Packaging files in enstore. High Level Design.

Packaging files in enstore (AKA small files). High Level Design.

Packaging files in enstore. High Level Design.

Table of Contents

B 014 o6 11115 To) o AT PTUPRRUPPPRRN 4
2 Structure of enstore CAChING SYSTEIM.cceiuiiiiiiiiiiiiiiiite ettt ettt et e e s ee e s e S
2 B o L 1 (S N1 L Lo X =) 113 (o) (= TP PRPRRR 6
2.2 ReEad T11E€ FTOM ENISTOTE ..oevvvveieeeeeeeeeeeeeeee ettt e e e ettt eeeee e e e ettt aaaeeesesesesaeseesneeessnesesans 6
2.3 Purge file from CAChEooiuiiiiiiie e 7
2.4 Structure of enstore caching system with encp clients and disk moverscc.cccceecueeeinieeennne 7
2.5 HArdwWare O CACREvueeeiiiiiiieeeeeeee ettt e e e e e ettt e s e e e etaaaa e enanaes 9
2.6 FILES QNA CACKE ..ottt e e e e e ettt e e e e e e et taa e e eaaeeesaesesaaaeens 9
2.6.1 File names in CAChE.oooooiiiiiiiiii 9

2.6.2 PaCKa@e fl@. ...eeeeiiieeiiieeiie ettt e e et aeeeeene 10
2.6.2.1 Package file NamMe CONVENTIONcocueiriieiiieiiieiieeieeniee et e e e sineee e 10

2.6.3 Cached file INFOIMALIONuvveeeeieeiiiiiieiiiii e e e e e eeaannneeeeseesnnnnes 11

3 Enstore Caching System COMPONENLS.cccueerriierriiieriiieniieeeitiee sttt esieeesieeesaeeesbeeesseeesaseeensseees 12
3.1 UDP to AMQP PIOXY SETVETS. ..eeeruviieriiieeriiieeiiieeniteesiteesiteessteesaeessseesssseesssssaeesssssnssseesssnnnns 12
3.1.1 UDP2AMQ Proxy Configuration.ccccueerueerieriieeniieieesie ettt eieee e 13

3.2 Library Manager Configuration Changes.ccoceerieriiienienieeniie ettt 13
3.3 Library Manager DITE€CIOT.c.ueiiiuiiiiiiiiiiieeiiie ettt ettt e et e et e et esbaeesinnreeeeens 13
3.3.1 Encp Interaction with Library Manager DIr€Ctor.ccccceevueeriieeniieeniiieenieeesiee e 13

3.3.2 Library Manager Director Configuration.ccceeeeueeeriieenieeenieeereeeesiieesieeesseeesneeens 14

3.4 MOAITIEA FILE CIETK .. e e e e e aaanaeeaeenes 15
3.5 POlICY ENZINE SEIVET. ...ooiiiiiiiiiiiiiieieee ettt st e 16
RIS B 51 (S B T i o) o 0 | SR 17

3.6 Migration DISPALCRET.ceiuiiiiiieiiiie ettt ettt e et eeeteeeebaeeeeeennnreeeeens 17
3.6.1 Migration Dispatcher Configurationcccceecuieeriieeriiieeniieeniee e st e eeeessreeeeeeeees 17

TR A\ LT 1) P TP OO P OO PP P PP PPRTRROPPPPP 18
3771 Migrator CONTIGUIALION.eeeiiiieiiieeiiieeeit ettt ettt e et e et e st e e st e st eeeeeesibereeeeeananee 18

3.7.2 Writing cached files t0 tAPE(S). weevrvreerureeriieeiiieeriee ettt ettt e e e e re e e e esaaaeeeas 19

4 Detailed description of read Write reqUESt PrOCESSING.cccvveeriureeririerriieerieeeriieeeessirreeeeessinereeeens 20
4.1 Write request processing of files written via Cacheccocoieeiiiiiiiiiiiiiiiec e 20
4.2 Read reqUESE PIOCESSINE. ...eerutiiiiiaiieeitieeiteeite ettt e sttt et e sttt e bt e s bt ebeesabeebeesabeebeesbeeenbeesseeeneee 21

S REHADIIILY ISSUCS. .ueiiiiiiiiiiiieiiiee ettt ettt e ettt e ettt e s bt e e st e e s bbbt e e e senebaeeeeannnns 22
5.1 Recovery from the failure during migration from cache to file. cccccooviiiiiiiiniinnnnis 22

O AQIMINISIITATION. .oiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeee et et e s eeeseeeeeseee e e eesesassssssaasasssesssesasasesasssesasssesesnnnns 23
6.1 Enstore cache command 1IN€ INTETTACEcoevveeiiieieieeeeeeeeeeeeeeeeeeeeeee e, 23
6.2 Emergency data migration t0 TAPE.eeecveerueeriieeniienieenieenteetee st et esreereesereereeseneennee e e 23
6.3 Migration t0 NEW MEAIA.cccueeriiriiiiriieiieie ettt ettt et sn e e 24
7 Document Change LOZoooouiiiiiiiiiiie ettt et st e st e e s abee e sabeeeabeesnsbaeenssaeeaeens 25

Packaging files in enstore. High Level Design.

1 Introduction

This project is primarily driven by the need to aggregate small files into bigger packages for more
efficient use of tape drives.

Tape drive transfer rates depend on the size of the files. If the size of a file is relatively small then
overall average data throughput rate is less than for the relatively big file size. There are several reasons
for this: seeking to the files position, starts/ stops etc. The optimal size for a file on tape depends on the
tape technology and currently is about 1GB with tendency to grow'. The upper limit on the small file
depends on a particular tape technology and has tendency to grow. For now and foreseeable future the
reasonable limitation is 500 MB. Today's large file is tomorrow's small file

Users can not always easily control the size of files they write to tapes, and many storage systems
provide transparent aggregation of files for the user. Enstore does not provide this functionality and this
project is intended to provide this. It is of particular interest to existing and upcoming Neutrino
experiments, whose data files are typically small.

Another fact to take into considerations is that there are already many files with relatively small sizes
stored in the Fermilab enstore tape systems. We are migrating from tapes with small files to tapes with
much larger capacity, resulting in tapes with tens of thousands of small files on them. The access to
such files can be quite slow and inefficient, tying up valuable resources. To optimize access and
transfer rates for relatively small files we need to create a mechanism of packaging such files as a single
entity (package), stored on tape, while at the same time permitting transparent access to each file in a
package.

Packaging files before writing them to tape requires a disk buffer to aggregate files into a package.
Unpacking files from their package retrieved from tape before they get delivered to users requires a disk
cache. This disk space can not be requested on the user side because users may not be able to give up a
part (sometimes substantial) of their disk space for packaging. This disk cache must be an internal to
enstore , allowing to optimize packing / unpacking and delivery of individual files.

This cache/buffer will be used by multiple migrators/stagers to transfer files (packaged or not) between
disks and tapes in a distributed environment. Files will arrive from client nodes to the caching system
and will be stored on its disks. To provide a flexible environment for such files the caching system
should provide access to each file in cache from any host involved in transfer, packaging, migration,
staging, and unpacking. Thus the main requirement for such a cache is to provide a global access to any
file, which can be achieved by using a clustered file system.

2 Structure of enstore caching system.

The possible structure of integrated caching system is illustrated in fig 1. Such a system will easily

1 We consider an optimal file size the size, which provides the throughput not less than 90% of maximum

Packaging files in enstore. High Level Design.

scale by adding file servers, packagers, migrators, and stagers and by expanding the global file system.
The clustered file system should also sustain simultaneous high data throughput to multiple sources
and destinations. Here we intentionally have not specified any details of clients, file servers, tape
systems, or global file system. As a good candidate for clustered file the Lustre FS could be considered.
It has proven to be quite reliable and high performance distributed global file system, which has a good
record of utilization in mid to large data storage systems. Standard client/file server pairs, such as ftp
client — server, can be used.

File State
"""" Notifier

Migration
Dispatcher

Migrator

Fig 1. General structure of integrated data caching and tape system

In fig. 1. Data gets transferred between clients and File servers and temporarily stored in cache.

There are 3 types of file cache operations:

Packaging files in enstore. High Level Design.

2.1 Write file into enstore.

When data is written to cache by File Server the Policy Engine Server (PE Server) receives event from
File State Notifier specifying that the new file arrived into cache. PE server adds this file into list of
files to archive to tape. PE server may have multiple file lists, based on a policy set for each list.

It has 3 types of lists:
1. Archive Lists. List of files to be written to tape.
2. Stage Lists. Lists of files to be staged from tape(s) to cache.
3. Purge Lists. Lists of files to be purged in cache.

Lists may be groups of files belonging to a certain storage group, file family, directory, having certain
size limits, time in cache, etc. When policy rule is satisfied for a certain list it gets sent to Migration
Dispatcher (MD). Migration Dispatcher distributes file lists between Migrators. Migrator aggregates
files into container and writes this container to tape. It then notifies MD that the file was written to
tape, which in turn sends the corresponding event to PE Server. PE server adds files written to tape to
purge list(s).

2.2 Read file from enstore

When client reads file from enstore, File Server checks if the file is immediately available from cache.
If it is available File Server transfers this file to client. If file is not in cache but on tape, File Server
contacts Notifier requesting to stage a file and waits for a file. Notifier generates event to PE server. PE
Server puts it into stage list. When the rule for this list defines that it is time to stage files, this list is
sent to Migration Dispatcher. Migration dispatcher sends list of files to Migrator. Migrator stages
requested files from tape to cache. Note, that it will also stage files that happen to be in the package
along with requested files. Migrator returns list of staged files to MD, which in turn sends the
corresponding event to PE Server. PE Server contacts Notifier with event that requested file was staged.
Notifier sends this information back to File Server. File Server transfers the requested file. Policy
engine also puts all staged files into purge lists.

2.3 Purge file from cache

When PE Server rule determines that the file in the purge list is to be purged the file gets deleted in
cache.

2.4 Structure of enstore caching system with encp clients and disk
movers

It was decided to implement enstore caching system with encp clients and disk movers. This
implementation allows to reuse reliable data delivery mechanisms already incorporated into enstore,
such as CRC calculations, internal retries, etc. The modified data caching system is shown in fig. 2. The
combination of Library Manager Director and File Clerk provide for the functionality analogous to File

Packaging files in enstore. High Level Design.

State Notifier. The Disk mover provides the functionality analogous to File Server from fig. 1.

Communication between enstore caching system components in Fig.2 will be supported by two
protocols: Enstore UDP (EUDP) and AMQP. EUDP protocol will be used because some components of
enstore caching systems are standard enstore servers and clients. AMQP will be used to communicate
with components involving Policy Engine because it is one of its possible communication protocols.
For integration of these 2 protocols the EUDP/AMQP Proxy Server will be used. Its role is to receive
messages in UDP from existing enstore components and send to new components in AMQP and vice
verse. More than one EUDP/AMQP can be configured in the system to scale the system throughput.

Library
Manager
Director

-
Disk Move J

Migration

Dispatcher

Migrator

~

4

Fig 2. Structure of integrated data caching and tape system using encp and disk movers.

Packaging files in enstore. High Level Design.

The Library Manager Director (LMD) functionality is to determine whether to send data to tape library
directly or to cache first. Encp (client) sends to Library Manager Director request (ticket) containing
library name from “library” tag in pnfs directory it tries to write file to. For enstore pnfs tags see(ref
to doc). Library Manager Director has associated with it Policy Engine with set of rules defining
selection of ether tape or disk library manager. The selection rules can be based on different
parameters. The main is the file size. Each external encp client must firs contact LMD. Such an
approach allows to automatically define which user files may and will go directly to tape and which
will be first written to enstore cache.

Very important detail in this structure is that all disk movers are connected to the same clustered file
system, so that they all can access any file in cache. Further we will address details of enstore caching
system using encp clients and disk movers.

2.5 Hardware for cache

The enstore cache will be implemented as a clustered file system available for access by any migrator. It
must be very reliable to reduce to the minimum possible corruption of data for files written to cache
and awaiting their migration to tapes. It has been decided to use Oracle ZFS based disk system
Advanced HPC File Server Nexenta OS (Open Solaris with Linus user level utilities with 63 TB of disk
space, 48 GB memory and 10 Gb Ethernet network interface.

2.6 Files and cache

2.6.1 File names in cache.

Files written into cache by disk mover have their path and names derived from the file pnfs id. Pnfs id
consists of 36 hexadecimal digits. To prevent from a single directory in cache from thousand of entries
the pnfs file id maps to the corresponding file name according to algorithm:

file_id_hex = int("0x"+file_id, 16)

first = "%s"%((file_id_hex & OxFFF) A ((file_id_hex >> 24) & OxFFF),)
second = "%s" %((file_id_hex>>12) & OxFFF,)

path = os.path.join(root, first, second, file_id)

So for instance:

root = '""/data_files"
file_id = ""00001E9281CFB7054652B62737ED1ED3B3F6"
return value:

""/data_files/3816/3387/00001E9281CFB7054652B62737ED1ED3B3F6"
Thus each path will contain not more than Oxfff (4095) files. And files will be evenly distributed

Packaging files in enstore. High Level Design.

between different directories.
All files get written by disk mover into a temporary directory, with name unique for each disk mover:
/prefix/DN

— where DN is a disk mover name from enstore configuration

When disk mover completes write file transfer into this directory it immediately renames it according to
a pnfs id name convention. Only one file can be in this temporary directory for each disk mover.

This approach guaranties that there will be no partially files on disk due to disk mover failures during
file transfers (for write operations).

2.6.2 Package file.

Package file contains a files packaged according certain criteria defined by policy and a special file
README.IST with the following format:

List of cached files and original names
cached_file_path_1 file_name_in_the_name_spacel CRC1
cached_file_path_2 file_name_in_the_name_space2 CRC2

cached_file_path_N file_name_in_the_name_spaceN CRCN

This file makes package file self describing and allows to recover files from tape to their original
locations in cases when enstore database is absent. These cases may be:

1. Loss of the database

2. Transfer of the tape to another system, which may be enstore or some other tape based storage
system.

2.6.2.1 Package file name convention
Package files are written and read by encp client, so they are regular enstore and pnfs files.

Package files for archiving (to get written to tape) will be kept in the special archiving area. This file
names are:

/<archive>/.package-YYYY-mm-ddT%HH:%MM:%SSZ/.package-YYYY-mm-ddT%HH:%MM:
%SSZ.tar

The separate directory for a packaged file is needed to not allow a conflict between package file
contents during packaging.

Staged package files will be kept in staging area

/<stage>

Packaging files in enstore. High Level Design.

where <archive> and <stage> paths to archiving and staging areas.
Archiving and staging areas can be part of enstore cache or just local disk areas on Migrator nodes.

Package files will be kept in the highest pnfs directory common to all files in a package. So if there are
3 files in a package:

/pnfs/d1/d2/d3/f1
/pnfs/d1/d2/d4/f2
/pnfs/d1/d5/d6/f3
Then the package file will be:

/pnfs/d1/.package-YYYY-mm-ddT%HH:%MM:%SSZ/.package-YYYY-mm-ddT%HH:%MM:
%SSZ.tar

with time stamp suffix according to ISO8601 time format
Additional entries in file table of enstore DB:

packageld - character varying default '' - This entry is a bfid of a package file, indicates that the file
is a part of package and can not be accessed as an individual file directly on tape.

PackageFileCounter integer default -1 — counter of active files in package (gets updated only for a
package file).

PackageFileNumber integer default 0 — total number of files in a package.

Package can be deleted when PackageFileCounter=0.

2.6.3 Cached file information
If file was written to cache it will have the following additional entries in file table of enstore DB:

cache_status character varying default "'
archive_status character varying default '
cache_mod_time timestamp without time zone
archive_mod_time timestamp without time zone
where:

* cache_status — shows if file is in cache/migration/purge status. It can have the following values:

created — file was written to cache

- purging — file is being purged
- purged — file was deleted in cache
- staging — file is being staged to cache from tape

- cached — file is in cache

Packaging files in enstore. High Level Design.

- None — default value
» archive_status — file migration/purge status. It can have the following values:
- archiving — file is being written to tape. This state is useful for the recovery from failure
- archived — file was written
- None — default value
* cache_mod_time — time when cache_status has changed
* archive_mod_time — time when archive_status has changed
New table will be created in file DB to hold a status of files in transition - files_in_transition
bfid character varying
file_status character varying default '

cache_mod_time timestamp without time zone.

Special purge rules in PE Server define if a certain file needs to get purged.

3 Enstore Caching System Components.

In this section Enstore Section Components shown in Fig. 2 will be described.

3.1 UDP to AMQP proxy servers.

Each enstore UDP to AMQP proxy has two proxy servers: one to convert enstore udp messages to amqp
messages and the other to convert amgp replies to enstore UDP reply tickets.

UDP2AMQ proxy server receives enstore UDP messages and uses its payload (enstore ticket) as
content of AMQP message. The resulting qpid Message is sent to qpid target address
“target_addr” defined in configuration. For instance, messages destined to LMD will be
forwarded to qpid queue 1md.

The another server component converts qpid replies to enstore UDP messages and sends replies to
enstore UDP clients. In the process of original UDP-2-AMQP conversion udp2amgq server sets
property 'reply to' of outgoing gpid message to its own gpid queue to receive future qpid reply.
The proxy is stateless (as much as enstore UDP server is stateless) and it is expected that qpid reply
contains reply address from original enstore ticket ticket['r._a'] or ticket['ra']. The
content of reply gpid ticket is delivered as payload of enstore UDP ticket as is, converting only the
dictionary type of ticket['r_a'] or/and ticket['ra’ Jto tuple as expected by enstore / udp.

10

Packaging files in enstore. High Level Design.

3.1.1 UDP2AMQ Proxy Configuration.
Configuration may have one AMQP broker defined as:
configdict['amqgp_broker'] = {

'‘host':enstore_qpid_broker_host,
‘port':5672,
}
'host' — host on which AMQP broker is running
‘port' — AMQP broker communication port

Configuration dictionary may have entries for multiple proxy servers. Each entry has description as
follows:

configdict['my proxy.proxy server'] = {
‘host': 'proxyhost.fnal.gov',
‘port' : 7700, # udp server port
‘udp _port': 7710,
‘target addr':'udp relay test'

}

'host' — host on which 'my_proxy.proxy_server' is running
'port' - 'my_proxy.proxy_server' communication port as enstore server
‘'udp_port' — port on which proxy server transfers enstore UDP messages

'target_addr' — queue on which proxy server transfers AMQP messages.

3.1.2 UDP2AMAQP Proxy Server enstore commands.

Udp2amgqp proxy server is a regular enstore server, monitored by inquisitor and shown on System
Status page and Servers page. It can be started and stopped just as other enstore servers using ‘“enstore
start/stop” command. It responds to the following commands:

[enstore@dmsen02 test_dir]$ enstore udp

Usage:

udp [-ha --alive --help --retries= --timeout= --usage | udp_proxy_server
-a, --alive prints message if the server is up or down.

-h, --help prints this message

--retries KALIVE_RETRIES> number of attempts to resend alive requests

11

Packaging files in enstore. High Level Design.

--timeout <SECONDS> number of seconds to wait for alive response

--usage prints short help message

3.2 Library Manager Configuration Changes.

Configuration dictionary for each Library Manager may have entry with new key “use LMD" with
value containing reference (key) configuration dictionary entry for LMD, e.g.

configdict['LT03.library manager'] = { ..,'use LMD': 'lmd proxy',}

When 'use LMD" entry is present, encp shall contact specified LMD to get configuration entry for
Library Manager to be used for transfer. When entry is not present encp acts in a “classical” way.

3.3 Library Manager Director.

The Library Manager Director (LMD) functionality is to determine shall client send data directly to
tape library or use file aggregation in cache. External encp clients contact LMD first. LMD decides
destination of the transfer: tape or enstore cache. For read operation LMD chooses tape or cache as a
future file source. Library Manager Director was conceived to use esper Complex Event Processing
engine written in Java. The policy engine has set of rules defined to perform selection of tape or disk

based Library Manager. The selection rules can be based on different parameters most importantly file

size. Currently Library Manager Director uses simplified policy selector, which prototype was taken

from Library Manager. The policy selector has set of rules defined to perform selection of tape or disk

based Library Manager.

The LMD is a regular enstore server, monitored by inquisitor and shown on System Status page and
Servers page. It can be started and stopped just as other enstore servers using “enstore start/stop”

command. The LMD can be used without UDP2AMQP server (see comments to LMD configuration).

Its configuration is as:
configdict['lm director'] = {
‘host': 'pmig0l.fnal.gov',
‘port': 5602,
'logname' : 'LMDSRV"',
‘udp port': 7710, # to replace UDP2AMQP
‘queue in': 'udp relay test', # optional
‘udp_proxy server': 'lmd.udp proxy server',6 # optional
'policy file': "/home/enstore/policy files/lmd policy.py"
}
'host' - host on which “Im_director” is running

‘port' - “Im_director” communication port as enstore server

12

Packaging files in enstore. High Level Design.

'logname’ - “Im_director” log name

‘'udp_proxy_server' — proxy server with which “Im_director” communicates. Do not declare if
UDP2AMAQP proxy server is not used.

‘'udp_port' — define this port if UDP2AMQP proxy server is not used.

'queue_in' — AMQP queue name on which “Im_director” communicates with proxy server. Do not
declare if UDP2AMAQP proxy server is not used.

‘policy file' — file containing policies for a given LMD

3.3.1 Policy File Format

Library Manager Director and implemented in Python Policy Engine Server / Migration Dispatcher use
the same policy file, although it can be different.

The policy file is a Python dictionary and has a following format:

{Library_Managerl: {policyl:
{'rule':
{'storage_group': 'G1',
'file_family': 'F1',
'wrapper':'cpio_odc'
}
'minimal_file_size': 2000000000
'min_files_in_pack': 100,
'max_waiting_time': 300,

'resulting_library': 'new_library'

}

13

Packaging files in enstore. High Level Design.

Library_Manager2: { policyl:

}
Here is an example and explanation
'LTO3.library_manager':{1: {'rule': {'storage_group': 'G1',
'file_family': 'F1',
'wrapper':'cpio_odc'
}
'minimal_file_size': 2000000000L
'min_files_in_pack': 100,
'max_waiting_time': 300,
'resulting_library': 'new_library'

}

'minimal_file_size' - if file is less than this size the file will be aggregated
‘min_files_in_pack' - minimal number of files in package,

if total size of files to be aggregated is less than minimal_file_size

and number of files >= min_files_in_pack then files will get packaged
'max_waiting_time' - if time of collection of files for a package exceeds this value (sec),

the files will get packaged

If request comes from encp with library LTO3.library_manager and it satisfies this rule and
minimal_file_size conditions (less than the minimum) it will be sent to ' resulting_library'.

3.3.2 Library Manager Director enstore commands

Library Manager Director is a regular enstore server, monitored by inquisitor and shown on System
Status page and Servers page. It can be started and stopped just as other enstore servers using ‘“‘enstore
start/stop” command. It responds to the following commands:

[enstore@dmsen02 test_dir]$ enstore Imd

Usage: Imd [OPTIONS]...

-a, --alive

14

Packaging files in enstore. High Level Design.

prints message if the server is up or down.

--do-alarm <DO_ALARM> turns on more alarms

(snip ...)

--load load a new policy file

--retries KALIVE_RETRIES> number of attempts to resend alive requests
--show - print the current policy in python format

--timeout <SECONDS> number of seconds to wait for alive response
--usage - prints short help message

The options of interest are —load and —show.

3.3.3 Encp Interaction with Library Manager Director.

The new encp switch will be implemented to allow users to select whether they want to use the file
aggregation feature: enable-redirection. The default value of this switch is to not use Library Manager
Director to select a library manager. If this switch is specified the encp will try to send a request to a
Library Manager Director.

User side encp client extracts library name from “1library” tag in pnfs directory (namespace EA)
where it tries to write file to. For enstore pnfs tags see [to do: ref to doc]. Enstore configuration file
will have entry specifying if caching is enabled for concrete tape Library Manager. The configuration
dictionary entry for Library Manager may have entry “use LMD”. For backward compatibility, if
there is no such entry encp acts in a old way, encp does not contact LMD and it contacts Library
Manager directly. When “use LMD" entry is present in configuration its value contains key in
configuration dictionary for LMD (see). Encp contacts specified LMD to get configuration entry for
Library Manager to be used for transfer. Encp sends ticket to LMD in the same format it usially sends
to Library Manager. The ticket contains library name from “library” tag in pnfs directory (namespace
EA).

The choice of caching Library Manager is described by LMD Policy Engine rules. As a simple case,
each original tape Library Manager has corresponding Caching Library Manager. LMD make decision
to cache or not to cache and selects one of LMs from the pair.

The configuration of LMD must have a mapping of original libraries to alternative libraries.

LMD receives ticket from encp, processes the ticket in policy engine, modifies ticket field
ticket[“vc”] [“1library”] if necessary and then sends ticket as a reply back to encp.

LMD sets status filed of the reply. When ticket original ticket is not valid, the ticket ['status ']
contains error (€ _errors.LMD WRONG TICKET FORMAT, detail) meaning library can not
be selected and it is a fatal error.

In the case of success ticket ['status']Jissetto ('0k',None. If caching is not required LMD

15

Packaging files in enstore. High Level Design.

may leave original library unchanged. Otherwise LMD modifies ticket ['vc '] ['library'] to
contain name of one of enstore Caching Library Managers. In the case of success encp continues
transfer with Library Manager specified in the reply ticket.

3.4 Modified File Clerk

Existing File Clerk (FC) must be modified to notify Policy Engine (PE) Server about when files are
created in cache and when read file is requested. For the communications with PE Server file clerk will
use AMQP API, described in “Messaging HIL.D”. The specific of enstore file write operation is such
that the file may not get considered as written into enstore even if mover successfully completed data
transfer. File is considered as written into enstore when enstore client (encp) sets the pnfsld of written
file in enstore file database by calling a corresponding File Clerk Client (FCC) method, which in its
turn send a message to FC. File Clerk will be modified to send CACHE_WRITTEN event to PE Server.
A special process (thread) in File Clerk will set timeouts when File Clerk gets a new_bit_file request
from disk mover. If set_pnfsid request does not arrive from encp for the corresponding bfld, File Clerk
raises an alarm and makes an entry into the list of suspect files on disk. This is needed for the
subsequent cleanup of not completed file writes.

For read requests DM checks if requested file is on disk and if not it sends an open request to File
Clerk, which sends CACHE_MISS event to PE Server.

Modifications to file clerk.
new_bit_file:
If file was written to disk media:
1. set cache_status=created
2. cache_mod_time=now
3. put bfid, cache_status, cache_mod_time into files_in_transition table
4. notify a timer process (thread) to check this entry in a specified time period
Otherwise:
1. set cache_status="none”
Timer process (thread).

If specified period expires and the corresponding entry is in the table send alarm that file
transfer has not completed.

set_pnfsid:

If file was written to disk media:
1. send CACHE_WRITTEN event to PE Server
2. set cache_status=cached

3. notify a timer process that no check for this bfld is needed

16

https://cdcvs.fnal.gov/redmine/documents/show/87

Packaging files in enstore. High Level Design.

4. remove entry from files_in_transition table
Otherwise no changes.
open_bitfile (new method):
1. if cache_status==cached return success
2. otherwise set cache_status=staging
3. send CACHE_MISS event to PE Server
4. return cache_status (and other information in the ticket)

set_cache_status (new method) — modifies cache_status and archive_status

3.5 Policy Engine Server.

Policy Engine Server (PE Server) collects events from other servers (particularly from File Clerk)
combines them into the request lists and submits them to Migration Dispatcher. This is why it will be
implemented as a part of the process running both PE Server and Migration Dispatcher. The
communication between PE Server and Migration Dispatcher will be done via shared memory. The
events destined for PE Server are described in the corresponding “Messaging HL.D” document. PE
Server receives event from File Clerk specifying that the new file arrived into cache or the file written
to tape needs to get staged from it. PE Server has 3 types of file lists:

1. Archive Lists. List of files to be written to tape.
2. Stage Lists. Lists of files to be staged from tape(s) to cache.
3. Purge Lists. Lists of files to be purged in cache.

Lists may be groups of files belonging to a certain storage group, file family, directory, having certain
size limits, time in cache, etc. Lists have states indication what happens with them. This status is:

* filling — list is being populated with new files
* full - listis full

* work — list is sent for the execution

* done — execution was completed successfully

¢ failed — execution failed.

When policy rule is satisfied for a certain list it gets sent to Migration Dispatcher. This list gets sent to
Migration Dispatcher and is marked as “work”. Migration Dispatcher sends event to Policy Engine
Server, containing file list id and result of the operation: done/failed.

3.5.1 File List Format.

File list format is as follows:

17

https://cdcvs.fnal.gov/redmine/documents/show/87

Packaging files in enstore. High Level Design.

File list ID - unique file list id.
list_item_1[, list_item_2, ..., list_item_N]
where list_item_i is:
enstore bit file ID(BFID) — assigned when file gets written into enstore disk cache

name space file id (pnfs Id) — name space (pnfs) id. This allows to avoid contacting file clerk
to fetch a file on disk

file path — complete file path. This allows to avoid contacting file clerk.
tape library list — information from pnfs library tag
file CRC
All information about requested file can be obtained from enstore file database referring by BFID.

Tape library list is needed to identify to tape(s) from what library (or libraries for multiple copy) the
files will be written of from what tape in what library it will (or may be) staged. The operation type
(archive, stage, purge) performed on the list is specified in the message sent to the server.

3.6 Migration Dispatcher.

Migration Dispatcher (MD) receives file lists from Policy Engine Server over shared memory and
distributes file lists between Migrators or purges files depending on the operation specified in the list.
When migrator replies with result of the work, MD sends corresponding event to Policy Engine Server.

3.6.1 Migration Dispatcher Configuration

Migration Dispatcher configuration is described in enstore configuration file, presents a python
dictionary, and contains the following attributes:

'host": - MD host (string)
'port': - MD port (string)
'logname': - MD log name in enstore log (string)

'norestart’:' - automatic restart flag (string)

3.6.2 Python implementation of Policy Engine Server and Migration
Dispatcher — Dispatcher.

Python implementation of Policy Engine Server and Migration Dispatcher has both these components
running in the same process, because they share a lot of information. They run in separate threads.

18

Packaging files in enstore. High Level Design.

The Dispatcher is a regular enstore server, monitored by inquisitor and shown on System Status page
and Servers page. It can be started and stopped just as other enstore servers using “enstore start/stop”
command. Its configuration is as:

configdict['dispatcher'] = {
‘host': 'pmig@l.fnal.gov',
‘port': 5603,
'logname': 'DISP',

‘queue work': 'policy engine',
‘queue reply': 'file clerk',
‘migrator work': 'migrator',
‘migrator reply': 'migrator reply’,

'policy file': "/home/enstore/policy files/lmd policy.py",
'max_time in cache': 600,

‘purge watermarks':(.8, .4),

}

'host": - sever host
‘port’ - server port

'logname’ — server log name
'queue_work': - events (from file clerk) come to this queue
'queue_reply': - replies (if needed) are sent on this queue
‘migrator_work': - request lists are sent to this queue
‘migrator_reply': - replies from migrators come to this queue
‘policy_file": - policy file (same as for Library Manager Director).
‘max_time_in_cache': 600 — purge file if it was written max_time_in_cache ago
‘purge_watermarks':(.8, .4) — start purging staged files if occupied space is more than .8*Total,
stop purging files if occupied space is less than .4*Total
Dispatcher responds to the following commands:
[enstore@pmig01 src]$ enstore disp
Usage:
disp [OPTIONS]...

19

Packaging files in enstore. High Level Design.

-a, --alive prints message if the server is up or down.
--do-alarm <DO_ALARM> turns on more alarms
--do-log <DO_LOG> turns on more verbose logging
--do-print <DO_PRINT> turns on more verbose output
--dont-alarm <DONT_ALARM> turns off more alarms
--dont-log <DONT_LOG> turns off more verbose logging
--dont-print <DONT_PRINT> turns off more verbose output

--get-queue print content of pools
-h, --help prints this message
--load load a new policy file

--retries <ALIVE_RETRIES> number of attempts to resend alive requests
--show print the current policy in python format
--timeout <SECONDS> number of seconds to wait for alive response
--usage prints short help message
The options of interest are —load, —show (same as for Library Manager Director) and —get-queue.
Here is an example output of “enstore disp —get” command:
{'cache_missed': {},
‘cache_purge': {},
‘cache_written': {},
'migration_pool': {'005cc2f6-95aa-40d3-9565-013¢cfbbaf903': {'id': '005cc2f6-95aa-40d3-9565-013cfbbaf903’,
Tist': [{'bfid': 'GCMS132950908800000',
'‘complete_crc': 2548854233,
'libraries’': ['LTO3GS'],
‘nsid': '0000DCDC7B5FC2254F5088630204A8D06406',
'path’: '[pnfs/data2/file_aggregation/LTO3/john_f
amily2/variousSizes-Feb-17/200m.dm9a.copy-0175'},
{'bfid’': 'GCMS132950908900000',
‘complete_crc': 4021464339,
'libraries': ['LTO3GS'],
'nsid': '000023351D17A4BF4B90891E2DB44CF 43841,
'path': '/pnfs/data2/file_aggregation/LTO3/john_f

20

Packaging files in enstore. High Level Design.

amily2/variousSizes-Feb-17/613k.dm6a.copy-0116'},
{'bfid': 'GCMS132950909300000',
'‘complete_crc': 3136921648,
'libraries': ['LTO3GS'],
'nsid': '000078A625C4D88A422B87E58B51FBF72F00',
'path’: '[pnfs/data2/file_aggregation/LTO3/john_f
amily2/variousSizes-Feb-17/25m.dm9a.copy-0175'},
{'bfid': 'GCMS132950909400000',
‘complete_crc': 2851503227,
'libraries': ['LTO3GS'],
'nsid': '0000795EC4F491F54782BOCES89FA2EFDFB21’,
'path': '/pnfs/data2/file_aggregation/LTO3/john_f
amily2/variousSizes-Feb-17/100m.dm8a.copy-0184'},
{'bfid': 'GCMS132950910000000',
‘complete_crc': 0,
'libraries': ['LTO3GS'],
'nsid': '00002EF339597A3B4FD4BB48F543ACF5B994',
'path’: '[pnfs/data2/file_aggregation/LTO3/john_f
amily2/variousSizes-Feb-17/10m.dm8a.copy-0184'},
{'bfid': 'GCMS132950910200000',
‘complete_crc': 0,
'libraries': ['LTO3GS'],
'nsid': '00003C231D4D72D44251B55A46471AC02A8A ",
'path’: '/pnfs/data2/file_aggregation/LTO3/john_f
amily2/variousSizes-Feb-17/500m.dm9a.copy-0175'},
{'bfid': 'GCMS132950910400000',
'‘complete_crc': 0,
'libraries': ['LTO3GS'],
'nsid': '0000D7B8F C043D4344C78695D60080810ACS',
'path’: '[pnfs/data2/file_aggregation/LTO3/john_f
amily2/variousSizes-Feb-17/750m.dmé6a.copy-0116'},
{'bfid': 'GCMS132950911100000',
‘complete_crc': 1335146173,

21

Packaging files in enstore. High Level Design.

'libraries': ['LTO3GS'],
'libraries': ['LTO3GS'],
'nsid': '000020A8843390D14A37B2AA52A40D607A19',
amily2/variousSizes-Feb-17/50m.dm9a.copy-0175'},
{'bfid': 'GCMS132950912500000',
'‘complete_crc': 766913875,
'libraries': ['LTO3GS'],
'nsid': '00001BOE43C14CED4CA3B857BA2733B89592',
amily2/variousSizes-Feb-17/966k.dmé6a.copy-0116'},
{'bfid': 'GCMS132950912100000',
'‘complete_crc': 0,
'libraries': ['LTO3GS'],
'nsid': '0000B1008542814645B4BBB254C890BCB2EY’,
amily2/variousSizes-Feb-17/750m.dm9%a.copy-0175'}],
'time_qd': 'Fri Feb 17 14:05:29 2012,
‘type': u'CACHE_WRITTEN'},

3.7 Migrator.

As has been described above Migrator is responsible for moving files between Enstore disk cache and
tapes in both directions. When files are being written to Enstore. Migrator receives a list of files from
Migration Dispatcher. If this list is a list of files to be written to tape, Migrator aggregates these files
into container and writes this container to tape. It then notifies MD that the file was written to tape, for
each file in the list. If list, received from Migration Dispatcher is a list of files to be staged from tape
Migrator stages requested files from tape to cache. Migrator will also stage files that happen to be in the
package along with requested files.

3.71 Migrator configuration and enstore commands.

Migrator is a regular enstore server, monitored by inquisitor and shown on System Status page and
Servers page. It can be started and stopped just as other enstore servers using “enstore start/stop”
command. Migrator configuration is described in enstore configuration file, presents a python
dictionary, and contains the following attributes:

'host': - migrator host name (string)
'port': - migrator port number (integer)

'logname': - migrator name in the enstore log file (string)

22

Packaging files in enstore. High Level Design.

‘migration_dispatcher' — pointer to migration dispatcher structure in enstore configuration (keyword)
'data_area' — disk area where files are stored

‘archive_area' — disk area where archive is created during data archiving (string)

'stage_area' — disk area where archived files get staged from tape (string)

'tmp_stage_area' — disk area where staged files are temporarily stored (string)

‘packages_dir' - directory in name space for packages

'dismount_delay' — delay for dismounting tape

'check_written_file' - if greater than 0, then randomly check files written using this number as the mean
(default value:0 - don't check)

'tar_blocking_factor' — blocking factor for archiver (tar).
Migrator responds to the following enstore commands:

[enstore@enmvyr005 ~]$ enstore mig

Usage:
mig [-ha --alive --help --retries= --timeout= --usage | migrator_name
-a, --alive prints message if the server is up or down.
-h, --help prints this message

--retries <ALIVE_RETRIES> number of attempts to resend alive requests
--timeout <SECONDS> number of seconds to wait for alive response
--usage prints short help message

Let's consider Migrator functionality for writing cached files to tape and for staging files from tape to
cache.

3.7.2 Writing cached files to tape(s).

Migrator creates an archive file with name /<archive>/.package-YYYY-mm-ddT%HH:%MM:%SSZ
according to 2.5.2. It then writes this archive file to tape using encp and library defined in name space
of library tag with pnfs name defined according to 2.5.2.

After archive file was successfully write Migrator modifies File DB record for each file in archive:

packageld = archive bfld

cache_status=archived

cache_mod_time=NOW

The entry for archive file gets also modified:
PackageFileCounter = Number of files in archive

23

Packaging files in enstore. High Level Design.

PackageFileNumber =Number of files in archive

The entries in file_copies_map get created as follows:

bfid alt bfid

bfld1 Archive bfld
bfld2 Archive bfld
bfIdN Archive bfld

This File Copies Map will be used for staging files from tape.

Reading archived files.

When Migrator receives a list of files to get staged it identifies archive files using File Copies Map. It
then stages archive file and marks all files in archive as staged:

archive_status=cached

archive_mod_time=NOW

4 Detailed description of read write request processing.

4.1

®© N kW

Write request processing of files written via cache

Encp sends write request to Library Manager Director (LMD) to get library manager to send a
request to. The ticket is the one which was was originally sent to Library Manager.

LMD defines the library manager to send a request to, according to policy and sends reply to
encp with modified (if required by policy) ticket[*“vc”][“library”] and the name of the original
library in ticket[*“vc”’][“original_library’’]

Encp sends write request to Library Manger (LM) defined by ticket[*“vc”][“library”]
Disk Mover (DM) sends a request for work to LM.

LM sends write_to_hsm work to DM

DM transfers data from encp to disk.

DM creates new bit file calling new_bit_file method of File Clerk Client.

File Clerk creates bfld, sets cache_status to created, makes entry in file_in_transition table and
starts waiting for create_pnfsld call from encp

Encp completes file operations and calls create_pnfsld FC Client method

24

10.

11.

12.

13.

14.

15.

4.2

Packaging files in enstore. High Level Design.

FC sets pnfsld, sets cache_status to cached, removes entry from file_in_transition table and
sends CACHE_WRITTEN event to PE Server

PE Server creates lists of of events grouped according policy. The policy can be “group all files
with certain volume family if the size of the individual file is less than specified”, “immediately
migrate the file”, etc.

When list fills in (satisfies fill in criteria, such as size of all files in the list) it gets sent to
Migration Dispatcher.

Migration dispatcher sends this list to common queue and sets all files' cache_status to
“archiving” in enstoreDB. Then it moves the list into active lists internally.

Migrator pulls list from common queue, packs files into package if necessary and sends the
package to tape using encp. The package gets written to tape according to pnfs tags, common to
files in the package (as described in 2.5.2

Migrator modifies enstore DB according to 3.7.2

Read request processing.

Encp gets the library manager from the file's record in enstore DB (this is a standard way for
encp, no changes are needed). It hen send a request to library manager.

If request comes to tape Library Manager, it gets sent to tape mover (when request for work
comes from the mover). It then gets transferred to encp (client).

If request comes to disk Library Manager, it checks whether the file is in cache using File Clerk
information contained in the incoming request.

If file is in cache (cache_status == cached) the request gets sent to disk mover (when request for
work comes from the mover). It then gets transferred to encp (client).

If file is not in cache and its cache_status != cached then there could be the following scenarios:
1. cache_status == purged: request gets sent to disk mover

2. cache_status == staging: This means that the file is being processed by one of migrators or
is a part of package, one of which files is being processed by migrator. If disk LM can not
find this file in at_movers list it moves this file in on_hold list.

1. When migrator completes file stage from tape it sets cache_status == cached

2. It then sends the stage confirmation to disk mover if there is one, waiting for a file, and
to Disk Library Manager

3. Disk Library Manager identifies staged file(s) in on_hold list and moves them back to
request queue.

25

Packaging files in enstore. High Level Design.

5 Reliability issues.

The File Aggregation feature must provide a reliable delivery of files from user to tape and back. One
the most important issues here is a guaranty that the file in cache will be written to tape within a certain
period of. In this chapter a different aspects of the system reliability will be described.

5.1 Recovery from the failure during migration from cache to file.

This section describes the case when there was a failure of the Policy Engine Server caused by any
reason including corruption of write request lists. This recovery will be done by a file clerk resending
events based on a file transition table.

26

Packaging files in enstore. High Level Design.

6 Administration.

6.1 Enstore cache command line interface

The purpose enstore cache command line interface is to provide administrators of the system with tool
allowing to control a file aggregation feature The format of the command is:

enstore cache [OPTIONS [PARAMETERS]]
Available options and parameters:
--archive
This option requires additional OPTIONS:
--all - flush all write lists to tape(s)

--sg STORAGE_GROUP- flush all pending write lists for a specified storage group to
tape(s)
--vf VOLUME_FAMILY -- flush all pending write lists for a specified volume family to
tape(s)
--stage
This option requires additional OPTIONS:

--all — stage all read lists from tape(s)

--sg STORAGE_GROUP- stage all pending read lists for a specified storage group
from tape(s)

--vf VOLUME_FAMILY -- stage all pending read lists for a specified volume family
from tape(s)

--flush — both —archive and —stage with the same additional options.

6.2 Emergency data migration to tape.

Some system operations, such as scheduled or unscheduled system shutdowns may require flushing all
files not yet written to tape to get written even if criteria defined in the Policy Engine Server were not
met. The special enstore command and the corresponding event will be designed for this.

Enstore command:

enstore cache —flush —all - this command instructs the policy engine to send all its current lists for
migration to tapes.

27

Packaging files in enstore. High Level Design.

6.3 Migration to new media.

In enstore there is a need of consistent migration of data form one tape media to another as the old
media and drives get replaced with new technology. The natural way of providing such migration for
packaged files is to stage them to cache with subsequent repackaging and archiving to a new tape. This
approach does not require any changes in migration scripts.

28

Packaging files in enstore. High Level Design.

7 Document Change log
v13 |02/16/11 |Alex |Updated Caching Components section to describe interaction and
configuration changes. Took out operation from File List Format.
V14 103/16/11 |Alex |Change order of operations in set_pnfsid() to ensure recovery after crash.
V15 06/29/11 |Sasha|l. Changed package file path in cache.
2. Changed file clerk section to distinguish files written via cache or directly
to tape.
3. Changed “Writing cached files to tape(s)”.
V16 09/16/11 |Sasha|l. Added detailed description of package file
2. Modified “Read request processing” section.
V17 |10/06/11 |Sasha|1. Added reliability issues.
2. Added administration section
3. Changes according to comments from Gene.
v18 Sasha
v19 Sasha
v20 Sasha
v21 |08/27/12 |Sasha|Added description for configuration without UDP2AMQP server

29

	1 Introduction
	2 Structure of enstore caching system.
	2.1 Write file into enstore.
	2.2 Read file from enstore
	2.3 Purge file from cache
	2.4 Structure of enstore caching system with encp clients and disk movers
	2.5 Hardware for cache
	2.6 Files and cache
	2.6.1 File names in cache.
	2.6.2 Package file.
	2.6.2.1 Package file name convention

	2.6.3 Cached file information

	3 Enstore Caching System Components.
	3.1 UDP to AMQP proxy servers.
	3.1.1 UDP2AMQ Proxy Configuration.
	3.1.2 UDP2AMQP Proxy Server enstore commands.

	3.2 Library Manager Configuration Changes.
	3.3 Library Manager Director.
	3.3.1 Policy File Format
	3.3.2 Library Manager Director enstore commands
	3.3.3 Encp Interaction with Library Manager Director.

	3.4 Modified File Clerk
	3.5 Policy Engine Server.
	3.5.1 File List Format.

	3.6 Migration Dispatcher.
	3.6.1 Migration Dispatcher Configuration
	3.6.2 Python implementation of Policy Engine Server and Migration Dispatcher – Dispatcher.

	3.7 Migrator.
	3.7.1 Migrator configuration and enstore commands.
	3.7.2 Writing cached files to tape(s).

	4 Detailed description of read write request processing.
	4.1 Write request processing of files written via cache
	4.2 Read request processing.

	5 Reliability issues.
	5.1 Recovery from the failure during migration from cache to file.

	6 Administration.
	6.1 Enstore cache command line interface
	6.2 Emergency data migration to tape.
	6.3 Migration to new media.

	7 Document Change log

