and v can be matrices, finite aggregates such
as lists, tables, and vectors, and infinite aggregates such as
streams and series.

map! (f, u), where u is homogeneous aggregate,
destructively replaces each element x of u by f(x).

See also match.

mapCoef (function, freeAbelianMonoid)
mapGen (function, freeAbelianMonoid)

mapCoeff (f, m) maps unary function f onto the
coefficients of a free abelian monoid of the form
e1a1 + . . . + enan returning f(e1)a1 + . . . + f(en)an.
mapGen (fn, m) similarly returns e1f(a1) + . . . + enf(an).
See FreeAbelianMonoidCategory using Browse.

mapDown! (tree, value, function)

These operations make a preorder traversal (node then left
branch then right branch) of a tree t of type
BalancedBinaryTree(S), destructively mapping values of type
S from the root to the leaves of the tree, then returning
the modified tree as value; p is a value of type S.
mapDown! (t, p, f), where f is a function of type (S, S) →
S, replaces the successive interior nodes of t as follows. The
root value x is replaced by q = f(x, p). Then mapDown!
is recursively applied to (l, q, f) and (r, q, f) where l and r
are respectively the left and right subtrees of t.
mapDown! (t, p, f), where f is a function of type (S, S, S)
→ List S, is similar. The root value of t is first replaced by
p. Then f is applied to three values: the value at the
current, left, and right node (in that order) to produce a
list of two values l and r, which are then passed
recursively as the second argument of mapDown! to the
left and right subtrees.

mapExponents (function, polynomial)

mapExponents (fn, u) maps function fn onto the
exponents of the non-zero monomials of polynomial u.

mapUp! ([tree,]tree, function)

These operations make an endorder traversal (left branch
then right branch then node) of a tree t of type
BalancedBinaryTree(S), destructively mapping values of type
S from the leaves to the root of the tree, then returning
the modified tree as value; p is a value of type S.
mapUp! (t, f), where f has type (S, S) → S, replaces the
value at each interior node by f(l, r), where l and r are the
values at the immediate left and right nodes.
mapUp! (t, t1, f) makes an endorder traversal of both t
and t1 (of identical shape) in parallel. The value at each
successive interior node of t is replaced by f(l, r, l1, r1),
where l and r are the values at the immediate left and right
nodes of t, and l1 and r1 are corresponding values of t1.

mask (integer)

mask (n) returns 2n − 1 (an n-bit mask).

match? (string, string, character)

match? (s, t, char) tests if s matches t except perhaps for
multiple and consecutive occurrences of character char.
Typically char is the blank character.

match (list, list [, option])

match (la, lb[, u]), where la and lb are lists of equal length,

828 · Operations

creates a function that can be used by map. The target of
a source value x in la is the value y with the corresponding
index in lb. Optional argument u defines the target for a
source value a which is not in la. If u is a value of the
source domain, then a is replaced by u, which must be a
member of la. If u is a value of the target domain, the
value returned by the map for a is u. If u is a function f ,
then the value returned is f(a). If no third argument is
given, an error occurs when such a a is found.

mathieu11 ([listOfIntegers])
mathieu12 ([listOfIntegers])
mathieu22 ([listOfIntegers])
mathieu23 ([listOfIntegers])
mathieu24 ([listOfIntegers])

mathieu11 ([li]) constructs the mathieu group acting on
the eleven integers given in the list li. Duplicates in the list
will be removed and error will be called if li has fewer or
more than eleven different entries. The default value of li
is [1, . . . , 11]. Operations mathieu12, mathieu22, and
mathieu23 and mathieu24 are similar. These operations
provide examples of permutation groups in AXIOM.

matrix (listOfLists)

matrix (l) converts the list of lists l to a matrix, where the
list of lists is viewed as a list of the rows of the matrix.
matrix (llo), where llo is a list of list of objects of type
OutputForm (normally unexposed), returns an output form
displaying llo as a matrix.

max ([various])

max () returns the largest small integer.
max (u) returns the largest element of aggregate u.
max (x, y) returns the maximum of x and y relative to a
total ordering “<”.

maxColIndex (matrix)

maxColIndex (m) returns the index of the last column of
the matrix or two-dimensional array m.

maxIndex (aggregate)

maxIndex (u) returns the maximum index i of indexed
aggregate u. For most indexed aggregates (vectors, strings,
lists), maxIndex (u) is equivalent to #u.

maxRowIndex (matrix)

maxRowIndex (m) returns the index of the “last” row of
the matrix or two-dimensional array m.

meatAxe (listOfListsOfMatrices [, boolean, integer,
integer])

meatAxe (aG[, randomElts, numOfTries, maxTests])
tries to split the representation given by aG and returns a
2-list of representations. All matrices of argument aG are
assumed to be square and of equal size. The default values
of arguments randomElts, numOfTries and maxTests

are false, 25, and 7, respectively.

member? (element, aggregate)

member? (x, u) tests if x is a member of u.
member? (pp, gp), where pp is a permutation and gp is a
group, tests whether pp is in the group gp.

merge (various)
merge! (various)

merge ([s1, s2, . . . , sn]) will create a new ThreeSpace
object that has the components of all the ones in the list;
groupings of components into composites are maintained.
merge (s1, s2) will create a new ThreeSpace object that
has the components of s1 and s2; groupings of components
into composites are maintained.
merge ([p,]a, b) returns an aggregate c which merges a and
b. The result is produced by examining each element x of a
and y of b successively. If p(x, y) is true, then x is inserted
into the result. Otherwise y is inserted. If x is chosen, the
next element of a is examined, and so on. When all the
elements of one aggregate are examined, the remaining
elements of the other are appended. For example,
merge (<, [1, 3], [2, 7, 5]) returns [1, 2, 3, 7, 5]. By default,
function p is ≤.
merge! ([p], u, v) destructively merges the elements u and
v into u using comparison function p. Function p is ≤ by
default.

mesh (u [, v, w, x])

Argument sp below is a ThreeSpace object sp. Argument lc
is a list of curves. Each curve is either a list of points
(objects of type Point) or else a list of lists of small floats.
mesh (lc) returns a ThreeSpace object defined by lc.
mesh (sp) returns the list of curves contained in space sp.
mesh ([sp,], lc, close1, close2) adds the list of curves lc to
the ThreeSpace object sp. Boolean arguments close1 and
close2 tell how the curves and surface are to be closed. If
close1 is true, each individual curve will be closed, that is,
the last point of the list will be connected to the first
point. If close2 is true, the first and last curves are
regarded as boundaries and are connected. By default, the
argument sp is empty.

midpoints (listOfIntervals)

These operations are defined on “intervals” represented by
records with keys right and left, and rational number
values.
midpoints (isolist) returns the list of midpoints for the
list of intervals isolist.
midpoint (int) returns the midpoint of the interval int.

min ([u, v])

min () returns the element of type SingleInteger.
min (u) returns the smallest element of aggregate u.
min (x, y) returns the minimum of x and y relative to total
ordering <.

APPENDIX E · 829

minColIndex (matrix)

minColIndex (m) returns the index of the “first” column
of the matrix or two-dimensional array m.

minimalPolynomial (element, positiveInteger)

minimalPolynomial (x[, n]) computes the minimal
polynomial of x over the field of extension degree n over
the ground field F . The default value of n is 1.

minimalPolynomial (element)

minimalPolynomial (a) returns the minimal polynomial
of element a of a finite rank algebra. See FiniteRankAlgebra
using Browse.

minimumDegree (polynomial, variable)

minimumDegree (p, v) gives the minimum degree of
polynomial p with respect to v, that is, viewed as a
univariate polynomial in v.
minimumDegree (p, lv) gives the list of minimum degrees
of the polynomial p with respect to each of the variables in
the list lv.
See also FiniteAbelianMonoidRing and
MonogenicLinearOperator.

minIndex (aggregate)

minIndex (aggregate) returns the minimum index i of
aggregate u. Note: the minIndex of most system-defined
indexed aggregates is 1. See also PointCategory.

minordet (matrix)

minordet (m) computes the determinant of the matrix m
using minors, or calls error if the matrix is not square.

minPoly (expression)

minPoly (k) returns polynomial p such that p(k) = 0.

minRowIndex (matrix)

minRowIndex (m) returns the index of the “first” row of
the matrix or two-dimensional array m.

minusInfinity ()

minusInfinity () returns %minusInfinity, the AXIOM
name for −∞.

modifyPointData (space, nonNegativeInteger, point)

modifyPointData (sp, i, p) changes the point at the
indexed location i in the ThreeSpace object sp to p. This
operation is useful for making changes to existing data.

moduloP (integer)

moduloP (x), such that p = modulus(), returns a, where
x = a + bp where x is a p-adic integer. See
PAdicIntegerCategory using Browse.

modulus ()

modulus ()$R returns the value of the modulus p of a

p-adic integer domain R. See PAdicIntegerCategory using
Browse.

moebiusMu (integer)

moebiusMu (n) returns the Moebius function µ(n),
defined as −1, 0 or 1 as follows: µ(n) = 0 if n is divisible

by a square > 1, and (−1)k if n is square-free and has k
distinct prime divisors.

monicDivide (polynomial, polynomial [, variable])

monicDivide (p, q[, v]) divides the polynomial p by the
monic polynomial q, returning the record containing a
quotient and remainder. For multivariate polynomials,
the polynomials are viewed as a univariate polynomials in
v. If p and q are univariate polynomials, then the third
argument may be omitted. The operation calls error if q
is not monic with respect to v.

monomial (coefficient, exponent [, option])

monomial (coef, exp) creates a term of a univariate
polynomial or series object from a coefficient coef and
exponent exp. The variable name must be given by context
(as through a declaration for the result).
monomial (c, [x1, . . . , xk], [n1, . . . , nk]) creates a term
cxn1

1 . . . xnk
k of a multivariate power series or polynomial

from coefficient c, variables xj and exponents nj .
monomial (c, x, n) creates a term cxn of a polynomial or
series from a coefficient c, variable x, and exponent n.
monomial (c, [n1, . . . , nk]) creates a CliffordAlgebra
element ce(n1), . . . , ce(nk) from a coefficient c and basis
elements c(ij)

monomial? (polynomialOrSeries)

monomial? (p) tests if polynomial or series p is a single
monomial.

monomials (polynomial)

monomials (p) returns the list of non-zero monomials of

polynomial p, [a1X
(1), . . . , anX(n)].

more? (aggregate, nonNegativeInteger)

more? (u, n) tests if u has greater than n elements.

movedPoints (permutation)

movedPoints (p) returns the set of points moved by the
permutation p.
movedPoints (gp) returns the points moved by the group
gp.

mulmod (integer, integer, integer)

mulmod (a, b, p), where a, b are non-negative integers
both < integer p, returns ab mod p.

multiEuclidean (listOfElements, element)

multiEuclidean ([f1, . . . , fn], z) returns a list of
coefficients [a1, . . . , an] such that z/

∏n

i=1
fi =

∑n

j=1
aj/fj .

830 · Operations

If no such list of coefficients exists, "failed" is returned.

multinomial (integer, listOfIntegers)

multinomial (n, [m1, m2, . . . , mk]) returns the
multinomial coefficient n!/(m1!m2! . . . mk!).

multiple (expression)

multiple (x) directs the pattern matcher that x should
preferably match a multi-term quantity in a sum or
product. For matching on lists, multiple(x) tells the
pattern matcher that x should match a list instead of an
element of a list. This operation calls error if x is not a
symbol.

multiplyCoefficients (function, series)

multiplyCoefficients (f, s) returns
∑∞

n=0
f(n)anxn

where s is the series
∑∞

n=0
anxn.

multiplyExponents (various, nonNegativeInteger)

multiplyExponents (p, n), where p is a univariate
polynomial or series, returns a new polynomial or series
resulting from multiplying all exponents by the non
negative integer n.

multiset (listOfElements)

multiset (ls) creates a multiset with elements from ls.

multivariate (polynomial, symbol)

multivariate (p, v) converts an anonymous univariate
polynomial p to a polynomial in the variable v.

name (various)

name (f) returns the name part of the file name for file f .
name (op) returns the name of basic operator op.
name (s) returns symbol s without its scripts.

nand (boolean, boolean)

nand (a, b) returns the logical negation of a and b, either
booleans or bit aggregates. Note: nand (a, b) = true if and
only if one of a and b is false.

nary? (basicOperator)

nary? (op) tests if op accepts an arbitrary number of
arguments.

ncols (matrix)

ncols (m) returns the number of columns in the matrix or
two-dimensional array m.

new ([various])

new ()$R create a new object of type R. When R is an
aggregate, new creates an empty object. Other variations
are as follows:

new (s), where s is a symbol, returns a new symbol
whose name starts with %s.

new (n, x) returns fill! (new(n), x), an aggregate of n
elements, each with value x.

new (m, n, r)$R creates an m-by-n array or matrix of
type R all of whose entries are r.

new (d, pre, e), where d, smathpre, and smathe are
strings, constructs the name of a new writable file with
d as its directory, pre as a prefix of its name and e as its
extension. When d or e is the empty string, a default is
used. The operation calls error if a new file cannot be
written in the given directory.

newLine ()

newLine () sends a new line command to output. See
DisplayPackage.

nextColeman (listOfIntegers, listOfIntegers, matrix)

nextColeman (alpha, beta, C) generates the next
Coleman-matrix of column sums alpha and row sums beta
according to the lexicographical order from bottom-to-top.
The first Coleman matrix is created using
C = new(1, 1, 0). Also, new (1, 1, 0) indicates that C is
the last Coleman matrix. See
SymmetricGroupCombinatoricFunctions for details.

nextLatticePermutation (integers, integers, boolean)

nextLatticePermutation (lambda, lattP,
constructNotF irst) generates the lattice permutation
according to the proper partition lambda succeeding the
lattice permutation lattP in lexicographical order as long
as constructNotF irst is true. If constructNotF irst is
false, the first lattice permutation is returned. The result
nil indicates that lattP has no successor. See
SymmetricGroupCombinatoricFunctions for details.

nextPartition (vectorOfIntegers, vectorOfIntegers,
integer)

nextPartition (gamma, part, number) generates the
partition of number which follows part according to the
right-to-left lexicographical order. The partition has the
property that its components do not exceed the
corresponding components of gamma. the first partition is
achieved by part = []. Also, [] indicates that part is the
last partition. See SymmetricGroupCombinatoricFunctions
for details.

nextPrime (positiveInteger)

nextPrime (n) returns the smallest prime strictly larger
than n.

nil ()

nil ()$R returns the empty list of type R.

nilFactor (element, nonNegativeInteger)

nilFactor (base, exponent) creates a factored object with a
single factor with no information about the kind of base.
See Factored for details.

APPENDIX E · 831

node? (aggregate, aggregate)

node? (u, v) tests if node u is contained in node v (either
as a child, a child of a child, etc.).

nodes (recursiveAggregate)

nodes (a) returns a list of all the nodes of aggregate a.

noncommutativeJordanAlgebra? ()

noncommutativeJordanAlgebra? ()$F tests if the
algebra F is flexible and Jordan admissible. See
FiniteRankNonAssociativeAlgebra.

nor (boolean, boolean)

nor (a, b) returns the logical nor of booleans or bit
aggregates a and b. Note: nor (a, b) = true if and only if
both a and b are false.

norm (element [, option])

norm (x) returns:

for complex x: conjugate (x) .

for floats: the absolute value.

for quaternions or octonions: the sum of the squares of
its coefficients.

for a domain of category FiniteRankAlgebra: the
determinant of the regular representation of x with
respect to any basis.

norm (x[, p]), where p is a positiveInteger and x is an
element of a domain of category FiniteAlgebraExtensionField
over ground field F , returns the norm of x with respect to
the field of extension degree d over the ground field of size.
The default value of p is 1. The operation calls error if p
does not divide the extension degree of x. Note:

norm (x, p) =
∏n/p

i=0
xqpi

normal? (element)

normal? (a), where a is a member of a domain of category
FiniteAlgebraicExtensionF ield over a field F , tests
whether the element a is normal over the ground field F ,

that is, if aqi

, 0 ≤ i ≤ extensionDegree()− 1 is an
F -basis, where q = size().

normalElement ()

normalElement ()$R, where R is a domain of category
FiniteAlgebraicExtensionF ield over a field F , returns a
element, normal over the ground field F , that is,

aqi

, 0 ≤ i < extensionDegree() is an F -basis, where
q = size(). At the first call, the element is computed by
createNormalElement then cached in a global variable.
On subsequent calls, the element is retrieved by referencing
the global variable.

normalForm (polynomial, listOfpolynomials)

normalForm (poly, gb) reduces the polynomial poly
modulo the precomputed Gröbner basis gb giving a

canonical representative of the residue class.

normalise (element)

normalise (v) returns the column vector v divided by its
Euclidean norm; when possible, the vector v is expressed in
terms of radicals.

normalize (element [,] option)

normalize (flt) normalizes float flt at current precision.
normalize (f [, x]) rewrites f using the least possible
number of real algebraically independent kernels involving
symbol x. If no symbol x is given, the operation rewrites f
using the least possible number of real algebraically
independent kernels.

normalizeAtInfinity (vectorOfFunctions)

normalizeAtInfinity (v) makes v normal at infinity,
where v is a vector of functions defined on a curve.

not (boolean)

not (n) returns the negation of boolean or bit aggregate n.
not (n) returns the bit-by-bit logical not of the small
integer n.

nrows (matrix)

nrows (m) returns the number of rows in the matrix or
two-dimensional array m.

nthExponent (factored, positiveInteger)

nthExponent (u, n) returns the exponent of the n th

factor of u, or 0 if u has no such factor.

nthFactor (factor, positiveInteger)

nthFactor (u, n) returns the base of the n th factor of u,
or 1 if n is not a valid index for a factor. If u consists only
of a unit, the unit is returned.

nthFlag (factored, positiveInteger)

nthFlag (u, n) returns the information flag of the n th

factor of u, "nil" if n is not a valid index for a factor.

nthFractionalTerm (partialFraction, integer)

nthFractionalTerm (p, n) extracts the n th fractional
term from the partial fraction p, or 0 if the index n is out
of range.

nthRoot (expression, integer)
nthRootIfCan (expression, integer)

Argument x can be of type Expression, Complex, Float and
DoubleFloat, or a series.

nthRoot (x, n) returns the n th root of x. If x is not an
expression, the operation calls error if this is not possible.

nthRootIfCan (z, n) returns the n th root of z if possible,
and "failed" otherwise.

832 · Operations

null? (sExpression)

null? (s) is true if s is the SExpression object ().

nullary ()

nullary (x), where x has type R, returns a function f of
type → R such that such that f() returns the value c. See
also constant for a similar operation.

nullary? (basicOperator)

nullary? (op) tests if basic operator op is nullary.

nullity (matrix)

nullity (m) returns the dimension of the null space of the
matrix m.

nullSpace (matrix)

nullSpace (m) returns a basis for the null space of the
matrix m.

numberOfComponents ([threeSpace])

numberOfComponents ()$F returns the number of
absolutely irreducible components for a domain F of
functions defined over a curve.
numberOfComponents (sp) returns the number of
distinct object components in the ThreeSpace object s such
as points, curves, and polygons.

numberOfComputedEntries (stream)

numberOfComputedEntries (st) returns the number of
explicitly computed entries of stream st.

numberOfCycles (permutation)

numberOfCycles (p) returns the number of non-trivial
cycles of the permutation p.

numberOfDivisors (integer)

numberOfDivisors (n) returns the number of integers
between 1 and n inclusive which divide n. The number of
divisors of n is often denoted by τ(n).

numberOfFactors (factored)

numberOfFactors (u) returns the number of factors in
factored form u.

numberOfFractionalTerms (partialFraction)

numberOfFractionalTerms (p) computes the number of
fractional terms in p, or 0 if there is no fractional part.

numberOfHues ()

numberOfHues () returns the number of total hues. See
also totalHues.

numberOfImproperPartitions (integer, integer)

numberOfImproperPartitions (n, m) computes the
number of partitions of the nonnegative integer n in m
nonnegative parts with regarding the order (improper

partitions). Example: numberOfImproperPartitions (3,
3) is 10, since [0, 0, 3], [0, 1, 2], [0, 2, 1], [0,
3, 0], [1, 0, 2], [1, 1, 1], [1, 2, 0], [2, 0, 1],
[2, 1, 0], [3, 0, 0] are the possibilities. Note: this
operation has a recursive implementation.

numberOfMonomials (polynomial)

numberOfMonomials (p) gives the number of non-zero
monomials in polynomial p.

numer (fraction)
numerator (fraction)

Argument x is from domain Fraction(R) for some domain R,
or of type Expression
numer (x) returns the numerator of x as an object of
domain R; if x is of type Expression, it returns an object of
domain SMP(D, Kernel(Expression R)).
numerator (x) returns the numerator of x as an element
of Fraction(R); if x if of type Expression, it returns an object
of domain Expression.

numerators (continuedFraction)

numerators (cf) returns the stream of numerators of the
approximants of the continued fraction cf . If the continued
fraction is finite, then the stream will be finite.

numeric (expression [, n])

numeric (x, n) returns a float approximation of expression
x to n decimal digits accurary.

objectOf (typeAnyObject)

objectOf (a) returns a printable form of an object of type
Any.

objects (threeSpace)

objects (sp) returns the ThreeSpace object sp. The result
is returned as record with fields: points, the number of
points; curves, the number of curves; polygons, the number
of polygons; and constructs, the number of constructs.

oblateSpheroidal (function)

oblateSpheroidal (a), where a is a small float, returns a
function to map the point (ξ, η, φ) to cartesian coordinates
x = asinh(ξ)sin(η)cos(φ), y = asinh(ξ)sin(η)sin(φ),
z = acosh(ξ)cos(η).

octon (element, element [, elements])

octon (qe, qE) constructs an octonion whose first 4
components are given by a quaternion qe and whose last 4
components are given by a quaternion qE .
octon (re, ri, rj , rk, rE , rI , rJ , rK) constructs an octonion
from scalars.

odd? (x)

odd? (n) tests if integer n is odd.
odd? (p) tests if p is an odd permutation, that is, sign (p)

APPENDIX E · 833

is −1.

oneDimensionalArray ([integer,]elements)

oneDimensionalArray (ls) creates a one-dimensional
array consisting of the elements of list ls.
oneDimensionalArray (n, s) creates a one-dimensional
array of n elements, each with value s.

one? (element)

one? (a) tests whether a is the unit 1.

open (file [, string])

open (s[, mode]) returns the file s open in the indicated
mode: "input" or "output". Argument mode is "output"
by default.

operator (symbol [, nonNegativeInteger])

operator (f, n) makes f into an n-ary operator. If the
second argument n is omitted, f has arbitary arity, that is,
f takes an arbitrary number of arguments.

operators (expression)

operators (f) returns a list of all basic operators in f ,
regardless of level.

optional (symbol)

optional (x) tells the pattern matcher that x can match
an identity (0 in a sum, 1 in a product or exponentiation),
or calls error if x is not a symbol.

or (boolean, boolean)

a or b returns the logical or of booleans or bit aggregates a
and b.
n or m returns the bit-by-bit logical or of the small
integers n and m.

orbit (group, elements)

orbit (gp, el) returns the orbit of the element el under the
permutation group gp, that is, the set of all points gained
by applying each group element to el.
orbit (gp, ls), where ls is a list or unordered set of
elements, returns the orbit of ls under the permutation
group gp.

orbits (group)

orbits (gp) returns the orbits of the permutation group gp.

ord (character)

ord (c) returns an integer code corresponding to the
character c.

order (element)

order (p) returns:

if p is a float: the magnitude of p (Note:

baseorder(x) ≤ |x| < base(1+order(x)).)

if p is a differential polynomial: the maximum number
of differentiations of a differential indeterminate among
all those appearing in p.

if p is a differential variable: the number of
differentiations of the differential indeterminate
appearing in p.

if p is an element of finite field: the order of an element
in the multiplicative group of the field (the function
calls error if p is 0).

if p is a univariate power series: the degree of the lowest
order non-zero term in f . (A call to this operation
results in an infinite loop if f has no non-zero terms.)

if p is a q-adic integer: the exponent of the highest
power of q dividing p (see PAdicIntegerCategory).
if p is a permutation: the order of a permutation p as a
group element.

if p is permutation group: the order of the group.

order (p, q) returns the order of the differential polynomial
p in differential indeterminate q.
order (p, q) returns the order of multivariate series p
viewed as a series in q (this operation results in an infinite
loop if f has no non-zero terms).
order (p, q) returns the largest n such that qn divides
polynomial p, that is, the order of p(x) at q(x) = 0.

orthonormalBasis (matrix)

orthonormalBasis (M) returns the orthogonal matrix B
such that BMB−1 is diagonal, or calls error if M is not a
symmetric matrix.

output (x)

output (x) displays x on the “algebra output” stream
defined by)set output algebra.

outputAsFortran (outputForms)

outputAsFortran (f) outputs OutputForm object f in
FORTRAN format to the destination defined by the system
command)set output fortran. If f is a list of OutputForm
objects, each expression in f is output in order.
outputAsFortran (s, f), where s is a string, outputs
s = f , but is otherwise identical.

outputAsTex (outputForms)

outputAsTex (f) outputs OutputForm object f in TEX
format to the destination defined by the system command
)set output tex. If f is a list of OutputForm objects, each
expression in f is output in order.

outputFixed ([nonNegativeInteger])

outputFixed ([n]) sets the output mode of floats to fixed
point notation, that is, as an integer, a decimal point, and
a number of digits. If n is given, then n digits are
displayed after the decimal point.

834 · Operations

outputFloating ([nonNegativeInteger])

outputFloating ([n]) sets the output mode to floating
(scientific) notation, that is, m10e is displayed as mEe. If n
is given, n digits will be displayed after the decimal point.

outputForm (various)

outputForm (x) creates an object of type OutputForm
from x, an object of type Integer, DoubleF loat, String, or
Symbol.

outputGeneral ([nonNegativeInteger])

outputGeneral ([n]) sets the output mode (default mode)
to general notation, that is, numbers will be displayed in
either fixed or floating (scientific) notation depending on
the magnitude. If n is given, n digits are displayed after
the decimal point.

outputSpacing (nonNegativeInteger)

outputSpacing (n) inserts a space after n digits on
output. outputSpacing (0) means no spaces are inserted.
By default, n = 10.

over (outputForm, outputForm)

over (o1, o2), where o1 and o2 are objects of type
OutputForm (normally unexposed), creates an output form
for the vertical fraction of o1 over o2.

overbar (outputForm)

overbar (o), where o is an object of type OutputForm
(normally unexposed), creates the output form o with an
overbar.

pack! (file)

pack! (f) reorganizes the file f on disk to recover unused
space.

packageCall ()

packageCall (f)$P , where P is the package
InputFormFunctions1(R) for some type R, returns the input
form corresponding to f$R. See also interpret.

pade (integer, integer, series [, series])

pade (nd, dd, s[, ds]) computes the quotient of polynomials
(if it exists) with numerator degree at most nd and
denominator degree at most dd. If a single univariate
Taylor series s is given, the quotient approximate must
match the series s to order nd + dd. If two series s and ds
are given, ns is the numerator series of the function and ds
is the denominator series.

padicFraction (partialFraction)

padicFraction (q) expands the fraction p-adically in the
primes p in the denominator of q. For example,
padicFraction (3/(22)) = 1/2 + 1/(22). Use
compactFraction to return to compact form.

pair? (sExpression)

pair? (s) tests if SExpression object is a non-null Lisp
object.

parabolic (point)

parabolic (pt) transforms pt from parabolic coordinates to
Cartesian coordinates: the function produced will map the
point (u, v) to x = 1/2(u2 − v2), y = uv.

parabolicCylindrical (point)

parabolicCylindrical (pt) transforms pt from parabolic
cylindrical coordinates to Cartesian coordinates: the
function produced will map the point (u, v, z) to
x = 1/2(u2 − v2), y = uv, z.

paraboloidal (point)

paraboloidal (pt) transforms pt from paraboloidal
coordinates to Cartesian coordinates: the function
produced will map the point (u, v, phi) to x = uvcos(φ),
y = uvsin(φ), z = 1/2(u2 − v2).

paren (expressions)

paren (f) returns (f) unless f is a list [f1, . . . , fn] in which
case it returns (f1, . . . , fn). This prevents f or the
constituent fi from being evaluated when operators are
applied to it. For example, log(1) returns 0, but
log(paren 1) returns the formal kernel log((1)). Also,
atan(paren [x, 2]) returns the formal kernel atan((x, 2)).

partialDenominators (continuedFraction)

partialDenominators (x) extracts the denominators in x.
If x = continuedFraction(b0, [a1, . . .], [b1, . . .]), then
partialDenominators (x) = [b1, b2 . . .].

partialFraction (element, factored)

partialFraction (numer, denom) is the main function for
constructing partial fractions. The second argument
denom is the denominator and should be factored.

partialNumerators (continuedFraction)

partialNumerators (x) extracts the numerators in x, if
x = continuedFraction(b0, [a1, . . .], [b1, . . .], . . .), then
partialNumerators (x) = [a1, . . .].

partialQuotients (continuedFraction)

partialQuotients (x) extracts the partial quotients in x,
if x = continuedFraction(b0, [a1, . . .], [b1, . . .], . . .), then
partialQuotients (x) = [b0, b1, . . .].

particularSolution (matrix, vector)

aSolution (M, v) finds a particular solution x of the linear
system Mx = v. The result x is returned as a vector, or
"failed" if no solution exists.

partition (integer)

partition (n) returns the number of partitions of the

APPENDIX E · 835

integer n. This is the number of distinct ways that n can
be written as a sum of positive integers.

partitions (integer [, integer, integer])

partitions (i, j) is the stream of all partitions whose
number of parts and largest part are no greater than i and
j.
partitions (n) is the stream of all partitions of integer n.
partitions (p, l, n) is the stream of partitions of n whose
number of parts is no greater than p and whose largest
part is no greater than l.

parts (aggregate)

parts (u) returns a list of the consecutive elements of u.
Note: if u is a list, parts (u) = u.

pastel (color)

pastel (c) sets the shade of a hue c above “bright” but
below “light”.

pattern (rewriteRule)

pattern (r) returns the pattern corresponding to the left
hand side of the rewrite rule r.

patternMatch (expression, expression,
patternMatchResult)

patternMatch (expr, pat, res) matches the pattern pat to
the expression expr. The argument res contains the
variables of pat which are already matched and their
matches. Initially, res is the result of new(), an empty list
of matches.

perfectNthPower? (integer, nonNegativeInteger)

perfectNthPower? (n, r) tests if n is an r th power.

perfectNthRoot (integer [, nonNegativeInteger])

perfectNthRoot (n) returns a record with fields “base” x
and “exponent” r such that n = xr and r is the largest

integer such that n is a perfect r th power.

perfectNthRoot (n, r) returns the r th root of n if n is

an r th power, and "failed" otherwise.

perfectSqrt (integer)

perfectSqrt (n) returns the square root of n if n is a
perfect square, and "failed" otherwise.

perfectSquare? (integer)

perfectSquare? (n) tests if n is a perfect square.

permanent (matrix)

permanent (x) returns the permanent of a square matrix
x, equivalent to the determinant except that coefficients
have no change of sign.

permutation (integer, integer)

permutation (n, m) returns the number of permutations
of n objects taken m at a time. Note:
permutation (n, m) = n!/(n−m)!.

permutationGroup (listPermutations)

permutationGroup (ls) coerces a list of permutations ls
to the group generated by this list.

permutationRepresentation (permutations [, n])

permutationRepresentation (pi, n) returns the matrix
δi,pi(i) (Kronecker delta) if the permutation pi is in list
notation and permutes 1, 2, . . . , n. Argument pi may either
be permutation or a list of integers describing a
permutation by list notation.
permutationRepresentation ([pi1, . . . , pik], n) returns
the list of matrices [(δi,pi1(i)), . . . , (δi,pik(i))] (Kronecker
delta) for permutations pi1, . . . , pik of 1, 2, . . . , n.

permutations (integer)

permutations (n) returns the stream of permutations
formed from 1, 2, . . . , n.

physicalLength (flexibleArray)
physicalLength! (flexibleArray, positiveInteger)

These operations apply to a flexible array a and concern
the “physical length” of a, the maximum number of
elements that a can hold. When a destructive operation
(such as concat!) is applied that increases the number of
elements of a beyond this number, new storage is allocated
(generally to be about 50% larger than current storage
allocation) and the elements from the old storage are
copied over to the new storage area.

physicalLength (a) returns the physical length of a.
physicalLength! (a, n) causes new storage to be allocated
for the elements of a with a physical length of n. The
maxIndex elements from the old storage area are copied.
An error is called if n is less than maxIndex(a).

pi ()

pi () returns π, also denoted by the special symbol %pi.

pile (listOfOutputForms)

pile (lo), where lo is a list of objects of type OutputForm
(normally unexposed), creates the output form consisting
of the elements of lo displayed as a pile, that is, each
element begins on a new line and is indented right to the
same margin.

plenaryPower (element, positiveInteger)

Argument a is a member of a domain of category
NonAssociativeAlgebra
plenaryPower (a, n) is recursively defined to be
plenaryPower (a, n− 1) ∗ plenaryPower(a, n− 1) for

836 · Operations

n > 1 and a for n = 1.

plusInfinity ()

plusInfinity () returns the constant %plusInfinity
denoting +∞.

point (u [, option])

point (p) returns a ThreeSpace object which is composed of
one component, the point p. point (l) creates a point
defined by a list l.

point (sp) checks to see if the ThreeSpace object sp is
composed of only a single point and, if so, returns the
point, or calls error if sp has more than one point.
point (sp, l) adds a point component defined by a list l to
the ThreeSpace object sp.
point (sp, i) adds a point component into a component list
of the ThreeSpace object sp at the index given by i.
point (sp, p) adds a point component defined by the point
p described as a list, to the ThreeSpace object sp.

point? (space)

point? (sp) queries whether the ThreeSpace object sp, is
composed of a single component which is a point.

pointColor (palette)

pointColor (v) specifies a color v for two-dimensional
graph points. This option is expressed in the form
pointColor == v in the draw command. Argument p is
either a palette or a float.

pointColorDefault ([palette])

pointColorDefault () returns the default color of points
in a two-dimensional viewport.
pointColorDefault (p) sets the default color of points in
a two-dimensional viewport to the palette p.

pointSizeDefault ([positiveInteger])

pointSizeDefault () returns the default size of the points
in a two-dimensional viewport.
pointSizeDefault (i) sets the default size of the points in
a two-dimensional viewport to i.

polarCoordinates (x)

polarCoordinates (x) returns a record with components
(r, φ) such that x = reiφ.

polar (point)

polar (pt) transforms point pt from polar coordinates to
Cartesian coordinates. The function produced will map the
point (r, θ) to x = rcos(θ) , y = rsin(θ).

pole? (series)

pole? (f) tests if the power series f has a pole.

polygamma (k, x)

polygamma (k, x) is the k th derivative of digamma (x),
often written ψ(k, x) in the literature.

polygon ([sp,]listOfPoints)
polygon? (space)

polygon ([sp,]lp) adds a polygon defined by lp to the
ThreeSpace object sp. Each lp is either a list of points
(objects of type Point) or else a list of small floats. If sp is
omitted, it is understood to be empty.
polygon (sp) returns ThreeSpace object sp as a list of
polygons, or an error if sp is not composed of a single
polygon.
polygon? (sp) tests if the ThreeSpace object sp contains a
single polygon component.

polynomial (series, integer [, integer])

polynomial (s, k) returns a polynomial consisting of the
sum of all terms of series s of degree ≤ k and greater than
or equal to 0.
polynomial (s, k1, k2) returns a polynomial consisting of
the sum of all terms of Taylor series s of degree d with
0 ≤ k1 ≤ d ≤ k2.

pop! (stack)

pop! (s) returns the top element x from stack s,
destructively removing it from s, or calls error if s is
empty. Note: Use top (s) to obtain x without removing it
from s.

position (aggregate, aggregate [, index])

position (x, a[, n]) returns the index i of the first
occurrence of x in a where i ≥ n, and minIndex (a)− 1 if
no such x is found. The default value of n is 1.
position (cc, t, i) returns the position j >= i in t of the
first character belonging to character class cc.

positive? (orderedSetElement)

positive? (x) tests if x is strictly greater than 0.

positiveRemainder (integer, integer)

positiveRemainder (a, b), where b > 1, yields r where
0 ≤ r < b and r = a rem b.

possiblyInfinite? (stream)

possiblyInfinite? (s) tests if the stream s could possibly
have an infinite number of elements. Note: for many
datatypes, possiblyInfinite? (s)
= not explictlyFinite?(s).

postfix (outputForm, outputForm)

postfix (op, a), where op and a are objects of type
OutputForm (normally unexposed), creates an output form
which prints as: a op.

APPENDIX E · 837

powerAssociative? ()

powerAssociative? ()$F , where F is a domain of category
FiniteRankNonAssociativeAlgebra, tests if all subalgebras
generated by a single element are associative.

powerSum (integer)

powerSum (n) is the n th power sum symmetric function.
See CycleIndicators for details.

powmod (integer, integer, integer)

powmod (a, b, p), where a and b are non-negative integers,

each < p, returns ab mod p.

precision ([positiveInteger])

precision () returns the precision of Float values in decimal
digits.
precision (n) set the precision in the base to n decimal
digits.

prefix (outputForm, listOfOutputForms)

prefix (o, lo), where o is an object of type OutputForm
(normally unexposed) and lo is a list of objects of type
OutputForm, creates an output form depicting the nary
prefix application of o to a tuple of arguments given by list
lo.

prefix? (string, string)

prefix? (s, t) tests if the string s is the initial substring of t.

prefixRagits (listOfIntegers)

prefixRagits (rx) returns the non-cyclic part of the ragits
of the fractional part of a radix expansion. For example, if
x = 3/28 = 0.10714285714285 . . ., then
prefixRagits (x) = [1, 0].

presub (outputForm, outputForm)

presub (o1, o2), where o1 and o2 are objects of type
OutputForm (normally unexposed), creates an output form
for o1 presubscripted by o2.

presuper (outputForm, outputForm)

presuper (o1, o2), where o1 and o2 are objects of type
OutputForm (normally unexposed), creates an output form
for o1 presuperscripted by o2.

primaryDecomp (ideal)

primaryDecomp (I) returns a list of primary ideals such
that their intersection is the ideal I.

prime (outputForm [, positiveInteger])

prime (o[, n]), where o is an object of type OutputForm
(normally unexposed), creates an output form for o
following by n primes (that is, a prime like “ ’ ”). By
default, n = 1.

prime? (element)

prime? (x) tests if x cannot be written as the product of
two non-units, that is, x is an irreducible element.
Argument x may be an integer, a polynomial, an ideal, or,
in general, any element of a domain of category
UniqueFactorizationDomain.

primeFactor (element, integer)

primeFactor (base, exponent) creates a factored object
with a single factor whose base is asserted to be prime (flag
= "prime").

primeFrobenius (finiteFieldElement [,
nonNegativeInteger])

Argument a is a member of a domain of category
FieldOfPrimeCharacteristic(p).
primeFrobenius (a[, s]) returns aps

. The default value of
s is 1.

primes (integer, integer)

primes (a, b) returns a list of all primes p with a ≤ p ≤ b.

primitive? (finiteFieldElement)

primitive? (b) tests whether the element b of a finite field
is a generator of the (cyclic) multiplicative group of the
field, that is, is a primitive element.

primitiveElement (expressions [, expression])

primitiveElement (a1, a2) returns a record with four
components: a primitive element a with selector primelt,
and three polynomials q1, q2, and q with selectors pol1,
pol2, and prim. The prime element a is such that the
algebraic extension generated by a1 and a2 is the same as
that generated by a, ai = qi(a) and q(a) = 0. The minimal
polynomial for a2 may involve a1, but the minimal
polynomial for a1 may not involve a2. This operations uses
resultant.

primitiveMonomials (polynomial)

primitiveMonomials (p) gives the list of monomials of
the polynomial p with their coefficients removed. Note:
primitiveMonomials (

∑
aiX

(i)) = [X(1), . . . , X(n)].

primitivePart (polynomial [, symbol])

primitivePart (p[, v]) returns the unit normalized form of
polynomial p divided by the content of p with respect to
variable v. If no v is given, the content is removed with
respect to all variables.

principalIdeal (listOfPolynomials)

principalIdeal ([f1, . . . , fn]) returns a record whose
“generator” component is a generator of the ideal
generated by [f1, . . . , fn] whose “coef” component is a list
of coefficients [c1, . . . , cn] such that generator =

∑
i
ci fi.

838 · Operations

print (outputForm)

print (o) writes the output form o on standard output
using the two-dimensional formatter.

product (element, element)

product (f(n), n = a..b) returns
∏b

n=a
f(n) as a formal

product.
product (f(n), n) returns the formal product P (n)
verifying P (n + 1)/P (n) = f(n).
product (s, t), where s and t are cartesian tensors, returns
the outer product of s and t. For example, if
r = product(s, t) for rank 2 tensors s and t, then r is a
rank 4 tensor given by ri,j,k,l = si,jtk,l.
product (a, b), where a and b are elements of a graded
algebra returns the degree-preserving linear product. See
GradedAlgebra for details.

prolateSpheroidal (smallFloat)

prolateSpheroidal (a) returns a function to transform
prolate spheroidal coordinates to Cartesian coordinates.
This function will map the point (ξ, η, φ) to
x = asinh(ξ)sin(η)cos(φ), y = asinh(ξ)sin(η)sin(φ),
z = acosh(ξ)cos(η).

prologue (text)

prologue (t) extracts the prologue section of a IBM
SCRIPT Formula Formatter or TEX formatted object t.

properties (basicOperator [, prop])

properties (op) returns the list of all the properties
currently attached to op.
property (op, s) returns the value of property s if it is
attached to op, and "failed" otherwise.

pseudoDivide (polynomial, polynomial)

pseudoDivide (p, q) returns (c, q, r), when

p′ := p leadingCoefficient(q)deg(p)−deg(q)+1 = cp is
pseudo right-divided by q, that is, p′ = sq + r.

pseudoQuotient (polynomial, polynomial)

pseudoQuotient (p, q) returns r, the quotient when

p′ := pleadingCoefficient(q)degp−degq+1 is pseudo
right-divided by q, that is, p′ = sq + r.

pseudoRemainder (polynomial, polynomial)

pseudoRemainder (p, q) = r, for polynomials p and q,
returns the remainder when
p′ := pleadingCoefficient(q)degp−degq+1 is pseudo
right-divided by q, that is, p′ = sq + r.

puiseux (expression [, options])

puiseux (f) returns a Puiseux expansion of the expression
f . Note: f should have only one variable; the series will be
expanded in powers of that variable. Also, if x is a symbol,
puiseux (x) returns x as a Puiseux series.

puiseux (f, x = a) expands the expression f as a Puiseux
series in powers of (x− a).
puiseux (f, n) returns a Puiseux expansion of the
expression f . Note: f should have only one variable; the
series will be expanded in powers of that variable and
terms will be computed up to order at least n.
puiseux (f, x = a, n) expands the expression f as a
Puiseux series in powers of (x− a); terms will be computed
up to order at least n.
puiseux (n+− >a(n), x = a, r0.., r) returns∑

n=r0,r0+r,r0+2r,...
a(n)(x− a)n.

puiseux (a(n), n, x = a, r0.., r) returns∑
n=r0,r0+r,r0+2r,...

a(n)(x− a)n.

Note: Each of the last two commands have alternate forms
whose third argument is the finite segment r0..r1

producing a similar series with a finite number of terms.

push! (element, stack)

push! (x, s) pushes x onto stack s, that is, destructively
changing s so as to have a new first (top) element x.

pushdown (polynomial, symbol)
pushdterm (monomial, symbol)

pushdown (prf, var) pushes all top level occurences of the
variable var into the coefficient domain for the polynomial
prf .
pushdterm (monom, var) pushes all top level occurences
of the variable var into the coefficient domain for the
monomial monom.

pushucoef (polynomial, variable)

pushucoef (upoly, var) converts the anonymous univariate
polynomial upoly to a polynomial in var over rational
functions.

pushuconst (rationalFunction, variable)

pushuconst (r, var) takes a rational function and raises all
occurences of the variable var to the polynomial level.

pushup (polynomial, variable)

pushup (prf, var) raises all occurences of the variable var
in the coefficients of the polynomial prf back to the
polynomial level.

qelt (u [, options])

qelt (u, p[, options]) is equivalent to a corresponding elt
form except that it performs no check that indicies are in
range. Use Browse to discover if a given domain has this
alternative operation.

qsetelt! (u, x, y [, z])

qsetelt! (u, x, y[, z]) is equivalent to a corresponding setelt
form except that it performs no check that indicies are in
range.

APPENDIX E · 839

quadraticForm (matrix)

quadraticForm (m) creates a quadratic form from a
symmetric, square matrix m.

quatern (element, element, element, element)

quatern (r, i, j, k) constructs a quaternion from scalars.

queue ([listOfElements])

queue ()$R returns an empty queue of type R.
queue ([x, y, . . . , z]) creates a queue with first (top)
element x, second element y, . . . , and last (bottom)
element z.

quickSort (predicate, aggregate)

quickSort (f, agg) sorts the aggregate agg with the
ordering predicate f using the quicksort algorithm.

quo (integer, integer)

a quo b returns the quotient of a and b discarding the
remainder.

quoByVar (series)

quoByVar (a0 + a1x + a2x
2 + · · ·) returns

a1 + a2x + a3x
2 + · · · Thus, this function subtracts the

constant term and divides by the series variable. This
function is used when Laurent series are represented by a
Taylor series and an order.

quote (outputForm)

quote (o), where o is an object of type OutputForm
(normally unexposed), creates an output form o with a
prefix quote.

quotedOperators (rewriteRule)

quotedOperators (r), where r is a rewrite rule, returns
the list of operators on the right-hand side of r that are
considered quoted, that is, they are not evaluated during
any rewrite, but applied formally to their arguments.

quotient (ideal, polynomial)

quotient (I, f) computes the quotient of the ideal I by the
principal ideal generated by the polynomial f , (I : (f)).
quotient (I, J) computes the quotient of the ideals I and
J , (I : J).

radical (ideal)

radical (I) returns the radical of the ideal I.

radicalEigenvalues (matrix)

radicalEigenvalues (m) computes the eigenvalues of the
matrix m; when possible, the eigenvalues are expressed in
terms of radicals.

radicalEigenvectors (matrix)

radicalEigenvectors (m) computes the eigenvalues and
the corresponding eigenvectors of the matrix m; when

possible, values are expressed in terms of radicals.

radicalEigenvector (eigenvalue, matrix)

radicalEigenvector (c, m) computes the eigenvector(s) of
the matrix m corresponding to the eigenvalue c; when
possible, values are expressed in terms of radicals.

radicalOfLeftTraceForm ()

radicalOfLeftTraceForm ()$F returns the basis for the
null space of leftTraceMatrix ()$F , where F is a domain
of category FramedNonAssociativeAlgebra. If the algebra is
associative, alternative or a Jordan algebra, then this space
equals the radical (maximal nil ideal) of the algebra.

radicalRoots (fractions)

radicalRoots (rf, v) finds the roots expressed in terms of
radicals of the rational function rf with respect to the
symbol v.
radicalRoots (lrf, lv) finds the roots expressed in terms
of radicals of the list of rational functions lrf with respect
to the list of symbols lv.

radicalSolve (eq, x)

See solve (u, v).

radix (rationalNumber, integer)

radix (rn, b) converts rational number rn to a radix
expansion in base b.

ramified? (polynomial)
ramifiedAtInfinity? ()

Domain F is a domain of functions on a fixed curve.
ramified? (p)$F tests whether p(x) = 0 is ramified.
ramifiedAtInfinity? () tests if infinity is ramified.

random ([u, v])

random ()$R creates a random element from domain D.
random (gp[, i]) returns a random product of maximal i
generators of the permutation group gp. The value of i is
20 by default.

range (listOfSegments)

range (ls), where ls is a list of segments of the form
[a1..b1, . . . , an..bn], provides a user-specified range for
clipping for the draw command. This command may also
be expressed locally to the draw command as the option
range == ls. The values ai and bi are either given as
floats or rational numbers.

ranges (listOfSegments)

ranges (l) provides a list of user-specified ranges for the
draw command. This command may also be expressed as
an option to the draw command in the form ranges == l.

rank (matrix)

rank (m) returns the rank of the matrix m. Also:

840 · Operations

rank (A, B) computes the rank of the complete matrix
(A|B) of the linear system AX = B.
rank (t), where t is a Cartesion tensor, returns the
tensorial rank of t (that is, the number of indices). See also
FiniteRankAlgebra and FiniteRankNonAssociativeAlgebra.

rarrow (outputForm, outputForm)

rarrow (o1, o2), where o1 and o2 are objects of type
OutputForm (normally unexposed), creates a form for the
mapping o1 → o2.

ratDenom (expression [, option])

ratDenom (f [, u]) rationalizes the denominators
appearing in f . If no second argument is given, then all
algebraic quantities are moved into the numerators. If the
second argument is given as an algebraic kernel a, then a is
removed from the denominators. Similarly, if u is a list of
algebraic kernels [a1, . . . , an], the operation removes the
ai’s from the denominators in f .

rational? (element)
rationalIfCan (element)
rational (element)

rational? (x) tests if x is a rational number, that is, that
it can be converted to type Fraction(Integer). Specifically, if
x is complex, a quaternion, or an octonion, it tests that all
imaginary parts are 0.
rationalIfCan (x) returns x as a rational number if
possible, and "failed" if it is not.
rational (x) returns x as a rational number if possible, and
calls error if it is not.

rationalApproximation (float, nonNegativeInteger [,
positiveInteger])

rationalApproximation (f, n[, b]) computes a rational
approximation r to f with relative error < b−n, that is
|(r − f)/f | < b−n, for some positive integer base b. By
default, b = 10. The first argument f is either a float or
small float.

rationalFunction (series, integer, integer)

rationalFunction (f, m, n) returns a rational function
consisting of the sum of all terms of f of degree d with
m ≤ d ≤ n. By default, n is the maximum degree of f .

rationalPoint? (value, value)

rationalPoint? (a, b)$F tests if (x = a, y = b) is on the
curve defining function field F . See FunctionFieldCategory.

rationalPoints ()

rationalPoints ()$ returns the list of all the affine rational
points on the curve defining function field F . See
FunctionFieldCategory.

rationalPower (puiseuxSeries)

rationalPower (f(x)) returns r where the Puiseux series

f(x) = g(xr).

ratPoly (expression)

ratPoly (f) returns a polynomial p such that p has no
algebraic coefficients, and p(f) = 0.

rdexquo (lodOperator)

rdexquo (a, b), where a and b are linear ordinary
differential operators, returns q such that a = bq, or
"failed" if no such q exists.

rightDivide (lodOperator, lodOperator)
rightQuotient (lodOperator, lodOperator)
rightRemainder (lodOperator, lodOperator)

rightDivide (a, b) returns the pair q, r such that
a = qb + r and the degree of r is less than the degree of b.
The pair is returned as a record with fields quotient and
remainder. This process is called “right division”. Also:
rightQuotient (a, b) returns only q. rightRemainder (a,
b) returns only r.

read! (file)
readIfCan! (file)

read! (f) extracts a value from file f . The state of f is
modified so a subsequent call to read! will return the next
element.
readIfCan! (f) returns a value from the file f or "failed"
if this is not possible (that is, either f is not open for
reading, or f is at the end of the file).

readable? (file)

readable? (f) tests if the named file exists and can be
opened for reading.

readLine! (file)
readLineIfCan! (file)

readLineIfCan! (f) returns a string of the contents of a
line from file f , or "failed" if this is not possible (if f is
not readable or is positioned at the end of file).
readLine! (f) returns a string of the contents of a line
from the file f , and calls error if this is not possible.

real (x)
real? (expression)

real (x) returns real part of x. Argument x can be an
expression or a complex value, quaternion, or octonion.
real? (f) tests if expression f = real(f).

realEigenvectors (matrix, float)

realEigenvectors (m, eps) returns a list of records, each
containing a real eigenvalue, its algebraic multiplicity, and
a list of associated eigenvectors. All these results are
computed to precision eps as floats or rational numbers
depending on the type of eps. Argument m is a matrix of
rational functions.

APPENDIX E · 841

realElementary (expression [, symbol])

realElementary (f, sy) rewrites the kernels of f involving
sy in terms of the 4 fundamental real transcendental
elementary functions: log, exp, tan, atan. If sy is omitted,
all kernels of f are rewritten.

realRoots (rationalfunctions, v [, w])

realRoots (rf, eps) finds the real zeros of a univariate
rational function rf with precision given by eps.
realRoots (lp, lv, eps) computes the list of the real
solutions of the list lp of rational functions with rational
coefficients with respect to the variables in lv, with
precision eps. Each solution is expressed as a list of
numbers in order corresponding to the variables in lv.

realZeros (polynomial, rationalNumber [, option])

realZeros (pol) returns a list of isolating intervals for all
the real zeros of the univariate polynomial pol.
realZeros (pol[, eps]) returns a list of intervals of length
less than the rational number eps for all the real roots of
the polynomial pol. The default value of eps is ???.
realZeros (pol, int[, eps]) returns a list of intervals of
length less than the rational number eps for all the real
roots of the polynomial pol which lie in the interval
expressed by the record int. The default value of eps is ???.

recip (element)

recip (x) returns the multiplicative inverse for x, or
"failed" if no inverse can be found. See also
FiniteRankNonAssociativeAlgebra andMonadWithUnit.

recur (function)

recur (f), where f is a function of type
(NonNegativeInteger, R) → R for some domain R, returns
the function g such that
g(n, x) = f(n, f(n− 1, . . . f(1, x) . . .)). For related
functions, see MappingPackage.

red ()

red () returns the position of the red hue from total hues.

reduce (op, aggregate [, identity, element])

reduce (f, u[, ident, a]) reduces the binary operation f
across u. For example, if u is [x1, x2, . . . , xn] then
reduce (f, u) returns f(. . . f(x1, x2), . . . , xn).

An optional identity element of f provided as a third
argument affects the result if u has less than two elements.
If u is empty, the third argument is returned if given, and
a call to error occurs otherwise. If u has one element and
the third argument is given, the value returned is
f(ident, x1). Otherwise x1 is returned. Thus both
reduce (+, u) and reduce (+, u, 0) return

∑n

i=1
xi.

Similarly, reduce (∗, u) and reduce (∗, u, 1) return∏n

i=1
xi.

An optional fourth argument z acts as an “absorbing

element”. reduce (f, u, x, z) reduces the binary operation
f across u, stopping when an “absorbing element” z is
encountered. For example reduce (or, u, false, true) will
stop iterating across u returning true as soon as an
xi = true is found. Note: if u has one element x,
reduce (f, u) returns x, or calls error if u is empty.

reduceBasisAtInfinity (basis)

reduceBasisAtInfinity (b1, . . . , bn), where the bi are
functions on a fixed curve, returns (xi bj) for all i, j such
that xi bj is locally integral at infinity. See
FunctionFieldCategory using Browse.

reducedContinuedFraction (element, stream)

reducedContinuedFraction (b0, b) returns a continued
fraction constructed as follows. If b = [b1, b2, . . .] then the
result is the continued fraction b0 + 1/(b1 + 1/(b2 + · · ·)).
That is, the result is the same as continuedFraction (b0,
[1, 1, 1, . . .], [b1, b2, b3, . . .]).

reducedForm (continuedFraction)

reducedForm (x) puts the continued fraction x in
reduced form, that is, the function returns an equivalent
continued fraction of the form continuedFraction (b0, [1,
1, 1, . . .], [b1, b2, b3, . . .]).

reducedSystem (matrix [, vector])

reducedSystem (A, v) returns a matrix B such that
Ax = v and Bx = v have the same solutions. By default,
v = 0.

reductum (polynomial)

reductum (p) returns polynomial p minus its leading
monomial, or zero if handed the zero element. See also
IndexedDirectProdcutCategory and
MonogenicLinearOperator.

refine (polynomial, interval, precision)

refine (pol, int, tolerance) refines the interval int
containing exactly one root of the univariate polynomial
pol to size less than the indicated tolerance. Argument int
is an interval denoted by a record with selectors left and
right, each with rational number values. The tolerance is
either a rational number or another interval. In the latter
case, "failed" is returned if no such isolating interval
exists.

regularRepresentation (element, basis)

regularRepresentation (a, basis) returns the matrix of
the linear map defined by left multiplication by a with
respect to basis basis. Element a is a complex element or
an element of a domain R of category FramedAlgebra. The
second argument may be omitted when a fixed basis is
defined for R.

842 · Operations

reindex (cartesianTensor, listOfIntegers)

reindex (t, [i1, . . . , idim]) permutes the indices of cartesian
tensor t. For example, if r = reindex(t, [4, 1, 2, 3]) for a
rank 4 tensor t, then r is the rank 4 tensor given by
r(i, j, k, l) = t(l, i, j, k).

relationsIdeal (listOfPolynomials)

relationsIdeal (polyList) returns the ideal of relations
among the polynomials in polyList.

relerror (float, float)

relerror (x, y), where x and y are floats, computes the
absolute value of x− y divided by y, when y 6= 0.

rem (element, element)

a rem b returns the remainder of a and b.

remove (predicate, aggregate)

Argument u is any extensible aggregate such as a list.
remove (pred, u) returns a copy of u removing all elements
x such that p(x) is true. Argument u may be any
homogeneous aggregate including infinite streams. Note:
for lists and streams, remove(p, u) == [x for x in u |
not p(x)].
remove! (pred, u) destructively removes all elements x of u
such that pred (x) is true. The value of u after all such
elements are removed is returned.
remove! (x, u) destructively removes all values x from u.
remove! (k, t), where t is a keyed dictionary, searches the
table t for the key k, removing and returning the entry if
there. If t has no such key, it returns "failed".

removeCoshSq (expression)

removeCoshSq (f) converts every cosh(u)2 appearing in
f into 1− sinh(x)2, and also reduces higher powers of
cosh (u) with that formula.

removeDuplicates (aggregate)
removeDuplicates! (aggregate)

removeDuplicates (u) returns a copy of u with all
duplicates removed.
removeDuplicates! (u) destructively removes duplicates
from u.

removeSinhSq (expression)

removeSinhSq (f) converts every sinh(u)2 appearing in f
into 1− cosh(x)2, and also reduces higher powers of
sinh (u) with that formula.

removeSinSq (expression)

removeSinSq (f) converts every sin(u)2 appearing in f
into 1− cos(x)2, and also reduces higher powers of sin (u)
with that formula.

removeZeroes ([integer,]laurentSeries)

removeZeroes ([n,]f(x)) removes up to n leading zeroes

from the Laurent series f(x). If no integer n is given, all
leading zeroes are removed.

reopen! (file, string)

reopen! (f, mode) returns a file f reopened for operation
in the indicated mode: "input" or "output". For example,
reopen! (f, "input") will reopen the file f for input.

repeating (listOfElements [, stream])
repeating? (stream)

repeating (l) is a repeating stream whose period is the list
l.
repeating? (l, s) tests if a stream s is periodic with period
l.

replace (string, segment, string)

replace (s, i..j, t) replaces the substring s(i..j) of s by
string t.

represents (listOfElements [, listOfBasisElements])

represents ([a1, .., an][, [v1, .., vn]]) returns
a1v1 + · · ·+ anvn. Arguments vi are elements of a domain
of category FiniteRankAlgebra or
FiniteRankNonAssociativeAlgebra built over a ring R. The ai

are elements of R. In a framed algebra or finite algebra
extension field domain with a fixed basis, [v1, . . . , vn]
defaults to the elements of the fixed basis. See
FramedAlgebra, FramedNonAssociateAlgebra, and
FiniteAlgebraicExtensionField.
See also FunctionFieldCategory.

resetNew ()

resetNew () resets the internal counter that new () uses.

resetVariableOrder ()

resetVariableOrder () cancels any previous use of
setVariableOrder and returns to the default system
ordering.

rest (aggregate [, nonNegativeInteger])

rest (u) returns an aggregate consisting of all but the first
element of u (equivalently, the next node of u).

rest (u, n) returns the n th node of u. Note:
rest (u, 0) = u.

resultant (polynomial, polynoial [, variable])

resultant (p, q, v) returns the resultant of the polynomials
p and q with respect to the variable v. If p and q are
univariate polynomials, the variable v defaults to the
unique variable.

retract (element)
retractIfCan (element)

retractIfCan (a)@S returns a as an object of type S, or
"failed" if this is not possible.
retract (a)@S transforms a into an element of S, or calls

APPENDIX E · 843

error if this is not possible.

retractable? (typeAnyObject)

retractable? (a)$S tests if object a of type Any can be
converted into an object of type S.

reverse (linearAggregate)
reverse! (linearAggregate)

reverse (a) returns a copy of linear aggregate a with
elements in reverse order.
reverse! (a) destructively puts the elements of linear
aggregate a in reverse order.

rightGcd (lodOperator, lodOperator)

rightGcd (a, b), where a and b are linear ordinary
differential operators, computes the value g of highest
degree such that a = g ∗ aa and b = g ∗ bb for some values
aa and bb. The value g is computed using right-division.

rhs (rewriteRuleOrEquation)

rhs (u) returns the right-hand side of the rewrite rule or
equation u.

right (binaryRecursiveAggregate)

right (a) returns the right child.

rightAlternative? ()

See leftAlternative?.

rightCharacteristicPolynomial (element)

See leftCharacteristicPolynomial.

rightDiscriminant (basis)

See leftDiscriminant.

rightMinimalPolynomial (element)

See leftMinimalPolynomial.

rightNorm (element)

See leftNorm.

rightPower (monad, nonNegativeInteger)

See rightPower.

rightRankPolynomial ()

See leftRankPolynomial.

rightRank (basis)

See leftRank.

rightRecip (element)

See leftRecip.

rightRegularRepresentation (element [, basis])

See leftRegularRepresentation.

rightTraceMatrix ([basis])

See leftTraceMatrix.

rightTrim (string, various)

See leftTrim.

rightUnits ()

See leftUnits.

rischNormalize (expression, x)

rischNormalize (f, x) returns [g, [k1, . . . , kn], [h1, . . . , hn]]
such that g = normalize(f, x) and each ki was rewritten
as hi during the normalization.

rightLcm (lodOperator, lodOperator)

rightLcm (a, b), where a and b are linear ordinary
differential operators, computes the value m of lowest
degree such that m = aa ∗ a = bb ∗ b for some values aa and
bb. The value m is computed using right-division.

roman (integerOrSymbol)

roman (x) creates a roman numeral for integer or symbol
x.

romberg (floatFunction, fourFloats, threeIntegers)
rombergOpen (floatFunction, fourFloats, twoIntegers)
rombergClose (floatFunction, fourFloats, twoIntegers)

romberg (fn, a, b, epsrel, epsabs, nmin, nmax, nint) uses
an adaptive romberg method to numerically integrate
function fn over the closed interval from a to b, with
relative accuracy epsrel and absolute accuracy epsabs; the
refinement levels for the checking of convergence vary from
nmin to nmax. The method is called “adaptive” since it
requires an additional parameter nint giving the number of
subintervals over which the integrator independently
applies the convergence criteria using nmin and nmax.
This is useful when a large number of points are needed
only in a small fraction of the entire interval. Parameter
fn is a function of type Float → Float; a, b, epsrel, and
epsabs are floats; nmin, nmax, and nint are integers. The
operation returns a record containing: value, an estimate
of the integral; error, an estimate of the error in the
computation; totalpts, the total integral number of
function evaluations, and success, a boolean value that is
true if the integral was computed within the user specified
error criterion. See NumericalQuadrature for details.

rombergClosed (fn, a, b, epsrel, epsabs, nmin, nmax)
similarly uses the Romberg method to numerically
integrate function fn over the closed interval a to b, but is
not adaptive.

rombergOpen (fn, a, b, epsrel, epsabs, nmin, nmax) is
similar to rombergClosed, except that it integrates
function fn over the open interval from a to b.

844 · Operations

root (outputForm [, positiveInteger])

root (o[, n]), where o and n are objects of type OutputForm

(normally unexposed), creates an output form for the n th

root of the form o. By default, n = 2.

rootOfIrreduciblePoly (polynomial)

rootOfIrreduciblePoly (f) computes one root of the
monic, irreducible polynomial f , whose degree must divide
the extension degree of F over GF . That is, f splits into
linear factors over F .

rootOf (polynomial [, variable])

rootOf (p[, y]) returns y such that p(y) = 0. The object
returned displays as ′y. The second argument may be
omitted when p is a polynomial in a unique variable y.

rootSimp (expression)

rootSimp (f) transforms every radical of the form

(abqn+r)1/n appearing in expression f into bq(abr)1/n. This
transformation is not in general valid for all complex
numbers b.

rootsOf (polynomialOrExpression [, symbol])

rootsOf (p[, y]) returns the value of [y1, . . . , yn] such that
p(yi) = 0. The yi are symbols of the form %y with a suffix
number which are bound in the interpreter to respective
root values. Argument p is either an expression or a
polynomial. Argument y may be omitted in which case p
must contain exactly one symbol.

rootSplit (expression)

rootSplit (f) transforms every radical of the form (a/b)1/n

appearing in f into a1/n/b1/n. This transformation is not
in general valid for all complex numbers a and b.

rotate! (queue)

rotate! (q) rotates queue q so that the element at the front
of the queue goes to the back of the queue.

round (float)

round (x) computes the integer closest to x.

row (matrix, positiveInteger)

row (m, i) returns the i th row of the matrix or
two-dimensional array m.

rowEchelon (matrix)

rowEchelon (m) returns the row echelon form of the
matrix m.

rst (stream)

rst (s) returns a pointer to the next node of stream s.
Caution: this function should only be called after a
empty? test returns true since no error check is
performed.

rubiksGroup ()

rubiksGroup () constructs the permutation group
representing Rubic’s Cube acting on integers 10i + j for
1 ≤ i ≤ 6, 1 ≤ j ≤ 8. The faces of Rubik’s Cube are
labelled: Front, Right, Up, Down, Left, Back and
numbered from 1 to 6. The pieces on each face (except the
unmoveable center piece) are clockwise numbered from 1
to 8 starting with the piece in the upper left corner. The
moves of the cube are represented as permutations on these
pieces, represented as a two digit integer ij where i is the
number of the face and j is the number of the piece on this
face. The remaining ambiguities are resolved by looking at
the 6 generators representing 90-degree turns of the faces.

rule (various)

See Section 6.21 on page 228.

rules (ruleset)

rules (r) returns the list of rewrite rules contained in
ruleset r.

ruleset (listOfRules)

ruleset ([r1, . . . , rn]) creates a ruleset from a list of
rewrite rules r1, . . . , rn.

rungaKutta (vector, integer, fourFloats, integer,
function)
rungaKuttaFixed (vector, integer, float, float, integer,
function)

rungaKutta (y, n, a, b, eps, h, ncalls, derivs) uses a 4–th
order Runga-Kutta method to numerically integrate the
ordinary differential equation dy/dx = f(y, x) from x1 to
x2, where y is an n–vector of n variables. Initial and final
values are provided by solution vector y. The local
truncation error is kept within eps by changing the local
step size. Argument h is a trial step size and ncalls is the
maximum number of single steps the integrator is allowed
to take. Argument derivs is a function of type (Vector
Float, Vector Float, Float) → Void, which computes the
right-hand side of the ordinary differential equation, then
replaces the elements of the first argument by updated
elements.

rungaKuttaFixed (y, n, x1, x2, ns, derivs) is similar to
rungaKutta except that it uses ns fixed steps to integrate
the solution vector y from x1 to x2, returning the values in
y.

saturate (ideal, polynomial [, listOfVariables])

saturate (I, f [, lvar]) is the saturation of the ideal I with
respect to the multiplicative set generated by the
polynomial f in the variables given by lvar, a list of
variables. Argument lvar may be omitted in which case
lvar is taken to be the list of all variables appearing in f .

APPENDIX E · 845

say (strings)

say (u) sends a string or a list of strings u to output.

sayLength (listOfStrings)

sayLength (ls) returns the total number of characters in
the list of strings ls.

scalarMatrix (scalar [, dimension])

scalarMatrix (r[, n]) returns an n-by-n matrix with scalar
r on the diagonal and zero elsewhere. The dimension may
be omitted if the result is to be an object of type
SquareMatrix (n, R) for some n.

scan (binaryFunction, aggregate, element)

scan (f, a, r) successively applies reduce (f, x, r) to more
and more leading sub-aggregates x of aggregrate a. More
precisely, if a is [a1, a2, . . .], then scan (f, a, r) returns
[reduce(f, [a1], r), reduce(f, [a1, a2], r), . . .]. Argument a
can be any linear aggregate including streams. For
example, if a is a list or an infinite stream of the form
[x1, x2, . . .], then scan(+, a, 0) returns a list or stream of
the form [x1, x1 + x2, . . .].

scanOneDimSubspaces (listOfVectors, integer)

scanOneDimSubspaces (basis, n) gives a canonical

representative of the n th one-dimensional subspace of the
vector space generated by the elements of basis. Consult
RepresentationPackage2 using details.

script (symbol, listOfListsOfOutputForms)

script (sy, [a, b, c, d, e]) returns sy with subscripts a,
superscripts b, pre-superscripts c, pre-subscripts d, and
argument-scripts e. Omitted components are taken to be
empty. For example, script (s, [a, b, c]) is equivalent to
script (s, [a, b, c, [], []]).

scripted? (symbol)

scripted? (sy) tests if sy has been given any scripts.

scripts (symbolOrOutputForm [, listOfOutputForms])

scripts (o, lo), where o is an object of type OutputForm
(normally unexposed) and lo is a list
[sub, super, presuper, presub] of four objects of type
OutputForm (normally unexposed), creates a form for o
with scripts on all four corners.
scripts (s) returns all the scripts of s as a record with
selectors sub, sup, presup, presub, and args, each with a
list of output forms as a value.

search (key, table)

search (k, t) searches the table t for the key k, returning
the entry stored in t for key k, or "failed" if t has no such
key.

sec (expression)

secIfCan (expression)

sec (x) returns the secant of x.
secIfCan (z) returns sec (z) if possible, and "failed"
otherwise.

sec2cos (expression)

sec2cos (f) converts every sec (u) appearing in f into
1/cos(u).

sech (expression)
sechIfCan (expression)

sech (x) returns the hyperbolic secant of x.
sechIfCan (z) returns sech (z) if possible, and "failed"
otherwise.

sech2cosh (expression)

sech2cosh (f) converts every sech (u) appearing in f into
1/cosh(u).

second (aggregate)

second (u) returns the second element of recursive
aggregate u. Note: second (u) = first(rest(u)).

segment (integer [, integer])

segment (i[, j]) returns the segment i..j. If not qualified
by a by clause, this notation for integers i and j denotes
the tuple of integers i, i + 1, . . . , j. When j is omitted,
segment (i) denotes the half open segment i.., that is, a
segment with no upper bound.
segment (x = bd), where bd is a binding, returns bd. For
example, segment (x = a..b) returns a..b.

select (pred, aggregate)
select! (pred, aggregate)

select (p, u) returns a copy of u containing only those
elements x such that p(x) is true. For a list l,
select(p, l) == [x for x in l|p(x)]. Argument u may be
any finite aggregate or infinite stream.
select! (p, u) destructively changes u by keeping only
values x such that p(x) is true. Argument u can be any
extensible linear aggregate or dictionary.

semicolonSeparate (listOfOutputForms)

semicolonSeparate (lo), where lo is a list of objects of
type OutputForm (normally unexposed), returns an output
form which separates the elements of lo by semicolons.

separant (differentialPolynomial)

separant (polynomial) returns the partial derivative of the
differential polynomial p with respect to its leader.

separate (polynomial, polynomial)

separate (p, q) returns (a, b) such that polynomial p = ab
and a is relatively prime to q. The result produced is a
record with selectors primePart and commonPart with
value a and b respectively.

846 · Operations

separateDegrees (polynomial)

separateDegrees (p) splits the polynomial p into factors.
Each factor is a record with selector deg, a non-negative
integer, and prod, a product of irreducible polynomials of
degree deg.

separateFactors (listOfRecords, polynomial)

separateFactors (lfact, p) takes the list produced by
separateDegrees along with the original polynomial p,
and produces the complete list of factors.

separateFactors (listOfRecords, integer)

separateFactors (ddl, p) refines the distinct degree
factorization produced by ddFact to give a complete list
of factors.

sequences (listOfIntegers)
sequences (listOfIntegers, listOfIntegers)

sequences ([l0, l1, l2, .., ln]) is the set of all sequences
formed from l0 0’s, l1 1’s, l2 2’s, . . . , ln n’s.
sequences (l1, l2) is the stream of all sequences that can
be composed from the multiset defined from two lists of
integers l1 and l2. For example, the pair ([1, 2, 4], [2, 3, 5])
represents multiset with 1 2, 2 3’s, and 4 5’s.

series (specifications [, . . .])

series (expression) returns a series expansion of the
expression f . Note: f must have only one variable. The
series will be expanded in powers of that variable.
series (sy), where sy is a symbol, returns sy as a series.
series (st), where t is a stream [a0, a1, a2, . . .] of coefficients
ai from some ring, creates the Taylor series
a0 + a1x + a2x

2 + Also, if st is a stream of elements of
type Record(k:NonNegativeInteger, c:R), where k denotes an
exponent and c, a non-zero coefficient from some ring R, it
creates a stream of non-zero terms. The terms in st must
be ordered by increasing order of exponents.
series (f, x = a[, n]) expands the expression f as a series in
powers of (x− a) with n terms. If n is missing, the number
of terms is governed by the value set by the system
command)set streams calculate.
series (f, n) returns a series expansion of the expression f .
Note: f should have only one variable; the series will be
expanded in powers of that variable and terms will be
computed up to order at least n.
series (i+− >a(i), x = a, m..[n, k]) creates the series∑

i=m..n by k
a(i)(x− a)i. Here m, n, and k are rational

numbers. Upper-limit n and stepsize k are optional and
have default values n = ∞ and k = 1.
series (a(i), i, x = a, m..[n, k]) returns∑

i=m..nbyk
a(n)(x− a)n.

seriesSolve (eq, y, x, c)

eq denotes an equation to be solved; alternatively, an
expression u may be given for eq in which case the

equation eq is defined as u = 0.

leq denotes a list [eq1 . . . eqn] of equations; alternatively, a
list of expressions [u1 . . . un] may be given of leq in which
case the equations eqi are defined by ui = 0.

seriesSolve (eq, y, x = a, [y(a) =]b) returns a Taylor series
solution of eq around x = a with initial condition y(a) = b.
Note: eq must be of the form
f(x, y)y′(x) + g(x, y) = h(x, y).

seriesSolve (eq, y, x = a, [b0, . . . , b(n−1)]) returns a Taylor
series solution of eq around x = a with initial conditions
y(a) = b0, y′(a) = b1, . . . y(n−1)(a) = b(n−1). Equation eq
must be of the form
f(x, y, y′, . . . , y(n−1)) ∗ y(n)(x) + g(x, y, x′, . . . , y(n−1)) =

h(x, y, y′, . . . , y(n−1)).

seriesSolve(leq, [y1, . . . , yn], x = a, [y1(a) = b1, . . . , yn(a) =
bn]) returns a Taylor series solution of the equations eqi

around x = a with initial conditions yi(a) = bi. Note: each
eqi must be of the form
fi(x, y1, y2, . . . , yn)y′1(x) + gi(x, y1, y2, . . . , yn) =
h(x, y1, y2, . . . , yn).

seriesSolve(leq, [y1, . . . , yn], x = a, [b1, . . . , bn]) is
equivalent to the same command with fourth argument
[y1(a) = b1, . . . , yn(a) = bn].

setchildren! (recursiveAggregate)

setchildren! (u, v) replaces the current children of node u
with the members of v in left-to-right order.

setColumn! (matrix)

setColumn! (m, j, v) sets the j th column of matrix or
two-dimensional array m to v.

setDifference (list, list)

setDifference (l1, l2) returns a list of the elements of l1
that are not also in l2. The order of elements in the
resulting list is unspecified.

setelt (structure, index, value [, option])

setelt (u, x, y), also written u.x := y, sets the image of x to
be y under u, regarded as a function mapping values from
the domain of x to the domain of y. Specifically, if u is:

a list: u.first := x is equivalent to setfirst! (u, x). Also,
u.rest := x is equivalent to setrest! (u, x), and
u.last := x is equivalent to setlast! (u, x).

a linear aggregate, u(i..j) := x destructively replaces
each element in the segment u(i..j) by x. The value x is
returned. Note: This function has the same effect as
for k in i..j repeat u.k := x; x. The length of u
is unchanged.

a recursive aggregate, u.value := x is equivalent to
setvalue! (u, x) and sets the value part of node u to x.
Also, if u is a BinaryTreeAggregate, u.left := x is
equivalent to setleft! (u, x) and sets the left child of u

APPENDIX E · 847

to x. Simiarly, u.right := x is equivalent to
setright! (u, x). See also setchildren!.

a table of category TableAggregate(Key, Entry): u(k)
:= e is equivalent to (insert([k, e], t); e), where k is a
key and e is an entry.

a library: u.k := v saves the value v in the library u, so
that it can later be extracted by u.k.

setelt (u, i, j, r), also written, u(i, j) := r, sets the element

in the i th row and j th column of matrix or
two-dimensional array u to r.
setelt (u, rowList, colList, r), also written
u([i1, i2, . . . , im], [j1, j2, . . . , jn]) := r, where u is a matrix
or two-dimensional array and r is another m by n matrix
or array, destructively alters the matrix u: the xik,jl is set
to r(k, l).

setEpilogue! (formattedObject, listOfStrings)

setEpilogue! (t, strings) sets the epilogue section of a
formatted object t to strings. Argument t is either an IBM
SCRIPT Formula Formatted or TEX formatted object.

setfirst! (aggregate, value)

setfirst! (a, x) destructively changes the first element of
recursive aggregate a to x.

setFormula! (formattedObject, listOfStrings)

setFormula! (t, strings) sets the formula section of a
formatted object t to strings.

setIntersection (list, list)

setIntersection (l1, l2) returns a list of the elements that
lists l1 and l2 have in common. The order of elements in
the resulting list is unspecified.

setlast! (aggregate, value)

setlast! (u, x) destructively changes the last element of u
to x. Note: u.last := x is equivalent.

setleaves! (balancedBinaryTree, listOfElements)

setleaves! (t, ls) sets the leaves of balanced binary tree t in
left-to-right order to the elements of ls.

setleft! (binaryRecursiveAggregate)

setleft! (a, b) sets the left child of a to be b.

setPrologue! (formattedObject, listOfStrings)

setPrologue! (t, strings) sets the prologue section of a
formatted object t to strings. Argument t is either an IBM
SCRIPT Formula Formatted or TEX formatted object.

setProperties! (basicOperator, associationList)

setProperties! (op, al) sets the property list of basic
operator op to association list l. Note: argument op is
modified “in place”, that is, no copy is made.

setProperty! (basicOperator, string, value)

setProperty! (op, s, v) attaches property s to op, and sets
its value to v. Argument op is modified “in place”, that is,
no copy is made.

setrest! (aggregate[, integer], aggregate)

Arguments u and v are finite or infinite aggregates of the
same type.
setrest! (u, v) destructively changes the rest of u to v.
setrest! (x, n, y) destructively changes x so that rest (x, n)

, that is, x after the n th element, equals y. The function
will expand cycles if necessary.

setright! (binaryRecursiveAggregate)

setright! (a, x) sets the right child of t to be x.

setRow! (matrix, integer, row)

setRow! (m, i, v) sets the i th row of matrix or
two-dimensional array m to v.

setsubMatrix! (matrix, integer, integer, matrix)

setsubMatrix (x, i1, j1, y) destructively alters the matrix
x. Here x(i, j) is set to y(i− i1 + 1, j − j1 + 1) for
i = i1, . . . , i1 − 1 + nrows(y) and
j = j1, . . . , j1 − 1 + ncols(y).

setTex! (text, listOfStrings)

setTex! (t, strings) sets the TeX section of a TeX form t
to strings.

setUnion (list, list)

setUnion (l1, l2) appends the two lists l1 and l2, then
removes all duplicates. The order of elements in the
resulting list is unspecified.

setvalue! (aggregate, value)

setvalue! (u, x) destructively changes the value of node u
to x.

setVariableOrder (listOfSymbols [, listOfSymbols])

setVariableOrder ([a1, . . . , am], [b1, . . . , bn]) defines an
ordering on the variables given by a1 > a2 > . . . > am >
other variables b1 > b2 > . . . > bn.
setVariableOrder ([a1, . . . , an]) defines an ordering given
by a1 > a2 > . . . > an > all other variables.

sFunction (listOfIntegers)

sFunction (li) is the S-function of the partition given by
list of linteger li, expressed in terms of power sum
symmetric functions. See CycleIndicators for details.

shade (palette)

shade (p) returns the shade index of the indicated palette
p.

848 · Operations

shellSort (sortingFunction, aggregate)

shellSort (f, a) sorts the aggregate a using the shellSort
algorithm with sorting function f . Aggregate a can be any
finite linear aggregate which is mutable (for example, lists,
vectors, and strings). The sorting function f has type (R,
R) → Boolean where R is the domain of the elements of a.

shift (integerNumber, integer)

shift (a, i) shifts integer number or float a by i digits.

showAll? ()

showAll? () tests if all computed entries of streams will be
displayed according to system command)set streams
showall.

showAllElements (stream)

showAllElements (s) creates an output form displaying
all the already computed elements of stream s. This
command will not result in any further computation of
elements of s. Also, the command has no effect if the user
has previously entered)set streams showall true.

showTypeInOutput (boolean)

showTypeInOutput (bool) affects the way objects of Any
are displayed. If bool is true, the type of the original object
that was converted to Any will be printed. If bool is false,
it will not be printed.

shrinkable (boolean)

shrinkable (b)$R tells AXIOM that flexible arrays of
domain R are or are not allowed to shrink (reduce their
physicalLength) according to whether b is true or false.

shufflein (listOfIntegers, streamOfListsOfIntegers)

shufflein (li, sli) maps shuffle (li, u) onto all members u of
sli, concatenating the results. See
PartitionsAndPermutations.

shuffle (listOfIntegers, listOfIntegers)

shuffle (l1, l2) forms the stream of all shuffles of l1 and l2,
that is, all sequences that can be formed from merging l1
and l2. See PartitionsAndPermutations.

sign (various [, . . .])

sign (x), where x is an element of an ordered ring, returns
1 if x is positive, −1 if x is negative, 0 if x equals 0.
sign (p), where p is a permutation, returns 1, if p is an
even permutation, or −1, if it is odd.
sign (f, x, a, s) returns the sign of rational function f as
symbol x nears a, a real value represented by either a
rational function or one of the values %plusInfinity or
%minusInfinity. If s is:

the string "left": from the left (below).

the string "right: from the right (above).

not given: from both sides if a is finite.

simplify (expression)

simplify (f) performs the following simplifications on f :

rewrites trigs and hyperbolic trigs in terms of sin, cos,
sinh, cosh.

rewrites sin2 and sinh2 in terms of cos and cosh.

rewrites eaeb as ea+b.

simplifyExp (expression)

simplifyExp (f) converts every product eaeb appearing in

f into ea+b.

simpson (floatFunction, fourFloats, threeIntegers)
simpsonClosed (floatFunction, fourFloats, twoIntegers)
simpsonOpen (floatFunction, fourFloats, twoIntegers)

simpson (fn, a, b, epsrel, epsabs, nmin, nmax, nint) uses
the adaptive simpson method to numerically integrate
function fn over the closed interval from a to b, with
relative accuracy epsrel and absolute accuracy epsabs; the
refinement levels for the checking of convergence vary from
nmin to nmax. The method is called “adaptive” since it
requires an additional parameter nint giving the number of
subintervals over which the integrator independently
applies the convergence criteria using nmin and nmax.
This is useful when a large number of points are needed
only in a small fraction of the entire interval. Parameter
fn is a function of type Float → Float; a, b, epsrel, and
epsabs are floats; nmin, nmax, and nint are integers. The
operation returns a record containing: value, an estimate
of the integral; error, an estimate of the error in the
computation; totalpts, the total integral number of
function evaluations, and success, a boolean value which is
true if the integral was computed within the user specified
error criterion. See NumericalQuadrature for details.

simpsonClosed (fn, a, b, epsrel, epsabs, nmin, nmax)
similarly uses the Simpson method to numerically integrate
function fn over the closed interval a to b, but is not
adaptive.

simpsonOpen (fn, a, b, epsrel, epsabs, nmin, nmax) is
similar to simpsonClosed, except that it integrates
function fn over the open interval from a to b.

sin (expression)

Argument x can be a Complex, Float, DoubleFloat, or
Expression value or a series.
sin (x) returns the sine of x if possible, and calls error
otherwise.
sinIfCan (x) returns sin (x) if possible, and "failed"
otherwise.

sin2csc (expression)

sin2csc (f) converts every sin (u) appearing in f into
1/csc(u).

singular? (polynomialOrFunctionField)

APPENDIX E · 849

singularAtInfinity? ()

singular? (p) tests whether p(x) = 0 is singular.
singular? (a)$F tests if x = a is a singularity of the
algebraic function field F (a domain of
FunctionFieldCategory).
singularAtInfinity? ()$F tests if the algebraic function
field F has a singularity at infinity.

sinh (expression)
sinhIfCan (expression)

Argument x can be a Complex, Float, DoubleFloat, or
Expression value or a series.
sinh (x) returns the hyperbolic sine of x if possible, and
calls error otherwise.
sinhIfCan (x) returns sinh (x) if possible, and "failed"
otherwise.

sinh2csch (expression)

sinh2csch (f) converts every sinh (u) appearing in f into
1/csch(u).

size ()

size ()$F returns the number of elements in the domain of
category Finite. By definition, each such domain must have
a finite number of elements. See also
FreeAbelianMonoidCategory.

size? (aggregate, nonNegativeInteger)

size? (a, n) tests if aggregate a has exactly n elements.

sizeLess? (element, element)

sizeLess? (x, y) tests whether x is strictly smaller than y
with respect to the euclideanSize.

sizeMultiplication ()

sizeMultiplication ()$F returns the number of entries in
the multiplication table of the field. Note: The time of
multiplication of field elements depends on this size.

skewSFunction (listOfIntegers, listOfIntegers)

skewSFunction (li1, li2) is the S-function of the partition
difference li1 − li2, expressed in terms of power sum
symmetric functions. See CycleIndicators for details.

solve (u, v [, w])

eq denotes an equation to be solved; alternatively, an
expression u may be given for eq in which case the
equation eq is defined as u = 0.

leq denotes a list [eq1 . . . eqn] of equations; alternatively, a
list of expressions [u1 . . . un] may be given for leq in which
case the equations eqi are defined by ui = 0.

epsilon is either a rational number or a float.

complexSolve (eq, epsilon) finds all the real solutions to
precision epsilon of the univariate equation eq of rational
functions with respect to the unique variable appearing in

eq. The complex solutions are either expressed as rational
numbers or floats depending on the type of epsilon.

complexSolve ([eq1 . . . eqn], epsilon) computes the real
solutions to precision epsilon of a system of equations eqi

involving rational functions. The complex solutions are
either expressed as rational numbers or floats depending on
the type of epsilon.

radicalSolve (eq[, x]) finds solutions expressed in terms of
radicals of the equation eq involving rational functions.
Solutions will be found with respect to a Symbol given as a
second argument to the operation. This second argument
may be omitted when eq contains a unique symbol.

radicalSolve (leq, lv) finds solutions expressed in terms of
radicals of the system of equations leq involving rational
functions. Solutions are found with respect to a list lv of
Symbols, or with respect to all variables appearing in the
equations, if no second argument is given.

solve (eq[, x]) finds exact symbolic solutions to equation eq
involving either rational functions or expressions of type
Expression(R). Solutions will be found with respect to a
Symbol given as a second argument to the operation. The
second argument may be omitted when eq contains a
unique symbol.

solve (leq, lv) finds exact solutions to a system of
equations leq involving rational functions or expressions of
type Expression (R). Solutions are found with respect to
a list of lv of Symbols, or with respect to all variables
appearing in the equations if no second argument is given.

solve (eq, epsilon) finds all the real solutions to precision
epsilon of the univariate equation eq of rational functions
with respect to the unique variable appearing in eq. The
real solutions are either expressed as rational numbers or
floats depending on the type of epsilon.

solve ([eq1 . . . eqn], epsilon) computes the real solutions to
precision epsilon of a system of equations eqi involving
rational functions. The real solutions are either expressed
as rational numbers or floats depending on the type of
epsilon.

solve (M, v), where M is a matrix and v is a Vector of
coefficients, finds a particular solution of the system
Mx = v and a basis of the associated homogeneous system
MX = 0.

solve (eq, y, x = a, [y0 . . . ym]) returns either the solution of
the initial value problem eq, y(a) = y0, y′(a) = a1, . . . or
"failed" if no solution can be found. Note: an error
occurs if the equation eq is not a linear ordinary equation
or of the form dy/dx = f(x, y).

solve (eq, y, x) returns either a solution of the ordinary
diffential equation eq or "failed" if no non-trivial solution
can be found. If eq is a linear ordinary differential
equation, a solution is of the form [h, [b1, . . . ,]] where h is a

850 · Operations

particular solution and [b1, . . . , bm] are linearly
independent solutions of the associated homogeneous
equation f(x, y) = 0. The value returned is a basis for the
solution of the homogeneous equation which are found
(note: this is not always a full basis).

See also dioSolve, contractSolve, polSolve,
seriesSolve, linSolve.

solveLinearlyOverQ (vector)

solveLinearlyOverQ ([v1, . . . , vn], u) returns [c1, . . . , cn]
such that c1v1 + · · ·+ cnvn = u, or "failed" if no such
rational numbers ci exist. The elements of the vi and u
can be from any extension ring with an explicit linear
dependence test, for example, expressions, complex values,
polynomials, rational functions, or exact numbers. See
LinearExplicitRingOver.

solveLinearPolynomialEquation (listOfPolys, poly)

solveLinearPolynomialEquation ([f1, . . . , fn], g), where
g is a polynomial and the fi are polynomials relatively
prime to one another, returns a list of polynomials ai such
that g/

∏
i
fi =

∑
i
ai/fi, or "failed" if no such list of ai’s

exists.

sort ([predicate,]aggregate)
sort! ([predicate,]aggregate)

sort ([p,]a) returns a copy of a sorted using total ordering
predicate p.
sort! ([p,]u) returns u destructively changed with its
elements ordered by comparison function p.
By default, p is the operation ≤. Thus both sort (u) and
sort! (u) returns u with its elements in ascending order.
Also: sort (lp) sorts a list of permutations lp according to
cycle structure, first according to the length of cycles,
second, if S has Finite or S has OrderedSet, according to
lexicographical order of entries in cycles of equal length.

spherical (point)

spherical (pt) transforms point pt from spherical
coordinates to Cartesian coordinates, mapping (r, θ, φ) to
x = r sin(φ) cos(θ), y = r sin(φ) sin(θ), z = r cos(φ).

split (element, binarySearchTree)

split (x, t) splits binary search tree t into two components,
returning a record of two components: less, a binary search
tree whose components are all less than x; and, greater, a
binary search tree with all the rest of the components of t.

split! (aggregate, integer)

split! (u, n) splits u into two aggregates: the first
consisting of v, the first n elements of u, and w consisting
of all the rest. The value of w is returned. Thus
v = first(u, n) and w := rest(u, n). Note: afterwards
rest (u, n) returns empty ().

splitDenominator (listOfFractions)

splitDenominator (u), where u is a list of fractions
[q1, . . . , qn], returns [[p1, . . . , pn], d] such that qi = pi/d and
d is a common denominator for the qi’s. Similarly, the
function is defined for a matrix (respectively, a polynomial)
u in which case the qi are the elements of (respectively, the
coefficients of) u.

sqfrFactor (element, integer)

sqfrFactor (base, exponent) creates a factored object with
a single factor whose base is asserted to be square-free (flag
= "sqfr").

sqrt (expression [, option])

sqrt (x) returns the square root of x.
sqrt (x, y), where x and y are p-adic integers, returns a
square root of x where argument y is a square root of
x mod p. See also PAdicIntegerCategory.

square? (matrix)

square? (m) tests if m is a square matrix.

squareFree (element)

squareFree (x) returns the square-free factorization of x,
that is, such that the factors are pairwise relatively prime
and each has multiple prime factors. Argument x can be a
member of any domain of category
UniqueFactorizationDomain such as a polynomial or integer.

squareFreePart (element)

squareFreePart (p) returns product of all the prime
factors of p each taken with multiplicity one. Argument p
can be a member of any domain of category
UniqueFactorizationDomain such as a polynomial or integer.

squareFreePolynomial (polynomial)

squareFreePolynomial (p) returns the square-free
factorization of the univariate polynomial p.

squareTop (matrix)

squareTop (A) returns an n-by-n matrix consisting of the
first n rows of the m-by-n matrix A. The operation calls
error if m < n.

stack (list)

stack ([x, y, . . . , z]) creates a stack with first (top) element
x, second element y, . . . , and last element z.

standardBasisOfCyclicSubmodule (listOfMatrices,
vector)

standardBasisOfCyclicSubmodule (lm, v) returns a
matrix representation of cyclic submodule over a ring R,
where lm is a list of matrices and v is a vector, such that
the non-zero column vectors are an R-basis for Av. See
RepresentationPackage2 using Browse.

APPENDIX E · 851

stirling1 (integer, integer)
stirling2 (integer, integer)

stirling1 (n, m) returns the Stirling number of the first
kind.
stirling2 (n, m) returns the Stirling number of the second
kind.

string? (various)
string (sExpression)

string? (s) tests if SExpression object s is a string.
string (s) converts the symbol s to a string. An error is
called if the symbol is subscripted.
string (s) returns SExpression object s as an element of
String if possible, and otherwise calls error.

strongGenerators (listOfPermutations)

strongGenerators (gp) returns strong generators for the
permutation group gp.

structuralConstants (basis)

structuralConstants (basis) calculates the structural
constants [(γi,j,k) for k in 1..rank()$R] of a domain R of
category FramedNonAssociativeAlgebra over a ring R,
defined by: vivj = γi,j,1v1 + · · ·+ γi,j,nvn, where v1, . . . , vn

is the fixed R-module basis.

style (string)

style (s) specifies the drawing style in which the graph will
be plotted by the indicated string s. This option is
expressed in the form style == s.

sub (outputForm, outputForm)

sub (o1, o2), where o1 and o2 are objects of type
OutputForm (normally unexposed), creates an output form
for o1 subscripted by o2.

subMatrix (matrix, integer, integer, integer, integer)

subMatrix (m, i1, i2, j1, j2) extracts the submatrix
[m(i, j)] where the index i ranges from i1 to i2 and the
index j ranges from j1 to j2.

submod (integerNumber, integerNumber, integerNumber)

submod (a, b, p), where 0 ≤ a < b < p > 1, returns
a− b mod p, for integer numbers a, b and p.

subResultantGcd (polynomial, polynomial)

subResultantGcd (p, q) computes the gcd of the
polynomials p and q using the SubResultant GCD
algorithm.

subscript (symbol, listOfOutputForms)

subscript (s, [a1, . . . , an]) returns symbol s subscripted by
output forms a1, . . . , an as a symbol.

subset (integer, integer, integer)

subSet (n, m, k) calculates the k th m-subset of the set

0, 1, . . . , (n− 1) in the lexicographic order considered as a
decreasing map from 0, . . . , (m− 1) into 0, . . . , (n− 1). See
SymmetricGroupCombinatoricFunctions.

subset? (set, set)

subset? (u, v) tests if set u is a subset of set v.

subspace (threeSpace)

subspace (s) returns the space component which holds all
the point information in the ThreeSpace object s.

substring? (string, string, integer)

substring? (s, t, i) tests if s is a substring of t beginning at
index i. Note: substring?(s, t, 0) = prefix?(s, t).

subst (expression, equations)

subst (f, k = g) formally replaces the kernel k by g in f .
subst (f, [k1 = g1, . . . , kn = gn]) formally replaces the
kernels k1, . . . , kn by g1, . . . , gn in f .
subst (f, [k1, . . . , kn], [g1, . . . , gn]) formally replaces kernels
ki by gi in f .

suchThat (symbol, predicates)

suchThat (sy, pred) attaches the predicate pred to symbol
sy. Argument pred may also be a list [p1, . . . , pn] of
predicates pi. In this case, the predicate pred attached to
sy is p1 and . . . and pn.
suchThat (r, [a1, . . . , an], f) returns the rewrite rule r
with the predicate f(a1, . . . , an) attached to it.

suffix? (string, string)

suffix? (s, t) tests if the string s is the final substring of t.

sum (rationalFunction, symbolOrSegmentBinding)

sum (a(n), n), where a(n) is an rational function or
expression involving the symbol n, returns the indefinite
sum A of a with respect to upward difference on n, that is,
A(n + 1)−A(n) = a(n).
sum (f(n), n = a..b), where f(n), a, and b are rational
functions (or polynomials), computes and returns the sum
f(a) + f(a + 1) + · · ·+ f(b) as a rational function (or
polynomial).

summation (expression, segmentBinding)

summation (f, n = a..b) returns the formal sum∑b

n=a
f(n).

sumOfDivisors (integer)

sumOfDivisors (n) returns the sum of the integers
between 1 and integer n (inclusive) which divide n. This
sum is often denoted in the literature by σ(n).

sumOfKthPowerDivisors (integer, nonNegativeInteger)

sumOfKthPowerDivisors (n, k) returns the sum of the

k th powers of the integers between 1 and n (inclusive)

852 · Operations

which divide n. This sum is often denoted in the literature
by σk(n).

sumSquares (integer)

sumSquares (p) returns the list [a, b] such that a2 + b2 is
equal to the integer prime p, and calls error if this is not
possible. It will succeed if p is 2 or congruent to 1 mod 4.

sup (element, element)

sup (x, y) returns the least element from which both x and
y can be subtracted. The purpose of sup is to act as a
supremum with respect to the partial order imposed by the
− operation on the domain. See OrderedAbelianMonoidSup
for details.

super (outputForm, outputForm)

super (o1, o2), where o1 and o2 are objects of type
OutputForm (normally unexposed), creates an output form
for o1 superscripted by o2.

superscript (symbol, listOfOutputForms)

superscript (s, [a1, . . . , an]) returns symbol s
superscripted by output forms [a1, . . . , an].

supersub (outputForm, listOfOutputForms)

supersub (o, lo), where o is an object of type OutputForm
(normally unexposed) and lo is a list of output forms of
the form [sub1, super1, sub2, super2, . . . , subn, supern]
creates an output form with each subscript aligned under
each superscript.

surface (function, function, function)

surface (c1, c2, c3) creates a surface from three parametric
component functions c1, c2, and c3.

swap! (aggregate, index, index)

swap! (u, i, j) interchanges elements i and j of aggregate u.
No meaningful value is returned.

swapColumns! (matrix, integer, integer)

swapColumns! (m, i, j) interchanges the i th and j th

columns of m returning m which is destructively altered.

swapRows! (matrix, integer, integer)

swapRows! (m, i, j) interchanges the i th and j th rows of
m, returning m which is destructively altered.

symbol? (sExpression)

symbol? (s) tests if SExpression object s is a symbol.

symbol (sExpression)

symbol (s) returns s as an element of type Symbol, or calls
error if this is not possible.

symmetric? (matrix)

symmetric? (m) tests if the matrix m is square and
symmetric, that is, if each m(i, j) = m(j, i).

symmetricDifference (set, set)

symmetricDifference (u, v) returns the set aggregate of
elements x which are members of set aggregate u or set
aggregate v but not both. If u and v have no elements in
common, symmetricDifference (u, v) returns a copy of
u. Note: symmetricDifference(u, v) =
union(difference(u, v),difference(v, u))

symmetricGroup (integers)

symmetricGroup (n) constructs the symmetric group Sn

acting on the integers 1, . . . , n. The generators are the
n-cycle (1, . . . , n) and the 2-cycle (1, 2).
symmetricGroup (li), where li is a list of integers,
constructs the symmetric group acting on the integers in
the list li. The generators are the cycle given by li and the
2-cycle (li(1), li(2)). Duplicates in the list will be removed.

symmetricRemainder (integer, integer)

symmetricRemainder (a, b), where b > 1, yields r where
−b/2 ≤ r < b/2.

symmetricTensors (matrices, positiveInteger)

symmetricTensors (la, n), where la is a list [a1, . . . , ak] of
m-by-m square matrices, applies to each matrix ai, the
irreducible, polynomial representation of the general linear
group GLm corresponding to the partition (n, 0, . . . , 0) of
n.

systemCommand (string)

systemCommand (cmd) takes the string cmd and passes
it to the runtime environment for execution as a system
command. Although various things may be printed, no
usable value is returned.

tableau (listOfListOfElements)

tableau (ll) converts a list of lists ll to an object of type
Tableau.

tableForDiscreteLogarithm (integer)

tableForDiscreteLogarithm (n) returns a table of the
discrete logarithms of a0 up to an−1 which, when called
with the key lookup (ai), returns i for i in 0..n− 1 for a
finite field. This operation calls error if not called for
prime divisors of order of multiplicative group.

table ([listOfRecords])

table ([p1, p2, . . . , pn]) creates a table with keys of type
Key and entries of type Entry. Each pair pi is a record
with selectors key and entry with values from the
corresponding domains Key and Entry.
table ()$T creates a empty table of domain T of category
TableAggregate.

APPENDIX E · 853

tail (aggregate)

tail (a) returns the last node of recursive aggregate a.

tan (expression)
tanIfCan (expression)

Argument x can be a Complex, Float, DoubleFloat, or
Expression value or a series.
tan (x) returns the tangent of x.
tanIfCan (x) returns tan (x) if possible, and "failed"
otherwise.

tan2cot (expression)

tan2cot (f) converts every tan (u) appearing in f into
1/cot(u).

tan2trig (expression)

tan2trig (f) converts every tan (u) appearing in f into
sin (u)/cos(u).

tanh (expression)
tanhIfCan (expression)

Argument x can be a Complex, Float, DoubleFloat, or
Expression value or a series.
tanh (x) returns the hyperbolic tangent of x.
tanhIfCan (x) returns tanh (x) if possible, and "failed"
otherwise.

tanh2coth (expression)

tanh2coth (f) converts every tanh (u) appearing in f into
1/coth(u).

tanh2trigh (expression)

tanh2trigh (f) converts every tanh (u) appearing in f
into sinh (u)/cosh(u).

taylor (various, ..)

taylor (u) converts the Laurent series u(x) to a Taylor
series if possible, and if not, calls error.
taylor (f) converts the expression f into a Taylor
expansion of the expression f . Note: f must have only one
variable.
taylor (sy), where sy is a symbol, returns sy as a Taylor
series.
taylor (n +− > a(n), x = a) returns∑

n=0...
a(n)(x− a)n).

taylor (f, x = a[, n]) expands the expression f as a series
in powers of (x− a) with n terms. If n is missing, the
number of terms is governed by the value set by the system
command)set streams calculate.
taylor (i +− > a(i), x = a, m..[n, k]) creates the Taylor
series

∑
i=m..n by k

a(i)(x− a)i. Here m, n and k are

integers. Upper-limit n and stepsize k are optional and
have default values n = ∞ and k = 1.
taylor (a(i), i, x = a, m..[n, k]) returns∑

i=m..nbyk
a(n)(x− a)n.

taylorIfCan (laurentSeries)

taylorIfCan (f(x)) converts the Laurent series f(x) to a
Taylor series if possible, and returns "failed" if this is not
possible.

taylorRep (laurentSeries)

taylorRep (f(x)) returns g(x), where f = xng(x) is
represented by [n, g(x)].

tensorProduct (listOfMatrices [, listOfMatrices])

tensorProduct ([a1, . . . , ak][, [b1, . . . , bk]]) calculates the
list of Kronecker products of the matrices ai and bi for
1 ≤ i ≤ k. If a second argument is missing, the bi is defined
as the corresponding ai. Also, tensorProduct (m), where
m is a matrix, is defined as tensorProduct ([m], [m]).
Note: If each list of matrices corresponds to a group
representation (representation of generators) of one group,
then these matrices correspond to the tensor product of
the two representations.

terms (various)

terms (s) returns a stream of the non-zero terms of series
s. Each term is returned as a record with selectors k and c,
which correspond to the exponent and coefficient,
respectively. The terms are ordered by increasing order of
exponents.
terms (m), where m is a free abelian monoid of the form
e1a1 + · · ·+ enan, returns [[a1, e1], . . . , [an, en]]. See
FreeAbelianMonoidCategory.

tex (formattedObject)

tex (t) extracts the TeX section of a TeX formatted object
t.

third (aggregate)

third (u) returns the third element of a recursive aggregate
u. Note: third (u) = first(rest(rest(u))).

title (string)

title (s) specifies string s as the title for a plot. This
option is expressed as a option to the draw command in
the form title == s.

top (stack)
top! (dequeue)

top (s) returns the top element x from s.
top! (d) returns the element at the top (front) of the
dequeue.

toroidal (value)

toroidal (element) transforms from toroidal coordinates to
Cartesian coordinates: toroidal (a) is a function that maps
the point (u, v, φ) to x = asinh(v)cos(φ)/(cosh(v)− cos(u)),
y = asinh(v)sin(φ)/(cosh(v)− cos(u)),
z = asin(u)/(cosh(v)− cos(u)).

854 · Operations

toScale (boolean)

toScale (b) specifies whether or not a plot is to be drawn
to scale. This command may be expressed as an option to
the draw command in the form toScale == b.

totalDegree (polynomial, listOfVariables)

totalDegree (p[, lv]) returns the maximum sum (over all
monomials of polynomial p) of the variables in the list lv.
If a second argument is missing, lv is defined to be all the
variables appearing in p.

totalfract (polynomial)

totalfract (prf) takes a polynomial whose coefficients are
themselves fractions of polynomials and returns a record
containing the numerator and denominator resulting from
putting prf over a common denominator.

totalGroebner (listOfPolynomials, listOfVariables)

totalGroebner (lp, lv) computes the Gröbner basis for the
list of polynomials lp with the terms ordered first by total
degree and then refined by reverse lexicographic ordering.
The variables are ordered by their position in the list lv.

tower (expression)

tower (f) returns all the kernels appearing in f , regardless
of level.

trace (various, ..)

trace (m) returns the trace of the matrix m, that is, the
sum of its diagonal elements.
trace (a) returns the trace of the regular representation of
a, an element of an algebra of finite rank. See
FiniteRankAlgebra.
trace (a[, d]), where a is an element of a finite algebraic
extension field, computes the trace of a with respect to the
field of extension degree d over the ground field of size q.
This operation calls error if d does not divide the
extension degree of a. The default value of d is 1. Note:

trace (a, d) =
∑n/d

i=0
aqdi

.

traceMatrix ([basis])

traceMatrix ([v1, .., vn]) is the n-by-n matrix whose i, j
element is Tr(vivj). If no argument is given, the vi are
assumed to be elements of the fixed basis.

tracePowMod (poly, nonNegativeInteger, poly)

tracePowMod (u, k, v) returns
∑k

i=0
u2i

, all computed
modulo the polynomial v.

transcendenceDegree ()

transcendenceDegree ()$F returns the transcendence
degree of the field extension F , or 0 if the extension is
algebraic.

transcendent? (element)

transcendent? (a) tests whether an element a of a
domain that is an extension field over a ground field F is
transcendent with respect to F .

transpose (matrix [, options])

transpose (m) returns the transpose of the matrix m.

transpose (t[, i, j]) exchanges the i th and j th indices of t.
For example, if r = transpose(t, 2, 3) for a rank four
tensor t, then r is the rank four tensor given by
r(i, j, k, l) = t(i, k, j, l). If i and j are not given, they are
assumed the first and last index of t.

tree (value [, listOfChildren])

tree (x, ls) creates an element of Tree with value x at the
root node, and immediate children ls in left-to-right order.

tree (x) is equivalent to tree (x, []$List(S)) where x has
type S.

trapezoidal (floatFunction, fourFloats, threeIntegers)
trapezoidalClosed (floatFunction, fourFloats,
twoIntegers)
trapezoidalOpen (floatFunction, fourFloats, twoIntegers)

trapezoidal (fn, a, b, epsrel, epsabs, nmin, nmax, nint)
uses the adaptive trapezoidal method to numerically
integrate function fn over the closed interval from a to b,
with relative accuracy epsrel and absolute accuracy epsabs,
where the refinement levels for the checking of convergence
vary from nmin to nmax. The method is called
“adaptive” since it requires an additional parameter nint
giving the number of subintervals over which the integrator
independently applies the convergence criteria using nmin
and nmax; this is useful when a large number of points are
needed only in a small fraction of the entire interval.
Parameter fn is a function of type Float → Float; a, b,
epsrel, and epsabs are floats; nmin, nmax, and nint are
integers. The operation returns a record containing: value,
an estimate of the integral; error, an estimate of the error
in the computation; totalpts, the total integral number of
function evaluations, and success, a boolean value that is
true if the integral was computed within the user specified
error criterion. See NumericalQuadrature for details.

trapezoidalClosed(fn, a, b, epsrel, epsabs, nmin, nmax)
similarly uses the trapezoidal method to numerically
integrate function fn over the closed interval a to b, but is
not adaptive.

trapezoidalOpen(fn, a, b, epsrel, epsabs, nmin, nmax) is
similar to trapezoidalClosed, except that it integrates
function fn over the open interval from a to b.

triangularSystems (listOfFractions, listOfSymbols)

triangularSystems (lf, lv) solves the system of equations
defined by lf with respect to the list of symbols lv; the
system of equations is obtaining by equating to zero the

APPENDIX E · 855

list of rational functions lf . The result is a list of solutions
where each solution is expressed as a “reduced” triangular
system of polynomials.

trigs (expression)

trigs (f) rewrites all the complex logs and exponentials
appearing in f in terms of trigonometric functions.

trim (string, characterOrCharacterClass)

trim (s, c) returns s with all characters c deleted from
right and left ends. For example, trim(" abc ", char "
") returns "abc". Argument c may also be a character
class, in which case s is returned with all characters in cc
deleted from right and left ends. For example,
trim("(abc)", charClass "()") returns "abc".

truncate (various [, options])

truncate (x) returns the integer between x and 0 closest
to x.
truncate (f, m[, n]) returns a (finite) power series
consisting of the sum of all terms of f of degree d with
n ≤ d ≤ m. Upper bound m is ∞ by default.

tubePoints (positiveInteger)

tubePoints (n) specifies the number of points, n, defining
the circle that creates the tube around a three-dimensional
curve. The default is 6. This option is expressed in the
form tubePoints == n.

tubePointsDefault ([positiveInteger])

tubePointsDefault (i) sets the number of points to use
when creating the circle to be used in creating a
three-dimensional tube plot to i.
tubePointsDefault () returns the number of points to be
used when creating the circle to be used in creating a
three-dimensional tube plot.

tubeRadius (float)

tubeRadius (r) specifies a radius r for a tube plot around
a three-dimensional curve. This operation may be
expressed as an option to the draw command in the form
tubeRadius == r.

tubeRadiusDefault ([float])

tubeRadiusDefault (r) sets the default radius for a
three-dimensional tube plot to r.
tubeRadiusDefault () returns the radius used for a
three-dimensional tube plot.

twist ()

twist (f), where f is a function of type (A, B)C, is the
function g such that g(a, b) = f(b, a). See MappingPackage
for related functions.

unary? (basicOperator)

unary? (op) tests if basic operator op is unary, that is,

takes exactly one argument.

union (set, elementOrSet)

union (u, x) returns the set aggregate u with the element x
added. If u already contains x, union (u, x) returns a copy
of x.
union (u, v) returns the set aggregate of elements that are
members of either set aggregate u or v. See also Multiset.

unit ([various])

unit () returns a unit of the algebra (necessarily unique),
or "failed" if there is none.
unit (u) extracts the unit part of the factored object u.
unit (l) marks off the units on a viewport according to the
indicated list l. This option is expressed in the draw
command in the form unit ==[f1, f2].

unit? (element)

unit? (x) tests whether x is a unit, that is, if x is invertible.

unitCanonical (element)

unitCanonical (x) returns unitNormal (x).canonical.

unitNormalize (factored)

unitNormalize (u) normalizes the unit part of the
factorization. For example, when working with factored
integers, this operation ensures that the bases are all
positive integers.

unitNormal (element)

unitNormal (x) tries to choose a canonical element from
the associate class of x. If successful, it returns a record
with three components “unit”, “canonical” and
“associate”. The attribute canonicalUnitNormal, if
asserted, means that the “canonical” element is the same
across all associates of x. If unitNormal (x) = [u, c, a]
then ux = c, au = 1.

unitsColorDefault ([palette])

unitsColorDefault (p) sets the default color of the unit
ticks in a two-dimensional viewport to the palette p.
unitsColorDefault () returns the default color of the unit
ticks in a two-dimensional viewport.

unitVector (positiveInteger)

unitVector (n) produces a vector with 1 in position n and
zero elsewhere.

univariate (polynomial [, variable])

univariate (p[, v]) converts the multivariate polynomial p
into a univariate polynomial in v whose coefficients are
multivariate polynomials in all the other variables. If v is
omitted, then p must involve exactly one variable.

universe ()

universe ()$R returns the universal set for finite set

856 · Operations

aggregate R.

unparse (inputForm)

unparse (f) returns a string s such that the parser would
transform s to f , or calls error if f is not the parsed form
of a string.

unrankImproperPartitions0 (integer, integer, integer)

unrankImproperPartitions0 (n, m, k) computes the

k th improper partition of nonnegative n in m nonnegative
parts in reverse lexicographical order. Example:
[0, 0, 3] < [0, 1, 2] < [0, 2, 1] < [0, 3, 0] < [1, 0, 2] < [1, 1, 1] <
[1, 2, 0] < [2, 0, 1] < [2, 1, 0] < [3, 0, 0]. The operation calls
error if k is negative or too big. Note: counting of
subtrees is done by numberOfImproperPartitions.

unrankImproperPartitions1 (integer, integer, integer)

unrankImproperPartitions1 (n, m, k) computes the

k th improper partition of nonnegative n in at most m
nonnegative parts ordered as follows: first, in reverse
lexicographical order according to their non-zero parts,
then according to their positions (i.e. lexicographical order
using subSet: [3, 0, 0] < [0, 3, 0] < [0, 0, 3] < [2, 1, 0] <
[2, 0, 1] < [0, 2, 1] < [1, 2, 0] < [1, 0, 2] < [0, 1, 2] < [1, 1, 1]).
Note: counting of subtrees is done by
numberOfImproperPartitionsInternal.

unravel (listOfElement)

unravel (t) produces a tensor from a list of components
such that unravel (ravel(t)) = t.

upperCase (string)
upperCase? (string)
upperCase! (string)

upperCase! (s) destructively replaces the alphabetic
characters in s by upper case characters.
upperCase () returns the class of all characters for which
upperCase? is true.
upperCase (c) converts a lower case letter c to the
corresponding upper case letter. If c is not a lower case
letter, then it is returned unchanged.
upperCase (s) returns the string with all characters in
upper case.
upperCase? (c) tests if c is an upper case letter, that is,
one of A..Z.

validExponential (listOfKernels, expression, symbol)

validExponential ([k1, . . . , kn], f, x) returns g if
exp (f) = g and g involves only k1 . . . kn, and "failed"
otherwise.

value (recursiveAggregate)

value (a) returns the “value” part of a recursive aggregate
a, typically the root of tree. See, for example, BinaryTree.

var1Steps (positiveInteger)

var1Steps (n) indicates the number of subdivisions n of
the first range variable. This command may be expressed
as an option to the draw command in the form
var1Steps == n.

var1StepsDefault ([positiveInteger])

var1StepsDefault () returns the current setting for the
number of steps to take when creating a three-dimensional
mesh in the direction of the first defined free variable (a
free variable is considered defined when its range is
specified (that is, x = 0..10)).
var1StepsDefault (i) sets the number of steps to take
when creating a three-dimensional mesh in the direction of
the first defined free variable to i (a free variable is
considered defined when its range is specified (that is,
x = 0..10)).

var2Steps (positiveInteger)

var2Steps (n) indicates the number of subdivisions, n, of
the second range variable. This option is expressed in the
form var2Steps == n.

var2StepsDefault ([positiveInteger])

variable (various)

variable (f) returns the (unique) power series variable of
the power series f .
variable (segb) returns the variable from the left hand side
of the SegmentBinding segb. For example, if segb is
v = a..b, then variable (segb) returns v.
variable (v) returns s if v is any derivative of the
differential indeterminate s.

variables (expression)

variables (f) returns the list of all the variables of
expression, polynomial, rational function, or power series f .

vconcat (outputForms [, OutputForm] (normally
unexposed))

vconcat (o1, o2), where o1 and o2 are objects of type
OutputForm (normally unexposed), returns an output form
for the vertical concatenation of forms o1 and o2.
vconcat (lo), where lo is a list of objects of type
OutputForm (normally unexposed), returns an output form
for the vertical concatenation of the elements of lo.

vector (listOfElements)

vector (l) converts the list l to a vector.

vectorise (polynomial, nonNegativeInteger)

vectorise (p, n) returns [a0, . . . , an−1] where
p = a0 + a1x + · · ·+ an−1x

n−1 + higher order terms. The
degree of polynomial p can be different from n− 1.

APPENDIX E · 857

vertConcat (matrix, matrix)

vertConcat (x, y) vertically concatenates two matrices
with an equal number of columns. The entries of y appear
below the entries of x.

viewDefaults ()

viewDefaults () resets all the default graphics settings.

viewPosDefault ([listOfNonNegativeIntegers])

viewPosDefault ([x, y]) sets the default X and Y position
of a viewport window. Unless overridden explicitly, newly
created viewports will have the X and Y coordinates x, y.
viewPosDefault () returns the default X and Y position
of a viewport window unless overridden explicitly, newly
created viewports will have these X and Y coordinate.

viewSizeDefault ([listOfPositiveIntegers])

viewSizeDefault ([w, h]) sets the default viewport width
to w and height to h.

viewWriteAvailable ()

viewWriteAvailable () returns a list of available methods
for writing, such as BITMAP, POSTSCRIPT, etc.

viewWriteDefault (listOfStrings)

viewWriteDefault () returns the list of things to write in
a viewport data file; a viewAlone file is always generated.
viewWriteDefault (l) sets the default list of things to
write in a viewport data file to the strings in l; a
viewAlone file is always generated.

void ()

void () produces a void object.

weakBiRank (element)

weakBiRank (x) determines the number of linearly
independent elements in the bixbj , i, j = 1, . . . , n, where
b = [b1, . . . , bn] is the fixed basis of a domain of category
FramedNonAssociativeAlgebra.

weight (u)

weight (u) returns

if u is a differential polynomial: the maximum weight of
all differential monomials appearing in the differential
polynomial u.

if u is a derivative: the weight of the derivative u.

if u is a basic operator: the weight attached to u.

weight (p, s) returns the maximum weight of all
differential monomials appearing in the differential
polynomial p when p is viewed as a differential polynomial
in the differential indeterminate s alone.
weight (op, n) attaches the weight n to op.

weights (differentialPolynomial,

differentialIndeterminated)

weights (p, s) returns a list of weights of differential
monomials appearing in the differential polynomial p when
p is viewed as a differential polynomial in the differential
indeterminate s alone. If s is missing, a list of weights of
differential monomials appearing in differential polynomial
p.

whatInfinity (orderedCompletion)

whatInfinity (x) returns 0 if x is finite, 1 if x is ∞, and
−1 if x is −∞.

wholePart (various)

wholePart (x) returns the whole part of the fraction x,
that is, the truncated quotient of the numerator by the
denominator.
wholePart (x) extracts the whole part of x. That is, if
x = continuedFraction(b0, [a1, a2, . . .], [b1, b2, . . .]), then
wholePart (x) = b0.
wholePart (p) extracts the whole part of the partial
fraction p.

wholeRadix (listOfIntegers)

wholeRadix (l) creates an integral radix expansion from a
list of ragits. For example, wholeRadix ([1, 3, 4]) returns
134.

wholeRagits (listOfIntegers)

wholeRagits (rx) returns the ragits of the integer part of
a radix expansion.

wordInGenerators (permutation, permutationGroup)

wordInGenerators (p, gp) returns the word for the
permutation p in the original generators of the
permutation group gp, represented by the indices of the
list, given by generators.

wordInStrongGenerators (permutation,
permutationGroup)

wordInStrongGenerators (p, gp) returns the word for
the permutation p in the strong generators of the
permutation group gp, represented by the indices of the
list, given by strongGenerators.

wordsForStrongGenerators (listOfListsOfIntegers)

wordsForStrongGenerators (gp) returns the words for
the strong generators of the permutation group gp in the
original generators of gp, represented by their indices in
the list of nonnegative integers, given by generators.

wreath (symmetricPolynomial, symmetricPolynomial)

wreath (s1, s2) is the cycle index of the wreath product of
the two groups whose cycle indices are s1 and s2,
symmetric polynomials with rational number coefficients.

858 · Operations

writable? (file)

writable? (f) tests if the named file can be opened for
writing. The named file need not already exist.

write! (file, value)

write! (f, s) puts the value s into the file f . The state of f
is modified so that subsequent calls to write! will append
values to the end of the file.

writeLine! (textfile [, string])

writeLine! (f) finishes the current line in the file f . An
empty string is returned. The call writeLine! (f) is
equivalent to writeLine! (f, ””).
writeLine! (f, s) writes the contents of the string s and
finishes the current line in the file f . The value of s is
returned.

xor (boolean, boolean)

xor (a, b) returns the logical exclusive-or of booleans or bit
aggregates a and b.
xor (n, m) returns the bit-by-bit logical xor of the small
integers n and m.

xRange (curve)

xRange (c) returns the range of the x-coordinates of the
points on the curve c.

yCoordinates (function)

yCoordinates (f), where f is a function defined over a
curve, returns the coordinates of f with respect to the
natural basis for the curve. Specifically, the operation
returns [[a1, . . . , an], d] such that f = (a1 + . . .+anyn−1)/d.

yellow ()

yellow () returns the position of the yellow hue from total
hues.

youngGroup (various)

youngGroup ([n1, . . . , nk]) constructs the direct product
of the symmetric groups Sn1, . . . , Snk.
youngGroup (lambda) constructs the direct product of
the symmetric groups given by the parts of the partition
lambda.

yRange (curve)

yRange (c) returns the range of the y-coordinates of the
points on the curve c.

zag (outputForm, outputForm)

zag (o1, o2), where o1 and o2 are objects of type
OutputForm (normally unexposed), return an output form
displaying the continued fraction form for o2 over o1.

zero (nonNegativeInteger [, nonNegativeInteger])

zero (n) creates a zero vector of length n.
zero (m, n) returns an m-by-n zero matrix.

zero? (element)

zero? (x) tests if x is equal to 0.

zeroDim? (ideal)

zeroDim? (I) tests if the ideal I is zero dimensional, that
is, all its associated primes are maximal.

zeroDimPrimary? (ideal)

zeroDimPrimary? (I) tests if the ideal I is 0-dimensional
primary.

zeroDimPrime? (ideal)

zeroDimPrime? (I) tests if the ideal I is a 0-dimensional
prime.

zeroOf (polynomial [, symbol])

zeroOf (p[, y]) returns y such that p(y) = 0. If possible, y
is expressed in terms of radicals. Otherwise it is an implicit
algebraic quantity that displays as ′y. If no second
argument is given, then p must have a unique variable y.

zerosOf (polynomial [, symbol])

zerosOf (p, y) returns [y1, . . . , yn] such that p(yi) = 0. The
yi’s are expressed in radicals if possible. Otherwise they
are implicit algebraic quantities that display as yi. The
returned symbols y1, . . . , yn are bound in the interpreter
to respective root values. If no second argument is given,
then p must have a unique variable y.

zRange (curve)

zRange (c) returns the range of the z-coordinates of the
points on the curve c.

APPENDIX E · 859

APPENDIX F

Programs for
AXIOM
Images

This appendix contains the AXIOM programs used to generate the images
in the AXIOM Images color insert of this book. All these input files are
included with the AXIOM system. To produce the images on page 6 of
the AXIOM Images insert, for example, issue the command:

)read images6

These images were produced on an IBM RS/6000 model 530 with a stan-
dard color graphics adapter. The smooth shaded images were made from
X Window System screen dumps. The remaining images were produced
with AXIOM-generated PostScript output. The images were reproduced
from slides made on an Agfa ChromaScript PostScript interpreter with a
Matrix Instruments QCR camera.

F.1
images1.input
Read torus knot program.)read tknot 1

2
A (15,17) torus knot. torusKnot(15,17, 0.1, 6, 700) 3

861

F.2
images2.input

These images illustrate how Newton’s method converges when computing
the complex cube roots of 2. Each point in the (x, y)-plane represents the
complex number x + iy, which is given as a starting point for Newton’s
method. The poles in these images represent bad starting values. The
flat areas are the regions of convergence to the three roots.

Read the programs from)read newton 1
Chapter 10.)read vectors 2

Create a Newton’s iteration f := newtonStep(x**3 - 2) 3
function for x3 = 2. 4

The function fn computes n steps of Newton’s method.
Clip values with magnitude ¿ 4. clipValue := 4 5
The vector field for f3 drawComplexVectorField(f**3, -3..3, -3..3) 6
The surface for f3 drawComplex(f**3, -3..3, -3..3) 7
The surface for f4 drawComplex(f**4, -3..3, -3..3) 8

F.3
images3.input

)r tknot 1
for i in 0..4 repeat torusKnot(2, 2 + i/4, 0.5, 25, 250) 2

F.4
images5.input

The parameterization of the Etruscan Venus is due to George Frances.
venus(a,r,steps) == 1
surf := (u:DFLOAT, v:DFLOAT): Point DFLOAT +-> 2

cv := cos(v) 3
sv := sin(v) 4
cu := cos(u) 5
su := sin(u) 6
x := r * cos(2*u) * cv + sv * cu 7
y := r * sin(2*u) * cv - sv * su 8
z := a * cv 9
point [x,y,z] 10

draw(surf, 0..%pi, -%pi..%pi, var1Steps==steps, 11
var2Steps==steps, title == "Etruscan Venus") 12

13
The Etruscan Venus venus(5/2, 13/10, 50) 14

The Figure-8 Klein Bottle parameterization is from “Differential Ge-
ometry and Computer Graphics” by Thomas Banchoff, in Perspectives
in Mathematics, Anniversary of Oberwolfasch 1984, Birkhäuser-Verlag,
Basel, pp. 43-60.
klein(x,y) == 15
cx := cos(x) 16
cy := cos(y) 17
sx := sin(x) 18
sy := sin(y) 19
sx2 := sin(x/2) 20
cx2 := cos(x/2) 21
sq2 := sqrt(2.0@DFLOAT) 22
point [cx * (cx2 * (sq2 + cy) + (sx2 * sy * cy)), 23

862 · Programs for AXIOM Images

sx * (cx2 * (sq2 + cy) + (sx2 * sy * cy)), 24
-sx2 * (sq2 + cy) + cx2 * sy * cy] 25

26
Figure-8 Klein bottle draw(klein, 0..4*%pi, 0..2*%pi, var1Steps==50, 27

var2Steps==50,title=="Figure Eight Klein Bottle") 28

The next two images are examples of generalized tubes.
)read ntube 29

Rotate a point p by rotateBy(p, theta) == 30
θ around the origin. c := cos(theta) 31

s := sin(theta) 32
point [p.1*c - p.2*s, p.1*s + p.2*c] 33

34
A circle in three-space. bcircle t == 35

point [3*cos t, 3*sin t, 0] 36
37

An ellipse that twists twist(u, t) == 38
around four times as theta := 4*t 39
t revolves once. p := point [sin u, cos(u)/2] 40

rotateBy(p, theta) 41
42

Twisted Torus ntubeDrawOpt(bcircle, twist, 0..2*%pi, 0..2*%pi, 43
var1Steps == 70, var2Steps == 250) 44

45
Create a twisting circle. twist2(u, t) == 46

theta := t 47
p := point [sin u, cos(u)] 48
rotateBy(p, theta) 49

50
Color function with 21 stripes. cf(u,v) == sin(21*u) 51

52
Striped Torus ntubeDrawOpt(bcircle, twist2, 0..2*%pi, 0..2*%pi, 53

colorFunction == cf, var1Steps == 168, 54
var2Steps == 126) 55

F.5
images6.input
The height and color are the gam(x,y) == 1

real and argument parts g := Gamma complex(x,y) 2
of the Gamma function, point [x,y,max(min(real g, 4), -4), argument g] 3
respectively. 4

5
The Gamma Function draw(gam, -%pi..%pi, -%pi..%pi, 6

title == "Gamma(x + %i*y)", 7
var1Steps == 100, var2Steps == 100) 8

9
b(x,y) == Beta(x,y) 10

11
The Beta Function draw(b, -3.1..3, -3.1 .. 3, title == "Beta(x,y)") 12

13
atf(x,y) == 14
a := atan complex(x,y) 15

F.5. images6.input · 863

point [x,y,real a, argument a] 16
17

The Arctangent function draw(atf, -3.0..%pi, -3.0..%pi) 18

F.6
images7.input

First we look at the conformal map z 7→ z + 1/z.

Read program for drawing)read conformal 1
conformal maps. 2

3
The coordinate grid for the f z == z 4

complex plane. 5
Mapping 1: Source conformalDraw(f, -2..2, -2..2, 9, 9, "cartesian") 6

7
The map z 7→ z + 1/z f z == z + 1/z 8

9
Mapping 1: Target conformalDraw(f, -2..2, -2..2, 9, 9, "cartesian") 10

The map z 7→ −(z +1)/(z−1) maps the unit disk to the right half-plane,
as shown on the Riemann sphere.

The unit disk. f z == z 11
12

Mapping 2: Source riemannConformalDraw(f,0.1..0.99,0..2*%pi,7,11,"polar") 13
14

The map x 7→ −(z + 1)/(z − 1). f z == -(z+1)/(z-1) 15
16

Mapping 2: Target riemannConformalDraw(f,0.1..0.99,0..2*%pi,7,11,"polar") 17
18

Riemann Sphere Mapping riemannSphereDraw(-4..4, -4..4, 7, 7, "cartesian") 19

F.7
images8.input)read dhtri 1

)read tetra 2
Sierpinsky’s Tetrahedron drawPyramid 4 3

4
)read antoine 5

Antoine’s Necklace drawRings 2 6
7

)read scherk 8
Scherk’s Minimal Surface drawScherk(3,3) 9

10
)read ribbonsNew 11

Ribbon Plot drawRibbons([x**i for i in 1..5], x=-1..1, y=0..2) 12

864 · Programs for AXIOM Images

F.8
conformal.input

The functions in this section draw conformal maps both on the plane and
on the Riemann sphere.

Complex Numbers C := Complex DoubleFloat 1
Draw ranges S := Segment DoubleFloat 2
Points in 3-space R3 := Point DFLOAT 3

4

conformalDraw(f, rRange, tRange, rSteps, tSteps, coord) draws the im-
age of the coordinate grid under f in the complex plane. The grid may be
given in either polar or Cartesian coordinates. Argument f is the function
to draw; rRange is the range of the radius (in polar) or real (in Cartesian);
tRange is the range of θ (in polar) or imaginary (in Cartesian); tSteps,
rSteps, are the number of intervals in the r and θ directions; and coord is
the coordinate system to use (either "polar" or "cartesian").
conformalDraw: (C -> C, S, S, PI, PI, String) -> VIEW3D 5
conformalDraw(f,rRange,tRange,rSteps,tSteps,coord) == 6

Function for changing an (x, y) transformC := 7
pair into a complex number. coord = "polar" => polar2Complex 8

cartesian2Complex 9
cm := makeConformalMap(f, transformC) 10

Create a fresh space. sp := createThreeSpace() 11
Plot the coordinate lines. adaptGrid(sp, cm, rRange, tRange, rSteps, tSteps) 12
Draw the image. makeViewport3D(sp, "Conformal Map") 13

riemannConformalDraw(f, rRange, tRange, rSteps, tSteps, coord) draws
the image of the coordinate grid under f on the Riemann sphere. The grid
may be given in either polar or Cartesian coordinates. Its arguments are
the same as those for conformalDraw.
riemannConformalDraw:(C->C,S,S,PI,PI,String)->VIEW3D 14
riemannConformalDraw(f, rRange, tRange, 15

rSteps, tSteps, coord) == 16
Function for changing an (x, y) transformC := 17

pair into a complex number. coord = "polar" => polar2Complex 18
cartesian2Complex 19

Create a fresh space. sp := createThreeSpace() 20
cm := makeRiemannConformalMap(f, transformC) 21

Plot the coordinate lines. adaptGrid(sp, cm, rRange, tRange, rSteps, tSteps) 22
Add an invisible point at curve(sp,[point [0,0,2.0@DFLOAT,0],point [0,0,2.0@DFLOAT,0]])

23
the north pole for scaling. makeViewport3D(sp,"Map on the Riemann Sphere") 24

25
Plot the coordinate grid adaptGrid(sp, f, uRange, vRange, uSteps, vSteps) == 26

using adaptive plotting for delU := (hi(uRange) - lo(uRange))/uSteps 27
coordinate lines, and draw delV := (hi(vRange) - lo(vRange))/vSteps 28
tubes around the lines. uSteps := uSteps + 1; vSteps := vSteps + 1 29

u := lo uRange 30
Draw coordinate lines in the v for i in 1..uSteps repeat 31

direction; curve c fixes the c := curryLeft(f,u) 32
current value of u. cf := (t:DFLOAT):DFLOAT +-> 0 33

Draw the v coordinate line. makeObject(c,vRange::SEG Float,colorFunction==cf, 34
space == sp, tubeRadius == .02, tubePoints == 6) 35

F.8. conformal.input · 865

u := u + delU 36
v := lo vRange 37

Draw coodinate lines in the u for i in 1..vSteps repeat 38
direction; curve c fixes the c := curryRight(f,v) 39
current value of v. cf := (t:DFLOAT):DFLOAT +-> 1 40

Draw the u coordinate line. makeObject(c,uRange::SEG Float,colorFunction==cf, 41
space == sp, tubeRadius == .02, tubePoints == 6) 42

v := v + delV 43
void() 44

45
Map a point in the complex riemannTransform(z) == 46

plane to the Riemann sphere. r := sqrt norm z 47
cosTheta := (real z)/r 48
sinTheta := (imag z)/r 49
cp := 4*r/(4+r**2) 50
sp := sqrt(1-cp*cp) 51
if r>2 then sp := -sp 52
point [cosTheta*cp, sinTheta*cp, -sp + 1] 53

54
Convert Cartesian coordinates
to

cartesian2Complex(r:DFLOAT, i:DFLOAT):C == 55

complex Cartesian form. complex(r, i) 56
57

Convert polar coordinates to polar2Complex(r:DFLOAT, th:DFLOAT):C == 58
complex Cartesian form. complex(r*cos(th), r*sin(th)) 59

60
Convert complex function f makeConformalMap(f, transformC) == 61

to a mapping:
(DFLOAT,DFLOAT) 7→ R3

(u:DFLOAT,v:DFLOAT):R3 +-> 62

in the complex plane. z := f transformC(u, v) 63
point [real z, imag z, 0.0@DFLOAT] 64

65
Convert a complex function f makeRiemannConformalMap(f, transformC) == 66

to a mapping:
(DFLOAT,DFLOAT) 7→ R3

(u:DFLOAT, v:DFLOAT):R3 +-> 67

on the Riemann sphere. riemannTransform f transformC(u, v) 68
69

Draw a picture of the mapping riemannSphereDraw: (S, S, PI, PI, String) -> VIEW3D 70
of the complex plane to riemannSphereDraw(rRange,tRange,rSteps,tSteps,coord) == 71
the Riemann sphere. transformC := 72

coord = "polar" => polar2Complex 73
cartesian2Complex 74

Coordinate grid function. grid := (u:DFLOAT, v:DFLOAT): R3 +-> 75
z1 := transformC(u, v) 76
point [real z1, imag z1, 0] 77

Create a fresh space. sp := createThreeSpace() 78
Draw the flat grid. adaptGrid(sp, grid, rRange, tRange, rSteps, tSteps) 79

connectingLines(sp,grid,rRange,tRange,rSteps,tSteps) 80
Draw the sphere. makeObject(riemannSphere,0..2*%pi,0..%pi,space==sp) 81

f := (z:C):C +-> z 82
cm := makeRiemannConformalMap(f, transformC) 83

Draw the sphere grid. adaptGrid(sp, cm, rRange, tRange, rSteps, tSteps) 84
makeViewport3D(sp, "Riemann Sphere") 85

86
Draw the lines that connect connectingLines(sp,f,uRange,vRange,uSteps,vSteps) == 87

the points in the complex delU := (hi(uRange) - lo(uRange))/uSteps 88

866 · Programs for AXIOM Images

plane to the north pole delV := (hi(vRange) - lo(vRange))/vSteps 89
of the Riemann sphere. uSteps := uSteps + 1; vSteps := vSteps + 1 90

u := lo uRange 91
For each u. for i in 1..uSteps repeat 92

v := lo vRange 93
For each v. for j in 1..vSteps repeat 94

p1 := f(u,v) 95
Project p1 onto the sphere. p2 := riemannTransform complex(p1.1, p1.2) 96
Create a line function. fun := lineFromTo(p1,p2) 97

cf := (t:DFLOAT):DFLOAT +-> 3 98
Draw the connecting line. makeObject(fun, 0..1,space==sp,tubePoints==4, 99

tubeRadius==0.01,colorFunction==cf) 100
v := v + delV 101

u := u + delU 102
void() 103

104
A sphere sitting on the riemannSphere(u,v) == 105

complex plane, with radius 1. sv := sin(v) 106
0.99@DFLOAT*(point [cos(u)*sv,sin(u)*sv,cos(v),0.0@DFLOAT])+

107
point [0.0@DFLOAT, 0.0@DFLOAT, 1.0@DFLOAT, 4.0@DFLOAT]

108
109

Create a line function lineFromTo(p1, p2) == 110
that goes from p1 to p2 d := p2 - p1 111

(t:DFLOAT):Point DFLOAT +-> 112
p1 + t*d 113

F.9
tknot.input

Create a (p, q) torus-knot with radius r around the curve. The formula
was derived by Larry Lambe.
)read ntube 1
torusKnot: (DFLOAT, DFLOAT, DFLOAT, PI, PI) -> VIEW3D 2
torusKnot(p, q ,r, uSteps, tSteps) == 3

Function for the torus knot. knot := (t:DFLOAT):Point DFLOAT +-> 4
fac := 4/(2.2@DFLOAT-sin(q*t)) 5
fac * point [cos(p*t), sin(p*t), cos(q*t)] 6

The cross section. circle := (u:DFLOAT, t:DFLOAT): Point DFLOAT +-> 7
r * point [cos u, sin u] 8

Draw the circle around the knot. ntubeDrawOpt(knot, circle, 0..2*%pi, 0..2*%pi, 9
var1Steps == uSteps, var2Steps == tSteps) 10

11

F.10
ntube.input

The functions in this file create generalized tubes (also known as gener-
alized cylinders). These functions draw a 2-d curve in the normal planes
around a 3-d curve.

Points in 3-Space R3 := Point DFLOAT 1
Points in 2-Space R2 := Point DFLOAT 2
Draw ranges S := Segment Float 3
Introduce types for functions
for:

4

F.9. tknot.input · 867

—the space curve function ThreeCurve := DFLOAT -> R3 5
—the plane curve function TwoCurve := (DFLOAT, DFLOAT) -> R2 6
—the surface function Surface := (DFLOAT, DFLOAT) -> R3 7

Frenet frames define a 8
coordinate system around a FrenetFrame := 9
point on a space curve. Record(value:R3,tangent:R3,normal:R3,binormal:R3) 10

The current Frenet frame frame: FrenetFrame 11
for a point on a curve. 12

ntubeDraw(spaceCurve, planeCurve, u0..u1, t0..t1) draws planeCurve in
the normal planes of spaceCurve. The parameter u0..u1 specifies the pa-
rameter range for planeCurve and t0..t1 specifies the parameter range for
spaceCurve. Additionally, the plane curve function takes a second param-
eter: the current parameter of spaceCurve. This allows the plane curve to
change shape as it goes around the space curve. See Section F.4 on page
862 for an example of this.
ntubeDraw: (ThreeCurve,TwoCurve,S,S) -> VIEW3D 13
ntubeDraw(spaceCurve,planeCurve,uRange,tRange) == 14
ntubeDrawOpt(spaceCurve, planeCurve, uRange, 15

tRange, []$List DROPT) 16
17

ntubeDrawOpt: (ThreeCurve,TwoCurve,S,S,List DROPT) 18
-> VIEW3D 19

This function is similar ntubeDrawOpt(spaceCurve,planeCurve,uRange,tRange,l) == 20
to ntubeDraw, but takes 21
optional parameters that it delT:DFLOAT := (hi(tRange) - lo(tRange))/10000 22
passes to the axiomFundraw

command.
oldT:DFLOAT := lo(tRange) - 1 23

fun := ngeneralTube(spaceCurve,planeCurve,delT,oldT) 24
draw(fun, uRange, tRange, l) 25

26

nfrenetFrame(c, t, delT) numerically computes the Frenet frame about
the curve c at t. Parameter delT is a small number used to compute
derivatives.
nfrenetFrame(c, t, delT) == 27
f0 := c(t) 28
f1 := c(t+delT) 29

The tangent. t0 := f1 - f0 30
n0 := f1 + f0 31

The binormal. b := cross(t0, n0) 32
The normal. n := cross(b,t0) 33

ln := length n 34
lb := length b 35
ln = 0 or lb = 0 => 36

error "Frenet Frame not well defined" 37
Make into unit length vectors. n := (1/ln)*n 38

b := (1/lb)*b 39
[f0, t0, n, b]$FrenetFrame 40

ngeneralTube(spaceCurve, planeCurve,delT, oltT) creates a function
that can be passed to the system axiomFundraw command. The function

868 · Programs for AXIOM Images

is a parameterized surface for the general tube around spaceCurve. delT
is a small number used to compute derivatives. oldT is used to hold the
current value of the t parameter for spaceCurve. This is an efficiency
measure to ensure that frames are only computed once for each value of
t.
ngeneralTube: (ThreeCurve, TwoCurve, DFLOAT, DFLOAT) -> Surface
41
ngeneralTube(spaceCurve, planeCurve, delT, oldT) == 42

Indicate that frame is global. free frame 43
(v:DFLOAT, t: DFLOAT): R3 +-> 44

If not already computed, if (t ∼= oldT) then 45
compute new frame. frame := nfrenetFrame(spaceCurve, t, delT) 46

oldT := t 47
p := planeCurve(v, t) 48

Project p into the normal plane. frame.value + p.1*frame.normal + p.2*frame.binormal 49

F.11
dhtri.input

Create affine transformations (DH matrices) that transform a given tri-
angle into another.

Compute a DHMATRIX that tri2tri: (List Point DFLOAT, List Point DFLOAT) -> DHMATRIX(DFLOAT)
1

transforms t1 to t2, where tri2tri(t1, t2) == 2
t1 and t2 are the vertices n1 := triangleNormal(t1) 3
of two triangles in 3-space. n2 := triangleNormal(t2) 4

tet2tet(concat(t1, n1), concat(t2, n2)) 5
6

Compute a DHMATRIX that tet2tet: (List Point DFLOAT, List Point DFLOAT) -> DHMATRIX(DFLOAT)
7

transforms t1 to t2, tet2tet(t1, t2) == 8
where t1 and t2 are the m1 := makeColumnMatrix t1 9
vertices of two tetrahedrons m2 := makeColumnMatrix t2 10
in 3-space. m2 * inverse(m1) 11

12
Put the vertices of a tetra- makeColumnMatrix(t) == 13

hedron into matrix form. m := new(4,4,0)$DHMATRIX(DFLOAT) 14
for x in t for i in 1..repeat 15

for j in 1..3 repeat 16
m(j,i) := x.j 17

m(4,i) := 1 18
m 19

20
Compute a vector normal to triangleNormal(t) == 21

the given triangle, whose a := triangleArea t 22
length is the square root p1 := t.2 - t.1 23
of the area of the triangle. p2 := t.3 - t.2 24

c := cross(p1, p2) 25
len := length(c) 26
len = 0 => error "degenerate triangle!" 27
c := (1/len)*c 28
t.1 + sqrt(a) * c 29

30
Compute the area of a triangleArea t == 31

F.11. dhtri.input · 869

triangle using Heron’s a := length(t.2 - t.1) 32
formula. b := length(t.3 - t.2) 33

c := length(t.1 - t.3) 34
s := (a+b+c)/2 35
sqrt(s*(s-a)*(s-b)*(s-c)) 36

F.12
tetra.input
Bring DH matrices into the)set expose add con DenavitHartenbergMatrix 1

environment. 2
Set up the coordinates of the x1:DFLOAT := sqrt(2.0@DFLOAT/3.0@DFLOAT) 3

corners of the tetrahedron. x2:DFLOAT := sqrt(3.0@DFLOAT)/6 4
5

Some needed points. p1 := point [-0.5@DFLOAT, -x2, 0.0@DFLOAT] 6
p2 := point [0.5@DFLOAT, -x2, 0.0@DFLOAT] 7
p3 := point [0.0@DFLOAT, 2*x2, 0.0@DFLOAT] 8
p4 := point [0.0@DFLOAT, 0.0@DFLOAT, x1] 9

10
The base of the tetrahedron. baseTriangle := [p2, p1, p3] 11

12
The “middle triangle” inscribed mt := [0.5@DFLOAT*(p2+p1), 0.5@DFLOAT*(p1+p3), 0.5@DFLOAT*(p3+p2)]

13
in the base of the tetrahedron. 14

The bases of the triangles of bt1 := [mt.1, p1, mt.2] 15
the subdivided tetrahedron. bt2 := [p2, mt.1, mt.3] 16

bt3 := [mt.2, p3, mt.3] 17
bt4 := [0.5@DFLOAT*(p2+p4), 0.5@DFLOAT*(p1+p4), 0.5@DFLOAT*(p3+p4)]
18

19
Create the transformations tt1 := tri2tri(baseTriangle, bt1) 20

that bring the base of the tt2 := tri2tri(baseTriangle, bt2) 21
tetrahedron to the bases of tt3 := tri2tri(baseTriangle, bt3) 22
the subdivided tetrahedron. tt4 := tri2tri(baseTriangle, bt4) 23

24
Draw a Sierpinsky tetrahedron drawPyramid(n) == 25

with n levels of recursive s := createThreeSpace() 26
subdivision. dh := rotatex(0.0@DFLOAT) 27

drawPyramidInner(s, n, dh) 28
makeViewport3D(s, "Sierpinsky Tetrahedron") 29

30
Recursively draw a Sierpinsky drawPyramidInner(s, n, dh) == 31

tetrahedron. n = 0 => makeTetrahedron(s, dh, n) 32
Draw the 4 recursive pyramids. drawPyramidInner(s, n-1, dh * tt1) 33

drawPyramidInner(s, n-1, dh * tt2) 34
drawPyramidInner(s, n-1, dh * tt3) 35
drawPyramidInner(s, n-1, dh * tt4) 36

37
Draw a tetrahedron into the makeTetrahedron(sp, dh, color) == 38

given space with the given w1 := dh*p1 39
color, transforming it by w2 := dh*p2 40
the given DH matrix. w3 := dh*p3 41

w4 := dh*p4 42
polygon(sp, [w1, w2, w4]) 43

870 · Programs for AXIOM Images

polygon(sp, [w1, w3, w4]) 44
polygon(sp, [w2, w3, w4]) 45
void() 46

F.13
antoine.input

Draw Antoine’s Necklace. Thank you to Matthew Grayson at IBM’s T.J
Watson Research Center for the idea.

Bring DH matrices into)set expose add con DenavitHartenbergMatrix 1
the environment. 2

The current transformation for torusRot: DHMATRIX(DFLOAT) 3
drawing a sub ring. 4

5
Draw Antoine’s Necklace with n drawRings(n) == 6

levels of recursive subdivision. s := createThreeSpace() 7
The number of subrings is

10n.
dh:DHMATRIX(DFLOAT) := identity() 8

Do the real work. drawRingsInner(s, n, dh) 9
makeViewport3D(s, "Antoine’s Necklace") 10

11

In order to draw Antoine rings, we take one ring, scale it down to a
smaller size, rotate it around its central axis, translate it to the edge of
the larger ring and rotate it around the edge to a point corresponding to
its count (there are 10 positions around the edge of the larger ring). For
each of these new rings we recursively perform the operations, each ring
becoming 10 smaller rings. Notice how the DHMATRIX operations are used
to build up the proper matrix composing all these transformations.

Recursively draw Antoine’s drawRingsInner(s, n, dh) == 12
Necklace. n = 0 => 13

drawRing(s, dh) 14
void() 15

Angle around ring. t := 0.0@DFLOAT 16
Angle of subring from plane. p := 0.0@DFLOAT 17
Amount to translate subring. tr := 1.0@DFLOAT 18
The translation increment. inc := 0.1@DFLOAT 19
Subdivide into 10 linked rings. for i in 1..10 repeat 20

tr := tr + inc 21
inc := -inc 22

Transform ring in center dh’ := dh*rotatez(t)*translate(tr,0.0@DFLOAT,0.0@DFLOAT)*
23

to a link. rotatey(p)*scale(0.35@DFLOAT, 0.48@DFLOAT, 0.4@DFLOAT)
24

drawRingsInner(s, n-1, dh’) 25
t := t + 36.0@DFLOAT 26
p := p + 90.0@DFLOAT 27

void() 28
29

Draw a single ring into drawRing(s, dh) == 30
the given subspace, free torusRot 31
transformed by the given torusRot := dh 32
DHMATRIX. makeObject(torus, 0..2*%pi, 0..2*%pi, var1Steps == 6, 33

space == s, var2Steps == 15) 34

F.13. antoine.input · 871

35
Parameterization of a torus, torus(u ,v) == 36

transformed by the cu := cos(u)/6 37
DHMATRIX in torusRot. torusRot*point [(1+cu)*cos(v),(1+cu)*sin(v),(sin u)/6] 38

F.14
scherk.input

Scherk’s minimal surface, defined by: ez cos(x) = cos(y). See: A Compre-
hensive Introduction to Differential Geometry, Vol. 3, by Michael Spivak,
Publish Or Perish, Berkeley, 1979, pp. 249-252.

Offsets for a single piece (xOffset, yOffset):DFLOAT 1
of Scherk’s minimal surface. 2

3
Draw Scherk’s minimal surface drawScherk(m,n) == 4

on an m by n patch. free xOffset, yOffset 5
space := createThreeSpace() 6
for i in 0..m-1 repeat 7

xOffset := i*%pi 8
for j in 0 .. n-1 repeat 9

Draw only odd patches. rem(i+j, 2) = 0 => ’iter 10
yOffset := j*%pi 11

Draw a patch. drawOneScherk(space) 12
makeViewport3D(space, "Scherk’s Minimal Surface") 13

14
The first patch that makes scherk1(u,v) == 15

up a single piece of x := cos(u)/exp(v) 16
Scherk’s minimal surface. point [xOffset + acos(x), yOffset + u, v, abs(v)] 17

18
The second patch. scherk2(u,v) == 19

x := cos(u)/exp(v) 20
point [xOffset - acos(x), yOffset + u, v, abs(v)] 21

22
The third patch. scherk3(u,v) == 23

x := exp(v) * cos(u) 24
point [xOffset + u, yOffset + acos(x), v, abs(v)] 25

26
The fourth patch. scherk4(u,v) == 27

x := exp(v) * cos(u) 28
point [xOffset + u, yOffset - acos(x), v, abs(v)] 29

30
Draw the surface by drawOneScherk(s) == 31

breaking it into four makeObject(scherk1,-%pi/2..%pi/2,0..%pi/2,space==s, 32
patches and then drawing var1Steps == 28, var2Steps == 28) 33
the patches. makeObject(scherk2,-%pi/2..%pi/2,0..%pi/2,space==s, 34

var1Steps == 28, var2Steps == 28) 35
makeObject(scherk3,-%pi/2..%pi/2,-%pi/2..0,space==s, 36

var1Steps == 28, var2Steps == 28) 37
makeObject(scherk4,-%pi/2..%pi/2,-%pi/2..0,space==s, 38

var1Steps == 28, var2Steps == 28) 39
void() 40

872 · Programs for AXIOM Images

[

F.14. scherk.input · 873

APPENDIX G

Glossary
]
!
(syntax) Suffix character for destructive opera-
tions.
,
(syntax) a separator for items in a tuple, for exam-
ple, to separate arguments of a function f(x,y).
=>
(syntax) the expression a => b is equivalent to if
a then exit b.
?
1. (syntax) a suffix character for Boolean-valued
function names, for example, odd?. 2. Pre-
fix character for “optional” pattern variables. For
example, the pattern f(x + y) does not match
the expression f(7), but f(?x + y) does, with x
matching 0 and y matching 7. 3. The special type
? means don’t care. For example, the declaration:
x : Polynomial ? means that values assigned to
x must be polynomials over an arbitrary underlying
domain.
abstract datatype
a programming language principle used in AXIOM
where a datatype definition has defined in two
parts: (1) a public part describing a set of exports,
principally operations that apply to objects of that
type, and (2) a private part describing the imple-
mentation of the datatype usually in terms of a
representation for objects of the type. Programs
that create and otherwise manipulate objects of
the type may only do so through its exports. The
representation and other implementation informa-
tion is specifically hidden.

abstraction
described functionally or conceptually without re-
gard to implementation.
accuracy
the degree of exactness of an approximation or
measurement. In computer algebra systems, com-
putations are typically carried out with complete
accuracy using integers or rational numbers of in-
definite size. Domain Float provides a function
precision to change the precision for floating-
point computations. Computations using Double-
Float have a fixed precision but uncertain accuracy.
add-chain
a hierarchy formed by domain extensions. If do-
main A extends domain B and domain B extends
domain C, then A has add-chain B-C.
aggregate
a data structure designed to hold multiple values.
Examples of aggregates are List, Set, Matrix and
Bits.
AKCL
Austin Kyoto Common LISP, a version of KCL
produced by William Schelter, Austin, Texas.
algorithm
a step-by-step procedure for a solution of a prob-
lem; a program
ancestor
(of a domain or category) a category that is a par-
ent, or a parent of a parent, and so on. See a Cross
Reference page of a constructor in Browse.
application
(syntax) an expression denoting “application” of a
function to a set of argument parameters. Appli-

APPENDIX G · 875

cations are written as a parameterized form. For
example, the form f(x,y) indicates the “applica-
tion of the function f to the tuple of arguments x
and y.” See also evaluation and invocation.
apply
See application.
argument
1. (actual argument) a value passed to a function
at the time of a function call; also called an actual
parameter. 2. (formal argument) a variable used
in the definition of a function to denote the actual
argument passed when the function is called.
arity
1. (function) the number of arguments. 2. (op-
erator or operation) corresponds to the arity of a
function implementing the operator or operation.
assignment
(syntax) an expression of the form x := e, mean-
ing “assign the value of e to x.” After evaluation,
the variable x points to an object obtained by eval-
uating the expression e. If x has a type as a result
of a previous declaration, the object assigned to
x must have that type. The interpreter must of-
ten coerce the value of e to make that happen. For
example, the expression x : Float := 11 first de-
clares x to be a float, then forces the interpreter to
coerce the integer 11 to 11.0 in order to assign a
floating-point value to x.
attribute
a name or functional form denoting any useful com-
putational or mathematical property. For exam-
ple, commutative("*") asserts that “*” is com-
mutative. Also, finiteAggregate is used to assert
that an aggregate has a finite number of immediate
components.
basis
(algebra) S is a basis of a module M over a ring if S
generates M, and S is linearly independent.
benefactor
(of a given domain) a domain or package that
the given domain explicitly references (for exam-
ple, calls functions from) in its implementation.
See a Cross Reference page of a constructor in
Browse.
binary
operation or function with arity 2.
binding
the association of a variable with properties such
as value and type. The top-level environment in the

interpreter consists of bindings for all user variables
and functions. When a function is applied to argu-
ments, a local environment of bindings is created,
one for each formal argument and local variable.
block
(syntax) a control structure where expressions are
sequentially evaluated.
body
a function body or loop body.
boolean
objects denoted by the literals true and false;
elements of domain Boolean. See also Bits.
built-in function
a function in the standard AXIOM library. Con-
trast user function.
cache
1. (noun) a mechanism for immediate retrieval of
previously computed data. For example, a func-
tion that does a lengthy computation might store
its values in a hash table using the function argu-
ment as the key. The hash table then serves as
a cache for the function (see also)set function
cache). Also, when recurrence relations that de-
pend upon n previous values are compiled, the
previous n values are normally cached (use)set
functions recurrence to change this). 2. (verb)
to save values in a cache.
capsule
the part of the body of a domain constructor that
defines the functions implemented by the construc-
tor.
case
(syntax) an operator used to evaluate code condi-
tionally based on the branch of a Union. For exam-
ple, if value u is Union(Integer, "failed"), the
conditional expression if u case Integer then
A else B evaluates A if u is an integer and B oth-
erwise.
Category
the distinguished object denoting the type of a cat-
egory; the class of all categories.
category
(basic concept) types denoting classes of domains.
Examples of categories are Ring (“the class of all
rings”) and Aggregate (“the class of all aggre-
gates”). Categories form a hierarchy (formally,
a directed acyclic graph) with the distinquished
category Type at the top. Each category inherits
the properties of all its ancestors. Categories op-

876 · Glossary

tionally provide “default definitions” for operations
they export. Categories are defined in AXIOM
by functions called category constructors. Tech-
nically, a category designates a class of domains
with common operations and attributes but usu-
ally with different functions and representations for
its constituent objects. Categories are always de-
fined using the AXIOM library language (see also
category extension). See also file catdef.spad for
definitions of basic algebraic categories in AXIOM,
aggcat.spad for data structure
category constructor
a function that creates categories, described by
an abstract datatype in the AXIOM programming
language. For example, the category constructor
Module is a function that takes a domain parame-
ter R and creates the category “modules over R.”
category extension
A category A directly extends a category B if its
definition has the form A == B with ... or A ==
Join(...,B,...). In this case, we also say that
B is the parent of A. We say that a category A
extends B if B is an ancestor of A. A category A
may also directly extend B if B appears in a con-
ditional expression within the Exports part of the
definition to the right of a with. See, for example,
file catdef.spad for definitions of the algebra cate-
gories in AXIOM, aggcat.spad for data structure
categories.
category hierarchy
hierarchy formed by category extensions. The root
category is Type. A category can be defined as a
Join of two or more categories so as to have multi-
ple parents. Categories may also be parameterized
so as to allow conditional inheritance.
character
1. an element of a character set, as represented
by a keyboard key. 2. a component of a string.
For example, the 1st element of the string "hello
there" is the character h.
client
(of a given domain) any domain or package that
explicitly calls functions from the given domain.
See a Cross Reference page of a constructor in
Browse.
coercion
an automatic transformation of an object of one
type to an object of a similar or desired target
type. In the interpreter, coercions and retractions
are done automatically by the interpreter when a
type mismatch occurs. Compare conversion.

comment
textual remarks imbedded in code. Comments are
preceded by a double dash (“--”). For AXIOM
library code, stylized comments for on-line docu-
mentation are preceded by two plus signs (“++”).
Common LISP
A version of LISP adopted as an informal standard
by major users and suppliers of LISP.
compile-time
the time when category or domain constructors are
compiled. Contrast run-time.
compiler
a program that generates low-level code from a
higher-level source language. AXIOM has three
compilers. A graphics compiler converts graphical
formulas to a compiled subroutine so that points
can be rapidly produced for graphics commands.
An interpreter compiler optionally compiles user
functions when first invoked (use)set functions
compile to turn this feature on). A library com-
piler compiles all constructors (available on an “as-
is” basis for Release 1).
computational object
In AXIOM, domains are objects. This term is used
to distinguish the objects that are members of do-
mains rather than the domains themselves.
conditional
a control structure of the form if A then B else
C. The evaluation of A produces true or false. If
true, B evaluates to produce a value; otherwise C
evaluates to produce a value. When the value is
not required, the else C part can be omitted.
constant
(syntax) a reserved word used in signatures in
AXIOM programming language to signify that an
operation always returns the same value. For ex-
ample, the signature 0: constant -> $ in the
source code of AbelianMonoid tells the AXIOM com-
piler that 0 is a constant so that suitable optimiza-
tions might be performed.
constructor
a function that creates a category, domain, or pack-
age.
continuation
when a line of a program is so long that it must
be broken into several lines, then all but the first
line are called continuation lines. If such a line is
given interactively, then each incomplete line must
end with an underscore.

APPENDIX G · 877

control structure
program structures that can specify a departure
from normal sequential execution. AXIOM has
four kinds of control structures: blocks, case state-
ments, conditionals, and loops.
conversion
the transformation of an object of one type to one of
another type. Conversions that can be performed
automatically by the interpreter are called coer-
cions. These happen when the interpreter encoun-
ters a type mismatch and a similar or declared tar-
get type is needed. In general, the user must use
the infix operation “::” to cause this transforma-
tion.
copying semantics
the programming language semantics used in PAS-
CAL but not in AXIOM. See also pointer seman-
tics for details.
data structure
a structure for storing data in the computer. Ex-
amples are lists and hash tables.
datatype
equivalent to domain in AXIOM.
declaration
(syntax) an expression of the form x : T where T
is some type. A declaration forces all values as-
signed to x to be of that type. If a value is of a
different type, the interpreter will try to coerce the
value to type T. Declarations are necessary in case
of ambiguity or when a user wants to introduce an
unexposed domain.
default definition
a function defined by a category. Such definitions
appear in category definitions of the form
C: Category == T add I
in an optional implementation part I to the right
of the keyword add.
default package
an optional package of functions associated with
a category. Such functions are necessarily defined
in terms of other operations exported by the cate-
gory.
definition
(syntax) 1. An expression of the form f(a) == b
defining function f with formal arguments a and
body b; equivalent to the statement f == (a) +->
b. 2. An expression of the form a == b where a is
a symbol, equivalent to a() == b. See also macro
where a similar substitution is done at parse time.
delimiter
a character that marks the beginning or end of

some syntactically correct unit in the language, for
example, “"” for strings, blanks for identifiers.
dependent
(of a given constructor) another constructor that
mentions the given constructor as an argument
or among the types of an exported operation.
See a Cross Reference page of a constructor in
Browse.
destructive operation
An operation that changes a component or struc-
ture of a value. In AXIOM, destructive opera-
tions have names ending with an exclamation mark
(“!”). For example, domain List has two operations
to reverse the elements of a list, one named re-
verse that returns a copy of the original list with
the elements reversed, another named reverse!
that reverses the elements in place, thus destruc-
tively changing the original list.
documentation
1. on-line or hard-copy descriptions of AXIOM; 2.
text in library code preceded by “++” comments as
opposed to general comments preceded by “--”.
domain
(basic concept) a domain corresponds to the usual
notion of datatypes. Examples of domains are List
Float (“lists of floats”), Fraction Polynomial Integer
(“fractions of polynomials of integers”), and Matrix
Stream CardinalNumber (“matrices of infinite streams
of cardinal numbers”). The term domain actually
abbreviates domain of computation. Technically, a
domain denotes a class of objects, a class of op-
erations for creating and otherwise manipulating
these objects, and a class of attributes describing
computationally useful properties. Domains may
also define functions for its exported operations,
often in terms of some representation for the ob-
jects. A domain itself is an object created by a
function called a domain constructor. The types of
the exported operations of a domain are arbitary;
this gives rise to a special class of domains called
packages.
domain constructor
a function that creates domains, described by an
abstract datatype in the AXIOM programming
language. Simple domains like Integer and Boolean
are created by domain constructors with no argu-
ments. Most domain constructors take one or more
parameters, one usually denoting an underlying do-
main. For example, the domain Matrix(R) denotes
“matrices over R.” Domains Mapping, Record, and
Union are primitive domains. All other domains are
written in the AXIOM programming language and

878 · Glossary

can be modified by users with access to the library
source code and the library compiler.
domain extension
a domain constructor A is said to extend a domain
constructor B if A’s definition has the form A ==
B add This intuitively means “functions not
defined by A are assumed to come from B.” Succes-
sive domain extensions form add-chains affecting
the search order for functions not implemented di-
rectly by the domain during dynamic lookup.
dot notation
using an infix dot (“.”) for the operation elt. If
u is the list [7,4,-11] then both u(2) and u.2
return 4. Dot notation nests to the left: f.g.h is
equivalent to (f.g).h.
dynamic
that which is done at run-time as opposed to
compile-time. For example, the interpreter may
build a domain “matrices over integers” dynami-
cally in response to user input. However, the com-
pilation of all functions for matrices and integers
is done during compile-time. Constrast static.
dynamic lookup
In AXIOM, a domain may or may not explicitly
provide function definitions for all its exported op-
erations. These definitions may instead come from
domains in the add-chain or from default packages.
When a function call is made for an operation in
the domain, up to five steps are carried out.

1. If the domain itself implements a function for
the operation, that function is returned.

2. Each of the domains in the add-chain are
searched; if one of these domains implements
the function, that function is returned.

3. Each of the default packages for the domain
are searched in order of the lineage. If any
of the default packages implements the func-
tion, the first one found is returned.

4. Each of the default packages for each of the
domains in the add-chain are searched in the
order of their lineage. If any of the default
packages implements the function, the first
one found is returned.

5. If all of the above steps fail, an error message
is reported.

empty
the unique value of objects with type Void.
environment
a set of bindings.
evaluation
a systematic process that transforms an expression

into an object called the value of the expression.
Evaluation may produce side effects.
exit
(reserved word) an operator that forces an exit from
the current block. For example, the block (a :=
1; if i > 0 then exit a; a := 2) will prema-
turely exit at the second statement with value 1 if
the value of i is greater than zero. See “=>” for an
alternate syntax.
explicit export
1. (of a domain D) any attribute, operation, or cat-
egory explicitly mentioned in the type exports part
E for the domain constructor definition D: E == I
2. (of a category C) any attribute, operation, or
category explicitly mentioned in the type specifica-
tion part E for the category constructor definition
C: Category == E

export
explicit export or implicit export of a domain or
category
expose
some constructors are exposed, others unexposed.
Exposed domains and packages are recognized by
the interpreter. Use)set expose to control what
is exposed. Unexposed constructors will appear in
Browse prefixed by a star (“*”).
expression
1. any syntactically correct program fragment. 2.
an element of domain Expression.
extend
see category extension or domain extension.
field
(algebra) a domain that is a ring where every non-
zero element is invertible and where xy=yx; a mem-
ber of category Field. For a complete list of fields,
click on Domains under Cross Reference for
Field in Browse.
file
1. a program or collection of data stored on disk,
tape or other medium. 2. an object of a File do-
main.
float
a floating-point number with user-specified preci-
sion; an element of domain Float. Floats are liter-
als written either without an exponent (for exam-
ple, 3.1416), or with an exponent (for example,
3.12E-12). Use function precision to change the
precision of the mantissa (20 digits by default).
See also small float.

APPENDIX G · 879

formal parameter
(of a function) an identifier bound to the value of
an actual argument on invocation. In the function
definition f(x,y) == u, for example, x and y are
the formal parameters.
frame
the basic unit of an interactive session; each frame
has its own step number, environment, and his-
tory. In one interactive session, users can create
and drop frames, and have several active frames
simultaneously.
free
(syntax) A keyword used in user-defined functions
to declare that a variable is a free variable of that
function. For example, the statement free x de-
clares the variable x within the body of a function
f to be a free variable in f. Without such a decla-
ration, any variable x that appears on the left-hand
side of an assignment before it is referenced is re-
garded as a local variable of that function. If the
intention of the assignment is to give a value to a
global variable x, the body of that function must
contain the statement free x. A variable that is
a parameter to the function is always local.
free variable
(of a function) a variable that appears in a body
of a function but is not bound by that function.
Contrast with local variable.
function
implementation of operation. A function takes zero
or more argument parameters and produces a sin-
gle return value. Functions are objects that can
be passed as parameters to functions and can be
returned as values of functions. Functions can also
create other functions (see also InputForm). See
also application and invocation. The terms oper-
ation and function are distinct notions in AXIOM.
An operation is an abstraction of a function, de-
scribed by a name and a signature. A function
is created by providing an implementation of that
operation by AXIOM code. Consider the example
of defining a user-function fact to compute the
factorial of a nonnegative integer. The AXIOM
statement fact: Integer -> Integer describes
the operation, whereas the statement fact(n) =
reduce(*,[1..n]) defines the function. See also
generic function.
function body
the part of a function’s definition that is evaluated
when the function is called at run-time; the part
of the function definition to the right of the “==”.

garbage collection
a system function that automatically recycles
memory cells from the heap. AXIOM is built upon
Common LISP that provides this facility.
garbage collector
a mechanism for reclaiming storage in the heap.
Gaussian
a complex-valued expression, for example, one with
both a real and imaginary part; a member of a
Complex domain.
generic function
the use of one function to operate on objects of
different types. One might regard AXIOM as sup-
porting generic operations but not generic func-
tions. One operation +: (D, D) -> D exists for
adding elements in a ring; each ring however pro-
vides its own type-specific function for implement-
ing this operation.
global variable
A variable that can be referenced freely by func-
tions. In AXIOM, all top-level user-defined vari-
ables defined during an interactive user session are
global variables. AXIOM does not allow fluid vari-
ables, that is, variables bound by a function f that
can be referenced by functions that f calls.
Gröbner basis
(algebra) a special basis for a polynomial ideal that
allows a simple test for membership. It is useful in
solving systems of polynomial equations.
group
(algebra) a monoid where every element has a mul-
tiplicative inverse.
hash table
a data structure designed for fast lookup of infor-
mation stored under “keys”. A hash table consists
of a set of entries, each of which associates a key
with a value. Finding the object stored under a key
can be fast for a large number of entries since keys
are hashed into numerical codes for fast lookup.
heap
1. an area of storage used by data in programs. For
example, AXIOM will use the heap to hold the par-
tial results of symbolic computations. When can-
cellations occur, these results remain in the heap
until garbage collected. 2. an object of a Heap do-
main.
history
a mechanism that records input and output data
for an interactive session. Using the history facility,
users can save computations, review previous steps
of a computation, and restore a previous interac-

880 · Glossary

tive session at some later time. For details, issue
the system command)history ? to the interpreter.
See also frame.
ideal
(algebra) a subset of a ring that is closed under
addition and multiplication by arbitrary ring ele-
ments; thus an ideal is a module over the ring.
identifier
(syntax) an AXIOM name; a literal of type Symbol.
An identifier begins with an alphabetical character,
%, ?, or !, and may be followed by any of these or
digits. Certain distinguished reserved words are
not allowed as identifiers but have special meaning
in AXIOM.
immutable
an object is immutable if it cannot be changed
by an operation; it is not a mutable object. Al-
gebraic objects are generally immutable: changing
an algebraic expression involves copying parts of
the original object. One exception is an object
of type Matrix. Examples of mutable objects are
data structures such as those of type List. See also
pointer semantics.
implicit export
(of a domain or category) any exported attribute or
operation or category that is not an explicit export.
For example, Monoid and * are implicit exports of
Ring.
index
1. a variable that counts the number of times a loop
is repeated. 2. the “address” of an element in a
data structure (see also category LinearAggregate).
infix
(syntax) an operator placed between two operands;
also called a binary operator. For example, in the
expression a + b, “+” is the infix operator. An
infix operator may also be used as a prefix. Thus
+(a,b) is also permissible in the AXIOM language.
Infix operators have a precedence relative to one
another.
input area
a rectangular area on a HyperDoc screen into
which users can enter text.
instantiate
to build a category, domain, or package at run-
time.
integer
a literal object of domain Integer, the class of inte-
gers with an unbounded number of digits. Integer
literals consist of one or more consecutive digits (0-

9) with no embedded blanks. Underscores can be
used to separate digits in long integers if desirable.
interactive
a system where the user interacts with the com-
puter step-by-step.
interpreter
the part of AXIOM responsible for handling user
input during an interactive session. The inter-
preter parses the user’s input expression to create
an expression tree, then does a bottom-up traver-
sal of the tree. Each subtree encountered that is
not a value consists of a root node denoting an
operation name and one or more leaf nodes denot-
ing operands. The interpreter resolves type mis-
matches and uses type-inferencing and a library
database to determine appropriate types for the
operands and the result, and an operation to be
performed. The interpreter next builds a domain
to perform the indicated operation, and invokes
a function from the domain to compute a value.
The subtree is then replaced by that value and the
process continues. Once the entire tree has been
processed, the value replacing the top node of the
tree is displayed back to the user as the value of
the expression.
invocation
(of a function) the run-time process involved in
evaluating a function application. This process has
two steps. First, a local environment is created
where formal arguments are locally bound by as-
signment to their respective actual argument. Sec-
ond, the function body is evaluated in that local
environment. The evaluation of a function is termi-
nated either by completely evaluating the function
body or by the evaluation of a return expression.

iteration
repeated evaluation of an expression or a sequence
of expressions. Iterations use the reserved words
for, while, and repeat.
Join
a primitive AXIOM function taking two or more
categories as arguments and producing a category
containing all of the operations and attributes from
the respective categories.
KCL
Kyoto Common LISP, a version of Common LISP
that features compilation of LISP into the C Pro-
gramming Language.
library
In AXIOM, a collection of compiled modules resp-
resenting category or domain constructors.

APPENDIX G · 881

lineage
the sequence of default packages for a given domain
to be searched during dynamic lookup. This se-
quence is computed first by ordering the category
ancestors of the domain according to their level
number, an integer equal to the minimum distance
of the domain from the category. Parents have
level 1, parents of parents have level 2, and so on.
Among categories with equal level numbers, ones
that appear in the left-most branches of Joins in
the source code come first. See a Cross Refer-
ence page of a constructor in Browse. See also
dynamic lookup.
LISP
acronym for List Processing Language, a language
designed for the manipulation of non-numerical
data. The AXIOM library is translated into LISP
then compiled into machine code by an underlying
LISP system.
list
an object of a List domain.
literal
an object with a special syntax in the language. In
AXIOM, there are five types of literals: booleans,
integers, floats, strings, and symbols.
local
(syntax) A keyword used in user-defined functions
to declare that a variable is a local variable of that
function. Because of default assumptions on vari-
ables, such a declaration is often not necessary but
is available to the user for clarity when appropri-
ate.
local variable
(of a function) a variable bound by that function
and such that its binding is invisible to any func-
tion that function calls. Also called a lexical vari-
able. By default in the interpreter:

1. any variable x that appears on the left-hand
side of an assignment is normally regarded a
local variable of that function. If the inten-
tion of an assignment is to change the value
of a global variable x, the body of the func-
tion must then contain the statement free
x.

2. any other variable is regarded as a free vari-
able.

An optional declaration local x is available to de-
clare explicitly a variable to be a local variable. All
formal parameters are local variables to the func-
tion.
loop
1. an expression containing a repeat. 2. a collec-

tion expression having a for or a while, for exam-
ple, [f(i) for i in S].
loop body
the part of a loop following the repeat that tells
what to do each iteration. For example, the body
of the loop for x in S repeat B is B. For a col-
lection expression, the body of the loop precedes
the initial for or while.
macro
1. (interactive syntax) An expression of the form
macro a == b where a is a symbol causes a to be
textually replaced by the expression b at parse
time. 2. An expression of the form macro f(a)
== b defines a parameterized macro expansion for
a parameterized form f. This macro causes a form
f(x) to be textually replaced by the expression c
at parse time, where c is the expression obtained
by replacing a by x everywhere in b. See also defi-
nition where a similar substitution is done during
evaluation. 3. (programming language syntax) An
expression of the form a ==> b where a is a sym-
bol.
mode
a type expression containing a question-mark
(“?”). For example, the mode POLY ? designates
the class of all polynomials over an arbitrary ring.
mutable
objects that contain pointers to other objects and
that have operations defined on them that alter
these pointers. Contrast immutable. AXIOM uses
pointer semantics as does LISP in contrast with
many other languages such as PASCAL that use
copying semantics. See pointer semantics for de-
tails.
name
1. a symbol denoting a variable, such as the vari-
able x. 2. a symbol denoting an operation, that
is, the operation divide: (Integer, Integer)
-> Integer.
nullary
a function with no arguments, for example, char-
acteristic; operation or function with arity zero.
object
a data entity created or manipulated by pro-
grams. Elements of domains, functions, and do-
mains themselves are objects. The most basic ob-
jects are literals; all other objects must be created
by functions. Objects can refer to other objects
using pointers and can be mutable.
object code
code that can be directly executed by hardware;

882 · Glossary

also known as machine language.
operand
an argument of an operator (regarding an operator
as a function).
operation
an abstraction of a function, described by a sig-
nature. For example, fact: NonNegativeInteger
-> NonNegativeInteger describes an operation
for “the factorial of a (non-negative) integer.”
operator
special reserved words in the language such as “+”
and “*”; operators can be either prefix or infix and
have a relative precedence.
overloading
the use of the same name to denote distinct op-
erations; an operation is identified by a signature
identifying its name, the number and types of its
arguments, and its return types. If two functions
can have identical signatures, a package call must
be made to distinguish the two.
package
a special case of a domain, one for which the ex-
ported operations depend solely on the parame-
ters and other explicit domains (contain no $).
Intuitively, packages are collections of (polymor-
phic) functions. Facilities for integration, differ-
ential equations, solution of linear or polynomial
equations, and group theory are provided by pack-
ages.
package call
(syntax) an expression of the form e $ P where e
is an application and P denotes some package (or
domain).
package constructor
same as domain constructor.
parameter
see argument.
parameterized datatype
a domain that is built on another, for example,
polynomials with integer coefficients.
parameterized form
a expression of the form f(x,y), an application of
a function.
parent
(of a domain or category) a category which is ex-
plicitly declared in the source code definition for
the domain either to the left of the with or as an
export of the domain. See category extension. See

also a Cross Reference page of a constructor in
Browse.
parse
1. (verb) to transform a user input string repre-
senting a valid AXIOM expression into an inter-
nal representation as a tree-structure; the result-
ing internal representation is then “interpreted” by
AXIOM to perform some indicated action.
partially ordered set
a set with a reflexive, transitive and antisymetric
binary operation.
pattern matching
1. (on expressions) Given an expression called the
“subject” u, the attempt to rewrite u using a set
of “rewrite rules.” Each rule has the form A == B
where A indicates an expression called a “pattern”
and B denotes a “replacement.” The meaning of
this rule is “replace A by B.” If a given pattern A
matches a subexpression of u, that subexpression
is replaced by B. Once rewritten, pattern matching
continues until no further changes occur. 2. (on
strings) the attempt to match a string indicating
a “pattern” to another string called a “subject”,
for example, for the purpose of identifying a list of
names. In Browse, users may enter search strings
for the purpose of identifying constructors, opera-
tions, and attributes.
pile
alternate syntax for a block, using indentation and
column alignment (see also block).
pointer
a reference implemented by a link directed from
one object to another in the computer memory.
An object is said to refer to another if it has a
pointer to that other object. Objects can also refer
to themselves (cyclic references are legal). Also
more than one object can refer to the same object.
See also pointer semantics.
pointer semantics
the programming language semantics used in lan-
guages such as LISP that allow objects to be mu-
table. Consider the following sequence of AXIOM
statements:
x : Vector Integer := [1,4,7]
y := x
swap!(x,2,3)
The function swap! is used to interchange the
second and third value in the list x, producing the
value [1,7,4]. What value does y have after eval-
uation of the third statement? The answer is differ-
ent in AXIOM than it is in a language with copying

APPENDIX G · 883

semantics. In AXIOM, first the vector [1,2,3] is
created and the variable x set to point to this ob-
ject. Let’s call this object V. Next, the variable
y is made to point to V just as x does. Now the
third statement interchanges the last 2 elements of
V (the “!” at the end of the name swap! tells
you that this operation is destructive, that is, it
changes the elements in place). Both x and y per-
ceive this change to V. Thus both x and y then
have the value [1,7,4]. In PASCAL, the second
statement causes a copy of V to be stored under y.
Thus the change to V made by the third statement
does not affect y.

polymorphic
a function (for example, one implementing an al-
gorithm) defined with categorical types so as to be
applicable over a variety of domains (the domains
which are members of the categorical types). Ev-
ery AXIOM function defined in a domain or pack-
age constructor with a domain-valued parameter
is polymorphic. For example, the same matrix “+”
function is used to add “matrices over integers” as
“matrices over matrices over integers.”
postfix
an operator that follows its single operand. Postfix
operators are not available in AXIOM.
precedence
(syntax) refers to the so-called binding power of
an operator. For example, “*” has higher binding
power than “+” so that the expression a + b * c
is equivalent to a + (b * c).
precision
the number of digits in the specification of a num-
ber. The operation digits sets this for objects of
Float.
predicate
1. a Boolean-valued function, for example, odd:
Integer -> Boolean. 2. a Boolean-valued
expression.
prefix
(syntax) an operator such as “-” that is written
before its single operand. Every function of one
argument can be used as a prefix operator. For ex-
ample, all of the following have equivalent meaning
in AXIOM: f(x), f x, and f.x. See also dot no-
tation.
quote
the prefix operator “’” meaning do not evaluate.
Record
(basic domain constructor) a domain constructor
used to create an inhomogeneous aggregate com-
posed of pairs of selectors and values. A Record do-
main is written in the form Record(a1: D1, ...,
an: Dn) (n > 0) where a1, . . . , an are identifiers
called the selectors of the record, and D1, . . . , Dn
are domains indicating the type of the component
stored under selector an.
recurrence relation
A relation that can be expressed as a function f
with some argument n which depends on the value
of f at k previous values. In most cases, AXIOM
will rewrite a recurrence relation on compilation
so as to cache its previous k values and therefore

884 · Glossary

make the computation significantly more efficient.
recursion
use of a self-reference within the body of a func-
tion. Indirect recursion is when a function uses a
function below it in the call chain.
recursive
1. A function that calls itself, either directly
or indirectly through another function. 2. self-
referential. See also recursive.
reference
see pointer
relative
(of a domain) A package that exports operations
relating to the domain, in addition to those ex-
ported by the domain. See a Cross Reference
page of a constructor in Browse.
representation
a domain providing a data structure for elements
of a domain, generally denoted by the special iden-
tifier Rep in the AXIOM programming language.
As domains are abstract datatypes, this represen-
tation is not available to users of the domain, only
to functions defined in the function body for a do-
main constructor. Any domain can be used as a
representation.
reserved word
a special sequence of non-blank characters with
special meaning in the AXIOM language. Exam-
ples of reserved words are names such as for, if,
and free, operator names such as “+” and mod,
special character strings such as “==” and “:=”.
retraction
to move an object in a parameterized domain back
to the underlying domain, for example to move the
object 7 from a “fraction of integers” (domain Frac-
tion Integer) to “the integers” (domain Integer).
return
when leaving a function, the value of the expression
following return becomes the value of the func-
tion.
ring
a set with a commutative addition, associative mul-
tiplication, a unit element, where multiplication is
distributive over addition and subtraction.
rule
(syntax) 1. An expression of the form rule A ==
B indicating a “rewrite rule.” 2. An expression
of the form rule (R1;...;Rn) indicating a set of
“rewrite rules” R1,...,Rn. See pattern matching for
details.

run-time
the time when computation is done. Contrast with
compile-time, and dynamic as opposed to static.
For example, the decision of the intepreter to build
a structure such as “matrices with power series en-
tries” in response to user input is made at run-
time.
run-time check
an error-checking that can be done only when the
program receives user input; for example, confirm-
ing that a value is in the proper range for a com-
putation.
search string
a string entered into an input area on a HyperDoc
screen.
selector
an identifier used to address a component value of
a Record datatype.
semantics
the relationships between symbols and their mean-
ings. The rules for obtaining the meaning of any
syntactically valid expression.
semigroup
(algebra) a monoid which need not have an iden-
tity; it is closed and associative.
side effect
action that changes a component or structure of a
value. See destructive operation for details.
signature
(syntax) an expression describing the type of an op-
eration. A signature has the form name : source
-> target, where source is the type of the argu-
ments of the operation, and target is the type of
the result.
small float
an object of the domain DoubleFloat for floating-
point arithmetic as provided by the computer hard-
ware.
small integer
an object of the domain SingleInteger for integer
arithmetic as provided by the computer hardware.
source
the type of the argument of a function; the type
expression before the -> in a signature. For ex-
ample, the source of f : (Integer, Integer) ->
Integer is (Integer, Integer).
sparse
data structure whose elements are mostly identical
(a sparse matrix is one filled mostly with zeroes).

APPENDIX G · 885

static
that computation done before run-time, such as
compilation. Contrast dynamic.
step number
the number that precedes user input lines in an
interactive session; the output of user results is also
labeled by this number.
stream
an object of Stream(R), a generalization of a list to
allow an infinite number of elements. Elements of
a stream are computed “on demand.” Streams are
used to implement various forms of power series.
string
an object of domain String. Strings are literals
consisting of an arbitrary sequence of characters
surrounded by double-quotes (“"”), for example,
"Look here!".
subdomain
(basic concept) a domain together with a predicate
characterizing the members of the domain that be-
long to the subdomain. The exports of a subdo-
main are usually distinct from the domain itself.
A fundamental assumption however is that values
in the subdomain are automatically coerceable to
values in the domain. For example, if n and m are
declared to be members of a subdomain of the in-
tegers, then any binary operation from Integer is
available on n and m. On the other hand, if the
result of that operation is to be assigned to, say, k,
also declared to be of that subdomain, a run-time
check is generally necessary to ensure that the re-
sult belongs to the subdomain.
such that clause
(syntax) the use of “|” followed by an expression
to filter an iteration.
suffix
(syntax) an operator that is placed after its
operand. Suffix operators are not allowed in the
AXIOM language.
symbol
objects denoted by identifier literals; an element of
domain Symbol. The interpreter, by default, con-
verts the symbol x into Variable(x).
syntax
rules of grammar and punctuation for forming cor-
rect expressions.
system commands
top-level AXIOM statements that begin with
“)”. System commands allow users to query the
database, read files, trace functions, and so on.

tag
an identifier used to discriminate a branch of a
Union type.
target
the type of the result of a function; the type
expression following the “->” in a signature.
top-level
refers to direct user interactions with the AXIOM
interpreter.
totally ordered set
(algebra) a partially ordered set where any two el-
ements are comparable.
trace
use of system function)trace to track the ar-
guments passed to a function and the values re-
turned.
tuple
an expression of two or more other expressions sep-
arated by commas, for example, 4,7,11. Tuples
are also used for multiple arguments both for ap-
plications (for example, f(x,y)) and in signatures
(for example, (Integer, Integer) -> Integer).
A tuple is not a data structure, rather a syntax
mechanism for grouping expressions.
type
The type of any category is the unique symbol Cat-
egory. The type of a domain is any category to
which the domain belongs. The type of any other
object is either the (unique) domain to which the
object belongs or a subdomain of that domain. The
type of objects is in general not unique.
Type
a category with no operations or attributes, of
which all other categories in AXIOM are exten-
sions.
type checking
a system function that determines whether the
datatype of an object is appropriate for a given
operation.
type constructor
a domain constructor or category constructor.
type inference
when the interpreter chooses the type for an object
based on context. For example, if the user interac-
tively issues the definition f(x) == (x + %i)**2
then issues f(2), the interpreter will infer the type
of f to be Integer -> Complex Integer.
unary
operation or function with arity 1.

886 · Glossary

underlying domain
for a domain that has a single domain-valued pa-
rameter, the underlying domain refers to that pa-
rameter. For example, the domain “matrices of
integers” (Matrix Integer) has underlying domain
Integer.
Union
(basic domain constructor) a domain constructor
used to combine any set of domains into a single
domain. A Union domain is written in the form
Union(a1: D1, ..., an: Dn) (n > 0) where a1,
..., an are identifiers called the tags of the union,
and D1, ..., Dn are domains called the branches
of the union. The tags ai are optional, but re-
quired when two of the Di are equal, for ex-
ample, Union(inches: Integer, centimeters:
Integer). In the interpreter, values of union do-
mains are automatically coerced to values in the
branches and vice-versa as appropriate. See also
case.
unit
(algebra) an invertible element.
user function
a function defined by a user during an interactive
session. Contrast built-in function.
user variable
a variable created by the user at top-level during
an interactive session.
value
1. the result of evaluating an expression. 2. a
property associated with a variable in a binding in
an environment.
variable
a means of referring to an object, but not an object
itself. A variable has a name and an associated
binding created by evaluation of AXIOM expres-
sions such as declarations, assignments, and def-
initions. In the top-level environment of the in-
terpreter, variables are global variables. Such vari-
ables can be freely referenced in user-defined func-
tions although a free declaration is needed to as-
sign values to them. See local variable for details.
Void
the type given when the value and type of an
expression are not needed. Also used when there
is no guarantee at run-time that a value and pre-
dictable mode will result.
wild card
a symbol that matches any substring including the
empty string; for example, the search string “*an*”
matches any word containing the consecutive let-

ters “a” and “n”.
workspace
an interactive record of the user input and out-
put held in an interactive history file. Each user
input and corresponding output expression in the
workspace has a corresponding step number. The
current output expression in the workspace is re-
ferred to as %. The output expression associated
with step number n is referred to by %%(n). The
k th previous output expression relative to the cur-
rent step number n is referred to by %%(- k). Each
interactive frame has its own workspace.

APPENDIX G · 887

[

APPENDIX G · 889

APPENDIX H

Index
]
!, 49, 61, 150, 656, 875, 878, 884
", 878, 886
’, 50, 229, 884
(), 99, 190, 664, 665
), 88, 886
*, 95, 135
+, 95
++, 53, 666, 715, 877, 878
+->, 46, 76, 178, 218
,, 875
-, 95, 182
--, 53, 877, 878
->, 675, 886
., 165, 686, 879
.., 166, 559
..., 109
:, 103, 232, 651
::, 50, 51, 57, 109, 113, 878
:=, 49, 150, 885
;, 174
=, 156, 236, 561
==, 150, 218, 223, 664, 678, 880, 885
=>, 153, 160, 161, 875, 879
>, 182
?, 49, 100, 101, 150, 156, 184, 226, 231, 329, 875, 882
@, 120, 156, 404, 626
$, 46, 120, 128, 264, 665, 671, 675, 680, 714, 742
$Rep, 680
$$, 671
%, 47, 49, 150, 228, 229, 283, 736
%%, 47, 736
%e, 52
%i, 52

%infinity, 52
%minusInfinity, 52
%pi, 52
%plusInfinity, 52
&, 144, 181, 669, 711
, 746
∼=, 156
|, 167, 169, 170, 195, 230, 886

abbreviation
constructor, 101, 650

abstract datatype, 651, 875, 885
abstraction, 875
accuracy, 875
Ada, 9
adaptive plotting, 243, 253, 254
add, 652, 668, 682
add-chain, 875, 879
aggregate, 875
Airy function, 266
AKCL, 875
algebra

Dirac spin, 381
exterior, 380
non-associative, 345

algebraic number, 275, 277
algorithm, 875, 884
ancestor, 709, 875, 877, 882
and, 135
anonymous function, 218
antiderivative, 292
Antoine’s Necklace, 864, 871
APL, 97, 670
application, 875, 876, 879–881, 883, 886
apply, 178, 876

Index · 891

approximation, 281, 285, 305
argument, 51, 178, 875, 876, 878, 880, 881, 883
arithmetic

modular, 316
arity, 191, 834, 876, 882, 886
array

flexible, 63, 425
one-dimensional, 62
two-dimensional, 67, 590

assignment, 49, 150, 651, 876, 878, 881, 887
delayed, 150
immediate, 150
multiple immediate, 152

association list, 352
associativity law, 345
attribute, 655, 670, 707, 876–879, 881
axiom, 669
axiom, 44

badge, 112
bag, 64
balanced binary tree, 64, 354
basis, 876

Gröbner, 855, 880
Gröbner, 440
normal, 325
orthonormal, 282

benefactor, 712, 876
Bernoulli

polynomial, 301, 305
Bessel function, 266
binary, 876, 883, 886

search tree, 64, 361
tree, 64

binding, 215, 876, 879–882, 887
block, 71, 149, 153, 876, 878, 879, 883
body, 876, 878
boolean, 876, 882
break, 153, 159, 164
Browse, 209, 699
built-in function, 876, 887
by, 166, 559

C language
assignment, 150

cache, 876, 884
capsule, 652, 668, 876
Cartesian

coordinate system, 248
ovals, 242

case, 876, 878, 887

case, 108, 111, 586
Category, 876, 879
category, 3, 11, 46, 94, 96, 114, 663, 876–879, 881, 886

anonymous, 673
constructor, 663, 877, 886
defaults, 668
definition, 664
extension, 712, 877, 879, 883, 886
hierarchy, 877
membership, 667

character, 877, 878, 886
set, 142

characteristic
value, 280
vector, 280

chemistry, 440
Chinese Remainder Algorithm, 354
class number, 456
Clef, 45
client, 877
clipping, 245
coerce, 680
coercion, 113, 876–878, 886
collection, 171
color, 136, 248

curve, 245
multiplication, 249
point, 246
shade, 250

combinatorics, 389
command line editor, 45
comment, 877
Common LISP, 877, 880, 881
compile-time, 877, 879, 885
compiler, 158, 178, 193, 877
complex

floating-point number, 264
numbers, 57, 378

computation timings
displaying, 741

computational object, 877
conditional, 156, 657, 672, 877, 878
conformal map, 864, 865
constant, 877

function argument, 200
constructor, 93, 877

abbreviation, 101, 650
category, 663, 877
domain, 93, 878
exposed, 124
hidden, 124

892 · Index

package, 97, 649, 883
continuation, 877
continued fraction, 58, 385, 434
control structure, 877, 878
conversion, 50, 113, 680, 877, 878
coordinate system

Cartesian, 248
copying semantics, 878, 882, 883
correctness, 670
curve

color, 245
non-singular, 242
one variable function, 236
parametric plane, 239
plane algebraic, 242
smooth, 242

cycle index, 389
cyclic list, 61
cyclohexan, 440
cyclotomic polynomial, 270

data structure, 878
datatype, 878

parameterized, 883
declaration, 49, 103, 651, 665, 876, 878, 887
default

definition, 878
definitions, 668
package, 711, 878, 879, 882

definition, 878, 882, 887
delayed assignment, 150
delimiter, 878
denominator, 433
dependent, 710, 878
derivative, 78
destructive operation, 875, 878, 885
differential

equation, 308, 520
partial, 345

polynomial, 520
differentiation, 78

formal, 78
partial, 78

Dirac spin algebra, 381
directory

default for searching, 140
for spool files, 742

Dirichlet series, 454
discrete logarithm, 318, 322
documentation, 665, 878
domain, 10, 92, 710, 877–879, 881, 883, 885–887

add, 682
constructor, 93, 675, 876, 878, 883, 886
extension, 875, 879
representation, 680

dot notation, 879, 884
dynamic, 879, 885, 886

lookup, 879, 882

editing files, 733
eigenvalue, 280
eigenvector, 280
element

primitive, 318, 323
else, 156
emacs, 733
empty, 879
environment, 652, 876, 879–881, 887
equality testing, 156
equation, 156

differential, 308, 520
solving, 308
solving in closed-form, 308
solving in power series, 314

linear
solving, 283

polynomial
solving, 284, 286

essential singularity, 289
Etruscan Venus, 862
Euler

Beta function, 265, 864
gamma function, 265
ϕ function, 449
ϕ function, 453
polynomial, 269
totient function, 269

evaluation, 876, 877, 879, 881, 882, 887
example functions

addMonomProd, 685
bubbleSort2, 212
buildFromRoot, 362
clipFun, 632
complexDerivativeFunction, 643
complexNumericFunction, 643
conformalDraw, 865
displayRow, 224
double, 419
drawComplex, 637, 638
drawComplexVectorField, 632
drawRibbons, 622, 623
eleven, 197

Index · 893

evenRule, 39
f, 159, 187, 202, 654
f1, 207
f2, 208
f3, 208
fact, 69
fib, 204, 205, 216, 745
firstOfTwins, 174
g, 187, 188, 202, 220
gasp, 409
groupSqrt, 72
h, 214
half, 409
heapsort, 443
howMany, 65
insertRoot, 361
logrule, 228
logrules, 230
makeArrow, 626, 627
newtonStep, 642, 643
nfrenetFrame, 868
ngeneralTube, 868
ntubeDraw, 868
p, 215
pal?, 226
palAux?, 226
pascalRow, 225
power, 496
resetRecord, 216
riemannConformalDraw, 865
sayBranch, 108–110
shiftfib, 498
sin, 191
square, 496
squareTerms, 596
sum4, 305
swap, 210
t, 71, 72
theVariableIn, 643

exit, 875, 879
exiting AXIOM, 44
explicit export, 879, 881
export, 96, 97, 665, 710, 875, 879, 883

explicit, 879
implicit, 881

expose, 124, 224, 700, 878, 879
exposed

constructor, 124
exposed.lsp, 124
exposure

group, 124

expression, 879
extend, 879
exterior algebra, 380

factorial, 498
factorization, 274, 414, 448
Fibonacci numbers, 180, 204, 216, 295, 449, 455, 557
field, 95, 714, 879

finite
conversions, 327
extension of, 319, 321, 323, 325
prime, 316

Galois, 316
Hilbert class, 344
imaginary quadratic, 456
prime, 316
splitting, 338

file, 879
.Xdefaults, 136, 253
aggcat.spad, 877
axiom.input, 140
catdef.spad, 877
exposed.lsp, 124
history, 735
input, 70, 139, 154, 723, 736, 740

vs. package, 653
where found, 140

keyed access, 460
sending output to, 141
spool, 742
start-up profile, 140

finite field, 316, 319, 321, 323, 325
factoring polynomial with coefficients in, 274

flexible array, 63, 425
float, 879, 882
floating-point, 57

arbitrary precision, 404, 427
hardware, 404, 427
input, 427
output, 430

floating-point number, 264
complex, 264

fluid variable, 215
font, 136
for, 164, 165, 881, 882, 885
formal parameter, 880, 882
FORTRAN, 9

assignment, 150
output format, 144

arrays, 147
breaking into multiple statements, 144

894 · Index

data types, 145
integers vs. floats, 145
line length, 144
optimization level, 145
precision, 146

fraction, 433
continued, 58, 385, 434
partial, 58, 434, 525

frame, 126, 880, 881, 887
exposure and, 126

free
variable, 213, 880, 882

free, 213, 880, 885, 887
function, 69, 876–886

Airy Ai, 266
Airy Bi, 266
anonymous, 218

declaring, 219
restrictions, 220

arguments, 178
Bessel, 265, 266
binary, 496
body, 711, 876, 880, 881, 885
built-in, 876
caching values, 202
calling, 51
compiler, 193
complex arctangent, 271
complex exponential, 270
constant argument, 200
declaring, 208, 219
digamma, 265
elementary, 291
enumerating generating, 393
Euler Beta, 265, 864
from an object, 207
Gamma, 265, 864
hypergeometric, 266
interpretation, 193
made by function, 207
nullary, 496
numeric, 264
one-line definition, 185
parameters, 178
piece-wise definition, 69, 195
polygamma, 265
predicate, 199
special, 265
symmetric, 389
totient, 269
unary, 496

vs. macro, 178
with no arguments, 190

Galois
field, 316
group, 338

gamete, 345
garbage

collection, 880
collector, 880

Gaussian, 880
integer, 384, 388, 449

generalized continuum hypothesis, 364
generic function, 880
genetics, 345
global variable, 213, 880, 882, 887
Gram-Schmidt algorithm, 819
graph, 390
graphics, 54, 235

.Xdefaults
PostScript file name, 253

2D commands
axes, 254
close, 254
connect, 255
graphs, 255
key, 255
move, 255
options, 255
points, 255
resize, 255
scale, 255
state of graphs, 255
translate, 255

2D control-panel, 251
axes, 253
box, 253
buttons, 253
clear, 252
drop, 252
hide, 253
lines, 253
messages, 252
multiple graphs, 252
pick, 252
points, 253
ps, 253
query, 252
quit, 253
reset, 253
scale, 251

Index · 895

transformations, 251
translate, 251
units, 253

2D defaults
available viewport writes, 254

2D options
adaptive, 243
clip in a range, 245
clipping, 244
coordinates, 248
curve color, 245
point color, 246
range, 247
set units, 246
to scale, 244

color, 248
hue function, 248
multiply function, 248
number of hues, 248
primary color functions, 248

palette, 250
set 2D defaults

adaptive, 253
axes color, 253
clip points, 253
line color, 253
max points, 253
min points, 254
point color, 254
point size, 254
reset viewport, 254
screen resolution, 254
to scale, 253
units color, 254
viewport position, 254
viewport size, 254
write viewport, 254

two-dimensional, 236
greatest common divisor, 482
Gröbner basis, 402, 855, 880
Gröbner basis, 74, 440
group, 880

alternating, 390
cyclic, 323, 390
dihedral, 340, 344, 390
exposure, 124
Galois, 338
symmetric, 344, 389

has, 95
hash table, 876, 878, 880

heap, 63, 443, 880
hierarchy, 61
Hilbert

class field, 344
matrix, 431

history, 139, 880
hue, 248
HyperDoc, 44
HyperDoc, 699
HyperDoc, 131

X Window System defaults, 136

IBM Script Formula Format, 144
ideal, 881

primary decomposition, 335
identifier, 881, 886
if, 156, 658, 877, 885
immediate assignment, 150
immutable, 881, 882
implicit export, 879, 881
in, 164, 165
indentation, 153, 664
index, 881
inequality testing, 156
∞ (= %infinity), 52
infix, 881, 883
inherit, 708
input area, 881, 885
instantiate, 881
integer, 881, 882

machine, 566
integration, 80, 292

definite, 293
result as a complex functions, 293
result as list of real functions, 292

interactive, 881
interpret-code mode, 158, 193
interpreter, 193, 881
interrupt, 44
invocation, 178, 876, 877, 880, 881
iterate, 153, 162, 165
iteration, 164, 171, 881

nested, 168, 172
parallel, 168, 172

Jacobi symbol, 449, 456, 823
Join, 665, 678, 877, 881

KCL, 875, 881
Klein bottle, 862
Korn shell, 733

896 · Index

Kronecker delta, 372

Laplace transform, 291
Laurent series, 301
lazy evaluation, 296
least common multiple, 482
Legendre

symbol, 456
Legendre polynomials, 4
library, 98, 881

constructors
Any, 112, 122
AssociationList, 352
BalancedBinaryTree, 354
BasicOperator, 356
BinaryExpansion, 359
BinarySearchTree, 361
Boolean, 156, 876
CardinalNumber, 363
CartesianTensor, 366
Character, 374, 376
CharacterClass, 376
CliffordAlgebra, 378
Color, 248
Complex, 383
ContinuedFraction, 385
CycleIndicators, 389
DecimalExpansion, 401
DeRhamComplex, 397
DistributedMultivariatePolynomial, 73, 402
DoubleFloat, 56, 404, 427, 885
DoubleFloatSpecialFunctions, 265
ElementaryFunctionODESolver, 308
EqTable, 406
Equation, 156, 407
Exit, 409
Expression, 233, 410, 642
ExpressionToUnivariatePowerSeries, 300
Factored, 339, 414
FactoredFunctions2, 419
File, 420
FileName, 422
FlexibleArray, 425
Float, 404, 427, 879, 884
FortranCode, 25
FortranOutputStackPackage, 29
FortranProgram, 34
FortranScalarType, 29
FortranType, 29
Fraction, 433, 673
FullPartialFractionExpansion, 435

FunctionSpaceComplexIntegration, 293
FunctionSpaceIntegration, 292
GeneralDistributedMultivariatePolynomial, 73, 403
GeneralSparseTable, 439, 568
GenerateUnivariatePowerSeries, 303
GradedAlgebra, 372
GradedModule, 372
GroebnerFactorizationPackage, 440
Heap, 443
HexadecimalExpansion, 444
HomogeneousDistributedMultivariatePolynomial, 73,

402
Integer, 445
IntegerLinearDependence, 451
IntegerNumberTheoryFunctions, 453
Kernel, 457
KeyedAccessFile, 460
LazardSetSolvingPackage, 463
Library, 474
LinearOrdinaryDifferentialOperator, 475
LinearOrdinaryDifferentialOperator1, 480
LinearOrdinaryDifferentialOperator2, 484
List, 489
MakeBinaryCompiledFunction, 641
MakeFunction, 494
MakeUnaryCompiledFunction, 641
Mapping, 878
MappingPackage1, 496
Matrix, 500, 700
MultiSet, 506
MultivariatePolynomial, 73, 508, 684
None, 510
NumberTheoreticPolynomialFunctions, 269
Octonion, 511
OneDimensionalArray, 514
Operator, 516
OrderedVariableList, 519
OrderlyDifferentialPolynomial, 520
OrthogonalPolynomialFunctions, 267
OutputForm, 125, 224
Palette, 250
PartialFraction, 525
Permanent, 528
Polynomial, 73, 529
Quaternion, 511, 535
QuotientFieldCategory, 672
RadixExpansion, 537
RealClosure, 539
Record, 878, 884, 885
RegularTriangularSet, 548
Ring, 671

Index · 897

RomanNumeral, 557
Segment, 559, 599
SegmentBinding, 561
SemiGroup, 667, 669
SequentialDifferentialPolynomial, 520
Set, 563
SetCategory, 664
SingleInteger, 56, 566, 885
SparseTable, 568
SquareFreeRegularTriangularSet, 570
SquareMatrix, 113, 569
Stream, 575
StreamFunctions1, 576
StreamFunctions2, 576
StreamFunctions3, 576
String, 120, 577
StringTable, 581
Switch, 33
Symbol, 50, 582
SymbolTable, 30
Table, 585
TexFormat, 46
TextFile, 588
TheSymbolTable, 31
TwoDimensionalArray, 590
Type, 96, 877, 886
Union, 876, 878, 886, 887
UnivariatePolynomial, 73, 594
UnivariateTaylorSeries, 296
UniversalSegment, 599
Variable, 50
Vector, 601
Void, 151, 156, 158, 159, 163, 164, 168, 603, 887
WuWenTsunTriangularSet, 604
ZeroDimensionalSolvePackage, 607

operations
*, 881
*, 10–12, 14, 47, 94, 96, 97, 120, 297, 345, 368, 373,

414, 497, 516, 647, 667–670, 681–683, 810, 876,
883, 884

**, 264
**, 47, 120, 497, 667–669
+, 10–12, 46, 47, 51, 94, 96, 97, 119, 120, 125, 181,

182, 189, 192, 228, 297, 516, 670, 677, 681–684,
688, 694, 881, 883–885

-, 682
-, 10–12, 47, 51, 94, 96, 117, 181, 297, 677, 681–683,

688, 694, 884
.., 493
/, 47, 95, 97, 119, 192, 198, 297, 433, 534
<, 13, 656, 657, 659, 829

=, 97, 156, 285, 406, 407, 446, 665–667
#, 165, 461, 586, 655
#, 210, 490, 577, 601
0, 11
1, 11
abelianGroup, 796
abs, 25, 178, 796
absolutelyIrreducible?, 796
acos, 264, 796
acosh, 264, 796
acoshIfCan, 796
acosIfCan, 796
acot, 264, 796
acoth, 264, 796
acothIfCan, 796
acotIfCan, 797
acsc, 264, 797
acsch, 264, 797
acschIfCan, 797
acscIfCan, 797
adaptive, 253, 797
add, 668, 673
addmod, 566, 797
airyAi, 266, 797
airyBi, 266, 797
Aleph, 797
algebraic?, 797
alphabetic, 797
alphabetic?, 797
alphanumeric, 797
alphanumeric?, 797
alternating, 390, 797
alternatingGroup, 797
alternative?, 797
AND, 33
And, 567
and, 97, 670, 797
antiCommutator, 799
antisymmetric?, 799
antisymmetricTensors, 799
any, 799
any?, 799
append, 489, 799
appendPoint, 259
approximants, 386, 797
approximate, 797
approximate, 539
approxNthRoot, 798
approxSqrt, 798
areEquivalent?, 798
argscript, 798

898 · Index

argument, 459, 798
argumentList!, 32
argumentListOf, 32
arity, 357, 798
asec, 264, 798
asech, 264, 798
asechIfCan, 798
asecIfCan, 798
asin, 264, 798
asinh, 264, 798
asinhIfCan, 798
asinIfCan, 798
assign, 25, 798
assoc, 798
associates?, 798
associative?, 798
associator, 798
associatorDependence, 798
atan, 264, 798
atanh, 264, 798
atanhIfCan, 798
atanIfCan, 798
atom?, 799
axes, 254
axesColorDefault, 253, 799
back, 799
bag, 799
balancedBinaryTree, 799
base, 799
basis, 799
basisOfCenter, 799
basisOfCentroid, 799
basisOfCommutingElements, 799
basisOfLeftAnnihilator, 799
basisOfLeftNucleus, 799
basisOfLeftNucloid, 799
basisOfMiddleNucleus, 799
basisOfNucleus, 799
basisOfRightAnnihilator, 799
basisOfRightNucleus, 799
basisOfRightNucloid, 800
belong?, 800
bernoulli, 800
bernoulliB, 269
besselI, 266, 800
besselJ, 265, 266, 800
besselK, 266, 800
besselY, 266, 800
Beta, 265, 800
binary, 359, 800
binarySearchTree, 361

binaryTournament, 800
binaryTree, 800
binomial, 800
bipolar, 800
bipolarCylindrical, 800
biRank, 800
bit?, 10, 800
bits, 800
blankSeparate, 224, 800
blue, 248, 800
bottom!, 800
box, 801, 811
brace, 801
bracket, 801
branchPoint, 801
branchPointAtInfinity?, 801
bright, 250, 801
c05adf, 24
cap, 391, 801, 807
car, 801
cardinality, 801
cdr, 801, 813
ceiling, 673, 801
center, 224, 801
char, 801
characteristic, 97, 316, 801, 805, 882
characteristicPolynomial, 801
charClass, 801
charthRoot, 801
chebyshevT, 267, 802
chebyshevU, 267
children, 802
chineseRemainder, 802
clearDenominator, 802
clearFortranOutputStack, 29
clip, 802
clipPointsDefault, 244, 253, 802
close, 254, 802
close!, 802
closedCurve, 802
closedCurve?, 802
coefficient, 802
coefficients, 595, 596, 802
coerce, 25, 29, 34, 113, 233, 666, 688–690
coerceImages, 802
coerceListOfPairs, 802
coercePreimagesImages, 802
coleman, 802
color, 248, 803
colorDef, 803
colorFunction, 803

Index · 899

column, 504, 591, 803
commaSeparate, 803
commonDenominator, 803
commutative?, 803
commutator, 803
compactFraction, 525, 803, 835
comparison, 803
compile, 803
compiledFunction, 803, 824
complement, 803
complementaryBasis, 803
complete, 173, 389, 803
completeEchelonBasis, 803
complex, 128, 129, 383, 733, 804
complexEigenvalues, 804
complexEigenvectors, 281, 804
complexElementary, 804
complexExpand, 804
complexForm, 38
complexIntegrate, 293, 804
complexLimit, 75, 289, 804
complexNormalize, 804
complexNumeric, 412, 804
complexRoots, 804
complexSolve, 86, 285, 287, 804
complexZeros, 804
component, 259
components, 804
composite, 804
composites, 804
concat, 94, 120, 180, 578, 667, 690, 799, 804
concat!, 61, 63, 425, 804, 836
cond, 25
conditionP, 804
conditionsForIdempotents, 805
conical, 805
conjugate, 384, 805
conjugates, 805
connect, 254, 805
cons, 61, 489, 805
constant, 805, 807, 833
constantLeft, 805, 807
constantOperator, 805
constantOpIfCan, 805
constantRight, 496, 805, 807
construct, 29, 805
content, 530, 596, 805, 838
continuedFraction, 385, 386, 434, 805
contract, 368, 805
contractSolve, 806, 851
controlPanel, 255, 806

convergents, 385, 806
convert, 113
coordinate, 806
coordinates, 806
copies, 806
copy, 501, 592, 806
copyInto!, 806
cos, 72, 264, 458, 806
cos2sec, 806
cosh, 264, 298, 806
cosh2sech, 806
coshIfCan, 806
cosIfCan, 806
cot, 264, 806
cot2tan, 806
cot2trig, 806
coth, 264, 806
coth2tanh, 806
coth2trigh, 807
cothIfCan, 806
count, 506, 593, 807
countable?, 364, 807
createGenericMatrix, 807
createIrreduciblePoly, 330, 331, 807
createNormalElement, 807, 832
createNormalPrimitivePoly, 331, 807
createPrimitiveElement, 807
createPrimitiveNormalPoly, 331
createRandomElement, 807
createThreeSpace, 807
csc, 264
csc2sin, 807
csch, 264, 807
csch2sinh, 807
cschIfCan, 807
cscIfCan, 807
cup, 391, 801, 807
curry, 497, 805, 807
curryLeft, 496, 805, 807
curryRight, 496, 805, 807
curve, 239, 241, 807
curve?, 808
curveColor, 808
cycle, 808
cycleEntry, 808
cycleLength, 808
cyclePartition, 808
cycleRagits, 538, 808
cycles, 808
cycleSplit!, 808
cycleTail, 808

900 · Index

cyclic, 390, 808
cyclic?, 808
cyclicGroup, 808
cyclicSubmodule, 808
cyclotomic, 269
cylindrical, 808
D, 78, 179, 308, 411, 484, 521, 533, 595, 808, 810
d01ajf, 25
d02cjf, 20
dark, 250, 809
ddFact, 809, 847
decimal, 401, 809
declare, 809
declare!, 30, 32
decreasePrecision, 809
definingPolynomial, 277, 278, 809
degree, 372, 373, 481, 522, 531, 594, 809
delete, 94, 353, 809
delete!, 353, 425
deleteProperty, 809
deleteProperty!, 358
denom, 411, 433, 809
denominator, 809
denominators, 809
depth, 809
dequeue, 809
dequeue!, 809
derivationCoordinates, 809
derivative, 809
destruct, 810
determinant, 68, 94, 431, 504, 528, 672, 686, 687,

810, 825, 836
diagonal, 810
diagonal?, 810
diagonalMatrix, 70, 500, 708, 810
diagonalProduct, 810
dictionary, 810
difference, 507, 563, 810
differentialVariables, 522, 810
differentiate, 810
digamma, 265, 810
digit, 810
digit?, 810
digits, 57, 429, 432, 810, 884
dihedral, 390, 810
dihedralGroup, 810
dilog, 810
dim, 250, 810
dimension, 363, 810
dimensionsOf, 29
dioSolve, 810, 851

directory, 811
directProduct, 811
discreteLog, 318, 322, 811
discriminant, 811
display, 688, 811
distance, 811
distdfact, 811
distribute, 811
divide, 51, 448, 597, 811
divideExponents, 811
divisors, 453, 811
domain, 811
domainOf, 811
dot, 680, 811
doubleRank, 800, 811
doublyTransitive?, 811
draw, 203, 240, 243, 270, 561, 622, 811, 812, 837,

840, 854–857
drawToScale, 244, 253, 812
duplicates, 812
e, 816
Ei, 812
eigenMatrix, 281, 812
eigenvalues, 280, 812
eigenvector, 280, 812
eigenvectors, 280, 812
element?, 813
elementary, 390, 813
elliptic, 813
ellipticCylindrical, 813
elt, 490, 585, 590, 591, 601, 677, 686–690, 813, 839,

879
empty, 30, 354, 813
empty?, 61, 490, 813, 845
endOfFile?, 588, 813
enqueue!, 813
enterPointData, 814
entries, 568
entry?, 814
epilogue, 814
EQ, 33
eq, 814
eq?, 406, 814
equality, 814
equation, 689, 814
erf, 814
error, 409, 632, 643, 682, 795, 796, 799, 803, 805,

807, 809–811, 813–816, 818–824, 827, 829–832,
834, 836, 837, 841, 842, 844, 849–855, 857

euclideanGroebner, 814
euclideanNormalForm, 814

Index · 901

euclideanSize, 814, 850
euler, 814
eulerE, 269
eulerPhi, 449, 453, 814
eval, 154, 305, 494, 523, 532, 814
evaluate, 814
even?, 51, 230, 446, 815
every?, 815
exists?, 423, 815
exp, 77, 264, 298, 299, 387, 815
exp1, 815
expand, 415, 493, 559, 815
expandLog, 815
expandPower, 815
expIfCan, 815
explicitEntries?, 815
explicitlyEmpty?, 815
explicitlyFinite?, 815
exponent, 815
expressIdealMember, 815
expt, 668
exptMod, 815
exquo, 109, 448, 815
extend, 815
extendedEuclidean, 816
extendedIntegrate, 816
extension, 816
extensionDegree, 816
exteriorDifferential, 398
external?, 29
externalList, 30
extract!, 64, 443, 816
extractBottom!, 816
extractTop!, 816
factor, 3, 46, 51, 56, 276, 340, 342, 384, 411, 414,

433, 434, 448, 525, 530, 816
factorFraction, 276, 816
factorGroebnerBasis, 816
factorial, 70, 816, 880
factorials, 816
factorList, 415, 417, 418, 816
factorPolynomial, 816
factors, 415, 816
factorsOfCyclicGroupSize, 816
factorSquareFreePolynomial, 816
fibonacci, 180, 204, 205, 449, 455, 816
filename, 27, 424, 817
fill!, 817
filterUntil, 817
filterWhile, 817
find, 817

findCycle, 817
finite?, 363, 817
fintegrate, 817
first, 61, 62, 490, 657, 690, 805, 817
firstDenom, 526
firstNumer, 526
fixedPoint, 817
fixedPoints, 817
flagFactor, 817
flatten, 817, 824
flexible?, 817
flexibleArray, 425, 817
float, 817
float?, 817
floor, 817
formula, 817
fortranCarriageReturn, 27
fortranLiteral, 27
fortranLiteralLine, 27
fortranReal, 29
fortranTypeOf, 30
fractionPart, 428, 817
fractRadix, 817
fractRagits, 538, 817
freeOf?, 817
Frobenius, 818
front, 818
frst, 818
fullDisplay, 688
fullPartialFraction, 435
function, 207–209, 494, 495, 641, 803, 818, 875
Gamma, 265, 654, 818
gcd, 414, 433, 447, 530, 566, 595, 805, 818
gcdPolynomial, 818
GE, 33
generalizedContinuumHypothesisAssumed?,

818
generalPosition, 818
generate, 173, 818
generator, 818
generators, 818, 858
genus, 818
getMultiplicationMatrix, 818
getMultiplicationTable, 818
getVariableOrder, 818
getZechTable, 818
gramschmidt, 819
graphs, 255, 390, 819
graphStates, 255
green, 248, 819
groebner, 819

902 · Index

groebner?, 819
groebnerFactorize, 440, 441, 819
groebnerIdeal, 819
ground, 819
ground?, 531, 819
GT, 33
harmonic, 819
has, 819
has?, 819
hash, 819
hasHi, 599, 819
hasSolution?, 819
hconcat, 819
heap, 64, 819
heapSort, 819
heapsort, 443
height, 457, 819
hermiteH, 267, 820
hex, 444, 820
hexDigit, 820
hexDigit?, 820
hi, 559, 820
horizConcat, 503, 820
htrigs, 820
hue, 248, 820
hypergeometric0F1, 266, 820
ideal, 820
imag, 384, 820
imagE, 820
imagI, 820
imagi, 820
imagJ, 820
imagj, 820
imagK, 820
imagk, 820
implies, 820
in?, 820
incr, 559
increasePrecision, 820
index, 321, 820
index?, 820
infieldIntegrate, 820
infinite?, 820
infinity, 820
infix, 820
inHallBasis, 820
initial, 524, 821
initializeGroupForWordProblem, 821
input, 821
inRadical?, 821
insert, 94, 821

insert!, 425, 426, 443, 506
insertBottom!, 821
insertTop!, 821
integer, 230, 821
integer?, 821
integerIfCan, 821
integerPart, 821
integral, 821
integralBasis, 821
integralBasisAtInfinity, 821
integralCoordinates, 821, 822
integralDerivationMatrix, 821
integralMatrix, 821, 822
integralMatrixAtInfinity, 821, 822
integralRepresents, 822
integrate, 46, 80, 292–294, 310, 533, 822
interpret, 803, 822, 835
intersect, 506, 507, 563, 822
inv, 121, 822
inverse, 504, 683, 708, 713, 714, 822
inverseColeman, 822
inverseIntegralMatrix, 822
inverseIntegralMatrixAtInfinity, 822
inverseLaplace, 822
invmod, 566, 822
iomode, 822
irreducible?, 822
irreducibleFactor, 822
irreducibleRepresentation, 822
Is, 823
is?, 357, 458, 822
isAbsolutelyIrreducible?, 823
isExpt, 823
isMult, 823
isobaric?, 823
isPlus, 823
isTimes, 823
jacobi, 449, 456, 823
jacobiIdentity?, 823
janko2, 823
jordanAdmissible?, 823
jordanAlgebra?, 823
kernel, 457, 823
kernels, 457, 823
key, 255
key?, 823
keys, 461, 462, 474, 568, 586, 823
kroneckerDelta, 823
label, 823
laguerreL, 267, 823
lambda, 803, 823

Index · 903

laplace, 824
last, 824
laurent, 295, 304, 824
laurentIfCan, 824
laurentRep, 824
lazy?, 824
lazyEvaluate, 824
lcm, 433, 447, 530, 566, 595, 824
ldexquo, 824
LE, 33
leader, 523, 824
leadingCoefficient, 532, 594, 824
leadingIdeal, 824
leadingMonomial, 532, 824
leaf?, 824
leafValues, 824
leaves, 355, 824
left, 354, 361, 800, 824
leftAlternative?, 824, 844
leftCharacteristicPolynomial, 824, 844
leftDiscriminant, 824, 844
leftDivide, 481, 824
leftExactQuotient, 482
leftGcd, 482, 825
leftLcm, 482, 825
leftMinimalPolynomial, 825, 844
leftNorm, 825, 844
leftPower, 825
leftQuotient, 482, 824
leftRank, 825, 844
leftRankPolynomial, 825, 844
leftRecip, 825, 844
leftRegularRepresentation, 825, 844
leftRemainder, 482, 824
leftTrace, 825
leftTraceMatrix, 825, 844
leftTrim, 578, 825, 844
leftUnit, 825
leftUnits, 825, 844
legendre, 449, 456
LegendreP, 826
legendreP, 267
legendreSymbol, 825
length, 826
less?, 826
leviCivitaSymbol, 826
lexGroebner, 826
lhs, 407, 826
li, 826
library, 826
lieAdmissible?, 826

lieAlgebra?, 826
light, 250, 826
limit, 75, 288, 289, 826
limitedIntegrate, 826
linearDependenceOverZ, 826
linearlyDependentOverZ?, 826
lineColorDefault, 253, 826
linSolve, 826, 851
list, 489, 826
list?, 826
listBranches, 826
listOfComponents, 827
listOfPoints, 827
listOfProperties, 827
listRepresentation, 826
listYoungTableaus, 826, 828
lo, 559, 827
log, 77, 228, 264, 298, 827
log10, 827
log2, 827
logGamma, 265, 827
logIfCan, 827
lookup, 332
lowerCase, 374, 579, 827
lowerCase!, 579
lowerCase?, 827
LT, 33
mainKernel, 827
mainVariable, 531, 827
makeFloatFunction, 827
makeFR, 417
makeGraphImage, 256
makeObject, 622, 827
makeVariable, 520, 521, 827
makeViewport2D, 259
makeViewport3D, 637
makeYoungTableau, 828
mantissa, 828
map, 121, 220, 276, 417, 419, 434, 591, 592, 686,

715, 828, 829
map!, 592, 828
mapCoef, 828
mapDown!, 355, 828
mapExponents, 828
mapGen, 828
mapUp!, 354, 828
mask, 828
match, 828
match?, 828
mathieu11, 829
mathieu12, 829

904 · Index

mathieu22, 829
mathieu23, 829
mathieu24, 829
matrix, 172, 500, 677, 680, 829
max, 433, 447, 566, 829
maxColIndex, 829
maxIndex, 829, 836
maxPoints, 253
maxRowIndex, 829
meatAxe, 829
member?, 492, 563, 592, 829
members, 586
merge, 688, 829
merge!, 425, 829
mesh, 637, 829
midpoints, 829
min, 433, 447, 566, 829
minColIndex, 830
minimalPolynomial, 830
minimumDegree, 532, 830
minIndex, 830
minordet, 830
minPoints, 254
minPoly, 830
minRowIndex, 830
minusInfinity, 820, 830
mod, 885
modifyPointData, 830
modTree, 64
moduloP, 830
modulus, 830
moebiusMu, 450, 453, 830
monicDivide, 533, 830
monomial, 830
monomial?, 830
monomials, 830
more?, 830
move, 255
movedPoints, 830
mulmod, 566, 830
multiEuclidean, 830
multinomial, 831
multiple, 831
multiplyCoefficients, 831
multiplyExponents, 831
multiset, 506, 831
multivariate, 831
name, 357, 458, 583, 831
nand, 831
nary?, 831
ncols, 503, 591, 831

negative?, 433
new, 424, 500, 577, 582, 590, 601, 707, 831
new(), 836
newLine, 831
nextColeman, 831
nextIrreduciblePoly, 331
nextLatticePermutation, 831
nextNormalPoly, 332
nextPartition, 831
nextPrime, 173, 448, 831
nextPrimitivePoly, 332
nil, 490, 831
nilFactor, 831
node, 354
node?, 832
nodes, 832
noncommutativeJordanAlgebra?, 832
nor, 832
norm, 13, 322, 384, 512, 670, 832
normal?, 330, 832
normalElement, 832
normalForm, 832
normalise, 832
normalize, 832
normalizeAtInfinity, 832
NOT, 33
Not, 567
not, 832
nrows, 503, 591, 680, 832
nthExponent, 832
nthFactor, 339, 832
nthFlag, 832
nthFractionalTerm, 526, 832
nthRoot, 264, 832
nthRootIfCan, 832
null?, 833
nullary, 833
nullary?, 833
nullity, 505, 833
nullSpace, 284, 505, 833
numberOfComponents, 833
numberOfComputedEntries, 833
numberOfCycles, 833
numberOfDivisors, 453, 833
numberOfFactors, 833
numberOfFractionalTerms, 526, 833
numberOfHues, 833
numberOfHues(), 248
numberOfImproperPartitions, 833, 857
numberOfImproperPartitionsInternal, 857
numberOfMonomials, 833

Index · 905

numer, 411, 433, 833
numerator, 833
numerators, 833
numeric, 412, 534, 833
objectOf, 833
objects, 833
oblateSpheroidal, 833
octon, 833
odd?, 10, 446, 833, 875
one?, 416, 834
oneDimensionalArray, 62, 514, 834
open, 420, 834
operator, 356, 458, 516, 834
operators, 834
optional, 834
options, 255
OR, 33
Or, 567
or, 97, 670, 834
orbit, 834
orbits, 834
ord, 374, 834
order, 319, 522, 834
orthonormalBasis, 282, 834
output, 28, 160, 194, 224, 834
outputAsFortran, 28, 834
outputAsTex, 834
outputFixed, 430, 834
outputFloating, 430, 835
outputForm, 835
outputGeneral, 835
outputSpacing, 430, 835
over, 835
overbar, 835
pack!, 835
packageCall, 835
pade, 835
padicFraction, 525, 835
pair?, 835
parabolic, 835
parabolicCylindrical, 835
paraboloidal, 835
parametersOf, 30
paren, 811, 835
partialDenominators, 835
partialFraction, 434, 525, 835
partialNumerators, 835
partialQuotients, 385, 835
particularSolution, 835
partition, 835
partitions, 836

parts, 836
pastel, 250, 836
pattern, 836
patternMatch, 836
perfectNthPower?, 836
perfectNthRoot, 836
perfectSqrt, 836
perfectSquare?, 836
permanent, 528, 836
permutation, 836
permutationGroup, 836
permutationRepresentation, 836
permutations, 836
physicalLength, 425, 836, 849
physicalLength!, 425, 836
pi, 264, 836
pile, 836
plenaryPower, 347, 836
plusInfinitity, 820
plusInfinity, 837
point, 837
point?, 837
pointColor, 837
pointColorDefault, 254, 837
points, 255
pointSizeDefault, 254, 837
polar, 837
polarCoordinates, 837
pole?, 837
polSolve, 851
polygamma, 265, 837
polygon, 837
polygon?, 837
polynomial, 837
pop!, 837
popFortranOutputStack, 29
position, 580, 837
positive?, 433, 837
positiveRemainder, 566, 837
possiblyInfinite?, 837
postfix, 837
powerAssociative?, 838
powerSum, 838
powmod, 838
precision, 800, 809, 810, 820, 838, 875
prefix, 838
prefix?, 579, 838
prefixRagits, 538, 838
presub, 838
presuper, 838
prevPrime, 449

906 · Index

primaryDecomp, 838
prime, 838
prime?, 173, 174, 448, 838
primeFactor, 526, 838
primeFrobenius, 838
primes, 449, 838
primitive?, 330, 838
primitiveElement, 322, 838
primitiveMonomials, 838
primitivePart, 838
principalIdeal, 816, 838
print, 839
printHeader, 32
printTypes, 30
processTemplate, 27
product, 367, 372, 373, 670, 839
prolateSpheroidal, 839
prologue, 839
properties, 839
pseudoDivide, 839
pseudoQuotient, 839
pseudoRemainder, 839
puiseux, 295, 304, 839
push!, 839
pushdown, 839
pushdterm, 839
pushFortranOutputStack, 29
pushucoef, 839
pushuconst, 839
pushup, 839
qelt, 591, 601, 839
qsetelt!, 591, 601, 839
quadraticForm, 677, 680, 683, 840
quatern, 51, 535, 840
queue, 840
quickSort, 840
quo, 447, 597, 840
quo, 198
quoByVar, 840
quote, 840
quotedOperators, 840
quotient, 840
radical, 840
radicalEigenvalues, 840
radicalEigenvector, 840
radicalEigenvectors, 281, 840
radicalOfLeftTraceForm, 840
radicalRoots, 840
radicalSolve, 86, 285, 287, 840
radix, 840
ramified?, 840

ramifiedAtInfinity?, 840
random, 840
range, 840
ranges, 840
rank, 505, 710, 711, 717, 718, 840
rarrow, 841
ratDenom, 60, 841
rational, 841
rational?, 841
rationalApproximation, 841
rationalFunction, 841
rationalIfCan, 841
rationalPoint?, 841
rationalPoints, 841
rationalPower, 841
ratPoly, 841
rdexquo, 841
read!, 420, 462, 841
readable?, 423, 841
readIfCan!, 420, 841
readLine!, 588, 841
readLineIfCan!, 841
real, 384, 841
real?, 29, 841
realEigenvectors, 281, 841
realElementary, 842
realRoots, 842
realZeros, 842
recip, 842
recur, 497, 842
red, 248, 842
reduce, 447, 595, 842
reduceBasisAtInfinity, 842
reducedContinuedFraction, 842
reducedForm, 842
reducedSystem, 842
reductum, 532, 594, 842
refine, 842
region, 255
regularRepresentation, 842
reindex, 371, 843
relationsIdeal, 843
relativeApprox, 539
relerror, 843
rem, 448, 597, 843
remove, 843
remove!, 425, 506, 586
removeCoshSq, 843
removeDuplicates, 492, 843
removeDuplicates!, 425, 843
removeSinhSq, 843

Index · 907

removeSinSq, 843
removeZeroes, 843
reopen!, 843
repeating, 843
repeating?, 843
replace, 843
represents, 843
reset, 255
resetNew, 843
resetVariableOrder, 843
resize, 255
rest, 61, 62, 212, 492, 657, 660, 690, 805, 843
resultant, 338, 530, 595, 838, 843
retract, 843
retractable?, 844
retractIfCan, 110, 843
returnType!, 32
returnTypeOf, 32
reverse, 61, 492, 844, 878
reverse!, 844, 878
rhs, 407, 844
right, 354, 361, 800, 844
rightAlternative?, 844
rightCharacteristicPolynomial, 844
rightDiscriminant, 844
rightDivide, 481, 841
rightExactQuotient, 482
rightGcd, 482, 844
rightLcm, 482, 844
rightMinimalPolynomial, 844
rightNorm, 844
rightPower, 844
rightQuotient, 482, 841
rightRank, 844
rightRankPolynomial, 844
rightRecip, 844
rightRegularRepresentation, 844
rightRemainder, 482, 841
rightTraceMatrix, 844
rightTrim, 578, 844
rightUnits, 844
rischNormalize, 844
roman, 844
romberg, 844
rombergClose, 844
rombergClosed, 844
rombergOpen, 844
root, 845
rootOf, 277, 279, 293, 845
rootOfIrreduciblePoly, 333, 845
rootSimp, 845

rootsOf, 278, 279, 845
rootSplit, 845
rotate!, 845
round, 428, 845
row, 68, 504, 591, 845
rowEchelon, 505, 845
rst, 845
rubiksGroup, 845
rule, 845
rules, 845
ruleset, 845
rungaKutta, 845
rungaKuttaFixed, 845
saturate, 845
say, 846
sayLength, 846
scalarMatrix, 846
scalarTypeOf, 29
scale, 255
scan, 575, 846
scanOneDimSubspaces, 846
screenResolution, 254
script, 584, 846
scripted?, 583, 846
scripts, 583, 846
search, 65, 460, 586, 846
sec, 264, 846
sec2cos, 846
sech, 264, 846
sech2cosh, 846
sechIfCan, 846
secIfCan, 846
second, 846
segment, 561, 846
select, 846
select!, 425, 846
semicolonSeparate, 846
separant, 523, 846
separate, 846
separateDegrees, 847
separateFactors, 847
sequences, 847
series, 76, 295, 300, 302, 304, 847
seriesSolve, 314, 847, 851
set, 36
setchildren!, 847, 848
setColumn!, 501, 847
setDifference, 847
setelt, 491, 500, 585, 590, 591, 601, 657, 839, 847
setEpilogue!, 848
setfirst!, 848

908 · Index

setFormula!, 848
setIntersection, 848
setlast!, 848
setleaves!, 848
setleft!, 848
setPrologue!, 848
setProperties!, 848
setProperty, 357
setProperty!, 848
setrest!, 61, 848
setright!, 848
setRow!, 501, 848
setsubMatrix!, 502, 848
setTex!, 848
setUnion, 848
setvalue!, 848
setVariableOrder, 843, 848
SFunction, 395
sFunction, 848
shade, 848
shellSort, 849
shift, 849
show, 255
showAll?, 849
showAllElements, 849
showArrayValues, 23
showFortranOutputStack, 29
showScalarValues, 23
showTypeInOutput, 849
shrinkable, 426, 849
shuffle, 849
shufflein, 849
sign, 445, 849
simplify, 413, 849
simplifyExp, 849
simpson, 849
simpsonClosed, 849
simpsonOpen, 849
sin, 228, 264, 298, 411, 458, 633, 849
sin2csc, 849
singular?, 849
singularAtInfinity?, 850
sinh, 264, 850
sinh2csch, 850
sinhIfCan, 850
size, 850
size?, 850
sizeLess?, 811, 850
sizeMultiplication, 850
skewSFunction, 850

solve, 13, 86, 280, 283, 285, 286, 308, 309, 313,
407, 710, 850

solveLinearlyOverQ, 452, 851
solveLinearPolynomialEquation, 851
sort, 61, 220, 851
sort!, 851
spherical, 851
split, 361, 851
split!, 851
splitDenominator, 851
sqfrFactor, 851
sqrt, 264, 851
square?, 851
squareFree, 851
squareFreePart, 851
squareFreePolynomial, 851
squareMatrix, 569
squareTop, 851
stack, 851
standardBasisOfCyclicSubmodule, 851
stirling1, 852
stirling2, 852
string, 852
string?, 852
strongGenerators, 852, 858
structuralConstants, 852
sturmSequence, 539
style, 852
sub, 852
subMatrix, 502, 852
submod, 566, 852
subResultantGcd, 852
subscript, 852
subset, 852
subset?, 563, 852
subspace, 620, 852
subst, 852
substring?, 579, 852
suchThat, 852
suffix?, 579, 852
sum, 852
summation, 852
sumOfDivisors, 453, 852
sumOfKthPowerDivisors, 453, 852
sumSquares, 853
sup, 853
super, 853
superscript, 853
supersub, 853
surface, 853
swap!, 655, 660, 853, 883, 884

Index · 909

swapColumns!, 853
swapRows!, 853
sylvesterSequence, 539
symbol, 853
symbol?, 853
symbolTableOf, 32
symmetric?, 853
symmetricDifference, 507, 563, 853
symmetricGroup, 853
symmetricRemainder, 853
symmetricTensors, 853
systemCommand, 853
table, 352, 406, 853
tableau, 853
tableForDiscreteLogarithm, 853
tail, 854
tan, 264, 298, 854
tan2cot, 854
tan2trig, 854
tanh, 264, 854
tanh2coth, 854
tanh2trigh, 854
tanhIfCan, 854
tanIfCan, 854
taylor, 295, 300, 304, 854
taylorIfCan, 854
taylorRep, 854
tensorProduct, 854
terms, 854
tex, 854
third, 854
title, 255, 854
top, 854
top!, 854
topFortranOutputStack, 29
toroidal, 854
toScale, 855
totalDegree, 532, 855
totalfract, 855
totalGroebner, 855
totalHues, 833
tower, 855
trace, 68, 322, 505, 855
traceMatrix, 855
tracePowMod, 855
transcendenceDegree, 855
transcendent?, 855
translate, 255
transpose, 68, 370, 503, 855
trapezoidal, 855
trapezoidalClosed, 855

trapezoidalOpen, 855
tree, 855
triangularSystems, 855
trigs, 856
trim, 578, 856
truncate, 428, 856
tubePoints, 856
tubePointsDefault, 856
tubeRadius, 856
tubeRadiusDefault, 856
twist, 496, 856
typeList, 30
typeLists, 30
unary?, 856
union, 506, 507, 563, 856
unit, 856
unit?, 856
unitCanonical, 856
unitNormal, 856
unitNormalize, 856
units, 254
unitsColorDefault, 254, 856
unitVector, 856
univariate, 856
universe, 856
unparse, 818, 824, 857
unrankImproperPartitions0, 857
unrankImproperPartitions1, 857
unravel, 857
upperCase, 374, 579, 857
upperCase!, 579, 857
upperCase?, 857
validExponential, 857
value, 354, 800, 857
var1Steps, 857
var1StepsDefault, 857
var2Steps, 857
var2StepsDefault, 857
variable, 561, 857
variables, 531, 857
vconcat, 857
vector, 857
vectorise, 596, 857
vertConcat, 503, 858
viewDefaults, 254, 858
viewPosDefault, 254, 858
viewSizeDefault, 254, 858
viewWriteAvailable, 254, 858
viewWriteDefault, 254, 858
void, 858
weakBiRank, 800, 858

910 · Index

weight, 522, 858
weights, 522, 858
whatInfinity, 858
wholePart, 526, 858
wholeRadix, 858
wholeRagits, 538, 858
wordInGenerators, 858
wordInStrongGenerators, 858
wordsForStrongGenerators, 858
wreath, 858
writable?, 423, 859
write, 254, 255
write!, 420, 461, 588, 859
writeLine!, 588, 859
writeline!, 28
xor, 567, 859
xRange, 859
yCoordinates, 859
yellow, 248, 859
youngGroup, 859
yRange, 859
zag, 859
zero, 859
zero?, 416, 433, 446, 859
zeroDim?, 859
zeroDimPrimary?, 859
zeroDimPrime?, 859
zeroOf, 277, 279, 859
zeroSetSplit, 553, 556
zerosOf, 279, 859
zoom, 623
zRange, 859

, 666
, 666

Lie algebra, 345
limit, 75, 288

at infinity, 289
of function with parameters, 75, 289
one-sided vs. two-sided, 288
real vs. complex, 289

lineage, 711, 879, 882
linear dependence, 451
linear equation, 283
LISP, 799, 877, 882
Lisp

code generation, 730
list, 61, 489, 878, 882, 886

association, 352
created by iterator, 171
cyclic, 61
empty, 510

literal, 876, 879, 881, 882, 886
local, 882

environment, 652
variable, 165, 213, 876, 880, 882, 887

logarithm
discrete, 318, 322

loop, 158, 878, 881, 882
body, 158, 876, 882
compilation, 158
leaving via break, 159
leaving via return, 158
mixing modifiers, 170
nested, 160

machine code, 194
MacMahon, P. A., 389
macro, 52, 179, 650, 669, 878, 882

predefined, 52
vs. function, 178

mapping, 651, 665
matrix, 67

concatenating, 502
copying, 501
creating, 67
destructive change to, 500
determinant of, 504
diagonal, 500
Hilbert, 67
ill-conditioned, 431
inverse of, 504
permanent of, 528
rank of, 505
row echelon form of, 505
square, 569
submatrix of, 502
symmetric, 282
trace of, 505
transposing, 503

Mendel’s genetic laws, 345
Mersenne number, 185
minimal polynomial, 280, 325
mode, 91, 99, 100, 882
modemap, 660, 733
Modula 2, 9
modular arithmetic, 316
Möbius

inversion formula, 454
µ function, 450
µ function, 453

monoid, 885
monospace 2D output format, 142

Index · 911

µ, 450
µ, 453
multiple immediate assignment, 152
multiset, 65, 506
mutable, 491, 881–883

name, 181, 880, 882
nested iteration, 168
Newton iteration, 642, 862
non-associative algebra, 345
non-singular curve, 242
normal basis, 325
not, 135
nullary, 882
nullspace, 284
number

algebraic, 275, 277
complex floating-point, 264
floating-point, 264
theory, 269, 453

numerator, 433
numeric operations, 264

object, 877, 878, 882
code, 882

one-dimensional array, 62
operand, 881, 883, 884
operation, 189, 877–883, 885

destructive, 875, 878, 884, 885
origin, 683

operation name completion, 45
operator, 47, 78, 232, 308, 399, 516, 879, 881, 883, 884,

886
Hammond, 389
linear ordinary differential, 475, 480, 484

operators, 181
or, 135
orthonormal basis, 282
output formats

common features, 141
FORTRAN, 144
IBM Script Formula Format, 144
line length, 142
monospace 2D, 142
sending to file, 141
sending to screen, 141
starting, 141
stopping, 141
TEX, 143

overloading, 182, 530, 883

package, 13, 97, 649, 709, 710, 877, 878, 881, 883

call, 119, 181, 883
constructor, 649, 883
vs. input file, 653

palindrome, 226
panic

avoiding, 158, 193
parameter, 883
parameterized

datatype, 883
form, 178, 876, 883

parameters to a function, 178
parametric

plane curve, 239
parent, 875, 877, 883
parentheses

using with types, 99, 100
parse, 878, 882, 883
partial

differential equation, 345
fraction, 58, 434, 525

partially ordered set, 883
partition, 389
PASCAL, 9, 878, 882, 884

assignment, 150
Pascal’s triangle, 224
pattern, 228

matching, 72, 228, 883, 885
caveats, 233

variable
matching several terms, 232
predicate, 230

variables, 228
%%, 47
performance, 194
peril, 118
permutation, 389
ϕ, 449
ϕ, 453
π (= %pi), 52
piece-wise function definition, 69, 195
pile, 153, 622, 651, 667, 883
plane algebraic curve, 242
pointer, 61, 876, 882–885

semantics, 878, 881–883
polymorphic, 883, 884
polynomial, 73

Bernouilli, 269
Bernoulli, 269, 301, 305
Chebyshev

of the first kind, 268
of the second kind, 268

912 · Index

cyclotomic, 270
differential polynomial, 520
Euler, 269, 270
factorization, 274

algebraic extension field coefficients, 275
finite field coefficients, 274
integer coefficients, 274
rational number coefficients, 274

Hermite, 268
irreducible, 330
Laguerre, 268
Legendre, 269, 518
minimal, 280, 325
multiple variables, 508
normal, 329
one variable, 594
primitive, 329
root finding, 284
root of, 333

postfix, 884
PostScript, 55, 235, 253
power series, 295, 314
precedence, 47, 881, 883, 884
precision, 281, 285, 879, 884
predicate, 93, 116, 156, 162, 686, 884, 886

in function definition, 199
on a pattern variable, 230

prefix, 881, 883, 884
pretend, 117, 194
primary decomposition of ideal, 335
prime, 448

field, 316
primitive element, 318, 323
principal value, 264
priority queue, 63, 443
prompt, 44

with frame name, 735
ψ, 265
Puiseux series, 76, 302

quaternions, 379
quote, 50, 105, 110, 582, 884

radical, 58, 277, 281, 285
radix, 56
rational function

factoring, 276
Record, 105
Record, 65
record, 361

difference from union, 110

selector, 105
recurrence relation, 204, 876, 884
recursion, 885
recursive, 885
Redfield, J. H., 389
reference, 215, 885
relative, 710, 885
Relativistic Quantum Field Theory, 382
remembering function values, 202
Rep, 680, 885
repeat, 881, 882
representation, 875, 877, 878, 885

of a domain, 680
reserved word, 881, 885
resolve, 122, 192
result

previous, 47
retraction, 877, 885
return, 885
return, 153, 158, 881, 885
ribbon, 618
Riemann

sphere, 864, 865
ζ function, 455

ring, 876, 879, 885
rings, 704
Roman numerals, 56, 450, 557
root, 341

multiple, 278
numeric approximation, 264
symbolic, 277

rule, 885
rule, 6, 228, 229
ruleset, 229
run-time, 877, 879, 880, 885, 886

check, 885

Scherk’s minimal surface, 864, 872
scientific notation, 427
scroll bar, 133
search string, 699, 883, 885
segment, 165, 493
selector, 105, 884, 885

quoting, 106, 110
record, 105
union, 110

semantics, 885
copying, 878, 882–884
pointer, 878, 881–883

semigroup, 885
series, 295

Index · 913

arithmetic, 297
creating, 295
Dirichlet, 454
extracting coefficients, 297
giving formula for coefficients, 302
Laurent, 301
lazy evaluation, 296
multiple variables, 301
numerical approximation, 305
power, 76, 314
Puiseux, 76, 302
Taylor, 76, 296, 299, 300, 303

set, 64
vs. multiset, 506

shade, 250
side effect, 203, 879, 885
Sierpinsky’s Tetrahedron, 864, 871
σ, 453
signature, 97, 714, 715, 732, 877, 880, 883, 885, 886
simplification, 72
Simpson’s method, 849
singularity

essential, 289
small

float, 879, 885
integer, 885

smooth curve, 242
sort

bubble, 210, 657
insertion, 211, 657

source, 885
code, 705

sparse, 73, 885
special functions, 265
splitting field, 338
start-up profile file, 140
starting AXIOM, 44
static, 879, 885, 886
step number, 44, 880, 886, 887
stopping AXIOM, 44
stream, 61, 878, 886

created by iterator, 171
number of elements computed, 172
using while, 171

string, 882, 886
subdomain, 11, 93, 116, 886
substitution, 228
such that, 195, 230

clause, 886
suffix, 886
summation

definite, 305
indefinite, 305

symbol, 48, 878, 882, 886
naming, 49

symmetry, 345
syntax, 650, 886
system commands, 45, 88, 886

)abbreviation, 101, 724, 731
)abbreviation category, 725
)abbreviation domain, 725
)abbreviation package, 725
)abbreviation query, 725
)abbreviation remove, 725
)apropos, 749
)boot, 725
)cd, 140, 141, 726, 742
)clear, 727
)close, 136, 726
)compile, 691, 726, 728
)display, 732
)display operation, 128
)edit, 726, 733
)fin, 733
)frame, 126, 734
)frame drop, 735
)frame import, 735
)frame last, 734
)frame names, 734
)frame new, 734
)frame next, 734
)hd, 44
)help, 735
)history, 735
)history)change, 736
)history)off, 736
)history)on, 736
)history)restore, 726
)history)save, 726
)history)write, 140, 726
)library, 737
)lisp, 738
)load, 691, 739
)ltrace, 739
)pquit, 739, 740
)quit, 44, 140, 739, 740
)read, 140, 726, 740
)set, 741
)set expose, 125
)set expose add constructor, 125
)set expose add group, 125
)set expose drop constructor, 125

914 · Index

)set expose drop group, 125
)set fortran, 144
)set fortran explength, 144
)set fortran ints2floats, 145
)set fortran optlevel, 144, 145
)set fortran precision double, 146
)set fortran precision single, 146
)set fortran segment, 144
)set fortran startindex, 147
)set function compile, 194
)set function recurrence, 205
)set functions cache, 202
)set history off, 736
)set history on, 736
)set message frame, 735
)set message prompt frame, 735
)set message time, 741
)set message void, 603
)set output, 141
)set output algebra, 142
)set output characters, 142
)set output fortran, 141, 144
)set output length, 142
)set output script, 144
)set output tex, 143
)set quit protected, 141, 740
)set quit unprotected, 141, 740, 741
)set streams calculate, 76, 172, 295, 306, 575
)set userlevel, 748
)set userlevel compiler, 723
)set userlevel development, 723
)set userlevel interpreter, 723
)show, 128, 650, 741
)spool, 726, 742
)synonym, 743
)system, 88, 743
)trace, 744
)undo, 747
)what, 101, 127, 748
)what categories, 748
)what commands, 748
)what domain, 128
)what domains, 748
)what operation, 127
)what operations, 748
)what packages, 102, 128, 748
)what synonym, 749
)what things, 749

table, 65, 352, 406
tableaux, 395

tag, 886
target, 120, 886

type, 120
tensor

Cartesian, 366
contraction, 369
inner product, 368
outer product, 367

testing, 658
TEX output format, 143
then, 156
timings

displaying, 741
top-level, 886
torus knot, 861
totally ordered set, 886
trace, 886
transform

Laplace, 291
trapezoidal method, 855
tree, 64

balanced binary, 64, 354
binary search, 64, 361

tuple, 105, 152, 665, 875, 886
type, 91, 92, 181, 876–879, 885–887

checking, 886
constructor, 886
inference, 886
target, 120
using parentheses, 99, 100

typeOf, 109

unary, 886
underlying domain, 875, 878, 887
undo, 89
Union, 108
Union, 66
union, 108

difference from record, 110
selector, 110

unit, 887
user

function, 876, 877, 887
variable, 887

user-level, 716, 723, 748

value, 876, 879, 884, 887
variable, 49, 150, 876, 882, 887

fluid, 215, 880
free, 213
global, 213, 880

Index · 915

local, 213
naming, 49

vi, 733
viewport, 235

weight, 248
where, 650, 676
while, 160, 162, 881, 882
wild card, 700, 887
window, 44
with, 650, 665, 674
workspace, 139, 887

X Window System, 44, 136

Yun, David Y. Y., 354

Zech logarithm, 319, 818
ζ, 455
zygote, 345

916 · Index

	Foreword
	Contributors
	Introduction to AXIOM
	A Technical Introduction to AXIOM
	What's New in AXIOM Version 2.0
	Important Things to Read First
	The New AXIOM Library Compiler
	The NAG Library Link
	Interactive Front-end and Language
	Library
	HyperDoc
	Documentation

	An Overview of AXIOM
	Starting Up and Winding Down
	Typographic Conventions
	The AXIOM Language
	Graphics
	Numbers
	Data Structures
	Expanding to Higher Dimensions
	Writing Your Own Functions
	Polynomials
	Limits
	Series
	Derivatives
	Integration
	Differential Equations
	Solution of Equations
	System Commands

	Using Types and Modes
	The Basic Idea
	Writing Types and Modes
	Declarations
	Records
	Unions
	The ``Any'' Domain
	Conversion
	Subdomains Again
	Package Calling and Target Types
	Resolving Types
	Exposing Domains and Packages
	Commands for Snooping

	Using HyperDoc
	Headings
	Key Definitions
	Scroll Bars
	Input Areas
	Radio Buttons and Toggles
	Search Strings
	Example Pages
	X Window Resources for HyperDoc

	Input Files and Output Styles
	Input Files
	The axiom.input File
	Common Features of Using Output Formats
	Monospace Two-Dimensional Mathematical Format
	TeX Format
	IBM Script Formula Format
	FORTRAN Format

	Introduction to the AXIOM Interactive Language
	Immediate and Delayed Assignments
	Blocks
	if-then-else
	Loops
	Creating Lists and Streams with Iterators
	An Example: Streams of Primes

	User-Defined Functions, Macros and Rules
	Functions vs. Macros
	Macros
	Introduction to Functions
	Declaring the Type of Functions
	One-Line Functions
	Declared vs. Undeclared Functions
	Functions vs. Operations
	Delayed Assignments vs. Functions with No Arguments
	How AXIOM Determines What Function to Use
	Compiling vs. Interpreting
	Piece-Wise Function Definitions
	Caching Previously Computed Results
	Recurrence Relations
	Making Functions from Objects
	Functions Defined with Blocks
	Free and Local Variables
	Anonymous Functions
	Example: A Database
	Example: A Famous Triangle
	Example: Testing for Palindromes
	Rules and Pattern Matching

	Graphics
	Two-Dimensional Graphics

	Advanced Problem Solving
	Numeric Functions
	Polynomial Factorization
	Manipulating Symbolic Roots of a Polynomial
	Computation of Eigenvalues and Eigenvectors
	Solution of Linear and Polynomial Equations
	Limits
	Laplace Transforms
	Integration
	Working with Power Series
	Solution of Differential Equations
	Finite Fields
	Primary Decomposition of Ideals
	Computation of Galois Groups
	Non-Associative Algebras and Modelling Genetic Laws

	Some Examples of Domains and Packages
	AssociationList
	BalancedBinaryTree
	BasicOperator
	BinaryExpansion
	BinarySearchTree
	CardinalNumber
	CartesianTensor
	Character
	CharacterClass
	CliffordAlgebra
	Complex
	ContinuedFraction
	CycleIndicators
	DeRhamComplex
	DecimalExpansion
	DistributedMultivariatePolynomial
	DoubleFloat
	EqTable
	Equation
	Exit
	Expression
	Factored
	FactoredFunctions2
	File
	FileName
	FlexibleArray
	Float
	Fraction
	FullPartialFractionExpansion
	GeneralSparseTable
	GroebnerFactorizationPackage
	Heap
	HexadecimalExpansion
	Integer
	IntegerLinearDependence
	IntegerNumberTheoryFunctions
	Kernel
	KeyedAccessFile
	LazardSetSolvingPackage
	Library
	LinearOrdinaryDifferentialOperator
	LinearOrdinaryDifferentialOperator1
	LinearOrdinaryDifferentialOperator2
	List
	MakeFunction
	MappingPackage1
	Matrix
	MultiSet
	MultivariatePolynomial
	None
	Octonion
	OneDimensionalArray
	Operator
	OrderedVariableList
	OrderlyDifferentialPolynomial
	PartialFraction
	Permanent
	Polynomial
	Quaternion
	RadixExpansion
	RealClosure
	RegularTriangularSet
	RomanNumeral
	Segment
	SegmentBinding
	Set
	SingleInteger
	SparseTable
	SquareMatrix
	SquareFreeRegularTriangularSet
	Stream
	String
	StringTable
	Symbol
	Table
	TextFile
	TwoDimensionalArray
	UnivariatePolynomial
	UniversalSegment
	Vector
	Void
	WuWenTsunTriangularSet
	ZeroDimensionalSolvePackage

	Interactive Programming
	Drawing Ribbons Interactively
	A Ribbon Program
	Coloring and Positioning Ribbons
	Points, Lines, and Curves
	A Bouquet of Arrows
	Drawing Complex Vector Fields
	Drawing Complex Functions
	Functions Producing Functions
	Automatic Newton Iteration Formulas

	Packages
	Names, Abbreviations, and File Structure
	Syntax
	Abstract Datatypes
	Capsules
	Input Files vs. Packages
	Compiling Packages
	Parameters
	Conditionals
	Testing
	How Packages Work

	Categories
	Definitions
	Exports
	Documentation
	Hierarchies
	Membership
	Defaults
	Axioms
	Correctness
	Attributes
	Parameters
	Conditionals
	Anonymous Categories

	Domains
	Domains vs. Packages
	Definitions
	Category Assertions
	A Demo
	Browse
	Representation
	Multiple Representations
	Add Domain
	Defaults
	Origins
	Short Forms
	Example 1: Clifford Algebra
	Example 2: Building A Query Facility

	Browse
	The Front Page: Searching the Library
	The Constructor Page
	Miscellaneous Features of Browse

	AXIOM System Commands
	Introduction
)abbreviation
)boot
)cd
)close
)clear
)compile
)display
)edit
)fin
)frame
)help
)history
)library
)lisp
)load
)ltrace
)pquit
)quit
)read
)set
)show
)spool
)synonym
)system
)trace
)undo
)what

	Categories
	Domains
	Packages
	Operations
	Programs for AXIOM Images
	images1.input
	images2.input
	images3.input
	images5.input
	images6.input
	images7.input
	images8.input
	conformal.input
		knot.input
	
tube.input
	dhtri.input
		etra.input
	antoine.input
	scherk.input

	Glossary
	Index

