/* * OpenPBS (Portable Batch System) v2.3 Software License * * Copyright (c) 1999-2000 Veridian Information Solutions, Inc. * All rights reserved. * * --------------------------------------------------------------------------- * For a license to use or redistribute the OpenPBS software under conditions * other than those described below, or to purchase support for this software, * please contact Veridian Systems, PBS Products Department ("Licensor") at: * * www.OpenPBS.org +1 650 967-4675 sales@OpenPBS.org * 877 902-4PBS (US toll-free) * --------------------------------------------------------------------------- * * This license covers use of the OpenPBS v2.3 software (the "Software") at * your site or location, and, for certain users, redistribution of the * Software to other sites and locations. Use and redistribution of * OpenPBS v2.3 in source and binary forms, with or without modification, * are permitted provided that all of the following conditions are met. * After December 31, 2001, only conditions 3-6 must be met: * * 1. Commercial and/or non-commercial use of the Software is permitted * provided a current software registration is on file at www.OpenPBS.org. * If use of this software contributes to a publication, product, or * service, proper attribution must be given; see www.OpenPBS.org/credit.html * * 2. Redistribution in any form is only permitted for non-commercial, * non-profit purposes. There can be no charge for the Software or any * software incorporating the Software. Further, there can be no * expectation of revenue generated as a consequence of redistributing * the Software. * * 3. Any Redistribution of source code must retain the above copyright notice * and the acknowledgment contained in paragraph 6, this list of conditions * and the disclaimer contained in paragraph 7. * * 4. Any Redistribution in binary form must reproduce the above copyright * notice and the acknowledgment contained in paragraph 6, this list of * conditions and the disclaimer contained in paragraph 7 in the * documentation and/or other materials provided with the distribution. * * 5. Redistributions in any form must be accompanied by information on how to * obtain complete source code for the OpenPBS software and any * modifications and/or additions to the OpenPBS software. The source code * must either be included in the distribution or be available for no more * than the cost of distribution plus a nominal fee, and all modifications * and additions to the Software must be freely redistributable by any party * (including Licensor) without restriction. * * 6. All advertising materials mentioning features or use of the Software must * display the following acknowledgment: * * "This product includes software developed by NASA Ames Research Center, * Lawrence Livermore National Laboratory, and Veridian Information * Solutions, Inc. * Visit www.OpenPBS.org for OpenPBS software support, * products, and information." * * 7. DISCLAIMER OF WARRANTY * * THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT * ARE EXPRESSLY DISCLAIMED. * * IN NO EVENT SHALL VERIDIAN CORPORATION, ITS AFFILIATED COMPANIES, OR THE * U.S. GOVERNMENT OR ANY OF ITS AGENCIES BE LIABLE FOR ANY DIRECT OR INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * This license will be governed by the laws of the Commonwealth of Virginia, * without reference to its choice of law rules. */ #include /* the master config generated by configure */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pbs_error.h" #include "portability.h" #include "list_link.h" #include "server_limits.h" #include "attribute.h" #include "resource.h" #include "pbs_job.h" #include "log.h" #include "mom_mach.h" #include "resmon.h" #include "utils.h" #include "../rm_dep.h" /* ** System dependent code to gather information for the resource ** monitor for a HP-UX 10.x machine ** ** Resources known by this code: ** cput cpu time for a pid or job ** mem memory size for a pid or job in KB ** resi resident memory size for a pid or job in KB ** sessions list of sessions in the system ** pids list of pids in a job ** nsessions number of sessions in the system ** nusers number of users in the system ** ncpus number of cpus ** physmem physical memory size in KB ** size size of a file or filesystem in KB ** idletime seconds of idle time ** walltime wall clock time for a pid ** loadave current load average ** cpuspeed clock rate of the CPU ** cputype cpu type ** platform platform name (as string) ** valid_user is user name valid.. */ #ifndef TRUE #define FALSE 0 #define TRUE 1 #endif /* TRUE */ #ifndef MAX #define MAX(a,b) (((a)>(b))?(a):(b)) #endif /* MAX */ /* ** external functions and data */ extern struct config *search(struct config *, char *); extern struct rm_attribute *momgetattr(char *); extern int rm_errno; extern unsigned int reqnum; extern double cputfactor; extern double wallfactor; extern long system_ncpus; extern int ignwalltime; extern int igncput; extern int ignvmem; /* ** local functions and data */ static char *resi (struct rm_attribute *attrib); static char *physmem (struct rm_attribute *attrib); static char *totmem (struct rm_attribute *attrib); static char *availmem (struct rm_attribute *attrib); static char *ncpus (struct rm_attribute *attrib); static char *cpuspeed (struct rm_attribute *attrib); static char *cputype (struct rm_attribute *attrib); static char *platform (struct rm_attribute *attrib); static char *walltime (struct rm_attribute *attrib); static char *valid_user (struct rm_attribute *attrib); extern char *loadave (struct rm_attribute *attrib); extern char *nullproc (struct rm_attribute *attrib); extern char *ret_string; time_t wait_time = 10; int nproc = 0; int max_proc = 0; struct pst_status *proc_status = NULL; #define TBL_INC 20 extern time_t time_now; extern char extra_parm[]; extern char no_parm[]; char no_count[] = "count not found"; static long page_size; /* ** local resource array */ struct config dependent_config[] = { { "resi", {resi} }, { "physmem", {physmem} }, { "totmem", {totmem} }, { "availmem", {availmem} }, { "ncpus", {ncpus} }, { "loadave", {loadave} }, { "cpuspeed", {cpuspeed} }, { "cputype", {cputype} }, { "platform", {platform} }, { "valid_user", {valid_user} }, { "walltime", {walltime} }, { NULL, {nullproc} }, }; /* * This routine is called on each cycle of the main loop. */ void dep_main_loop_cycle(void) { /* No periodic functions. */ } void dep_initialize(void) { page_size = sysconf(_SC_PAGESIZE); } void dep_cleanup(void) { char *id = "dep_cleanup"; log_record(PBSEVENT_SYSTEM, 0, id, "dependent cleanup"); } /* * Internal size decoding routine. * * Accepts a resource pointer and a pointer to the unsigned long integer * to receive the decoded value. It returns a PBS error code, and the * decoded value in the unsigned long integer. * * sizeof(word) = sizeof(int) */ static int mm_getsize(resource *pres, unsigned long *ret) { unsigned long value; if (pres->rs_value.at_type != ATR_TYPE_SIZE) return (PBSE_ATTRTYPE); value = pres->rs_value.at_val.at_size.atsv_num; if (pres->rs_value.at_val.at_size.atsv_units == ATR_SV_WORDSZ) { if (value > ULONG_MAX / sizeof(int)) return (PBSE_BADATVAL); value *= sizeof(int); } if (value > ULONG_MAX >> pres->rs_value.at_val.at_size.atsv_shift) return (PBSE_BADATVAL); *ret = value << pres->rs_value.at_val.at_size.atsv_shift; return (PBSE_NONE); } static int getlong(resource *pres, unsigned long *ret) { if (pres->rs_value.at_type != ATR_TYPE_LONG) return (PBSE_ATTRTYPE); if (pres->rs_value.at_val.at_long < 0) return (PBSE_BADATVAL); *ret = pres->rs_value.at_val.at_long; return (PBSE_NONE); } /* * Internal time decoding routine. * * Accepts a resource pointer and a pointer to the unsigned long integer * to receive the decoded value. It returns a PBS error code, and the * decoded value of time in seconds in the unsigned long integer. */ static int mm_gettime(resource *pres, unsigned long *ret) { if (pres->rs_value.at_type != ATR_TYPE_LONG) return (PBSE_ATTRTYPE); if (pres->rs_value.at_val.at_long < 0) return (PBSE_BADATVAL); *ret = pres->rs_value.at_val.at_long; return (PBSE_NONE); } /* * Time decoding macro. Accepts a long time in seconds. Returns unsigned long * time in seconds. */ #define tv(val) ((unsigned long)((val))) static int injob(pjob, sid) job *pjob; pid_t sid; { task *ptask; for (ptask = (task *)GET_NEXT(pjob->ji_tasks); ptask; ptask = (task *)GET_NEXT(ptask->ti_jobtask)) { if (ptask->ti_qs.ti_sid <= 1) continue; if (ptask->ti_qs.ti_sid == sid) return TRUE; } return FALSE; } /* * Internal session cpu time decoding routine. * * Accepts a job pointer. Returns the sum of all cpu time * consumed for all tasks executed by the job, in seconds. */ static unsigned long cput_sum(job *pjob) { char *id = "cput_sum"; unsigned long cputime, addtime; int i; int nps = 0; struct pst_status *ps; cputime = 0.0; for (i = 0; i < nproc; i++) { ps = &proc_status[i]; if (!injob(pjob, ps->pst_sid)) continue; nps++; if (ps->pst_stat == PS_ZOMBIE) { cputime += tv(ps->pst_utime) + tv(ps->pst_stime) + tv(ps->pst_child_utime.pst_sec) + tv(ps->pst_child_stime.pst_sec); DBPRT(("%s: ses %d pid %d (zombie) cputime %d\n", id, ps->pst_sid, ps->pst_pid, cputime)) continue; } addtime = tv(ps->pst_utime) + tv(ps->pst_stime) + tv(ps->pst_child_utime.pst_sec) + tv(ps->pst_child_stime.pst_sec); cputime += addtime; DBPRT(("%s: ses %d pid %d cputime %d\n", id, ps->pst_sid, ps->pst_pid, cputime)) } if (nps == 0) pjob->ji_flags |= MOM_NO_PROC; else pjob->ji_flags &= ~MOM_NO_PROC; return ((unsigned long)((double)cputime * cputfactor)); } /* * Return TRUE if any process in the job is over limit for cputime usage. */ static int overcput_proc(job *pjob, unsigned long limit) { char *id = "overcput_proc"; unsigned long memsize; unsigned long cputime; int i; struct pst_status *ps; memsize = 0; for (i = 0; i < nproc; i++) { ps = &proc_status[i]; if (!injob(pjob, ps->pst_sid)) continue; cputime = (unsigned long)(cputfactor * (double)(tv(ps->pst_utime) + tv(ps->pst_stime) + tv(ps->pst_child_utime.pst_sec) + tv(ps->pst_child_stime.pst_sec))); if (cputime > limit) return (TRUE); } return (FALSE); } /* virtual memory size of a process; add up sizes of all regions */ #define VSIZE(p) ((p)->pst_vtsize + (p)->pst_vdsize + (p)->pst_vssize + \ (p)->pst_vshmsize + (p)->pst_vmmsize + (p)->pst_vusize + \ (p)->pst_viosize) /* * Internal session memory usage function. * * Returns the total number of bytes of address * space consumed by all current tasks within the session. */ static unsigned long mem_sum(job *pjob) { char *id = "mem_sum"; unsigned long memsize; int i; struct pst_status *ps; memsize = 0; for (i = 0; i < nproc; i++) { ps = &proc_status[i]; if (!injob(pjob, ps->pst_sid)) continue; memsize += VSIZE(ps) * page_size; } return (memsize); } /* * Internal session mem (workingset) size function. */ static unsigned long resi_sum(job *pjob) { char *id = "resi_sum"; unsigned long resisize; int i; struct pst_status *ps; resisize = 0; for (i = 0; i < nproc; i++) { ps = &proc_status[i]; if (!injob(pjob, ps->pst_sid)) continue; resisize += ps->pst_rssize * page_size; } return (resisize); } extern char *msg_momsetlim; /* * Internal error routine */ int error(char *string, int value) { char *message; assert(string != NULL); assert(*string != '\0'); message = pbse_to_txt(value); assert(message != NULL); assert(*message != '\0'); (void)fprintf(stderr, msg_momsetlim, string, message); (void)fflush(stderr); return (value); } /* * Establish system-enforced limits for the job. * * Run through the resource list, checking the values for all items * we recognize. * * If set_mode is SET_LIMIT_SET, then also set hard limits for the * system enforced limits (not-polled). * If anything goes wrong with the process, return a PBS error code * and print a message on standard error. A zero-length resource list * is not an error. * * If set_mode is SET_LIMIT_SET the entry conditions are: * 1. MOM has already forked, and we are called from the child. * 2. The child is still running as root. * 3. Standard error is open to the user's file. * * If set_mode is SET_LIMIT_ALTER, we are beening called to modify * existing limits. Cannot alter those set by setrlimit (kernel) * because we are the wrong process. */ int mom_set_limits( job *pjob, int set_mode /* SET_LIMIT_SET or SET_LIMIT_ALTER */ ) { char *id = "mom_set_limits"; char *pname; int retval; unsigned long value; /* place in which to build resource value */ resource *pres; struct rlimit reslim; unsigned long mem_limit = 0; log_buffer[0] = '\0'; DBPRT(("%s: entered\n", id)) assert(pjob != NULL); assert(pjob->ji_wattr[(int)JOB_ATR_resource].at_type == ATR_TYPE_RESC); pres = (resource *) GET_NEXT(pjob->ji_wattr[(int)JOB_ATR_resource].at_val.at_list); /* * Cycle through all the resource specifications, * setting limits appropriately. */ while (pres != NULL) { assert(pres->rs_defin != NULL); pname = pres->rs_defin->rs_name; assert(pname != NULL); assert(*pname != '\0'); if (strcmp(pname, "ncpus") == 0) { char hold[16]; extern struct var_table vtable; retval = getlong(pres, &value); if (retval != PBSE_NONE) return (error(pname, retval)); sprintf(hold, "%d", (int)pres->rs_value.at_val.at_long); bld_env_variables(&vtable, "NCPUS", hold); } else if (strcmp(pname, "cput") == 0) { if (igncput == FALSE) { /* cpu time - check, if less than pcput use it */ retval = mm_gettime(pres, &value); if (retval != PBSE_NONE) return (error(pname, retval)); } } else if (strcmp(pname, "pcput") == 0) { if (igncput == FALSE) { /* process cpu time - set */ retval = mm_gettime(pres, &value); if (retval != PBSE_NONE) return (error(pname, retval)); reslim.rlim_cur = reslim.rlim_max = (unsigned long)((double)value / cputfactor); if (setrlimit(RLIMIT_CPU, &reslim) < 0) return (error("RLIMIT_CPU", PBSE_SYSTEM)); } } else if (strcmp(pname, "file") == 0) /* set */ { if (set_mode == SET_LIMIT_SET) { retval = mm_getsize(pres, &value); if (retval != PBSE_NONE) return (error(pname, retval)); if (value > INT_MAX) return (error(pname, PBSE_BADATVAL)); reslim.rlim_cur = reslim.rlim_max = value; if (setrlimit(RLIMIT_FSIZE, &reslim) < 0) return (error(pname, PBSE_SYSTEM)); } } else if (strcmp(pname, "vmem") == 0) /* check */ { if (ignvmem == FALSE) { retval = mm_getsize(pres, &value); if (retval != PBSE_NONE) return (error(pname, retval)); if ((mem_limit == 0) || (value < mem_limit)) mem_limit = value; } } else if (strcmp(pname, "mem") == 0) /* check */ { /* don't care */ } else if (strcmp(pname, "pvmem") == 0) /* set */ { if (ignvmem == FALSE) { if (set_mode == SET_LIMIT_SET) { retval = mm_getsize(pres, &value); if (retval != PBSE_NONE) return (error(pname, retval)); if (value > INT_MAX) return (error(pname, PBSE_BADATVAL)); if ((mem_limit == 0) || (value < mem_limit)) mem_limit = value; } } } else if (strcmp(pname, "walltime") == 0) /* Check */ { retval = mm_gettime(pres, &value); if (retval != PBSE_NONE) return (error(pname, retval)); } else if (strcmp(pname, "nice") == 0) /* set nice */ { if (set_mode == SET_LIMIT_SET) { errno = 0; if ((nice((int)pres->rs_value.at_val.at_long) == -1) && (errno != 0)) return (error(pname, PBSE_BADATVAL)); } } else if ((pres->rs_defin->rs_flags & ATR_DFLAG_RMOMIG) == 0) /* don't recognize and not marked as ignore by mom */ return (error(pname, PBSE_UNKRESC)); pres = (resource *)GET_NEXT(pres->rs_link); } if (set_mode == SET_LIMIT_SET) { /* if either of vmem or pvmem was given, set sys limit to lesser */ if (mem_limit != 0) { reslim.rlim_cur = reslim.rlim_max = mem_limit; if ((ignvmem == 0) && (setrlimit(RLIMIT_AS, &reslim) < 0)) return (error("RLIMIT_AS", PBSE_SYSTEM)); } } return (PBSE_NONE); } /* * State whether MOM main loop has to poll this job to determine if some * limits are being exceeded. * * Sets flag TRUE if polling is necessary, FALSE otherwise. Actual * polling is done using the mom_over_limit machine-dependent function. */ int mom_do_poll(job *pjob) { char *id = "mom_do_poll"; char *pname; resource *pres; DBPRT(("%s: entered\n", id)) assert(pjob != NULL); assert(pjob->ji_wattr[(int)JOB_ATR_resource].at_type == ATR_TYPE_RESC); pres = (resource *) GET_NEXT(pjob->ji_wattr[(int)JOB_ATR_resource].at_val.at_list); while (pres != NULL) { assert(pres->rs_defin != NULL); pname = pres->rs_defin->rs_name; assert(pname != NULL); assert(*pname != '\0'); if (strcmp(pname, "walltime") == 0 || strcmp(pname, "cput") == 0 || strcmp(pname, "pcput") == 0 || strcmp(pname, "vmem") == 0) return (TRUE); pres = (resource *)GET_NEXT(pres->rs_link); } return (FALSE); } /* * Setup for polling. * * allocate memory for data structure */ int mom_open_poll(void) { return (PBSE_NONE); } /* * Declare start of polling loop. */ int mom_get_sample(void) { static char id[] = "mom_get_sample"; struct pst_dynamic pst_d; long pset; int np, i; DBPRT(("%s: entered\n", id)) if (pstat_getdynamic(&pst_d, sizeof(struct pst_dynamic), 1, 0) != 1) { sprintf(log_buffer, "pstat_getdynamic"); log_err(errno, id, log_buffer); nproc = 0; return (PBSE_SYSTEM); } nproc = pst_d.psd_activeprocs + TBL_INC; if (max_proc < nproc) { max_proc = nproc; proc_status = (struct pst_status *) realloc((void *)proc_status, max_proc * sizeof(struct pst_status)); if (proc_status == 0) { return (PBSE_SYSTEM); } } nproc = pstat_getproc(proc_status, sizeof(struct pst_status), nproc, 0); if (nproc < 0) { sprintf(log_buffer, "pstat_getproc"); log_err(errno, id, log_buffer); memset(proc_status, sizeof(struct pst_status) * max_proc, '\0'); nproc = 0; return (PBSE_SYSTEM); } // Only keep procs in current pset pset = pset_ctl(PSET_GETCURRENTPSET, 0, 0); np = 0; for (i = 0; i < nproc; i++) { if (proc_status[i].pst_pset_id == pset) { if (i != np) proc_status[np] = proc_status[i]; np++; } } nproc = np; return (PBSE_NONE); } /* * Measure job resource usage and compare with its limits. * * If it has exceeded any well-formed polled limit return TRUE. * Otherwise, return FALSE. */ int mom_over_limit(job *pjob) { char *id = "mom_over_limit"; char *pname; int retval; unsigned long value, num; unsigned long usedwall = 0, usedcput = 0, ncpus = 0; resource *pres; assert(pjob != NULL); assert(pjob->ji_wattr[(int)JOB_ATR_resource].at_type == ATR_TYPE_RESC); pres = (resource *) GET_NEXT(pjob->ji_wattr[(int)JOB_ATR_resource].at_val.at_list); DBPRT(("%s: entered\n", id)) usedcput = cput_sum(pjob); for (; pres != NULL; pres = (resource *)GET_NEXT(pres->rs_link)) { assert(pres->rs_defin != NULL); pname = pres->rs_defin->rs_name; assert(pname != NULL); assert(*pname != '\0'); if (strcmp(pname, "ncpus") == 0) { retval = getlong(pres, &value); if (retval != PBSE_NONE) continue; ncpus = pres->rs_value.at_val.at_long; } else if ((igncput == FALSE) && (strcmp(pname, "cput") == 0)) { retval = mm_gettime(pres, &value); if (retval != PBSE_NONE) continue; if (usedcput > value) { sprintf(log_buffer, "cput %lu exceeded limit %lu", num, value); return (TRUE); } } else if ((igncput == FALSE) && (strcmp(pname, "pcput") == 0)) { retval = mm_gettime(pres, &value); if (retval != PBSE_NONE) continue; if (overcput_proc(pjob, value)) { sprintf(log_buffer, "pcput exceeded limit %lu", value); return (TRUE); } } else if (strcmp(pname, "vmem") == 0) { retval = mm_getsize(pres, &value); if (retval != PBSE_NONE) continue; if ((ignvmem == 0) && ((num = mem_sum(pjob)) > value)) { sprintf(log_buffer, "vmem %lu exceeded limit %lu", num, value); return (TRUE); } } else if (ignwalltime == 0 && strcmp(pname, "walltime") == 0) { if ((pjob->ji_qs.ji_svrflags & JOB_SVFLG_HERE) == 0) continue; retval = mm_gettime(pres, &value); if (retval != PBSE_NONE) continue; num = (unsigned long)((double)(time_now - pjob->ji_qs.ji_stime) * wallfactor); if (num > value) { sprintf(log_buffer, "walltime %d exceeded limit %d", num, value); return (TRUE); } } } usedwall = time_now - pjob->ji_qs.ji_stime; if (usedwall*usedcput*ncpus != 0 && usedcput > 1.1*usedwall*ncpus) { /* None of them are zero, and we used more than we asked for */ sprintf(log_buffer, "too many cpus used"); return TRUE; } return (FALSE); } /* * Update the job attribute for resources used. * * The first time this is called for a job, set up resource entries for * each resource that can be reported for this machine. Fill in the * correct values. Return an error code. * * Assumes that the session ID attribute has already been set. */ int mom_set_use(job *pjob) { char *id = "mom_set_use"; resource *pres; attribute *at; resource_def *rd; unsigned long *lp, lnum; assert(pjob != NULL); at = &pjob->ji_wattr[(int)JOB_ATR_resc_used]; assert(at->at_type == ATR_TYPE_RESC); at->at_flags |= ATR_VFLAG_MODIFY; if ((at->at_flags & ATR_VFLAG_SET) == 0) { at->at_flags |= ATR_VFLAG_SET; rd = find_resc_def(svr_resc_def, "cput", svr_resc_size); assert(rd != NULL); pres = add_resource_entry(at, rd); pres->rs_value.at_flags |= ATR_VFLAG_SET; pres->rs_value.at_type = ATR_TYPE_LONG; rd = find_resc_def(svr_resc_def, "vmem", svr_resc_size); assert(rd != NULL); pres = add_resource_entry(at, rd); pres->rs_value.at_flags |= ATR_VFLAG_SET; pres->rs_value.at_type = ATR_TYPE_SIZE; pres->rs_value.at_val.at_size.atsv_shift = 10; /* KB */ pres->rs_value.at_val.at_size.atsv_units = ATR_SV_BYTESZ; rd = find_resc_def(svr_resc_def, "walltime", svr_resc_size); assert(rd != NULL); pres = add_resource_entry(at, rd); pres->rs_value.at_flags |= ATR_VFLAG_SET; pres->rs_value.at_type = ATR_TYPE_LONG; } rd = find_resc_def(svr_resc_def, "cput", svr_resc_size); assert(rd != NULL); pres = find_resc_entry(at, rd); assert(pres != NULL); lp = (unsigned long *) & pres->rs_value.at_val.at_long; lnum = cput_sum(pjob); *lp = MAX(*lp, lnum); rd = find_resc_def(svr_resc_def, "vmem", svr_resc_size); assert(rd != NULL); pres = find_resc_entry(at, rd); assert(pres != NULL); lp = &pres->rs_value.at_val.at_size.atsv_num; lnum = (mem_sum(pjob) + 1023) >> 10; /* KB */ *lp = MAX(*lp, lnum); rd = find_resc_def(svr_resc_def, "walltime", svr_resc_size); assert(rd != NULL); pres = find_resc_entry(at, rd); assert(pres != NULL); pres->rs_value.at_val.at_long = (long)((double)(time_now - pjob->ji_qs.ji_stime) * wallfactor); return (PBSE_NONE); } /* * Kill a task session. * Call with the task pointer and a signal number. */ int kill_task(task *ptask, int sig, int pg) { char *id = "kill_task"; int ct = 0; struct pst_status *ps; int i, sesid; sesid = ptask->ti_qs.ti_sid; if (sesid <= 1) return 0; (void)mom_get_sample(); for (i = 0; i < nproc; i++) { ps = &proc_status[i]; if (sesid == ps->pst_sid) { (void)kill(ps->pst_pid, sig); ++ct; } } return ct; } /* * Clean up everything related to polling. * */ int mom_close_poll(void) { char *id = "mom_close_poll"; DBPRT(("%s: entered\n", id)) if (proc_status) free(proc_status); return (PBSE_NONE); } /* * mom_does_checkpoint */ int mom_does_checkpoint(void) { return(CST_NONE); } /* * Checkpoint the job. * * If abort is true, kill it too. Return -1 on error. */ int mach_checkpoint(task *ptask, char *file, int abort) { return (-1); } /* * Restart the job from the checkpoint file. */ long mach_restart(task *ptask, char *file) { return (-1); } /* ** Return 1 if proc table can be read, 0 otherwise. */ int getprocs(void) { static unsigned int lastproc = 0; static char id[] = "getprocs"; if (lastproc == reqnum) /* don't need new proc table */ return 1; if (mom_get_sample() != PBSE_NONE) return 0; lastproc = reqnum; return 1; } char * cput_job(jobid) pid_t jobid; { char *id = "cput_job"; int found = 0; int i; double cputime, addtime; struct pst_status *ps; if (getprocs() == 0) { rm_errno = RM_ERR_SYSTEM; return NULL; } cputime = 0.0; for (i = 0; i < nproc; i++) { ps = &proc_status[i]; if (jobid != ps->pst_sid) continue; found = 1; addtime = ps->pst_utime + ps->pst_stime + ps->pst_child_utime.pst_sec + ps->pst_child_stime.pst_sec; cputime += addtime; DBPRT(("%s: total %.2f pid %d %.2f\n", id, cputime, ps->pst_pid, addtime)) } if (found) { sprintf(ret_string, "%.2f", cputime * cputfactor); return ret_string; } rm_errno = RM_ERR_EXIST; return NULL; } char * cput_proc(pid) pid_t pid; { char *id = "cput_pid"; double cputime; int i; struct pst_status *ps; if (getprocs() == 0) { rm_errno = RM_ERR_SYSTEM; return NULL; } for (i = 0; i < nproc; i++) { ps = &proc_status[i]; if (ps->pst_pid == pid) break; } if (i == nproc) { rm_errno = RM_ERR_EXIST; return NULL; } cputime = ps->pst_utime + ps->pst_stime + ps->pst_child_utime.pst_sec + ps->pst_child_stime.pst_sec; sprintf(ret_string, "%.2f", cputime * cputfactor); return ret_string; } char * cput(struct rm_attribute *attrib) { char *id = "cput"; int value; if (attrib == NULL) { log_err(-1, id, no_parm); rm_errno = RM_ERR_NOPARAM; return NULL; } if ((value = atoi(attrib->a_value)) == 0) { sprintf(log_buffer, "bad param: %s", attrib->a_value); log_err(-1, id, log_buffer); rm_errno = RM_ERR_BADPARAM; return NULL; } if (momgetattr(NULL)) { log_err(-1, id, extra_parm); rm_errno = RM_ERR_BADPARAM; return NULL; } if (strcmp(attrib->a_qualifier, "session") == 0) return (cput_job((pid_t)value)); else if (strcmp(attrib->a_qualifier, "proc") == 0) return (cput_proc((pid_t)value)); else { rm_errno = RM_ERR_BADPARAM; return NULL; } } char * mem_job(jobid) pid_t jobid; { char *id = "mem_job"; int memsize; int i; int found = 0; struct pst_status *ps; if (getprocs() == 0) { rm_errno = RM_ERR_SYSTEM; return NULL; } memsize = 0; for (i = 0; i < nproc; i++) { ps = &proc_status[i]; if (jobid != ps->pst_sid) continue; found = 1; memsize += VSIZE(ps); DBPRT(("%s: total %d pid %d %d\n", id, memsize*page_size, ps->pst_pid, VSIZE(ps)*page_size)) } if (found) { /* in KB */ sprintf(ret_string, "%ukb", (memsize * page_size) >> 10); return ret_string; } rm_errno = RM_ERR_EXIST; return NULL; } char * mem_proc(pid) pid_t pid; { char *id = "mem_proc"; struct pst_status *ps; int i; if (getprocs() == 0) { rm_errno = RM_ERR_SYSTEM; return NULL; } for (i = 0; i < nproc; i++) { ps = &proc_status[i]; if (ps->pst_pid == pid) break; } if (i == nproc) { rm_errno = RM_ERR_EXIST; return NULL; } sprintf(ret_string, "%ukb", (VSIZE(ps) * page_size) >> 10); /* KB */ return ret_string; } char * mem(struct rm_attribute *attrib) { char *id = "mem"; int value; if (attrib == NULL) { log_err(-1, id, no_parm); rm_errno = RM_ERR_NOPARAM; return NULL; } if ((value = atoi(attrib->a_value)) == 0) { sprintf(log_buffer, "bad param: %s", attrib->a_value); log_err(-1, id, log_buffer); rm_errno = RM_ERR_BADPARAM; return NULL; } if (momgetattr(NULL)) { log_err(-1, id, extra_parm); rm_errno = RM_ERR_BADPARAM; return NULL; } if (strcmp(attrib->a_qualifier, "session") == 0) return (mem_job((pid_t)value)); else if (strcmp(attrib->a_qualifier, "proc") == 0) return (mem_proc((pid_t)value)); else { rm_errno = RM_ERR_BADPARAM; return NULL; } } static char * resi_job(jobid) pid_t jobid; { char *id = "resi_job"; int resisize; int i; int found = 0; struct pst_status *ps; if (getprocs() == 0) { rm_errno = RM_ERR_SYSTEM; return NULL; } resisize = 0; for (i = 0; i < nproc; i++) { ps = &proc_status[i]; if (jobid != ps->pst_sid) continue; found = 1; resisize += ps->pst_rssize; } if (found) { sprintf(ret_string, "%ukb", (resisize*page_size) >> 10); /* KB */ return ret_string; } rm_errno = RM_ERR_EXIST; return NULL; } static char * resi_proc(pid) pid_t pid; { char *id = "resi_proc"; struct pst_status *ps; int i; if (getprocs() == 0) { rm_errno = RM_ERR_SYSTEM; return NULL; } for (i = 0; i < nproc; i++) { ps = &proc_status[i]; if (ps->pst_pid == pid) break; } if (i == nproc) { rm_errno = RM_ERR_EXIST; return NULL; } sprintf(ret_string, "%ukb", (ps->pst_rssize*page_size) >> 10); /* KB */ return ret_string; } static char * resi(struct rm_attribute *attrib) { char *id = "resi"; int value; if (attrib == NULL) { log_err(-1, id, no_parm); rm_errno = RM_ERR_NOPARAM; return NULL; } if ((value = atoi(attrib->a_value)) == 0) { sprintf(log_buffer, "bad param: %s", attrib->a_value); log_err(-1, id, log_buffer); rm_errno = RM_ERR_BADPARAM; return NULL; } if (momgetattr(NULL)) { log_err(-1, id, extra_parm); rm_errno = RM_ERR_BADPARAM; return NULL; } if (strcmp(attrib->a_qualifier, "session") == 0) return (resi_job((pid_t)value)); else if (strcmp(attrib->a_qualifier, "proc") == 0) return (resi_proc((pid_t)value)); else { rm_errno = RM_ERR_BADPARAM; return NULL; } } char * sessions(struct rm_attribute *attrib) { char *id = "sessions"; int i, j; struct pst_status *ps; char *fmt; int njids = 0; pid_t *jids, *hold; static int maxjid = 200; register pid_t jobid; if (attrib) { log_err(-1, id, extra_parm); rm_errno = RM_ERR_BADPARAM; return NULL; } if ((jids = (pid_t *)calloc(maxjid, sizeof(pid_t))) == NULL) { log_err(errno, id, (char *)"no memory"); rm_errno = RM_ERR_SYSTEM; return NULL; } if (getprocs() == 0) { rm_errno = RM_ERR_SYSTEM; return NULL; } /* ** Search for members of job */ for (i = 0; i < nproc; i++) { ps = &proc_status[i]; if (ps->pst_uid == 0) continue; if ((jobid = ps->pst_sid) == 0) continue; DBPRT(("%s[%d]: pid %d sid %d\n", id, njids, ps->pst_pid, jobid)) for (j = 0; j < njids; j++) { if (jids[j] == jobid) break; } if (j == njids) /* not found */ { if (njids == maxjid) /* need more space */ { maxjid += 100; hold = (pid_t *)realloc(jids, maxjid); if (hold == NULL) { log_err(errno, id, (char *)"realloc"); rm_errno = RM_ERR_SYSTEM; free(jids); return NULL; } jids = hold; } jids[njids++] = jobid; /* add jobid to list */ } } fmt = ret_string; for (j = 0; j < njids; j++) { checkret(&fmt, 100); if (j == 0) sprintf(fmt, "%d", (int)jids[j]); else sprintf(fmt, " %d", (int)jids[j]); fmt += strlen(fmt); } free(jids); return ret_string; } char * nsessions(struct rm_attribute *attrib) { char *result, *ch; int num = 1; if ((result = sessions(attrib)) == NULL) return result; for (ch = result; *ch; ch++) { if (*ch == ' ') /* count blanks */ num++; } sprintf(ret_string, "%d", num); return ret_string; } char * pids(struct rm_attribute *attrib) { char *id = "pids"; pid_t jobid; int i, j; struct pst_status *ps; char *fmt; int num_pids; if (attrib == NULL) { log_err(-1, id, no_parm); rm_errno = RM_ERR_NOPARAM; return NULL; } if ((jobid = (pid_t)atoi(attrib->a_value)) == 0) { sprintf(log_buffer, "bad param: %s", attrib->a_value); log_err(-1, id, log_buffer); rm_errno = RM_ERR_BADPARAM; return NULL; } if (momgetattr(NULL)) { log_err(-1, id, extra_parm); rm_errno = RM_ERR_BADPARAM; return NULL; } if (strcmp(attrib->a_qualifier, "session") != 0) { rm_errno = RM_ERR_BADPARAM; return NULL; } if (getprocs() == 0) { rm_errno = RM_ERR_SYSTEM; return NULL; } /* ** Search for members of session */ fmt = ret_string; num_pids = 0; for (i = 0; i < nproc; i++) { ps = &proc_status[i]; DBPRT(("%s[%d]: pid: %d sid %d\n", id, num_pids, ps->pst_pid, ps->pst_sid)) if (jobid != ps->pst_sid) continue; sprintf(fmt, "%d ", ps->pst_pid); fmt += strlen(fmt); num_pids++; } if (num_pids == 0) { rm_errno = RM_ERR_EXIST; return NULL; } return ret_string; } char * nusers(struct rm_attribute *attrib) { char *id = "nusers"; int i, j; struct pst_status *ps; int nuids = 0; uid_t *uids, *hold; static int maxuid = 200; register uid_t uid; if (attrib) { log_err(-1, id, extra_parm); rm_errno = RM_ERR_BADPARAM; return NULL; } if ((uids = (uid_t *)calloc(maxuid, sizeof(uid_t))) == NULL) { log_err(errno, id, (char *)"no memory"); rm_errno = RM_ERR_SYSTEM; return NULL; } if (getprocs() == 0) { rm_errno = RM_ERR_SYSTEM; return NULL; } for (i = 0; i < nproc; i++) { ps = &proc_status[i]; if ((uid = ps->pst_uid) == 0) continue; DBPRT(("%s[%d]: pid %d uid %d\n", id, nuids, ps->pst_pid, uid)) for (j = 0; j < nuids; j++) { if (uids[j] == uid) break; } if (j == nuids) /* not found */ { if (nuids == maxuid) /* need more space */ { maxuid += 100; hold = (uid_t *)realloc(uids, maxuid); if (hold == NULL) { log_err(errno, id, (char *)"realloc"); rm_errno = RM_ERR_SYSTEM; free(uids); return NULL; } uids = hold; } uids[nuids++] = uid; /* add uid to list */ } } sprintf(ret_string, "%d", nuids); free(uids); return ret_string; } static char *ncpus( struct rm_attribute *attrib) { char *id = "ncpus"; struct pst_dynamic pst_d; struct pst_processor *pst_p; long pset; int ncpus; int retval; int i; if (attrib) { log_err(-1, id, extra_parm); rm_errno = RM_ERR_BADPARAM; return(NULL); } if (pstat_getdynamic(&pst_d, sizeof(struct pst_dynamic), 1, 0) == -1) { sprintf(log_buffer, "pstat_getdynamic"); log_err(errno, id, log_buffer); return(NULL); } ncpus = pst_d.psd_proc_cnt; pset = pset_ctl(PSET_GETCURRENTPSET, 0, 0); /* Loop over processors, count the ones in this pset*/ pst_p = (struct pst_processor*) calloc(ncpus, sizeof(*pst_p)); if (pst_p == NULL) { sprintf(log_buffer, "calloc"); log_err(errno, id, log_buffer); return "1"; } if (pstat_getprocessor(pst_p, sizeof(*pst_p), ncpus, 0) == -1) { free(pst_p); sprintf(log_buffer, "pstat_getprocessor"); log_err(errno, id, log_buffer); return "1"; } retval = 0; for (i = 0; i < ncpus; i++) { if (pst_p[i].psp_pset_id == pset) retval++; } free(pst_p); sprintf(ret_string, "%d", retval); system_ncpus = retval; return ret_string; } static char *physmem( struct rm_attribute *attrib) { char *id = "physmem"; struct pst_static pst_s; if (attrib != NULL) { log_err(-1, id, extra_parm); rm_errno = RM_ERR_BADPARAM; return(NULL); } if (pstat_getstatic(&pst_s, sizeof(struct pst_static), 1, 0) == -1) { sprintf(log_buffer, "pstat_getstatic"); log_err(errno, id, log_buffer); return(NULL); } /* physical_memory is in pages - convert to KB */ sprintf(ret_string, "%lukb", (unsigned long)(pst_s.physical_memory / 1024 * pst_s.page_size)); return(ret_string); } /* END physmem() */ static char *totmem( struct rm_attribute *attrib) { return physmem(attrib); } /* END totmem() */ static char *availmem( struct rm_attribute *attrib) { char *id = "availmem"; struct pst_dynamic pst_d; struct pst_static pst_s; long psize; if (attrib != NULL) { log_err(-1, id, extra_parm); rm_errno = RM_ERR_BADPARAM; return(NULL); } if (pstat_getstatic(&pst_s, sizeof(struct pst_static), 1, 0) == -1) { sprintf(log_buffer, "pstat_getstatic"); log_err(errno, id, log_buffer); return(NULL); } psize = pst_s.page_size; if (pstat_getdynamic(&pst_d, sizeof(struct pst_dynamic), 1, 0) == -1) { sprintf(log_buffer, "pstat_getdynamic"); log_err(errno, id, log_buffer); return(NULL); } /* free_mem is in pages - convert to KB */ sprintf(ret_string, "%lukb", (unsigned long)(pst_d.psd_free / 1024 * psize)); return(ret_string); } /* END availmem() */ char *size_fs( char *param) { char *id = "size_fs"; FILE *mf; struct mntent *mp; struct statvfs fsbuf; if (param[0] != '/') { sprintf(log_buffer, "%s: not full path filesystem name: %s\n", id, param); log_err(-1, id, log_buffer); rm_errno = RM_ERR_BADPARAM; return(NULL); } if (statvfs(param, &fsbuf) == -1) { log_err(errno, id, (char *)"statvfs"); rm_errno = RM_ERR_BADPARAM; return(NULL); } /* in KB */ sprintf(ret_string, "%lukb:%lukb", (unsigned long)(((double)fsbuf.f_bsize * (double)fsbuf.f_bfree) / 1024.0), (unsigned long)(((double)fsbuf.f_bsize * (double)fsbuf.f_blocks) / 1024.0)); return(ret_string); } /* END size_fs() */ char *size_file( char *param) { char *id = "size_file"; struct stat sbuf; if ((param == NULL) || (param[0] != '/')) { sprintf(log_buffer, "%s: not full path filesystem name: %s\n", id, param); log_err(-1, id, log_buffer); rm_errno = RM_ERR_BADPARAM; return(NULL); } if (stat(param, &sbuf) == -1) { log_err(errno, id, (char *)"stat"); rm_errno = RM_ERR_BADPARAM; return(NULL); } sprintf(ret_string, "%lukb", (unsigned long)sbuf.st_size >> 10); /* KB */ return(ret_string); } /* END size_file() */ char * size(struct rm_attribute *attrib) { char *id = "size"; char *param; if (attrib == NULL) { log_err(-1, id, no_parm); rm_errno = RM_ERR_NOPARAM; return NULL; } if (momgetattr(NULL)) { log_err(-1, id, extra_parm); rm_errno = RM_ERR_BADPARAM; return NULL; } param = attrib->a_value; if (strcmp(attrib->a_qualifier, "file") == 0) return (size_file(param)); else if (strcmp(attrib->a_qualifier, "fs") == 0) return (size_fs(param)); else { rm_errno = RM_ERR_BADPARAM; return NULL; } } time_t maxtm; void setmax(char *dev) { struct stat sb; if (stat(dev, &sb) == -1) return; if (maxtm < sb.st_atime) maxtm = sb.st_atime; return; } char *idletime( struct rm_attribute *attrib) { char *id = "idletime"; DIR *dp; struct dirent *de; char ttyname[50]; time_t curtm; if (attrib) { log_err(-1, id, (char *)extra_parm); rm_errno = RM_ERR_BADPARAM; return NULL; } if ((dp = opendir("/dev/pts")) == NULL) { log_err(errno, id, (char *)"opendir /dev"); rm_errno = RM_ERR_SYSTEM; return NULL; } maxtm = 0; curtm = time(NULL); setmax("/dev/mouse"); while ((de = readdir(dp)) != NULL) { char *name = de->d_name; if (maxtm >= curtm) break; if (*name == '.') continue; sprintf(ttyname, "/dev/pts/%s", name); setmax(ttyname); } closedir(dp); sprintf(ret_string, "%ul", MAX(0, (unsigned long)curtm - maxtm)); return(ret_string); } /* END idletime() */ static char * walltime(struct rm_attribute *attrib) { char *id = "walltime"; int i; int value, job, found = 0; time_t now, start; struct pst_status *ps; if (attrib == NULL) { log_err(-1, id, no_parm); rm_errno = RM_ERR_NOPARAM; return NULL; } if ((value = atoi(attrib->a_value)) == 0) { sprintf(log_buffer, "bad param: %s", attrib->a_value); log_err(-1, id, log_buffer); rm_errno = RM_ERR_BADPARAM; return NULL; } if (momgetattr(NULL)) { log_err(-1, id, extra_parm); rm_errno = RM_ERR_BADPARAM; return NULL; } if (strcmp(attrib->a_qualifier, "proc") == 0) job = 0; else if (strcmp(attrib->a_qualifier, "session") == 0) job = 1; else { rm_errno = RM_ERR_BADPARAM; return NULL; } if ((now = time(NULL)) <= 0) { log_err(errno, id, (char *)"time"); rm_errno = RM_ERR_SYSTEM; return NULL; } if (getprocs() == 0) { rm_errno = RM_ERR_SYSTEM; return NULL; } start = now; for (i = 0; i < nproc; i++) { ps = &proc_status[i]; if (job) { if (value != ps->pst_sid) continue; } else { if ((pid_t)value != ps->pst_pid) continue; } found = 1; start = MIN(start, ps->pst_start); } if (found) { sprintf(ret_string, "%ld", (long)((double)(now - start) * wallfactor)); return ret_string; } rm_errno = RM_ERR_EXIST; return NULL; } int get_la(double *rv) { char *id = "get_la"; struct pst_processor *pst_p; struct pst_dynamic pst_d; long pset; int ncpus, i; double la; if (pstat_getdynamic(&pst_d, sizeof(struct pst_dynamic), 1, 0) == -1) { sprintf(log_buffer, "pstat_getdynamic"); log_err(errno, id, log_buffer); return (rm_errno = RM_ERR_SYSTEM); } ncpus = pst_d.psd_proc_cnt; // *rv = (double)(pst_d.psd_avg_1_min*pst_d.psd_proc_cnt); /* Only get the load in the pset we're running in. */ pset = pset_ctl(PSET_GETCURRENTPSET, 0, 0); /* Loop over processors, adding load from the processors in this pset */ pst_p = (struct pst_processor*) calloc(ncpus, sizeof(*pst_p)); if (pst_p == NULL) { sprintf(log_buffer, "calloc"); log_err(errno, id, log_buffer); return (rm_errno = RM_ERR_SYSTEM); } if (pstat_getprocessor(pst_p, sizeof(*pst_p), ncpus, 0) == -1) { free(pst_p); sprintf(log_buffer, "pstat_getprocessor"); log_err(errno, id, log_buffer); return (rm_errno = RM_ERR_SYSTEM); } la = 0; for (i = 0; i < ncpus; i++) { if (pst_p[i].psp_pset_id == pset) la += pst_p[i].psp_avg_1_min; } *rv = la; free(pst_p); return 0; } static char * cpuspeed(struct rm_attribute *attrib) { char *id = "cpuspeed"; double scale; double freq; struct pst_processor pst_p; if (attrib) { log_err(-1, id, extra_parm); rm_errno = RM_ERR_BADPARAM; return NULL; } /* Fetch speed from first processor */ if (pstat_getprocessor(&pst_p, sizeof(pst_p), 1, 0) > 0) { freq = (double)pst_p.psp_iticksperclktick * (double) sysconf(_SC_CLK_TCK); } else { /* whoops - fake it */ freq = 100 * 1000 * 1000; } /* * Scale is the 1 over the clock frequency, in Mhz */ scale = ((double) freq / (1000 * 1000)); sprintf(ret_string, "%d", (int) scale); return ret_string; } static char * cputype(struct rm_attribute *attrib) { char *id = "cputype"; static long cputype = -1; static char *cputypename; if (attrib) { log_err(-1, id, extra_parm); rm_errno = RM_ERR_BADPARAM; return NULL; } if (cputype == -1) { cputype = sysconf(_SC_CPU_VERSION); if (cputype < 0) { sprintf(cputypename, "[errno = %d]", errno); } else { switch (cputype) { case CPU_HP_MC68020: cputypename = "Motorola MC68020"; break; case CPU_HP_MC68030: cputypename = "Motorola MC68030"; break; case CPU_HP_MC68040: cputypename = "Motorola MC68040"; break; case CPU_PA_RISC1_0: cputypename = "HP PA-RISC1.0"; break; case CPU_PA_RISC1_1: cputypename = "HP PA-RISC1.1"; break; case CPU_PA_RISC1_2: cputypename = "HP PA-RISC1.2"; break; case CPU_PA_RISC2_0: cputypename = "HP PA-RISC2.0"; break; default: cputypename = "unknown"; } } } return cputypename; } static char * platform(struct rm_attribute *attrib) { char *id = "platform"; struct utsname name; if (attrib) { log_err(-1, id, extra_parm); rm_errno = RM_ERR_BADPARAM; return NULL; } uname(&name); sprintf(ret_string, "%s %s %s", name.sysname, name.release, name.machine); return ret_string; } static char * valid_user(struct rm_attribute *attrib) { char *id = "valid_user"; struct passwd *p; if (attrib == NULL || attrib -> a_value == NULL) { log_err(-1, id, no_parm); rm_errno = RM_ERR_NOPARAM; return NULL; } p = getpwnam_ext(attrib -> a_value); if (p) { return "yes"; } else { return "no"; } } void scan_non_child_tasks(void) { /* NYI */ return; } /* END scan_non_child_tasks() */