/* * OpenPBS (Portable Batch System) v2.3 Software License * * Copyright (c) 1999-2000 Veridian Information Solutions, Inc. * All rights reserved. * * --------------------------------------------------------------------------- * For a license to use or redistribute the OpenPBS software under conditions * other than those described below, or to purchase support for this software, * please contact Veridian Systems, PBS Products Department ("Licensor") at: * * www.OpenPBS.org +1 650 967-4675 sales@OpenPBS.org * 877 902-4PBS (US toll-free) * --------------------------------------------------------------------------- * * This license covers use of the OpenPBS v2.3 software (the "Software") at * your site or location, and, for certain users, redistribution of the * Software to other sites and locations. Use and redistribution of * OpenPBS v2.3 in source and binary forms, with or without modification, * are permitted provided that all of the following conditions are met. * After December 31, 2001, only conditions 3-6 must be met: * * 1. Commercial and/or non-commercial use of the Software is permitted * provided a current software registration is on file at www.OpenPBS.org. * If use of this software contributes to a publication, product, or * service, proper attribution must be given; see www.OpenPBS.org/credit.html * * 2. Redistribution in any form is only permitted for non-commercial, * non-profit purposes. There can be no charge for the Software or any * software incorporating the Software. Further, there can be no * expectation of revenue generated as a consequence of redistributing * the Software. * * 3. Any Redistribution of source code must retain the above copyright notice * and the acknowledgment contained in paragraph 6, this list of conditions * and the disclaimer contained in paragraph 7. * * 4. Any Redistribution in binary form must reproduce the above copyright * notice and the acknowledgment contained in paragraph 6, this list of * conditions and the disclaimer contained in paragraph 7 in the * documentation and/or other materials provided with the distribution. * * 5. Redistributions in any form must be accompanied by information on how to * obtain complete source code for the OpenPBS software and any * modifications and/or additions to the OpenPBS software. The source code * must either be included in the distribution or be available for no more * than the cost of distribution plus a nominal fee, and all modifications * and additions to the Software must be freely redistributable by any party * (including Licensor) without restriction. * * 6. All advertising materials mentioning features or use of the Software must * display the following acknowledgment: * * "This product includes software developed by NASA Ames Research Center, * Lawrence Livermore National Laboratory, and Veridian Information * Solutions, Inc. * Visit www.OpenPBS.org for OpenPBS software support, * products, and information." * * 7. DISCLAIMER OF WARRANTY * * THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT * ARE EXPRESSLY DISCLAIMED. * * IN NO EVENT SHALL VERIDIAN CORPORATION, ITS AFFILIATED COMPANIES, OR THE * U.S. GOVERNMENT OR ANY OF ITS AGENCIES BE LIABLE FOR ANY DIRECT OR INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * This license will be governed by the laws of the Commonwealth of Virginia, * without reference to its choice of law rules. */ /* ** System dependent code to gather information for a Sun machine. ** ** Resources known by this code: ** cput cpu time for a pid or session ** mem memory size for a pid or session in KB ** resi resident memory size for a pid or session in KB ** sessions list of sessions in the system ** pids list of pids in a session ** ncpus number of cpus ** nsessions number of sessions in the system ** nusers number of users in the system ** physmem physical memory size in KB ** size size of a file or filesystem in KB ** idletime seconds of idle time ** walltime wall clock time for a pid ** loadave current load average ** quota quota information (sizes in KB) */ #include /* the master config generated by configure */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef USE_SYSCTL #include #endif #include "portability.h" #include "pbs_error.h" #include "log.h" #include "list_link.h" #include "server_limits.h" #include "attribute.h" #include "resource.h" #include "pbs_job.h" #include "mom_mach.h" #include "resmon.h" #include "utils.h" #include "../rm_dep.h" #ifndef TRUE #define FALSE 0 #define TRUE 1 #endif /* TRUE */ /* ** external functions and data */ extern struct config *search(struct config *, char *); extern struct rm_attribute *momgetattr(char *); extern int rm_errno; extern unsigned int reqnum; extern double cputfactor; extern double wallfactor; extern long system_ncpus; extern int ignwalltime; extern int igncput; extern int ignvmem; extern int LOGLEVEL; /* ** local functions */ static char *resi (struct rm_attribute *attrib); static char *physmem (struct rm_attribute *attrib); static char *walltime (struct rm_attribute *attrib); static char *quota (struct rm_attribute *attrib); static char *ncpus (struct rm_attribute *attrib); extern char *loadave (struct rm_attribute *attrib); extern char *nullproc (struct rm_attribute *attrib); struct config dependent_config[] = { { "resi", {resi} }, { "physmem", {physmem} }, { "ncpus", {ncpus} }, { "loadave", {loadave} }, { "walltime", {walltime} }, { "quota", {quota} }, { NULL, {nullproc} }, }; struct nlist nl[] = { { "_anoninfo" }, /* 0 */ { "_cnt" }, /* 1 */ { "_averunnable" }, /* 2 */ { "" } }; #define KSYM_ANON 0 #define KSYM_PHYS 1 #define KSYM_LOAD 2 time_t wait_time = 10; kvm_t *kd = NULL; struct kinfo_proc *proc_tbl = NULL; pid_t *sess_tbl = NULL; int nproc = 0; extern char *ret_string; extern char extra_parm[]; extern char no_parm[]; char nokernel[] = "kernel not available"; char noproc[] = "process %d does not exist"; static int nncpus = 0; void dep_initialize(void) { char *id = "dep_initialize"; int mib[2]; size_t len; if (kd == NULL) { kd = kvm_open(NULL, NULL, NULL, O_RDONLY, "resmom"); if (kd == NULL) { log_err(errno, id, "kvm_open"); return; } } if (kvm_nlist(kd, nl) == -1) { log_err(errno, id, "kvm_nlist"); return; } mib[0] = CTL_HW; /* get number of processors */ mib[1] = HW_NCPU; len = sizeof(nncpus); (void)sysctl(mib, 2, &nncpus, &len, NULL, 0); return; } void dep_cleanup(void) { char *id = "dep_cleanup"; log_record(PBSEVENT_SYSTEM, 0, id, "dependent cleanup"); if (kd) kvm_close(kd); kd = NULL; } /* * This routine is called on each cycle of the main loop. */ void dep_main_loop_cycle(void) { /* No periodic functions. */ } extern time_t time_now; /* * Time decoding macro. Accepts a timeval structure. Returns unsigned long * time in seconds. */ #define tv(val) ((val).tv_sec+((unsigned long)(val).tv_usec+500000)/1000000) #if __FreeBSD_version >= 300000 /* a u_int64_t in micro-seconds */ #define tvk(val) ((unsigned long)(val)/1000000) #define p_rtime p_runtime #else #define tvk tv #endif /* __FreeBSD_version */ /* * Internal size decoding routine. * * Accepts a resource pointer and a pointer to the unsigned long integer * to receive the decoded value. It returns a PBS error code, and the * decoded value in the unsigned long integer. * * For SunOS, * * sizeof(word) = sizeof(int) */ static int getsize(resource *pres, unsigned long *ret) { unsigned long value; if (pres->rs_value.at_type != ATR_TYPE_SIZE) return (PBSE_ATTRTYPE); value = pres->rs_value.at_val.at_size.atsv_num; if (pres->rs_value.at_val.at_size.atsv_units == ATR_SV_WORDSZ) { if (value > ULONG_MAX / sizeof(int)) return (PBSE_BADATVAL); value *= sizeof(int); } if (value > ULONG_MAX >> pres->rs_value.at_val.at_size.atsv_shift) return (PBSE_BADATVAL); *ret = value << pres->rs_value.at_val.at_size.atsv_shift; return (PBSE_NONE); } /* * Internal time decoding routine. * * Accepts a resource pointer and a pointer to the unsigned long integer * to receive the decoded value. It returns a PBS error code, and the * decoded value of time in seconds in the unsigned long integer. */ static int gettime(resource *pres, unsigned long *ret) { if (pres->rs_value.at_type != ATR_TYPE_LONG) return (PBSE_ATTRTYPE); if (pres->rs_value.at_val.at_long < 0) return (PBSE_BADATVAL); *ret = pres->rs_value.at_val.at_long; return (PBSE_NONE); } /* ** Scan a list of tasks and return true if one of them matches ** the process (sid or pid) represented by *psp. */ static int injob(pjob, sesid) job *pjob; pid_t sesid; { task *ptask; for (ptask = (task *)GET_NEXT(pjob->ji_tasks); ptask; ptask = (task *)GET_NEXT(ptask->ti_jobtask)) { if (ptask->ti_qs.ti_sid <= 1) continue; if (ptask->ti_qs.ti_sid == sesid) return TRUE; } return FALSE; } #define MINPROC 10 #define MAXPROC 10000 /* * Internal session cpu time decoding routine. * * Accepts a job id. Returns the sum of all cpu time consumed for all * tasks executed by the job, in seconds, adjusted by cputfactor. */ static unsigned long cput_sum(job *pjob) { static char id[] = "cput_sum"; int i; u_long cputime; int nps = 0; cputime = 0; for (i = 0; i < nproc; i++) { struct kinfo_proc *pp = &proc_tbl[i]; if (!injob(pjob, sess_tbl[i])) continue; nps++; cputime += tvk(pp->kp_proc.p_rtime); if (pp->kp_proc.p_ru == NULL) { struct pstats ps; DBPRT(("%s: p_stats 0x%lx\n", id, (u_long)pp->kp_proc.p_stats)) if (pp->kp_proc.p_stats == NULL) continue; if (kvm_read(kd, (u_long)pp->kp_proc.p_stats, &ps, sizeof(ps)) != sizeof(ps)) { log_err(errno, id, "kvm_read(pstats)"); continue; } cputime += tv(ps.p_ru.ru_utime) + tv(ps.p_ru.ru_stime) + tv(ps.p_cru.ru_utime) + tv(ps.p_cru.ru_stime); } else { struct rusage ru; DBPRT(("%s: p_ru 0x%lx\n", id, (u_long)pp->kp_proc.p_ru)) if (kvm_read(kd, (u_long)pp->kp_proc.p_ru, &ru, sizeof(ru)) != sizeof(ru)) { log_err(errno, id, "kvm_read(session)"); continue; } cputime += tv(ru.ru_utime) + tv(ru.ru_stime); } DBPRT(("%s: ses %d pid %d cputime %d\n", id, sess_tbl[i], pp->kp_proc.p_pid, cputime)) } if (nps == 0) pjob->ji_flags |= MOM_NO_PROC; else pjob->ji_flags &= ~MOM_NO_PROC; return ((unsigned long)((double)cputime * cputfactor)); } /* * Internal session memory usage function. * * Accepts a job ID. Returns the total number of bytes of address * space consumed by all current tasks within the job. */ static unsigned long mem_sum(job *pjob) { char *id = "mem_sum"; int i; unsigned long memsize; memsize = 0; for (i = 0; i < nproc; i++) { struct kinfo_proc *pp = &proc_tbl[i]; if (!injob(pjob, sess_tbl[i])) continue; memsize += ctob(pp->kp_eproc.e_vm.vm_tsize + pp->kp_eproc.e_vm.vm_dsize + pp->kp_eproc.e_vm.vm_ssize); DBPRT(("%s: ses %d pid=%d totmem=%lu\n", id, sess_tbl[i], pp->kp_proc.p_pid, memsize)) } return (memsize); } /* * Internal session mem (workingset) size function. */ static unsigned long resi_sum(job *pjob) { char *id = "resi_sum"; int i; unsigned long memsize; memsize = 0; for (i = 0; i < nproc; i++) { struct kinfo_proc *pp = &proc_tbl[i]; if (!injob(pjob, sess_tbl[i])) continue; memsize += ctob(pp->kp_eproc.e_vm.vm_rssize); DBPRT(("%s: pid=%d ses=%d mem=%d totmem=%d\n", id, pp->kp_proc.p_pid, sess_tbl[i], pp->kp_eproc.e_vm.vm_rssize, memsize)) } return (memsize); } /* * Return TRUE if any task in the job is over limit for memory usage. */ static int overmem_proc(job *pjob, unsigned long limit) { int i; for (i = 0; i < nproc; i++) { struct kinfo_proc *pp = &proc_tbl[i]; if (!injob(pjob, sess_tbl[i])) continue; if (ctob(pp->kp_eproc.e_vm.vm_tsize + pp->kp_eproc.e_vm.vm_dsize + pp->kp_eproc.e_vm.vm_ssize) > limit) return (TRUE); } return (FALSE); } extern char *msg_momsetlim; /* * Internal error routine */ int error(char *string, int value) { char *message; assert(string != NULL); assert(*string != '\0'); message = pbse_to_txt(value); assert(message != NULL); assert(*message != '\0'); (void)fprintf(stderr, msg_momsetlim, string, message); (void)fflush(stderr); return (value); } /* * Establish system-enforced limits for the job. * * Run through the resource list, checking the values for all items * we recognize. * * If set_mode is SET_LIMIT_SET, then also set hard limits for the * system enforced limits (not-polled). * If anything goes wrong with the process, return a PBS error code * and print a message on standard error. A zero-length resource list * is not an error. * * If set_mode is SET_LIMIT_SET the entry conditions are: * 1. MOM has already forked, and we are called from the child. * 2. The child is still running as root. * 3. Standard error is open to the user's file. * * If set_mode is SET_LIMIT_ALTER, we are beening called to modify * existing limits. Cannot alter those set by setrlimit (kernel) * because we are the wrong process. */ int mom_set_limits( job *pjob, int set_mode /* SET_LIMIT_SET or SET_LIMIT_ALTER */ ) { char *id = "mom_set_limits"; char *pname; int retval; unsigned long value; /* place in which to build resource value */ resource *pres; struct rlimit reslim; unsigned long mem_limit = 0; log_buffer[0] = '\0'; DBPRT(("%s: entered\n", id)) assert(pjob != NULL); assert(pjob->ji_wattr[(int)JOB_ATR_resource].at_type == ATR_TYPE_RESC); pres = (resource *) GET_NEXT(pjob->ji_wattr[(int)JOB_ATR_resource].at_val.at_list); /* * Cycle through all the resource specifications, * setting limits appropriately (SET_LIMIT_SET). */ while (pres != NULL) { assert(pres->rs_defin != NULL); pname = pres->rs_defin->rs_name; assert(pname != NULL); assert(*pname != '\0'); if (strcmp(pname, "cput") == 0) { if (igncput == FALSE) { /* cpu time - check, if less than pcput use it */ retval = gettime(pres, &value); if (retval != PBSE_NONE) return (error(pname, retval)); } } else if (strcmp(pname, "pcput") == 0) { if (igncput == FALSE) { /* process cpu time - set */ retval = gettime(pres, &value); if (retval != PBSE_NONE) return (error(pname, retval)); reslim.rlim_cur = reslim.rlim_max = (unsigned long)((double)value / cputfactor); if (setrlimit(RLIMIT_CPU, &reslim) < 0) return (error("RLIMIT_CPU", PBSE_SYSTEM)); } } else if (strcmp(pname, "file") == 0) /* set */ { if (set_mode == SET_LIMIT_SET) { retval = getsize(pres, &value); if (retval != PBSE_NONE) return (error(pname, retval)); if (value > ULONG_MAX) return (error(pname, PBSE_BADATVAL)); reslim.rlim_cur = reslim.rlim_max = value; if (setrlimit(RLIMIT_FSIZE, &reslim) < 0) return (error(pname, PBSE_SYSTEM)); } } else if (strcmp(pname, "vmem") == 0) /* check */ { if (ignvmem == FALSE) { retval = getsize(pres, &value); if (retval != PBSE_NONE) return (error(pname, retval)); if ((mem_limit == 0) || (value < mem_limit)) mem_limit = value; } } else if (strcmp(pname, "pvmem") == 0) /* set */ { if (ignvmem == FALSE) { if (set_mode == SET_LIMIT_SET) { retval = getsize(pres, &value); if (retval != PBSE_NONE) return (error(pname, retval)); if (value > ULONG_MAX) return (error(pname, PBSE_BADATVAL)); if ((mem_limit == 0) || (value < mem_limit)) mem_limit = value; } } } else if (strcmp(pname, "mem") == 0) /* ignore */ { } else if (strcmp(pname, "pmem") == 0) /* set */ { if (ignmem == FALSE) { if (set_mode == SET_LIMIT_SET) { retval = getsize(pres, &value); if (retval != PBSE_NONE) return (error(pname, retval)); reslim.rlim_cur = reslim.rlim_max = value; if (setrlimit(RLIMIT_RSS, &reslim) < 0) return (error("RLIMIT_RSS", PBSE_SYSTEM)); } } } else if (strcmp(pname, "walltime") == 0) /* Check */ { retval = gettime(pres, &value); if (retval != PBSE_NONE) return (error(pname, retval)); } else if (strcmp(pname, "nice") == 0) /* set nice */ { if (set_mode == SET_LIMIT_SET) { errno = 0; if ((nice((int)pres->rs_value.at_val.at_long) == -1) && (errno != 0)) return (error(pname, PBSE_BADATVAL)); } } else if ((pres->rs_defin->rs_flags & ATR_DFLAG_RMOMIG) == 0) /* don't recognize and not marked as ignore by mom */ return (error(pname, PBSE_UNKRESC)); pres = (resource *)GET_NEXT(pres->rs_link); } if (set_mode == SET_LIMIT_SET) { /* if either of vmem or pvmem was given, set sys limit to lesser */ if (mem_limit != 0) { reslim.rlim_cur = reslim.rlim_max = mem_limit; if ((ignvmem == 0) && (setrlimit(RLIMIT_DATA, &reslim) < 0)) return (error("RLIMIT_DATA", PBSE_SYSTEM)); if ((ignvmem == 0) && (setrlimit(RLIMIT_STACK, &reslim) < 0)) return (error("RLIMIT_STACK", PBSE_SYSTEM)); } } return (PBSE_NONE); } /* * State whether MOM main loop has to poll this job to determine if some * limits are being exceeded. * * Sets flag TRUE if polling is necessary, FALSE otherwise. Actual * polling is done using the mom_over_limit machine-dependent function. */ int mom_do_poll(job *pjob) { char *id = "mom_do_poll"; char *pname; resource *pres; DBPRT(("%s: entered\n", id)) assert(pjob != NULL); assert(pjob->ji_wattr[(int)JOB_ATR_resource].at_type == ATR_TYPE_RESC); pres = (resource *) GET_NEXT(pjob->ji_wattr[(int)JOB_ATR_resource].at_val.at_list); while (pres != NULL) { assert(pres->rs_defin != NULL); pname = pres->rs_defin->rs_name; assert(pname != NULL); assert(*pname != '\0'); if (strcmp(pname, "walltime") == 0 || strcmp(pname, "cput") == 0 || strcmp(pname, "pvmem") == 0 || strcmp(pname, "vmem") == 0) return (TRUE); pres = (resource *)GET_NEXT(pres->rs_link); } return (FALSE); } /* * Setup for polling. * * Open kernel device and get namelist info. */ int mom_open_poll(void) { char *id = "mom_open_poll"; log_record(PBSEVENT_SYSTEM, 0, id, "entered"); if (kd == NULL) { kd = kvm_open(NULL, NULL, NULL, O_RDONLY, "mom"); if (kd == NULL) { log_err(errno, id, "kvm_open"); return (PBSE_SYSTEM); } } if (kvm_nlist(kd, nl) == -1) { log_err(errno, id, "kvm_nlist"); return (PBSE_SYSTEM); } return (PBSE_NONE); } int qs_cmp( const void *a, const void *b) { return((int)((struct kinfo_proc *)a)->kp_eproc.e_paddr - (int)((struct kinfo_proc *)b)->kp_eproc.e_paddr); } int bs_cmp( const void *key, const void *member) { return((int)((struct session *)key)->s_leader - (int)((struct kinfo_proc *)member)->kp_eproc.e_paddr); } /* * Declare start of polling loop. * * Until the next call to mom_get_sample, all mom_over_limit calls will * use the same data. Returns a PBS error code. */ int mom_get_sample(void) { char *id = "mom_get_sample"; int i; struct session ss; struct kinfo_proc *kp; struct kinfo_proc *leader; pid_t sid; DBPRT(("%s: entered\n", id)) if (sess_tbl) free(sess_tbl); if (kd == NULL) return (PBSE_INTERNAL); proc_tbl = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc); if (proc_tbl == NULL) { sprintf(log_buffer, "kvm_getprocs: %s", kvm_geterr(kd)); log_err(errno, id, log_buffer); return (PBSE_SYSTEM); } sess_tbl = (pid_t *)calloc(nproc, sizeof(pid_t)); if (sess_tbl == NULL) { sprintf(log_buffer, "can't allocate memory for session table"); log_err(errno, id, log_buffer); return (PBSE_SYSTEM); } qsort(proc_tbl, nproc, sizeof(struct kinfo_proc), qs_cmp); for (i = 0, kp = proc_tbl; i < nproc; i++, kp++) { if (kvm_read(kd, (u_long)kp->kp_eproc.e_sess, &ss, sizeof(ss)) != sizeof(ss)) { sprintf(log_buffer, "kvm_read: %s", kvm_geterr(kd)); log_err(errno, id, log_buffer); return (PBSE_SYSTEM); } if (ss.s_leader == kp->kp_eproc.e_paddr || ss.s_leader == NULL) { sid = kp->kp_proc.p_pid; } else { leader = bsearch(&ss, proc_tbl, nproc, sizeof(struct kinfo_proc), bs_cmp); sid = leader ? leader->kp_proc.p_pid : 0; } sess_tbl[i] = sid; } return (PBSE_NONE); } /* * Measure job resource usage and compare with its limits. * * If it has exceeded any well-formed polled limit return TRUE. * Otherwise, return FALSE. */ int mom_over_limit(job *pjob) { char *id = "mom_over_limit"; char *pname; int retval; unsigned long value, num; resource *pres; assert(pjob != NULL); assert(pjob->ji_wattr[(int)JOB_ATR_resource].at_type == ATR_TYPE_RESC); pres = (resource *) GET_NEXT(pjob->ji_wattr[(int)JOB_ATR_resource].at_val.at_list); DBPRT(("%s: entered\n", id)) for (; pres != NULL; pres = (resource *)GET_NEXT(pres->rs_link)) { assert(pres->rs_defin != NULL); pname = pres->rs_defin->rs_name; assert(pname != NULL); assert(*pname != '\0'); if ((igncput == FALSE) && (strcmp(pname, "cput") == 0)) { retval = gettime(pres, &value); if (retval != PBSE_NONE) continue; if ((num = cput_sum(pjob)) > value) { sprintf(log_buffer, "cput %lu exceeded limit %lu", num, value); return (TRUE); } } else if (strcmp(pname, "mem") == 0) { retval = getsize(pres, &value); if (retval != PBSE_NONE) continue; if ((num = mem_sum(pjob)) > value) { sprintf(log_buffer, "mem %lu exceeded limit %lu", num, value); return (TRUE); } } else if (strcmp(pname, "pvmem") == 0) { retval = getsize(pres, &value); if (retval != PBSE_NONE) continue; if ((ignvmem == 0) && (overmem_proc(pjob, value))) { sprintf(log_buffer, "pvmem exceeded limit %lu", value); return (TRUE); } } else if (ignwalltime == 0 && strcmp(pname, "walltime") == 0) { if ((pjob->ji_qs.ji_svrflags & JOB_SVFLG_HERE) == 0) continue; retval = gettime(pres, &value); if (retval != PBSE_NONE) continue; num = (unsigned long)(wallfactor * (double)(time_now - pjob->ji_qs.ji_stime)); if (num > value) { sprintf(log_buffer, "walltime %d exceeded limit %d", num, value); return (TRUE); } } } return (FALSE); } /* * Update the job attribute for resources used. * * The first time this is called for a job, set up resource entries for * each resource that can be reported for this machine. Fill in the * correct values. Return an error code. * * Assumes that the session ID attribute has already been set. */ int mom_set_use(job *pjob) { char *id = "mom_set_use"; resource *pres; attribute *at; resource_def *rd; unsigned long *lp, lnum; assert(pjob != NULL); at = &pjob->ji_wattr[(int)JOB_ATR_resc_used]; assert(at->at_type == ATR_TYPE_RESC); at->at_flags |= ATR_VFLAG_MODIFY; if ((at->at_flags & ATR_VFLAG_SET) == 0) { at->at_flags |= ATR_VFLAG_SET; rd = find_resc_def(svr_resc_def, "cput", svr_resc_size); assert(rd != NULL); pres = add_resource_entry(at, rd); assert(pres != NULL); pres->rs_value.at_flags |= ATR_VFLAG_SET; pres->rs_value.at_type = ATR_TYPE_LONG; pres->rs_value.at_val.at_long = 0; rd = find_resc_def(svr_resc_def, "vmem", svr_resc_size); assert(rd != NULL); pres = add_resource_entry(at, rd); assert(pres != NULL); pres->rs_value.at_flags |= ATR_VFLAG_SET; pres->rs_value.at_type = ATR_TYPE_SIZE; pres->rs_value.at_val.at_size.atsv_shift = 10; /* KB */ pres->rs_value.at_val.at_size.atsv_units = ATR_SV_BYTESZ; pres->rs_value.at_val.at_size.atsv_num = 0; rd = find_resc_def(svr_resc_def, "walltime", svr_resc_size); assert(rd != NULL); pres = add_resource_entry(at, rd); assert(pres != NULL); pres->rs_value.at_flags |= ATR_VFLAG_SET; pres->rs_value.at_type = ATR_TYPE_LONG; pres->rs_value.at_val.at_long = 0; rd = find_resc_def(svr_resc_def, "mem", svr_resc_size); assert(rd != NULL); pres = add_resource_entry(at, rd); assert(pres != NULL); pres->rs_value.at_flags |= ATR_VFLAG_SET; pres->rs_value.at_type = ATR_TYPE_SIZE; pres->rs_value.at_val.at_size.atsv_shift = 10; /* KB */ pres->rs_value.at_val.at_size.atsv_units = ATR_SV_BYTESZ; pres->rs_value.at_val.at_size.atsv_num = 0; } rd = find_resc_def(svr_resc_def, "cput", svr_resc_size); assert(rd != NULL); pres = find_resc_entry(at, rd); assert(pres != NULL); lp = (unsigned long *) & pres->rs_value.at_val.at_long; lnum = cput_sum(pjob); *lp = MAX(*lp, lnum); rd = find_resc_def(svr_resc_def, "vmem", svr_resc_size); assert(rd != NULL); pres = find_resc_entry(at, rd); assert(pres != NULL); lp = &pres->rs_value.at_val.at_size.atsv_num; lnum = (mem_sum(pjob) + 1023) >> 10; /* in KB */ *lp = MAX(*lp, lnum); rd = find_resc_def(svr_resc_def, "walltime", svr_resc_size); assert(rd != NULL); pres = find_resc_entry(at, rd); assert(pres != NULL); pres->rs_value.at_val.at_long = (long)((double)(time_now - pjob->ji_qs.ji_stime) * wallfactor); rd = find_resc_def(svr_resc_def, "mem", svr_resc_size); assert(rd != NULL); pres = find_resc_entry(at, rd); assert(pres != NULL); lp = &pres->rs_value.at_val.at_size.atsv_num; lnum = (resi_sum(pjob) + 1023) >> 10; /* in KB */ *lp = MAX(*lp, lnum); return (PBSE_NONE); } /* * Kill a job task. * Call with the job and a signal number. */ int kill_task(task *ptask, int sig, int pg) { char *id = "kill_task"; int ct = 0; int i, err; int sesid; DBPRT(("%s entered\n", id)) sesid = ptask->ti_qs.ti_sid; if (sesid <= 1) return 0; if ((err = mom_get_sample()) != PBSE_NONE) return 0; for (i = 0; i < nproc; i++) { struct kinfo_proc *pp = &proc_tbl[i]; if (sesid != sess_tbl[i]) continue; DBPRT(("%s: send signal %d to pid %d\n", id, sig, pp->kp_proc.p_pid)) (void)kill(pp->kp_proc.p_pid, sig); ++ct; } return ct; } /* * Clean up everything related to polling. * * In the case of the sun, close the kernal if it is open. */ int mom_close_poll(void) { DBPRT(("mom_close_poll entered\n")) if (kd) { if (kvm_close(kd) != 0) { log_err(errno, "mom_close_poll", "kvm_close"); return (PBSE_SYSTEM); } kd = NULL; } return (PBSE_NONE); } /* * mom_does_checkpoint */ int mom_does_checkpoint(void) { return(CST_NONE); } /* * Checkpoint the job. * * If abort is true, kill it too. */ int mach_checkpoint(task *ptask, char *file, int abort) { return (-1); } /* * Restart the job from the checkpoint file. * * Return -1 on error or sid if okay. */ long mach_restart(task *ptask, char *file) { return (-1); } /* ** Return 1 if proc table can be read, 0 otherwise. */ int getprocs(void) { static unsigned int lastproc = 0; char *id = "getprocs"; caddr_t *kernel_proc; int i, len; if (lastproc == reqnum) /* don't need new proc table */ return 1; if (mom_get_sample() != PBSE_NONE) return 0; lastproc = reqnum; return 1; } char * cput_job(jobid) pid_t jobid; { char *id = "cput_job"; double ses_time; int i; unsigned long cputime; if (getprocs() == 0) { rm_errno = RM_ERR_SYSTEM; return NULL; } cputime = 0; for (i = 0; i < nproc; i++) { struct kinfo_proc *pp = &proc_tbl[i]; if (jobid != sess_tbl[i]) continue; cputime += tvk(pp->kp_proc.p_rtime); if (pp->kp_proc.p_ru == NULL) { struct pstats ps; if (pp->kp_proc.p_stats == NULL) continue; if (kvm_read(kd, (u_long)pp->kp_proc.p_stats, &ps, sizeof(ps)) != sizeof(ps)) { log_err(errno, id, "kvm_read(pstats)"); continue; } cputime += tv(ps.p_ru.ru_utime) + tv(ps.p_ru.ru_stime) + tv(ps.p_cru.ru_utime) + tv(ps.p_cru.ru_stime); } else { struct rusage ru; if (kvm_read(kd, (u_long)pp->kp_proc.p_ru, &ru, sizeof(ru)) != sizeof(ru)) { log_err(errno, id, "kvm_read(session)"); continue; } cputime += tv(ru.ru_utime) + tv(ru.ru_stime); } DBPRT(("%s: ses %d pid %d cputime %d\n", id, jobid, pp->kp_proc.p_pid, cputime)) } sprintf(ret_string, "%.2f", (double)cputime * cputfactor); return ret_string; } char * cput_proc(pid) pid_t pid; { char *id = "cput_proc"; struct pstats ps; uint i, cputime; for (i = 0; i < nproc; i++) { struct kinfo_proc *pp = &proc_tbl[i]; if (pid != pp->kp_proc.p_pid) continue; cputime = tvk(pp->kp_proc.p_rtime); if (pp->kp_proc.p_ru == NULL) { struct pstats ps; if (pp->kp_proc.p_stats == NULL) break; if (kvm_read(kd, (u_long)pp->kp_proc.p_stats, &ps, sizeof(ps)) != sizeof(ps)) { log_err(errno, id, "kvm_read(pstats)"); break; } cputime += tv(ps.p_ru.ru_utime) + tv(ps.p_ru.ru_stime) + tv(ps.p_cru.ru_utime) + tv(ps.p_cru.ru_stime); } else { struct rusage ru; if (kvm_read(kd, (u_long)pp->kp_proc.p_ru, &ru, sizeof(ru)) != sizeof(ru)) { log_err(errno, id, "kvm_read(session)"); break; } cputime += tv(ru.ru_utime) + tv(ru.ru_stime); } DBPRT(("%s: pid %d cputime %d\n", id, pid, cputime)) sprintf(ret_string, "%.2f", (double)cputime * cputfactor); return ret_string; } rm_errno = RM_ERR_EXIST; return NULL; } char * cput(struct rm_attribute *attrib) { char *id = "cput"; int value; if (attrib == NULL) { log_err(-1, id, no_parm); rm_errno = RM_ERR_NOPARAM; return NULL; } if ((value = atoi(attrib->a_value)) == 0) { sprintf(log_buffer, "bad param: %s", attrib->a_value); log_err(-1, id, log_buffer); rm_errno = RM_ERR_BADPARAM; return NULL; } if (momgetattr(NULL)) { log_err(-1, id, extra_parm); rm_errno = RM_ERR_BADPARAM; return NULL; } if (strcmp(attrib->a_qualifier, "session") == 0) return (cput_job((pid_t)value)); else if (strcmp(attrib->a_qualifier, "proc") == 0) return (cput_proc((pid_t)value)); else { rm_errno = RM_ERR_BADPARAM; return NULL; } } char * mem_job(jobid) pid_t jobid; { char *id = "mem_job"; int i; int memsize, addmem; int found = 0; if (getprocs() == 0) { rm_errno = RM_ERR_SYSTEM; return NULL; } memsize = 0; for (i = 0; i < nproc; i++) { struct kinfo_proc *pp = &proc_tbl[i]; if (jobid != sess_tbl[i]) continue; found = 1; addmem = pp->kp_eproc.e_vm.vm_tsize + pp->kp_eproc.e_vm.vm_dsize + pp->kp_eproc.e_vm.vm_ssize; memsize += addmem; } if (found) { sprintf(ret_string, "%ukb", ctob(memsize) >> 10); /* KB */ return ret_string; } rm_errno = RM_ERR_EXIST; return NULL; } char * mem_proc(pid) pid_t pid; { char *id = "mem_proc"; int i, memsize; if (getprocs() == 0) { rm_errno = RM_ERR_SYSTEM; return NULL; } for (i = 0; i < nproc; i++) { struct kinfo_proc *pp = &proc_tbl[i]; if (pid != pp->kp_proc.p_pid) continue; memsize = pp->kp_eproc.e_vm.vm_tsize + pp->kp_eproc.e_vm.vm_dsize + pp->kp_eproc.e_vm.vm_ssize; sprintf(ret_string, "%ukb", ctob(memsize) >> 10); /* KB */ return ret_string; } rm_errno = RM_ERR_EXIST; return NULL; } char * mem(struct rm_attribute *attrib) { char *id = "mem"; int value; if (attrib == NULL) { log_err(-1, id, no_parm); rm_errno = RM_ERR_NOPARAM; return NULL; } if ((value = atoi(attrib->a_value)) == 0) { sprintf(log_buffer, "bad param: %s", attrib->a_value); log_err(-1, id, log_buffer); rm_errno = RM_ERR_BADPARAM; return NULL; } if (momgetattr(NULL)) { log_err(-1, id, extra_parm); rm_errno = RM_ERR_BADPARAM; return NULL; } if (strcmp(attrib->a_qualifier, "session") == 0) return (mem_job((pid_t)value)); else if (strcmp(attrib->a_qualifier, "proc") == 0) return (mem_proc((pid_t)value)); else { rm_errno = RM_ERR_BADPARAM; return NULL; } } static char * resi_job(jobid) pid_t jobid; { char *id = "resi_job"; int i, found; int resisize; if (getprocs() == 0) { rm_errno = RM_ERR_SYSTEM; return NULL; } resisize = 0; found = 0; for (i = 0; i < nproc; i++) { struct kinfo_proc *pp = &proc_tbl[i]; if (jobid != sess_tbl[i]) continue; found = 1; resisize += pp->kp_eproc.e_vm.vm_rssize; } if (found) { sprintf(ret_string, "%ukb", ctob(resisize) >> 10); /* KB */ return ret_string; } rm_errno = RM_ERR_EXIST; return NULL; } static char * resi_proc(pid) pid_t pid; { char *id = "resi_proc"; int i; int resisize; if (getprocs() == 0) { rm_errno = RM_ERR_SYSTEM; return NULL; } resisize = 0; for (i = 0; i < nproc; i++) { struct kinfo_proc *pp = &proc_tbl[i]; if (pid != pp->kp_proc.p_pid) continue; resisize = pp->kp_eproc.e_vm.vm_rssize; sprintf(ret_string, "%ukb", ctob(resisize) >> 10); /* KB */ return ret_string; } rm_errno = RM_ERR_EXIST; return NULL; } static char * resi(struct rm_attribute *attrib) { char *id = "resi"; int value; if (attrib == NULL) { log_err(-1, id, no_parm); rm_errno = RM_ERR_NOPARAM; return NULL; } if ((value = atoi(attrib->a_value)) == 0) { sprintf(log_buffer, "bad param: %s", attrib->a_value); log_err(-1, id, log_buffer); rm_errno = RM_ERR_BADPARAM; return NULL; } if (momgetattr(NULL)) { log_err(-1, id, extra_parm); rm_errno = RM_ERR_BADPARAM; return NULL; } if (strcmp(attrib->a_qualifier, "session") == 0) return (resi_job((pid_t)value)); else if (strcmp(attrib->a_qualifier, "proc") == 0) return (resi_proc((pid_t)value)); else { rm_errno = RM_ERR_BADPARAM; return NULL; } } char * sessions(struct rm_attribute *attrib) { char *id = "sessions"; int i, j; char *fmt; int njids = 0; pid_t *jids, jobid; if (attrib) { log_err(-1, id, extra_parm); rm_errno = RM_ERR_BADPARAM; return NULL; } if (getprocs() == 0) { rm_errno = RM_ERR_SYSTEM; return NULL; } if ((jids = (pid_t *)calloc(nproc, sizeof(pid_t))) == NULL) { log_err(errno, id, "no memory"); rm_errno = RM_ERR_SYSTEM; return NULL; } /* ** Search for job */ for (i = 0; i < nproc; i++) { struct kinfo_proc *pp = &proc_tbl[i]; if (pp->kp_eproc.e_pcred.p_ruid == 0) continue; jobid = sess_tbl[i]; DBPRT(("%s: pid %d sid %u\n", id, (int)pp->kp_proc.p_pid, jobid)) for (j = 0; j < njids; j++) { if (jids[j] == jobid) break; } if (j == njids) /* not found */ jids[njids++] = jobid; /* so add it to list */ } fmt = ret_string; for (j = 0; j < njids; j++) { checkret(&fmt, 100); if (j == 0) sprintf(fmt, "%d", (int)jids[j]); else sprintf(fmt, " %d", (int)jids[j]); fmt += strlen(fmt); } free(jids); return ret_string; } char * nsessions(struct rm_attribute *attrib) { char *result, *ch; int num = 1; if ((result = sessions(attrib)) == NULL) return result; for (ch = result; *ch; ch++) { if (*ch == ' ') /* count blanks */ num++; } sprintf(ret_string, "%d", num); return ret_string; } char * pids(struct rm_attribute *attrib) { char *id = "pids"; pid_t jobid; int i; char *fmt; int num_pids = 0; if (attrib == NULL) { log_err(-1, id, no_parm); rm_errno = RM_ERR_NOPARAM; return NULL; } if ((jobid = (pid_t)atoi(attrib->a_value)) == 0) { sprintf(log_buffer, "bad param: %s", attrib->a_value); log_err(-1, id, log_buffer); rm_errno = RM_ERR_BADPARAM; return NULL; } if (momgetattr(NULL)) { log_err(-1, id, extra_parm); rm_errno = RM_ERR_BADPARAM; return NULL; } if (strcmp(attrib->a_qualifier, "session") != 0) { rm_errno = RM_ERR_BADPARAM; return NULL; } if (getprocs() == 0) { rm_errno = RM_ERR_SYSTEM; return NULL; } /* ** Search for members of session */ fmt = ret_string; for (i = 0; i < nproc; i++) { struct kinfo_proc *pp = &proc_tbl[i]; DBPRT(("%s[%d]: pid %d sid %u\n", id, num_pids, pp->kp_proc.p_pid, sess_tbl[i])) if (jobid != sess_tbl[i]) continue; checkret(&fmt, 100); sprintf(fmt, " %d", pp->kp_proc.p_pid); fmt += strlen(fmt); num_pids++; } if (num_pids == 0) { rm_errno = RM_ERR_EXIST; return NULL; } return ret_string; } char * nusers(struct rm_attribute *attrib) { char *id = "nusers"; int i, j; int nuids = 0; uid_t *uids, uid; if (attrib) { log_err(-1, id, extra_parm); rm_errno = RM_ERR_BADPARAM; return NULL; } if (getprocs() == 0) { rm_errno = RM_ERR_SYSTEM; return NULL; } if ((uids = (uid_t *)calloc(nproc, sizeof(uid_t))) == NULL) { log_err(errno, id, "no memory"); rm_errno = RM_ERR_SYSTEM; return NULL; } for (i = 0; i < nproc; i++) { struct kinfo_proc *pp = &proc_tbl[i]; if ((uid = pp->kp_eproc.e_pcred.p_ruid) == 0) continue; DBPRT(("%s: pid %d uid %u\n", id, (int)pp->kp_proc.p_pid, uid)) for (j = 0; j < nuids; j++) { if (uids[j] == uid) break; } if (j == nuids) /* not found */ uids[nuids++] = uid; /* so add it to list */ } sprintf(ret_string, "%d", nuids); free(uids); return ret_string; } static char * ncpus(struct rm_attribute *attrib) { if (attrib) { log_err(-1, "ncpus", extra_parm); rm_errno = RM_ERR_BADPARAM; return NULL; } sprintf(ret_string, "%d", nncpus); system_ncpus = nncpus; return ret_string; } static char * physmem(struct rm_attribute *attrib) { char *id = "physmem"; struct vmmeter sum; u_int val; #ifdef USE_SYSCTL int mib[2]; size_t len; unsigned int phys_mem; int page_size; #endif if (attrib) { log_err(-1, id, extra_parm); rm_errno = RM_ERR_BADPARAM; return NULL; } #ifndef USE_SYSCTL if (kd == NULL) { log_err(-1, id, nokernel); rm_errno = RM_ERR_SYSTEM; return NULL; } if (nl[KSYM_PHYS].n_type == 0) { log_err(-1, id, "vmmeter not found"); rm_errno = RM_ERR_SYSTEM; return 0; } if (kvm_read(kd, nl[KSYM_PHYS].n_value, (char *)&sum, sizeof(sum)) != sizeof(sum)) { log_err(errno, id, "kvm_read"); rm_errno = RM_ERR_SYSTEM; return NULL; } if (sum.v_page_size < 1024) { val = 1024 / sum.v_page_size; val = sum.v_page_count / val; } else { val = sum.v_page_size / 1024; val *= sum.v_page_count; } #else mib[0] = CTL_HW; /* get physical memory */ mib[1] = HW_PHYSMEM; len = sizeof(phys_mem); (void)sysctl(mib, 2, &phys_mem, &len, NULL, 0); val = phys_mem / 1024; #endif sprintf(ret_string, "%ukb", val); return ret_string; } char * size_fs(char *param) { char *id = "size_fs"; FILE *mf; struct mntent *mp; struct statfs fsbuf; if (param[0] != '/') { sprintf(log_buffer, "%s: not full path filesystem name: %s", id, param); log_err(-1, id, log_buffer); rm_errno = RM_ERR_BADPARAM; return NULL; } if (statfs(param, &fsbuf) == -1) { log_err(errno, id, "statfs"); rm_errno = RM_ERR_BADPARAM; return NULL; } /* in KB */ sprintf(ret_string, "%lukb", (unsigned long)(((double)fsbuf.f_bsize * (double)fsbuf.f_bavail) / 1024.0)); return ret_string; } char * size_file(char *param) { char *id = "size_file"; struct stat sbuf; if (param[0] != '/') { sprintf(log_buffer, "%s: not full path filesystem name: %s", id, param); log_err(-1, id, log_buffer); rm_errno = RM_ERR_BADPARAM; return NULL; } if (stat(param, &sbuf) == -1) { log_err(errno, id, "stat"); rm_errno = RM_ERR_BADPARAM; return NULL; } sprintf(ret_string, "%ukb", sbuf.st_size >> 10); /* in KB */ return ret_string; } char * size(struct rm_attribute *attrib) { char *id = "size"; char *param; if (attrib == NULL) { log_err(-1, id, no_parm); rm_errno = RM_ERR_NOPARAM; return NULL; } if (momgetattr(NULL)) { log_err(-1, id, extra_parm); rm_errno = RM_ERR_BADPARAM; return NULL; } param = attrib->a_value; if (strcmp(attrib->a_qualifier, "file") == 0) return (size_file(param)); else if (strcmp(attrib->a_qualifier, "fs") == 0) return (size_fs(param)); else { rm_errno = RM_ERR_BADPARAM; return NULL; } } time_t maxtm; void setmax( char *dev) { struct stat sb; char *id = "setmax"; if (stat(dev, &sb) == -1) { return; } if (maxtm < sb.st_atime) { if (LOGLEVEL >= 2) { sprintf(log_buffer, "setmax: dev %s access %d replaces max %ld\n", dev, sb.st_atime, (long)maxtm); log_record(PBSEVENT_SYSTEM, 0, id, log_buffer); } maxtm = sb.st_atime; } return; } char *idletime( struct rm_attribute *attrib) { char *id = "idletime"; DIR *dp; struct dirent *de; char ttyname[50]; time_t curtm; if (attrib) { log_err(-1, id, extra_parm); rm_errno = RM_ERR_BADPARAM; return NULL; } if ((dp = opendir("/dev")) == NULL) { log_err(errno, id, "opendir /dev"); rm_errno = RM_ERR_SYSTEM; return NULL; } maxtm = 0; curtm = time(NULL); setmax("/dev/mouse"); while ((de = readdir(dp)) != NULL) { if (maxtm >= curtm) break; if (strncmp(de->d_name, "tty", 3)) continue; sprintf(ttyname, "/dev/%s", de->d_name); setmax(ttyname); } closedir(dp); sprintf(ret_string, "%ld", (long)MAX(0, curtm - maxtm)); return ret_string; } static char * walltime(struct rm_attribute *attrib) { char *id = "walltime"; struct pstats ps; pid_t value; int i, job, found = 0; time_t now, start; if (attrib == NULL) { log_err(-1, id, no_parm); rm_errno = RM_ERR_NOPARAM; return NULL; } if ((value = (pid_t)atoi(attrib->a_value)) == 0) { sprintf(log_buffer, "bad param: %s", attrib->a_value); log_err(-1, id, log_buffer); rm_errno = RM_ERR_BADPARAM; return NULL; } if (momgetattr(NULL)) { log_err(-1, id, extra_parm); rm_errno = RM_ERR_BADPARAM; return NULL; } if (strcmp(attrib->a_qualifier, "proc") == 0) job = 0; else if (strcmp(attrib->a_qualifier, "session") == 0) job = 1; else { rm_errno = RM_ERR_BADPARAM; return NULL; } if (getprocs() == 0) { rm_errno = RM_ERR_SYSTEM; return NULL; } if ((now = time(NULL)) <= 0) { log_err(errno, id, "time"); rm_errno = RM_ERR_SYSTEM; return NULL; } start = now; for (i = 0; i < nproc; i++) { struct kinfo_proc *pp = &proc_tbl[i]; if (job) { if (value != sess_tbl[i]) continue; } else { if (value != pp->kp_proc.p_pid) continue; } if (pp->kp_proc.p_stats == NULL) { rm_errno = RM_ERR_SYSTEM; return NULL; } if (kvm_read(kd, (u_long)pp->kp_proc.p_stats, &ps, sizeof(ps)) != sizeof(ps)) { log_err(errno, id, "kvm_read(pstats)"); rm_errno = RM_ERR_SYSTEM; return NULL; } found = 1; start = MIN(start, ps.p_start.tv_sec); } if (found) { sprintf(ret_string, "%ld", (long)((double)(now - start) * wallfactor)); return ret_string; } rm_errno = RM_ERR_EXIST; return NULL; } int get_la(double *rv) { char *id = "get_la"; long la[3]; #ifdef USE_SYSCTL int mib[2]; size_t len; unsigned int phys_mem; int page_size; #endif #ifndef USE_SYSCTL if (kd == NULL) { log_err(-1, id, nokernel); return (rm_errno = RM_ERR_SYSTEM); } if (nl[KSYM_LOAD].n_type == 0) { log_err(-1, id, "loadaverage count not found"); return (rm_errno = RM_ERR_SYSTEM); } if (kvm_read(kd, nl[KSYM_LOAD].n_value, la, sizeof(la)) != sizeof(la)) { log_err(errno, id, "kvm_read"); return (rm_errno = RM_ERR_SYSTEM); } #else mib[0] = CTL_VM; /* get load average */ mib[1] = VM_LOADAVG; len = sizeof(la); (void)sysctl(mib, 2, &la, &len, NULL, 0); #endif *rv = (double)la[0] / (double)FSCALE; return 0; } u_long gracetime(u_long secs) { time_t now = time((time_t *)NULL); if (secs > now) /* time is in the future */ return (secs - now); else return 0; } static char * quota(struct rm_attribute *attrib) { char *id = "quota"; int type; dev_t dirdev; uid_t uid; struct stat sb; struct fstab *fs; struct dqblk qi; struct passwd *pw; static char *type_array[] = { "harddata", "softdata", "currdata", "hardfile", "softfile", "currfile", "timedata", "timefile", }; enum type_name { harddata, softdata, currdata, hardfile, softfile, currfile, timedata, timefile, type_end }; if (attrib == NULL) { log_err(-1, id, no_parm); rm_errno = RM_ERR_NOPARAM; return NULL; } if (strcmp(attrib->a_qualifier, "type")) { sprintf(log_buffer, "unknown qualifier %s", attrib->a_qualifier); log_err(-1, id, log_buffer); rm_errno = RM_ERR_BADPARAM; return NULL; } for (type = 0; type < type_end; type++) { if (strcmp(attrib->a_value, type_array[type]) == 0) break; } if (type == type_end) /* check to see if command is legal */ { sprintf(log_buffer, "bad param: %s=%s", attrib->a_qualifier, attrib->a_value); log_err(-1, id, log_buffer); rm_errno = RM_ERR_BADPARAM; return NULL; } if ((attrib = momgetattr(NULL)) == NULL) { log_err(-1, id, no_parm); rm_errno = RM_ERR_NOPARAM; return NULL; } if (strcmp(attrib->a_qualifier, "dir") != 0) { sprintf(log_buffer, "bad param: %s=%s", attrib->a_qualifier, attrib->a_value); log_err(-1, id, log_buffer); rm_errno = RM_ERR_BADPARAM; return NULL; } if (attrib->a_value[0] != '/') /* must be absolute path */ { sprintf(log_buffer, "not an absolute path: %s", attrib->a_value); log_err(-1, id, log_buffer); rm_errno = RM_ERR_BADPARAM; return NULL; } if (stat(attrib->a_value, &sb) == -1) { sprintf(log_buffer, "stat: %s", attrib->a_value); log_err(errno, id, log_buffer); rm_errno = RM_ERR_EXIST; return NULL; } dirdev = sb.st_dev; DBPRT(("dir has devnum %d\n", dirdev)) if (setfsent() == NULL) { log_err(errno, id, "setfsent"); rm_errno = RM_ERR_SYSTEM; return NULL; } while ((fs = getfsent()) != NULL) { if (strcmp(fs->fs_type, FSTAB_XX) == 0 || strcmp(fs->fs_type, FSTAB_SW) == 0) continue; if (stat(fs->fs_file, &sb) == -1) { sprintf(log_buffer, "stat: %s", fs->fs_file); log_err(errno, id, log_buffer); continue; } DBPRT(("%s\t%s\t%d\n", fs->fs_spec, fs->fs_file, sb.st_dev)) if (sb.st_dev == dirdev) break; } endfsent(); if (fs == NULL) { sprintf(log_buffer, "filesystem %s not found", attrib->a_value); log_err(-1, id, log_buffer); rm_errno = RM_ERR_EXIST; return NULL; } if ((attrib = momgetattr(NULL)) == NULL) { log_err(-1, id, no_parm); rm_errno = RM_ERR_NOPARAM; return NULL; } if (strcmp(attrib->a_qualifier, "user") != 0) { sprintf(log_buffer, "bad param: %s=%s", attrib->a_qualifier, attrib->a_value); log_err(-1, id, log_buffer); rm_errno = RM_ERR_BADPARAM; return NULL; } if ((uid = (uid_t)atoi(attrib->a_value)) == 0) { if ((pw = getpwnam_ext(attrib->a_value)) == NULL) { sprintf(log_buffer, "user not found: %s", attrib->a_value); log_err(-1, id, log_buffer); rm_errno = RM_ERR_EXIST; return NULL; } uid = pw->pw_uid; } if (quotactl(fs->fs_file, Q_GETQUOTA, uid, (char *)&qi) == -1) { log_err(errno, id, "quotactl"); rm_errno = RM_ERR_SYSTEM; return NULL; } /* all sizes in KB */ switch (type) { case harddata: sprintf(ret_string, "%ukb", dbtob(qi.dqb_bhardlimit) >> 10); break; case softdata: sprintf(ret_string, "%ukb", dbtob(qi.dqb_bsoftlimit) >> 10); break; case currdata: sprintf(ret_string, "%ukb", dbtob(qi.dqb_curblocks) >> 10); break; case hardfile: sprintf(ret_string, "%u", qi.dqb_ihardlimit); break; case softfile: sprintf(ret_string, "%u", qi.dqb_isoftlimit); break; case currfile: sprintf(ret_string, "%u", qi.dqb_curinodes); break; case timedata: sprintf(ret_string, "%u", gracetime(qi.dqb_btime)); break; case timefile: sprintf(ret_string, "%u", gracetime(qi.dqb_itime)); break; } return ret_string; } void scan_non_child_tasks(void) { /* NYI */ return; } /* END scan_non_child_tasks() */