
TORQUE 2.5.12
Administrator Guide

June 2012

© 2012 Adaptive Computing Enterprises, Inc. All rights reserved.

Distribution of this document for commercial purposes in either hard or soft copy form is strictly prohibited without prior written
consent from Adaptive Computing Enterprises, Inc.

Adaptive Computing, Cluster Resources, Moab, Moab Workload Manager, Moab Viewpoint, Moab Cluster Manager, Moab Cluster
Suite, Moab Grid Scheduler, Moab Grid Suite, Moab Access Portal, and other Adaptive Computing products are either registered
trademarks or trademarks of Adaptive Computing Enterprises, Inc. The Adaptive Computing logo and the Cluster Resources logo
are trademarks of Adaptive Computing Enterprises, Inc. All other company and product names may be trademarks of their
respective companies.

Adaptive Computing Enterprises, Inc.
1712 S. East Bay Blvd., Suite 300
Provo, UT 84606
+1 (801) 717-3700
www.adaptivecomputing.com

Scan to open online help

ii

http://www.adaptivecomputing.com/

iii

Welcome vii
Introduction vii
TORQUE Administrator Guide overview ix

Chapter 1: Overview xi
TORQUE installation overview xi

TORQUE architecture xi
Installing TORQUE xii
Compute nodes xiii
Enabling TORQUE as a service xv

Initializing/Configuring TORQUE on the server (pbs_server) xv
Specifying compute nodes xvii
Configuring TORQUE on compute nodes xviii
Finalizing configurations xix

Advanced configuration xix
Customizing the install xix
Server configuration xxvi

Manual setup of initial server configuration xxx
Server node file configuration xxxi

Basic node specification xxxii
Specifying virtual processor count for a node xxxii
Specifying GPU count for a node xxxii

Testing server configuration xxxiii

Chapter 2: Submitting and managing jobs xxxvii
Job submission xxxvii

Multiple job submission xxxviii
Requesting resources xxxix
Requesting generic resources xliv
Requesting floating resources xliv
Requesting other resources xlv
Exported batch environment variables xlv
Enabling trusted submit hosts xlvi
Example submit scripts xlvi

Monitoring jobs xlvii
Canceling jobs xlvii
Job preemption xlviii
Keeping completed jobs xlviii

Contents

iv

Job checkpoint and restart xlix
Introduction to BLCR xlix
Configuration files and scripts l
Starting a checkpointable job lvii
Checkpointing a job lviii
Restarting a job lviii
Acceptance tests lix

Job exit status lix
Service jobs lxiii

Submitting service jobs lxiv
Submitting service jobs in MCM lxiv
Managing service jobs lxiv

Chapter 3: Managing nodes lxv
Adding nodes lxv
Node properties lxvi
Changing node state lxvii
Host security lxvii
Linux cpuset support lxviii
Scheduling cores lxx

Geometry request configuration lxx
Geometry request usage lxxi
Geometry request considerations lxxi

Scheduling GPUs lxxi
Using GPUs with NUMA lxxii
TORQUE NVIDIA GPGPUs lxxiii

Chapter 4: Setting server policies lxxvii
Queue configuration lxxvii

Queue attributes lxxviii
Example queue configuration lxxxvii
Setting a default queue lxxxviii
Mapping a queue to subset of resources lxxxviii
Creating a routing queue lxxxviii

Server high availability xc

Chapter 5: Integrating schedulers for TORQUE xcv

Chapter 6: Configuring data management xcvii
SCP setup xcvii

Generating SSH key on source host xcviii
Copying public SSH key to each destination host xcviii
Configuring the SSH daemon on each destination host xcviii
Validating correct SSH configuration xcix
Enabling bi-directional SCP access xcix

v

Compiling TORQUE to support SPC xcix
Troubleshooting c

NFS and other networked filesystems c
File stage-in/stage-out ci

Chapter 7: MPI (Message Passing Interface) support ciii
MPICH ciii
MPICH-VMI civ
Open MPI cv

Chapter 8: Resources cvii

Chapter 9: Accounting records cxi

Chapter 10: Job logging cxiii
Job log location and name cxiii
Enabling job logs cxiii

Chapter 11: Troubleshooting cxv
Host resolution cxv
Firewall configuration cxvi
TORQUE log files cxvi
Using "tracejob" to locate job failures cxvi
Using GDB to locate job failures cxix
Other diagnostic options cxix
Stuck jobs cxx
Frequently asked questions (FAQ) cxxi
Compute node health check cxxvi

Configuring MOMs to launch a health check cxxvi
Creating the health check script cxxvii
Adjusting node state based on the health check output cxxvii
Example health check script cxxvii

Debugging cxxviii

Appendices cxxxiii
Commands overview cxxxv

momctl cxxxvi
pbs_mom cxli
pbs_server cli
pbs_track cliv
pbsdsh clvi
pbsnodes clvii
qalter clix
qchkpt clxvii
qdel clxviii

vi

qgpumode clxx
qgpureset clxx
qhold clxxi
qmgr clxxiii
qrerun clxxvi
qrls clxxvii
qrun clxxix
qsig clxxx
qstat clxxxii
qsub clxxxix
qterm ccv

Server parameters ccvii
Node manager (MOM) configuration ccxxiii

Parameters ccxxiii
Node features and generic consumable resource specification ccxxxvi
Command-line arguments ccxxxvi

Diagnostics and error codes ccxxxix
Considerations before upgrading ccxlv
Large cluster considerations ccxlvii

Scalability guidelines ccxlvii
End user command caching ccxlviii
Other considerations ccl

Prologue and epilogue scripts ccliii
Script order of execution ccliv
Script environment ccliv
Per job prologue and epilogue scripts cclvi
Prologue and epilogue scripts time out cclvi
Prologue error processing cclvii

Running multiple TORQUE servers andMOMs on the same node cclxi
Security overview cclxiii
Job submission filter ("qsub wrapper") cclxv
"torque.cfg" configuration file cclxvii
TORQUE Quick Start Guide cclxxi
BLCR acceptance tests cclxxv

Test environment cclxxv
Test 1 - Basic operation cclxxvi
Test 2 - Persistence of checkpoint images cclxxviii
Test 3 - Restart after checkpoint cclxxix
Test 4 - Multiple checkpoint/restart cclxxx
Test 5 - Periodic checkpoint cclxxx
Test 6 - Restart from previous image cclxxxi

Welcome

vii

Welcome
Welcome to TORQUE 2.5.12. This guide is intended as a reference for both users and system
administrators.

Note: Advanced TORQUE Administration is a video tutorial of a session offered at Moab Con
that offers further details on advanced TORQUE administration.

For more information about this guide, see these topics:

l TORQUE Administrator Guide overview on page ix

l Introduction on page vii

Introduction
This section contains some basic introduction information to help you get started using TORQUE. It
contains these topics:

l What is a Resource Manager? on page vii

l What are Batch Systems? on page vii

l Basic Job Flow on page viii

What is a Resource Manager?
While TORQUE has a built-in scheduler, pbs_sched, it is typically used solely as a resource manager
with a scheduler making requests to it. Resources managers provide the low-level functionality to
start, hold, cancel, and monitor jobs. Without these capabilities, a scheduler alone cannot control
jobs.

What are Batch Systems?
While TORQUE is flexible enough to handle scheduling a conference room, it is primarily used in
batch systems. Batch systems are a collection of computers and other resources (networks,
storage systems, license servers, and so forth) that operate under the notion that the whole is
greater than the sum of the parts. Some batch systems consist of just a handful of machines
running single-processor jobs, minimally managed by the users themselves. Other systems have
thousands and thousands of machines executing users' jobs simultaneously while tracking software
licenses and access to hardware equipment and storage systems.

Pooling resources in a batch system typically reduces technical administration of resources while
offering a uniform view to users. Once configured properly, batch systems abstract away many of
the details involved with running and managing jobs, allowing higher resource utilization. For
example, users typically only need to specify the minimal constraints of a job and do not need to
know the individual machine names of each host on which they are running. With this uniform
abstracted view, batch systems can execute thousands and thousands of jobs simultaneously.

http://www.clusterresources.com/moabcon/2008/videos/Advanced TORQUE Administration.php
http://www.clusterresources.com/moabcon/2008/videos/Advanced TORQUE Administration.php
http://www.clusterresources.com/moabcon/2008/videos/Advanced TORQUE Administration.php

Welcome

viii

Batch systems are comprised of four different components: (1) Master Node, (2)
Submit/Interactive Nodes, (3) Compute Nodes, and (4) Resources.

Component Description

Master Node A batch system will have a master node where pbs_server runs. Depending on the
needs of the systems, a master node may be dedicated to this task, or it may fulfill
the roles of other components as well.

Submit/Interactive
Nodes

Submit or interactive nodes provide an entry point to the system for users to man-
age their workload. For these nodes, users are able to submit and track their jobs.
Additionally, some sites have one or more nodes reserved for interactive use, such
as testing and troubleshooting environment problems. These nodes have client com-
mands (such as qsub and qhold).

Computer Nodes Compute nodes are the workhorses of the system. Their role is to execute submitted
jobs. On each compute node, pbs_mom runs to start, kill, and manage submitted
jobs. It communicates with pbs_server on the master node. Depending on the needs
of the systems, a compute node may double as the master node (or more).

Resources Some systems are organized for the express purpose of managing a collection of
resources beyond compute nodes. Resources can include high-speed networks, stor-
age systems, license managers, and so forth. Availability of these resources is limited
and needs to be managed intelligently to promote fairness and increased utilization.

Basic Job Flow
The life cycle of a job can be divided into four stages: (1) creation, (2) submission, (3) execution,
and (4) finalization.

Stage Description

Creation Typically, a submit script is written to hold all of the parameters of a job. These parameters
could include how long a job should run (walltime), what resources are necessary to run,
and what to execute. The following is an example submit file:

#PBS -N localBlast
#PBS -S /bin/sh
#PBS -l nodes=1:ppn=2,walltime=240:00:00
#PBS -M user@my.organization.com
#PBS -m ea
source ~/.bashrc
cd $HOME/work/dir
sh myBlast.sh -i -v

This submit script specifies the name of the job (localBlast), what environment to use
(/bin/sh), that it needs both processors on a single node (nodes=1:ppn=2), that it will
run for at most 10 days, and that TORQUE should email "user@my.organization.com"
when the job exits or aborts. Additionally, the user specifies where and what to execute.

Welcome

ix

Stage Description

Submission A job is submitted with the qsub command. Once submitted, the policies set by the admin-
istration and technical staff of the site dictate the priority of the job and therefore, when it
will start executing.

Execution Jobs often spend most of their lifecycle executing. While a job is running, its status can be
queried with qstat.

Finalilzation When a job completes, by default, the stdout and stderr files are copied to the direc-
tory where the job was submitted.

Related topics

l TORQUE Administrator Guide overview on page ix

TORQUE Administrator Guide overview
Chapter 1: Overview on page xi provides the details for installation and initialization, advanced
configuration options, and (optional)qmgr option necessary to get the system up and running.
System testing is also covered.

Chapter 2: Submitting and managing jobs on page xxxvii covers different actions applicable to jobs.
The first section details how to submit a job and request resources (nodes, software licenses, and
so forth), and provides several examples. Other actions include monitoring, canceling, preemption,
and keeping completed jobs.

Chapter 3: Managing nodes on page lxv covers administrator tasks relating to nodes, which
includes the following: adding nodes, changing node properties, and identifying state. Also an
explanation of how to configure restricted user access to nodes is covered in Host security on
page lxvii.

Chapter 4: Setting server policies on page lxxvii details server-side configurations of queue and
high availability.

Chapter 5: Integrating schedulers for TORQUE on page xcv offers information about using the
native scheduler versus an advanced scheduler.

Chapter 6: Configuring data management on page xcvii deals with issues of data management. For
non-network file systems, SCP setup on page xcvii details setting up SSH keys and nodes to
automate transferring data. NFS and other networked filesystems on page c covers configuration
for these file systems. This chapter also addresses the use of file staging using the the stagein and
stageout directives of the qsub command.

Chapter 7: MPI (Message Passing Interface) support on page ciii offers details supporting MPI.

Chapter 8: Resources on page cvii covers configuration, utilization, and states of resources.

Welcome

x

Chapter 9: Accounting records on page cxi explains how jobs are tracked by TORQUE for accounting
purposes.

Chapter 10: Job logging on page cxiii explains how to enable job logs that contain information for
completed jobs.

Chapter 11: Troubleshooting on page cxv is a guide that offers help with general problems. It
includes an FAQ and instructions for how to set up and use compute node checks. It also explains
how to debug TORQUE.

The appendices provide tables of commands, parameters, configuration options, error codes, the
Quick Start Guide, and so forth.

l Commands overview on page cxxxv

l Server parameters on page ccvii

l Node manager (MOM) configuration on page ccxxiii

l Diagnostics and error codes on page ccxxxix

l Considerations before upgrading on page ccxlv

l Large cluster considerations on page ccxlvii

l Prologue and epilogue scripts on page ccliii

l Running multiple TORQUE servers and MOMs on the same node on page cclxi

l Security overview on page cclxiii

l Job submission filter ("qsub wrapper") on page cclxv

l "torque.cfg" configuration file on page cclxvii

l TORQUE Quick Start Guide on page cclxxi

l BLCR acceptance tests on page cclxxv

Related topics

l Introduction on page vii

Chapter 1: Overview
This section contains some basic information about TORQUE, including how to install and configure it on
your system. For details, see these topics:

l TORQUE installation overview on page xi

l Initializing/Configuring TORQUE on the server (pbs_server) on page xv

l Advanced configuration on page xix

l Manual setup of initial server configuration on page xxx

l Server node file configuration on page xxxi

l Testing server configuration on page xxxiii

TORQUE installation overview
This section contains information about TORQUE architecture and explains how to install TORQUE. It also
describes how to install tpackages on compute nodes and how to enable TORQUE as a service.

For details, see these topics:

l TORQUE architecture on page xi

l Installing TORQUE on page xii

l Compute nodes on page xiii

l Enabling TORQUE as a service on page xv

Related topics

l Troubleshooting on page cxv

TORQUE architecture
A TORQUE cluster consists of one head node and many compute nodes. The head node runs the pbs_server
daemon and the compute nodes run the pbs_mom daemon. Client commands for submitting and managing
jobs can be installed on any host (including hosts not running pbs_server or pbs_mom).

The head node also runs a scheduler daemon. The scheduler interacts with pbs_server to make local policy
decisions for resource usage and allocate nodes to jobs. A simple FIFO scheduler, and code to construct

xi
TORQUE installation overview

Chapter 1: Overview

more advanced schedulers, is provided in the TORQUE source distribution. Most TORQUE users choose to
use a packaged, advanced scheduler such as Maui or Moab.

Users submit jobs to pbs_server using the qsub command. When pbs_server receives a new job, it informs
the scheduler. When the scheduler finds nodes for the job, it sends instructions to run the job with the node
list to pbs_server. Then, pbs_server sends the new job to the first node in the node list and instructs it to
launch the job. This node is designated the execution host and is called Mother Superior. Other nodes in a
job are called sister moms.

Related topics

l TORQUE installation overview on page xi
l Installing TORQUE on page xii

Installing TORQUE
Build the distribution on the machine that will act as the TORQUE server - the machine which monitors and
controls all compute nodes by running the pbs_server daemon.

The built distribution package works only on compute nodes of a similar architecture. Nodes with
different architecture must have the installation package built on them individually.

To install TORQUE

1. Download the TORQUE distribution file from
http://www.adaptivecomputing.com/resources/downloads/torque/. You can also download source code
using Subversion from the repository at svn://clusterresources.com/torque/. Use the
following command to display all branches:

svn list svn://clusterresources.com/torque/

2. Extract the packaged file and navigate to the unpackaged directory.

> tar -xzvf torque-2.3.4.tar.gz
> cd torque-2.3.4/

3. Do the following to configure the package:

a. By default, make install installs all files in /usr/local/bin, /usr/local/lib,
/usr/local/sbin, /usr/local/include, and /usr/local/man . You can specify an
installation prefix other than /usr/local by using --prefix as an argument to ./configure.
Note that TORQUE cannot be installed into a directory path that contains a space.

./configure --prefix=$home

b. Verify that you have environment variables configured so your system can find the shared libraries
and binary files for TORQUE.

To set the library path, add the directory where the TORQUE libraries will be installed. For
example, if your TORQUE libraries are installed in /opt/torque/lib, execute the following:

xii
TORQUE installation overview

http://www.adaptivecomputing.com/resources/docs/maui/
http://www.adaptivecomputing.com/resources/docs/mwm/
http://www.adaptivecomputing.com/resources/downloads/torque/

Chapter 1: Overview

> set LD_LIBRARY_PATH=$(LD_LIBRARY_PATH):/opt/torque/lib
> ldconfig

Adaptive Computing recommends that the TORQUE administrator be root.

For information about customizing the build at configure time, see Customizing the install
on page xix.

> ./configure

4. Run make and make install.

TORQUE must be installed by a root user.

> make
> sudo make install

OSX 10.4 users need to change #define __TDARWIN in src/include/pbs_config.h to
#define __TDARWIN_8.

After installation, verify that you have the PATH environment variable configured to include
/usr/local/bin/ and /usr/local/sbin/.

By default, make install creates a directory at /var/spool/torque. This directory is referred to
as TORQUE_HOME. TORQUE_HOME has several sub-directories, including server_priv/, server_
logs/, mom_priv/, mom_logs/, and other directories used in the configuration and running of
TORQUE.

TORQUE 2.0.2 and later includes a torque.spec file for building your own RPMs. You can also use the
checkinstall program to create your own RPM, tgz, or deb package.

While Adaptive Computing distributes the RPM files as part of the build, it does not support those
files. Not every Linux distribution uses RPM. Adaptive Computing provides a single solution using
make and make install that works across all Linux distributions and most UNIX systems. We
recognize the RPM format provides many advantages for deployment but it is up to the individual
site to repackage the TORQUE installation to match their individual needs.

Related topics

l TORQUE installation overview on page xi
l Compute nodes on page xiii

Compute nodes
Use the Adaptive Computing tpackage system to create self-extracting tarballs which can be distributed
and installed on compute nodes. The tpackages are customizable. See the INSTALL file for additional
options and features.

xiii
TORQUE installation overview

http://asic-linux.com.mx/~izto/checkinstall/

Chapter 1: Overview

To create tpackages

1. Configure and make as normal, and then run make packages.

> make packages
Building ./torque-package-clients-linux-i686.sh ...
Building ./torque-package-mom-linux-i686.sh ...
Building ./torque-package-server-linux-i686.sh ...
Building ./torque-package-gui-linux-i686.sh ...
Building ./torque-package-devel-linux-i686.sh ...
Done.

The package files are self-extracting packages that can be copied and executed on
your production machines. Use --help for options.

2. Copy the desired packages to a shared location.

> cp torque-package-mom-linux-i686.sh /shared/storage/
> cp torque-package-clients-linux-i686.sh /shared/storage/

3. Install the tpackages on the compute nodes.

Adaptive Computing recommends that you use a remote shell, such as SSH, to install tpackages on
remote systems. Set up shared SSH keys if you do not want to supply a password for each host.

The only required package for the compute node is mom-linux. Additional packages are
recommended so you can use client commands and submit jobs from compute nodes.

The following is an example of how to copy and install mom-linux in a distributed fashion.

> for i in node01 node02 node03 node04 ; do scp torque-package-mom-linux-i686.sh
${i}:/tmp/. ; done
> for i in node01 node02 node03 node04 ; do scp torque-package-clients-linux-i686.sh
${i}:/tmp/. ; done
> for i in node01 node02 node03 node04 ; do ssh ${i} /tmp/torque-package-mom-linux-
i686.sh --install ; done
> for i in node01 node02 node03 node04 ; do ssh ${i} /tmp/torque-package-clients-
linux-i686.sh --install ; done

Alternatively, you can use a tool like xCAT instead of dsh.

To use a tool like xCAT

1. Copy the tpackage to the nodes.

> prcp torque-package-linux-i686.sh noderange:/destinationdirectory/

2. Install the tpackage.

> psh noderange /tmp/torque-package-linux-i686.sh --install

Alternatively, users with RPM-based Linux distributions can build RPMs from the source tarball in two
ways.

l To use the default settings, use the rpmbuild command.

> psh noderange /tmp/torque-package-linux-i686.sh --install

xiv
TORQUE installation overview

Chapter 1: Overview

l If configure options are required, untar and build as normal, and then use the make rpms command
instead.

Although optional, it is possible to use the TORQUE server as a compute node and install a pbs_mom with
the pbs_server daemon.

Related topics

l Installing TORQUE on page xii
l TORQUE installation overview on page xi

Enabling TORQUE as a service

Enabling TORQUE as a service is optional. In order to run TORQUE as a service, you must enable
running client commands (for instructions, see .

The method for enabling TORQUE as a service is dependent on the Linux variant you are using. Startup
scripts are provided in the contrib/init.d/ directory of the source package.

l RedHat (as root)

> cp contrib/init.d/pbs_mom /etc/init.d/pbs_mom
> chkconfig --add pbs_mom

l SuSE (as root)

> cp contrib/init.d/suse.pbs_mom /etc/init.d/pbs_mom
> insserv -d pbs_mom

l Debian (as root)

> cp contrib/init.d/debian.pbs_mom /etc/init.d/pbs_mom
> update-rc.d pbs_mom defaults

You will need to customize these scripts to match your system.

These options can be added to the self-extracting packages. For more details, see the INSTALL file.

Related topics

l Troubleshooting on page cxv

Initializing/Configuring TORQUE on the server (pbs_
server)

The directory TORQUE_HOME/server_priv/ contains configuration and other information needed for
pbs_server. One of the files in this directory is serverdb. The serverdb file contains configuration
parameters for pbs_server and its queues. For pbs_server to run, serverdb must be initialized.

xv
Initializing/Configuring TORQUE on the server (pbs_server)

Chapter 1: Overview

You can initialize serverdb in two different ways, but the recommended way is to use the
./torque.setup script:

l Execute ./torque.setup from the build directory (see ./torque.setup on page xvi).

l Use pbs_server -t create (see Initializing/Configuring TORQUE on the server (pbs_server) on page
xv).

Restart pbs_server after initializing serverdb.

> qterm
> pbs_server

./torque.setup
The torque.setup script uses pbs_server -t create to initialize serverdb and then adds a user as a
manager and operator of TORQUE and other commonly used attributes. The syntax is as follows:

/torque.setup username

> ./torque.setup ken
> qmgr -c 'p s'

#
Create queues and set their attributes.
#
#
Create and define queue batch
#
create queue batch set queue batch queue_type = Execution
set queue batch resources_default.nodes = 1
set queue batch resources_default.walltime = 01:00:00
set queue batch enabled = True
set queue batch started = True
#
Set server attributes.
#
set server scheduling = True
set server acl_hosts = kmn
set server managers = ken@kmn
set server operators = ken@kmn
set server default_queue = batch
set server log_events = 511
set server mail_from = adm
set server scheduler_iteration = 600
set server node_check_rate = 150
set server tcp_timeout = 6
set server mom_job_sync = True
set server keep_completed = 300

pbs_server -t create
The -t create option instructs pbs_server to create the serverdb file and initialize it with a minimum
configuration to run pbs_server. To see the configuration, use qmgr:

xvi
Initializing/Configuring TORQUE on the server (pbs_server)

Chapter 1: Overview

> pbs_server -t create
> qmgr -c 'p s'

#
Set server attributes.
#
set server acl_hosts = kmn
set server log_events = 511
set server mail_from = adm
set server scheduler_iteration = 600
set server node_check_rate = 150
set server tcp_timeout = 6

A single queue named batch and a few needed server attributes are created.

This section contains these topics:

l Specifying compute nodes on page xvii

l Configuring TORQUE on compute nodes on page xviii

l Finalizing configurations on page xix

Related topics

l Node manager (MOM) configuration on page ccxxiii
l Advanced configuration on page xix

Specifying compute nodes
The environment variable TORQUE_HOME is where configuration files are stored. For TORQUE 2.1 and
later, TORQUE_HOME is /var/spool/torque/. For earlier versions, TORQUE_HOME is
/usr/spool/PBS/.

The pbs_server must recognize which systems on the network are its compute nodes. Specify each node on
a line in the server's nodes file. This file is located at TORQUE_HOME/server_priv/nodes. In most
cases, it is sufficient to specify just the names of the nodes on individual lines; however, various properties
can be applied to each node.

Syntax of nodes file:

node-name[:ts] [np=] [gpus=] [properties]

l The [:ts] option marks the node as timeshared. Timeshared nodes are listed by the server in the
node status report, but the server does not allocate jobs to them.

l The [np=] option specifies the number of virtual processors for a given node. The value can be less
than, equal to, or greater than the number of physical processors on any given node.

l The [gpus=] option specifies the number of GPUs for a given node. The value can be less than, equal
to, or greater than the number of physical GPUs on any given node.

l The node processor count can be automatically detected by the TORQUE server if auto_node_np is
set to TRUE. This can be set using this command:

qmgr -c set server auto_node_np = True

xvii
Initializing/Configuring TORQUE on the server (pbs_server)

Chapter 1: Overview

Setting auto_node_np to TRUE overwrites the value of np set in TORQUE_HOME/server_
priv/nodes.

l The [properties] option allows you to specify arbitrary strings to identify the node. Property
strings are alphanumeric characters only and must begin with an alphabetic character.

l Comment lines are allowed in the nodes file if the first non-white space character is the pound sign
(#).

The following example shows a possible node file listing.

TORQUE_HOME/server_priv/nodes:

Nodes 001 and 003-005 are cluster nodes
#
node001 np=2 cluster01 rackNumber22
#
node002 will be replaced soon
node002:ts waitingToBeReplaced
node002 will be replaced soon
#
node003 np=4 cluster01 rackNumber24
node004 cluster01 rackNumber25
node005 np=2 cluster01 rackNumber26 RAM16GB
node006
node007 np=2
node008:ts np=4
...

Related topics

l Initializing/Configuring TORQUE on the server (pbs_server) on page xv

Configuring TORQUE on compute nodes
If using TORQUE self-extracting packages with default compute node configuration, no additional steps are
required and you can skip this section.

If installing manually, or advanced compute node configuration is needed, edit the TORQUE_HOME/mom_
priv/config file on each node. The recommended settings follow.

TORQUE_HOME/mom_priv/config:

$pbsserver headnode # hostname running pbs server
$logevent 225 # bitmap of which events to log

This file is identical for all compute nodes and can be created on the head node and distributed in parallel
to all systems.

Related topics

l Initializing/Configuring TORQUE on the server (pbs_server) on page xv

xviii
Initializing/Configuring TORQUE on the server (pbs_server)

Chapter 1: Overview

Finalizing configurations
After configuring the serverdb and the server_priv/nodes files, and after ensuring minimal MOM
configuration, restart the pbs_server on the server node and the pbs_mom on the compute nodes.

Compute Nodes:

> pbs_mom

Server Node:

> qterm -t quick
> pbs_server

After waiting several seconds, the pbsnodes -a command should list all nodes in state free.

Related topics

l Initializing/Configuring TORQUE on the server (pbs_server) on page xv

Advanced configuration
This section contains information about how you can customize the installation and configure the server to
ensure that the server and nodes are communicating correctly. For details, see these topics:

l Customizing the install on page xix

l Server configuration on page xxvi

Related topics

l Server parameters on page ccvii

Customizing the install
The TORQUE configure command has several options available. Listed below are some suggested options
to use when running ./configure.

l By default, TORQUE does not install the admin manuals. To enable this, use --enable-docs.

l By default, TORQUE does not enable syslog usage. To enable this, use --enable-syslog.

Table 1-1: Optional Features

Option Description

--disable-
clients

Directs TORQUE not to build and install the TORQUE client utilities such as qsub, qstat, qdel, etc.

xix
Advanced configuration

Chapter 1: Overview

Option Description

--disable-
dependency-
tracking

Directs TORQUE build system to only rebuild changed source files and not rebuilt dependent
files.

--disable-FEA-
TURE

Do not include FEATURE (same as --enable-FEATURE=no).

--disable-gcc-
warnings

Disable gcc strictness and warnings. If using gcc, default is to error on any warning.

--disable-gui Do not include the GUI-clients.

--disable-lib-
tool-lock

Avoid locking (might break parallel builds).

--disable-mom Do not include the MOM daemon.

--disable-
mom-check-
spool

Don't check free space on spool directory and set an error.

--disable-posix-
memlock

Disable the moms use of mlockall. Some versions of OSs seem to have buggy POSIX MEMLOCK.

--disable-priv-
ports

Disable the use of privileged ports for authentication. Some versions of OSX have a buggy bind()
and cannot bind to privileged ports.

--disable-
qsub-keep-
override

Do not allow the qsub -k flag to override -o -e.

--disable-rpp By default, TORQUE uses RPP/UDP for resource queries from the PBS server to the MOMs. If dis-
abled, TcP is used. This does not affect general node/job status messages, job launch/exit mes-
sages, inter-mom messages, etc.

--disable-
server

Do not include server and scheduler.

--disable-
shell-pipe

Give the job script file as standard input to the shell instead of passing its name via a pipe.

xx
Advanced configuration

Chapter 1: Overview

Option Description

--disable-
spool

If disabled, TORQUE will create output and error files directly in $HOME/.pbs_spool if it exists or
in $HOME otherwise. By default, TORQUE will spool files in TORQUE_HOME/spool and copy them
to the users home directory when the job completes.

--disable-
xopen-net-
working

With HPUX and GCC, don't force usage of XOPEN and libxnet.

--enable-acct-x Enable adding x attributes to accounting log.

--enable-array Setting this under IRIX enables the SGI Origin 2000 parallel support. Normally autodetected from
the /etc/config/array file.

--enable-auto-
run

Allows jobs to run automatically as soon as they are queued if resources are available (available
in TORQUE 2.3.1 and later).

--enable-blcr Enable BLCR support.

--enable-cpa Enable Cray's CPA support.

--enable-cpu-
set

Enable Linux 2.6 kernel cpusets (in development).

--enable-debug Prints debug information to the console for pbs_server and pbs_mom while they are running..
(This is different than --with-debug which will compile with debugging symbols.)

--enable-
dependency-
tracking

Do not reject slow dependency extractors.

--enable-
drmaa

Build the DRMAA 1.0 library.

--enable-fast-
install[=PKGS]

Optimize for fast installation [default=yes].

--enable-FEA-
TURE[=ARG]

Include FEATURE [ARG=yes].

--enable-file-
sync

Open files with sync on each write operation. This has a negative impact on TORQUE per-
formance. This is disabled by default.

xxi
Advanced configuration

Chapter 1: Overview

Option Description

--enable-force-
nodefile

Forces creation of nodefile regardless of job submission parameters. Not on by default.

--enable-
geometry-
requests

TORQUE is compiled to use procs_bitmap during job submission (see [xref]).

--enable-main-
tainer-mode

This is for the autoconf utility and tells autoconf to enable so called rebuild rules. See maintainer
mode for more information.

--enable-max-
default

Turn on the RESOURCEMAXDEFAULT flag.

Versions of TORQUE earlier than 2.4.5 attempted to apply queue and server defaults to a
job that didn't have defaults specified. If a setting still did not have a value after that,

TORQUE applied the queue and server maximum values to a job (meaning, the maximum
values for an applicable setting were applied to jobs that had no specified or default
value).
In TORQUE 2.4.5 and later, the queue and server maximum values are no longer used as a
value for missing settings. To re-enable this behavior in TORQUE 2.4.5 and later, use --
enable-maxdefault.

--enable-
nochildsignal

Turn on the NO_SIGCHLD flag.

--enable-node-
mask

Enable nodemask-based scheduling on the Origin 2000.

--enable-
pemask

Enable pemask-based scheduling on the Cray T3e.

--enable-
plock-dae-
mons[=ARG]

Enable daemons to lock themselves into memory: logical-or of 1 for pbs_server, 2 for pbs_sched-
uler, 4 for pbs_mom (no argument means 7 for all three).

--enable-quick-
commit

Turn on the QUICKCOMMIT flag.

--enable-
shared[=PKGS]

Build shared libraries [default=yes].

--enable-shell-
use-argv

Enable this to put the job script name on the command line that invokes the shell. Not on by
default. Ignores --enable-shell-pipe setting.

xxii
Advanced configuration

http://www.gnu.org/software/hello/manual/automake/maintainer_002dmode.html
http://www.gnu.org/software/hello/manual/automake/maintainer_002dmode.html

Chapter 1: Overview

Option Description

--enable-sp2 Build PBS for an IBM SP2.

--enable-srfs Enable support for SRFS on Cray.

--enable-static
[=PKGS]

Build static libraries [default=yes].

--enable-sys-
log

Enable (default) the use of syslog for error reporting.

--enable-tcl-
qstat

Setting this builds qstat with Tcl interpreter features. This is enabled if Tcl is enabled.

--enable-unix-
sockets

Enable the use of Unix Domain sockets for authentication.

Table 1-2: Optional packages

Option Description

--with-blcr=DIR BLCR installation prefix (Available in versions 2.5.6 and 3.0.2 and later).

--with-blcr-include=DIR Include path for libcr.h (Available in versions 2.5.6 and 3.0.2 and later).

--with-blcr-lib=DIR Lib path for libcr (Available in versions 2.5.6 and 3.0.2 and later).

--with-blcr-bin=DIR Bin path for BLCR utilities (Available in versions 2.5.6 and 3.0.2 and later).

--with-cpa-include=DIR Include path for cpalib.h.

--with-cpa-lib=DIR Lib path for libcpalib.

--with-debug Compile with debugging symbols.

--with-default-server=HOS-
TNAME

Set the name of the computer that clients will access when no machine name is spec-
ified as part of the queue name. It defaults to the hostname of the machine on which
PBS is being compiled.

xxiii
Advanced configuration

Chapter 1: Overview

Option Description

--with-environ=PATH Set the path containing the environment variables for the daemons. For SP2 and AIX
systems, suggested setting is to /etc/environment. Defaults to the file "pbs_envi-
ronment" in the server-home. Relative paths are interpreted within the context of
the server-home.

--with-gnu-ld Assume the C compiler uses GNU ld [default=no].

--with-mail-
domain=MAILDOMAIN

Override the default domain for outgoing mail messages, i.e. "user@maildomain".
The default maildomain is the hostname where the job was submitted from.

--with-modulefiles[=DIR] Use module files in specified directory [/etc/modulefiles].

--with-momlogdir Use this directory for MOM logs.

--with-momlogsuffix Use this suffix for MOM logs.

--without-PACKAGE Do not use PACKAGE (same as --with-PACKAGE=no).

--without-readline Do not include readline support (default: included if found).

--with-PACKAGE[=ARG] Use PACKAGE [ARG=yes].

--with-pam=DIR Directory that holds the system PAM modules. Defaults to /lib(64)/security on
Linux.

--with-pic Try to use only PIC/non-PIC objects [default=use both].

--with-qstatrc-file=FILE Set the name of the file that qstat will use if there is no ".qstatrc" file in the directory
where it is being invoked. Relative path names will be evaluated relative to the
server home directory (see above). If this option is not specified, the default name
for this file will be set to "qstatrc" (no dot) in the server home directory.

--with-rcp One of "scp", "rcp", "mom_rcp", or the fullpath of a remote file copy program. scp is
the default if found, otherwise mom_rcp is used. Some rcp programs don't always
exit with valid error codes in case of failure. mom_rcp is a copy of BSD rcp included
with this source that has correct error codes, but it is also old, unmaintained, and
doesn't have largefile support.

--with-sched=TYPE Sets the scheduler type. If TYPE is "c", the scheduler will be written in C. If TYPE is
"tcl" the server will use a Tcl based scheduler. If TYPE is "basl", TORQUE will use the
rule based scheduler. If TYPE is "no", then no scheduling is done. "c" is the default.

xxiv
Advanced configuration

Chapter 1: Overview

Option Description

--with-sched-code=PATH Sets the name of the scheduler to use. This only applies to BASL schedulers and
those written in the C language. For C schedulers this should be a directory name
and for BASL schedulers a filename ending in ".basl". It will be interpreted relative to
srctree/src/schedulers.SCHD_TYPE/samples. As an example, an appropriate BASL
scheduler realtive path would be "nas.basl". The default scheduler code for "C"
schedulers is "fifo".

--with-scp In TORQUE 2.1 and later, SCP is the default remote copy protocol. See --with-rcp if a
different protocol is desired.

--with-sendmail[=FILE] Sendmail executable to use.

--with-server-home=DIR Set the server home/spool directory for PBS use. Defaults to /var/spool/torque.

--with-server-name-
file=FILE

Set the file that will contain the name of the default server for clients to use. If this is
not an absolute pathname, it will be evaluated relative to the server home directory
that either defaults to /usr/spool/PBS or is set using the --with-server-home option
to configure. If this option is not specified, the default name for this file will be set to
"server_name".

--with-tags[=TAGS] Include additional configurations [automatic].

--with-tcl Directory containing tcl configuration (tclConfig.sh).

--with-tclatrsep=CHAR Set the Tcl attribute separator character this will default to "." if unspecified.

--with-tclinclude Directory containing the public Tcl header files.

--with-tclx Directory containing tclx configuration (tclxConfig.sh).

--with-tk Directory containing tk configuration (tkConfig.sh).

--with-tkinclude Directory containing the public Tk header files.

--with-tkx Directory containing tkx configuration (tkxConfig.sh).

--with-tmpdir=DIR Set the tmp directory that pbs_mom will use. Defaults to "/tmp". This is a Cray-spe-
cific feature.

--with-xauth=PATH Specify path to xauth program.

xxv
Advanced configuration

Chapter 1: Overview

HAVE_WORDEXP
Wordxp() performs a shell-like expansion, including environment variables. By default, HAVE_WORDEXP is
set to 1 in src/pbs_config.h. If set to 1, TORQUE will limit the characters that can be used in a job
name to those allowed for a file in the current environment, such as BASH. If set to 0, any valid character
for the file system can be used.

If a user would like to disable this feature by setting HAVE_WORDEXP to 0 in src/include/pbs_
config.h, it is important to note that the error and the output file names will not expand environment
variables, including $PBS_JOBID. The other important consideration is that characters that BASH dislikes,
such as (), will not be allowed in the output and error file names for jobs by default.

Related topics

l Advanced configuration on page xix
l Server configuration on page xxvi

Server configuration
See these topics for details:

l Server configuration overview on page xxvi

l Name service configuration on page xxvi

l Configuring job submission hosts on page xxvii

l Configuring TORQUE on a multi-homed server on page xxviii

l Architecture specific notes on page xxviii

l Specifying non-root administrators on page xxviii

l Setting up email on page xxviii

l Using MUNGE authentication on page xxix

l Setting up the MOM hierarchy on page xxix

Server configuration overview
There are several steps to ensure that the server and the nodes are completely aware of each other and
able to communicate directly. Some of this configuration takes place within TORQUE directly using the
qmgr command. Other configuration settings are managed using the pbs_server nodes file, DNS files such
as /etc/hosts and the /etc/hosts.equiv file.

Name service configuration
Each node, as well as the server, must be able to resolve the name of every node with which it will
interact. This can be accomplished using /etc/hosts, DNS, NIS, or other mechanisms. In the case of
/etc/hosts, the file can be shared across systems in most cases.

A simple method of checking proper name service configuration is to verify that the server and the nodes
can "ping" each other.

xxvi
Advanced configuration

Chapter 1: Overview

Configuring job submission hosts

Using RCmd authentication

When jobs can be submitted from several different hosts, these hosts should be trusted via the R*
commands (such as rsh and rcp). This can be enabled by adding the hosts to the /etc/hosts.equiv file of the
machine executing the pbs_server daemon or using other R* command authorization methods. The exact
specification can vary from OS to OS (see the man page for ruserok to find out how your OS validates
remote users). In most cases, configuring this file is as simple as adding a line to your
/etc/hosts.equiv file, as in the following:

/etc/hosts.equiv:

#[+ | -] [hostname] [username]
mynode.myorganization.com
.....

Either of the hostname or username fields may be replaced with a wildcard symbol (+). The (+) may be
used as a stand-alone wildcard but not connected to a username or hostname, e.g., +node01 or +user01.
However, a (-) may be used in that manner to specifically exclude a user.

Following the Linux man page instructions for hosts.equiv may result in a failure. You cannot
precede the user or hostname with a (+). To clarify, node1 +user1 will not work and user1 will
not be able to submit jobs.

For example, the following lines will not work or will not have the desired effect:

+node02 user1
node02 +user1

These lines will work:

node03 +
+ jsmith
node04 -tjones

The most restrictive rules must precede more permissive rules. For example, to restrict user tsmith but
allow all others, follow this format:

node01 -tsmith
node01 +

Please note that when a hostname is specified, it must be the fully qualified domain name (FQDN) of the
host. Job submission can be further secured using the server or queue acl_hosts and acl_host_enabled
parameters (for details, see Queue attributes on page lxxviii).

Using the "submit_hosts" service parameter

Trusted submit host access may be directly specified without using RCmd authentication by setting the
server [xref] parameter via qmgr as in the following example:

> qmgr -c 'set server submit_hosts = host1'
> qmgr -c 'set server submit_hosts += host2'
> qmgr -c 'set server submit_hosts += host3'

xxvii
Advanced configuration

Chapter 1: Overview

Use of submit_hosts is potentially subject to DNS spoofing and should not be used outside of
controlled and trusted environments.

Allowing job submission from compute hosts

If preferred, all compute nodes can be enabled as job submit hosts without setting .rhosts or
hosts.equiv by setting the [xref] parameter to true.

Configuring TORQUE on a multi-homed server
If the pbs_server daemon is to be run on a multi-homed host (a host possessing multiple network
interfaces), the interface to be used can be explicitly set using the [xref] parameter.

Architecture specific notes
With some versions of Mac OS/X, it is required to add the line $restricted *.<DOMAIN> to the pbs_
mom configuration file. This is required to work around some socket bind bugs in the OS.

Specifying non-root administrators
By default, only root is allowed to start, configure and manage the pbs_server daemon. Additional trusted
users can be authorized using the parameters managers and operators. To configure these parameters
use the qmgr command, as in the following example:

> qmgr
Qmgr: set server managers += josh@*.fsc.com
Qmgr: set server operators += josh@*.fsc.com

All manager and operator specifications must include a user name and either a fully qualified domain name
or a host expression.

To enable all users to be trusted as both operators and administrators, place the + (plus) character
on its own line in the server_priv/acl_svr/operators and server_priv/acl_
svr/managers files.

Setting up email
Moab relies on emails from TORQUE about job events. To set up email, do the following:

To set up email

1. Use the --with-sendmail configure option at configure time. TORQUE needs to know where the
email application is. If this option is not used, TORQUE tries to find the sendmail executable. If it isn't
found, TORQUE cannot send emails.

> ./configure --with-sendmail=<path_to_executable>

2. Set mail_domain in your server settings. If your domain is clusterresources.com, execute:

> qmgr -c 'set server mail_domain=clusterresources.com'

xxviii
Advanced configuration

Chapter 1: Overview

3. (Optional) You can override the default [xref] and [xref] values via qmgr:

> qmgr -c 'set server mail_body_fmt=Job: %i \n Name: %j \n On host: %h \n \n %m \n \n
%d'
> qmgr -c 'set server mail_subject_fmt=Job %i - %r'

By default, users receive emails on job aborts. Each user can select which kind of emails to receive by
using the [xref] option when submitting the job. If you want to dictate when each user should receive
emails, use a submit filter (for details, see Job submission filter ("qsub wrapper") on page cclxv).

Using MUNGE authentication
MUNGE is an authentication service that creates and validates user credentials. It was developed by
Lawrence Livermore National Laboratoy (LLNL) to be highly scalable so it can be used in large
environments such as HPC clusters. To learn more about MUNGE and how to install it, see
http://code.google.com/p/munge/.

Configuring TORQUE to use MUNGE is a compile time operation. When you are building TORQUE, use –
enable-munge-auth as a command line option with ./configure.

> ./configure –enable-munge-auth

You can use only one authorization method at a time. If –enable-munge-auth is configured, the
privileged port ruserok method is disabled.

TORQUE does not link any part of the MUNGE library into its executables. It calls the MUNGE and
UNMUNGE utilities which are part of the MUNGE daemon. The MUNGE daemon must be running on the
server and all submission hosts. The TORQUE client utilities call MUNGE and then deliver the encrypted
credential to pbs_server where the credential is then unmunged and the server verifies the user and host
against the authorized users configured in serverdb.

Authorized users are added to serverdb using qmgr and the [xref] parameter. The syntax for authorized_
users is authorized_users=<user>@<host>. To add an authorized user to the server you can use the
following qmgr command:

> qmgr -c 'set server authorized_users=user1@hosta
> qmgr -c 'set server authorized_users+=user2@hosta

The previous example adds user1 and user2 from hosta to the list of authorized users on the server. Users
can be removed from the list of authorized users by using the -= syntax as follows:

> qmgr -c 'set server authorized_users-=user1@hosta

Users must be added with the <user>@<host> syntax. The user and the host portion can use the '*'
wildcard to allow multiple names to be accepted with a single entry. A range of user or host names can be
specified using a [a-b] syntax where a is the beginning of the range and b is the end.

> qmgr -c 'set server authorized_users=user[1-10]@hosta

This allows user1 through user10 on hosta to run client commands on the server.

Setting up the MOM hierarchy
Previously, pbs_moms reported to the server by sending their updates directly to the server. Now, the
creation of a hierarchy among the MOMs is allowed for specifying how these updates are sent.

xxix
Advanced configuration

http://code.google.com/p/munge/

Chapter 1: Overview

The name of the file that contains the configuration information is named mom_hierarchy. By default, it is
located in the <TORQUE-HOME>/mom_priv/mom-hierarchy directory. The file uses syntax similar to
XML and the site admin defining path(s) will be in the following format:

<path>
 <level> comma-separated node list </level>
 <level> comma-separated node list </level>
 ...
</path>
...

Node Hierarchy
Each node on the highest level reports directly to the server. Each node on the lower levels reports
directly to the first node of the level above it. If the first level node is down, the lower node will try the
next node in the list, trying each node until it moves up a level or eventually moves up to the server. Each
node will accept updates from any node and store them in a buffer until they are sent, along with its own
updates.The same mom_hierarchy file must be used for each node reporting to the same pbs_server.

Related topics

l Advanced configuration on page xix

Manual setup of initial server configuration
Configuration of the pbs_server daemon is accomplished using the qmgr command. On a new installation of
TORQUE, the configuration database must be initialized using the command pbs_server -t create.
This command creates a file in $TORQUEHOME/server_priv named serverdb which contains the server
configuration information. Once this is done, the minimal configuration requires setting up the desired
queue structure and enabling the scheduling interface.

The following output from qmgr shows a base configuration created by the command pbs_server -t
create:

qmgr -c 'p s'
#
Set server attributes.
#
set server acl_hosts = kmn
set server log_events = 511
set server mail_from = adm
set server scheduler_iteration = 600
set server node_check_rate = 150
set server tcp_timeout = 6

This is a bare minimum configuration and it is not very useful. By using qmgr, the server configuration can
be modified to set up TORQUE to do useful work. The following qmgr commands will create a queue and
enable the server to accept and run jobs.

xxx
Manual setup of initial server configuration

Chapter 1: Overview

pbs_server -t create
qmgr -c "set server scheduling=true"
qmgr -c "create queue batch queue_type=execution"
qmgr -c "set queue batch started=true"
qmgr -c "set queue batch enabled=true"
qmgr -c "set queue batch resources_default.nodes=1"
qmgr -c "set queue batch resources_default.walltime=3600"
qmgr -c "set server default_queue=batch"

These commands must be executed by root.

In this example, the configuration database is initialized and the scheduling interface is activated (using
'scheduling=true'). This option allows the scheduler to receive job and node events which allow it to be
more responsive. The next command creates a queue and specifies the queue type. Within PBS, the queue
must be declared an 'execution queue in order for it to run jobs. Additional configuration (i.e., setting
the queue to started and enabled) allows the queue to accept job submissions, and launch queued jobs.

The next two lines are optional, setting default node and walltime attributes for a submitted job. These
defaults will be picked up by a job if values are not explicitly set by the submitting user. The final line,
default_queue=batch, is also a convenience line and indicates that a job should be placed in the batch
queue unless explicitly assigned to another queue.

Additional information on configuration can be found in the admin manual and in the qmgr main page.

Related topics

l TORQUE installation overview on page xi

Server node file configuration
This section contains information about configuring server node files. It explains how to specify node
virtual processor counts and GPU counts, as well as how to specify node features or properties. For details,
see these topics:

l Basic node specification on page xxxii

l Specifying virtual processor count for a node on page xxxii

l Specifying GPU count for a node on page xxxii

l

Related topics

l TORQUE installation overview on page xi
l Server parameters on page ccvii
l Moab node feature overview

xxxi
Server node file configuration

http://www.adaptivecomputing.com/resources/docs/mwm/6-0/12.2nodeattributes.php#nodefeatures
http://www.adaptivecomputing.com/resources/docs/mwm/6-0/12.2nodeattributes.php#nodefeatures
http://www.adaptivecomputing.com/resources/docs/mwm/6-0/12.2nodeattributes.php#nodefeatures
http://www.adaptivecomputing.com/resources/docs/mwm/6-0/12.2nodeattributes.php#nodefeatures

Chapter 1: Overview

Basic node specification
For the pbs_server to communicate with each of the moms, it needs to know which machines to contact.
Each node that is to be a part of the batch system must be specified on a line in the server nodes file. This
file is located at TORQUE_HOME/server_priv/nodes. In most cases, it is sufficient to specify just the
node name on a line as in the following example:

server_priv/nodes:

node001
node002
node003
node004

Related topics

l Server node file configuration on page xxxi

Specifying virtual processor count for a node
By default each node has one virtual processor. Increase the number using the np attribute in the nodes
file. The value of np can be equal to the number of physical cores on the node or it can be set to a value
which represents available "execution slots" for the node. The value used is determined by the
administrator based on hardware, system, and site criteria.

The following example shows how to set the np value in the nodes file. In this example, we are assuming
that node001 and node002 has four physical cores. The administrator wants the value of np for node001 to
reflect that it has four cores. However, node002 will be set up to handle multiple virtual processors
without regard to the number of physical cores on the system.

server_priv/nodes:

node001 np=2
node002 np=12
...

Related topics

l Server node file configuration on page xxxi

Specifying GPU count for a node
Administrators can manually set the number of GPUs on a node or if they are using NVIDIA GPUs and
drivers, they can have them detected automatically. For more information about how to set up TORQUE
with NVIDIA GPUS, see TORQUE NVIDIA GPGPUS.

To manually set the number of GPUs on a node, use the gpus attribute in the nodes file. The value of GPUs
is determined by the administrator based on hardware, system, and site criteria.

The following example shows how to set the GPU value in the nodes file. In the example, we assume node01
and node002 each have two physical GPUs. The administrator wants the value of node001 to reflect the

xxxii
Server node file configuration

Chapter 1: Overview

physical GPUs available on that system and adds gpus=2 to the nodes file entry for node001. However,
node002 will be set up to handle multiple virtual GPUs without regard to the number of physical GPUs on
the system.

server_priv/nodes:

node001 gpus=1
node002 gpus=4
...

Related topics

l Server node file configuration on page xxxi

Testing server configuration
If you have initialized TORQUE using the torque.setup script or started TORQUE using pbs_server -t create
and pbs_server is still running, terminate the server by calling qterm. Next, start pbs_server again without
the -t create arguments. Follow the script below to verify your server configuration. The output for the
examples below are based on the nodes file example in Specifying node features and Server configuration.

xxxiii
Testing server configuration

Chapter 1: Overview

verify all queues are properly configured
> qstat -q

server:kmn

Quere Memory CPU Time Walltime Node Run Que Lm State
----- ------ -------- -------- ---- --- --- -- -----
batch -- -- -- -- 0 0 -- ER
 --- ---
 0 0

view additional server configuration
> qmgr -c 'p s'
#
Create queues and set their attributes
#
#
Create and define queue batch
#
create queue batch
set queue batch queue_type = Execution
set queue batch resources_default.nodes = 1
set queue batch resources_default.walltime = 01:00:00
set queue batch enabled = True
set queue batch started = True
#
Set server attributes.
#
set server scheduling = True
set server acl_hosts = kmn
set server managers = user1@kmn
set server operators = user1@kmn
set server default_queue = batch
set server log_events = 511
set server mail_from = adm
set server scheduler_iteration = 600
set server node_check_rate = 150
set server tcp_timeout = 300
set server job_stat_rate = 45
set server poll_jobs = True
set server mom_job_sync = True
set server keep_completed = 300
set server next_job_number = 0

verify all nodes are correctly reporting
> pbsnodes -a
node001
 state=free
 np=2
 properties=bigmem,fast,ia64,smp
 ntype=cluster
 status=rectime=1328810402,varattr=,jobs=,state=free,netload=6814326158,gres=,
loadave=0.21,ncpus=6,physmem=8193724kb,
availmem=13922548kb,totmem=16581304kb,idletime=3,nusers=3,nsessions=18,sessions=1876
1120 1912 1926 1937 1951 2019 2057 28399 2126 2140 2323 5419 17948 19356 27726 22254
29569,uname=Linux kmn 2.6.38-11-generic #48-Ubuntu SMP Fri Jul 29 19:02:55 UTC 2011 x86_
64,opsys=linux
 mom_service_port = 15002
 mom_manager_port = 15003
 gpus = 0
submit a basic job - DO NOT RUN AS ROOT
> su - testuser
> echo "sleep 30" | qsub

verify jobs display
> qstat

Job id Name User Time Use S Queue

xxxiv
Testing server configuration

Chapter 1: Overview

------ ----- ---- -------- -- -----
0.kmn STDIN knielson 0 Q batch

At this point, the job should be in the Q state and will not run because a scheduler is not running yet.
TORQUE can use its native scheduler by running pbs_sched or an advanced scheduler (such as Moab
Workload Manager). See Integrating schedulers for details on setting up an advanced scheduler.

Related topics

l TORQUE installation overview on page xi

xxxv
Testing server configuration

http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/

Chapter 2: Submitting and managing jobs
This section contains information about how you can submit and manage jobs with TORQUE. For details,
see the following topics:

l Job submission on page xxxvii

l Monitoring jobs on page xlvii

l Canceling jobs on page xlvii

l Job preemption on page xlviii

l Keeping completed jobs on page xlviii

l Job checkpoint and restart on page xlix

l Job exit status on page lix

l Service jobs on page lxiii

Job submission
Job submission is accomplished using the qsub command, which takes a number of command line
arguments and integrates such into the specified PBS command file. The PBS command file may be
specified as a filename on the qsub command line or may be entered via STDIN.

l The PBS command file does not need to be executable.

l The PBS command file may be piped into qsub (i.e., cat pbs.cmd | qsub)

l In the case of parallel jobs, the PBS command file is staged to, and executed on, the first allocated
compute node only. (Use pbsdsh to run actions on multiple nodes.)

l The command script is executed from the user's home directory in all cases. (The script may
determine the submission directory by using the $PBS_O_WORKDIR environment variable)

l The command script will be executed using the default set of user environment variables unless the
-V or -v flags are specified to include aspects of the job submission environment.

By default, job submission is allowed only on the TORQUE server host (host on which pbs_server is
running). Enablement of job submission from other hosts is documented in Server configuration on
page xxvi.

xxxvii
Job submission

Chapter 2: Submitting and managing jobs

Versions of TORQUE earlier than 2.4.5 attempted to apply queue and server defaults to a job that
didn't have defaults specified. If a setting still did not have a value after that, TORQUE applied the
queue and server maximum values to a job (meaning, the maximum values for an applicable setting
were applied to jobs that had no specified or default value).

In TORQUE 2.4.5 and later, the queue and server maximum values are no longer used as a value for
missing settings.

This section contains these topics:

l Multiple job submission on page xxxviii

l Requesting resources on page xxxix

l Requesting generic resources on page xliv

l Requesting floating resources on page xliv

l Requesting other resources on page xlv

l Exported batch environment variables on page xlv

l Enabling trusted submit hosts on page xlvi

l Example submit scripts on page xlvi

Related topics

l Maui Documentation
l http://www.lunarc.lu.se
l http://www.clusters.umaine.edu/wiki/index.php/Example_Submission_Scripts
l Job submission filter ("qsub wrapper") on page cclxv – Allow local checking and modification of

submitted job

Multiple job submission
Sometimes users will want to submit large numbers of jobs based on the same job script. Rather than
using a script to repeatedly call qsub, a feature known as job arrays now exists to allow the creation of
multiple jobs with one qsub command. Additionally, this feature includes a new job naming convention that
allows users to reference the entire set of jobs as a unit, or to reference one particular job from the set.

Job arrays are submitted through the -t option to qsub, or by using #PBS -t in your batch script. This option
takes a comma-separated list consisting of either a single job ID number, or a pair of numbers separated
by a dash. Each of these jobs created will use the same script and will be running in a nearly identical
environment.

> qstat -t 0-4 job_script
1098[].hostname

> qstat
1098[0].hostname ...
1098[1].hostname ...
1098[2].hostname ...
1098[3].hostname ...
1098[4].hostname ...

xxxviii
Job submission

http://www.lunarc.lu.se/Support/SpecialTopics/ExampleScripts/MatlabScripts/MatlabScript
http://www.clusters.umaine.edu/wiki/index.php/Example_Submission_Scripts
http://www.clusters.umaine.edu/wiki/index.php/Example_Submission_Scripts
http://www.clusters.umaine.edu/wiki/index.php/Example_Submission_Scripts

Chapter 2: Submitting and managing jobs

Versions of TORQUE earlier than 2.3 had different semantics for the -t argument. In these versions, -
t took a single integer number—a count of the number of jobs to be created.

Each 1098[x] job has an environment variable called PBS_ARRAYID, which is set to the value of the array
index of the job, so 1098[0].hostname would have PBS_ARRAYID set to 0. This allows you to create job
arrays where each job in the array performs slightly different actions based on the value of this variable,
such as performing the same tasks on different input files. One other difference in the environment
between jobs in the same array is the value of the PBS_JOBNAME variable.

These two examples are equivalent in TORQUE 2.2
> qsub -t 0-99
> qsub -t 100

You can also pass comma delimited lists of ids and ranges:
> qsub -t 0,10,20,30,40
> qsub -t 0-50,60,70,80

Running qstat displays a job summary, which provides an overview of the array's state. To see each job in
the array, run qstat -t.

The qalter, qdel, qhold, and qrls commands can operate on arrays—either the entire array or a range of
that array. Additionally, any job in the array may be accessed normally by using that job's ID, just as you
would with any other job. For example, running the following command would run only the specified job:

qrun 1098[0].hostname

Slot Limit
The slot limit is a way for administrators to limit the number of jobs from a job array that can be eligible
for scheduling at the same time. When a slot limit is used, TORQUE puts a hold on all jobs in the array that
exceed the slot limit. When an eligible job in the array completes, TORQUE removes the hold flag from the
next job in the array. Slot limits can be declared globally with the max_slot_limit parameter, or on a per-
job basis with qsub -t.

Related topics

l Job submission on page xxxvii

Requesting resources
Various resources can be requested at the time of job submission. A job can request a particular node, a
particular node attribute, or even a number of nodes with particular attributes. Either native TORQUE
resources, or external scheduler resource extensions may be specified. The native TORQUE resources are
listed in the following table:

Resource Format Description

arch string Specifies the administrator defined system architecture required. This defaults
to whatever the PBS_MACH string is set to in "local.mk".

xxxix
Job submission

Chapter 2: Submitting and managing jobs

Resource Format Description

cput seconds, or
[[HH:]MM:]SS

Maximum amount of CPU time used by all processes in the job.

epilogue string Specifies a user owned epilogue script which will be run before the system
epilogue and epilogue.user scripts at the completion of a job. The syntax is
epilogue=<file>. The file can be designated with an absolute or relative
path.
For more information, see Prologue and epilogue scripts on page ccliii.

file *size format: The amount of total disk requested for the job. (Ignored on Unicos.)

host string Name of the host on which the job should be run. This resource is provided for
use by the site's scheduling policy. The allowable values and effect on job place-
ment is site dependent.

mem *size format: Maximum amount of physical memory used by the job. (Ignored on Darwin, Dig-
ital Unix, Free BSD, HPUX 11, IRIX, NetBSD, and SunOS. Also ignored on Linux if
number of nodes is not 1. Not implemented on AIX and HPUX 10.)

nice integer Number between -20 (highest priority) and 19 (lowest priority). Adjust the proc-
ess execution priority.

xl
Job submission

Chapter 2: Submitting and managing jobs

Resource Format Description

nodes {<node_count> |
<hostname>}
[:ppn=<ppn>]
[:gpus=<gpu>]
[:<property>
[:<property>]...]
[+ ...]

Number and/or type of nodes to be reserved for exclusive use by the job. The
value is one or more node_specs joined with the + (plus) character: node_spec
[+node_spec...]. Each node_spec is a number of nodes required of the type
declared in the node_spec and a name of one or more properties desired for the
nodes. The number, the name, and each property in the node_spec are
separated by a : (colon). If no number is specified, one (1) is assumed.
The name of a node is its hostname. The properties of nodes are:

l ppn=# - Specify the number of virtual processors per node requested
for this job.
The number of virtual processors available on a node by default is 1, but
it can be configured in the $TORQUE_HOME/server_priv/nodes file using
the np attribute (see Server node file configuration on page xxxi). The
virtual processor can relate to a physical core on the node or it can be
interpreted as an "execution slot" such as on sites that set the node np
value greater than the number of physical cores (or hyper-thread
contexts). The ppn value is a characteristic of the hardware, system, and
site, and its value is to be determined by the administrator.

l gpus=# - Specify the number of GPUs per node requested for this job.
The number of GPUs available on a node can be configured in the
$TORQUE_HOME/server_priv/nodes file using the gpu attribute (see
Server node file configuration on page xxxi). The GPU value is a
characteristic of the hardware, system, and site, and its value is to be
determined by the administrator.

l property - A string assigned by the system administrator specifying a
node's features. Check with your administrator as to the node names
and properties available to you.

See qsub -l nodes on page xliii for examples.

By default, the node resource is mapped to a virtual node (that is,
directly to a processor, not a full physical compute node). This behavior

can be changed within Maui or Moab by setting the
JOBNODEMATCHPOLICY parameter. See "Appendix F: Parameters" of the
Moab Workload Manager Administrator Guide for more information.

opsys string Specifies the administrator defined operating system as defined in the MOM con-
figuration file.

other string Allows a user to specify site specific information. This resource is provided for
use by the site's scheduling policy. The allowable values and effect on job
placement is site dependent.

This does not work for msub using Moab and Maui.

xli
Job submission

http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/

Chapter 2: Submitting and managing jobs

Resource Format Description

pcput seconds, or
[[HH:]MM:]SS

Maximum amount of CPU time used by any single process in the job.

pmem *size format: Maximum amount of physical memory used by any single process of the job.
(Ignored on Fujitsu. Not implemented on Digital Unix and HPUX.)

procs procs=<integer> (Applicable in version 2.5.0 and later.) The number of processors to be allocated to
a job. The processors can come from one or more qualified node(s). Only one
procs declaration may be used per submitted qsub on page clxxxix command.
> qsub -l nodes=3 -1 procs=2

procs_bit-
map

string A string made up of 1's and 0's in reverse order of the processor cores
requested. A procs_bitmap=1110 means the job requests a node that has
four available cores, but the job runs exclusively on cores two, three, and four.
With this bitmap, core one is not used.
For more information, see Scheduling cores on page lxx.

prologue string Specifies a user owned prologue script which will be run after the system
prologue and prologue.user scripts at the beginning of a job. The syntax is
prologue=<file>. The file can be designated with an absolute or relative
path.
For more information, see Prologue and epilogue scripts on page ccliii.

pvmem *size format: Maximum amount of virtual memory used by any single process in the job.
(Ignored on Unicos.)

software string Allows a user to specify software required by the job. This is useful if certain soft-
ware packages are only available on certain systems in the site. This resource is
provided for use by the site's scheduling policy. The allowable values and effect
on job placement is site dependent. (See "Scheduler License Manager" in the
Moab Workload Manager Administrator Guide for more information.)

vmem *size format: Maximum amount of virtual memory used by all concurrent processes in the job.
(Ignored on Unicos.)

walltime seconds, or
[[HH:]MM:]SS

Maximum amount of real time during which the job can be in the running state.

*size format:

The size format specifies the maximum amount in terms of bytes or words. It is expressed in the form
integer[suffix]. The suffix is a multiplier defined in the following table ('b' means bytes (the default) and 'w'
means words). The size of a word is calculated on the execution server as its word size.

xlii
Job submission

http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/

Chapter 2: Submitting and managing jobs

Suffix Multiplier

b w 1

kb kw 1024

mb mw 1,048,576

gb gw 1,073,741,824

tb tw 1,099,511,627,776

Example 2-1: qsub -l nodes

Usage Description

> qsub -l nodes=12 Request 12 nodes of any type

> qsub -l nodes=2:server+14 Request 2 "server" nodes and 14 other nodes (a
total of 16) - this specifies two node_specs,
"2:server" and "14"

> qsub -l nodes=server:hippi-
+10:noserver+3:bigmem:hippi

Request (a) 1 node that is a "server" and has a
"hippi" interface, (b) 10 nodes that are not servers,
and (c) 3 nodes that have a large amount of mem-
ory and have hippi

> qsub -l nodes=b2005+b1803+b1813 Request 3 specific nodes by hostname

> qsub -l nodes=4:ppn=2 Request 2 processors on each of four nodes

> qsub -l nodes=1:ppn=4 Request 4 processors on one node

> qsub -l nodes=2:blue:ppn=2+red:ppn=3+b1014 Request 2 processors on each of two blue nodes,
three processors on one red node, and the compute
node "b1014"

Example 2-2:

> qsub -l mem=200mb /home/user/script.sh

This job requests a node with 200 MB of available memory.

xliii
Job submission

Chapter 2: Submitting and managing jobs

Example 2-3:

> qsub -l nodes=node01,mem=200mb /home/user/script.sh

This job will wait until node01 is free with 200 MB of available memory.

Related topics

l Job submission on page xxxvii

Requesting generic resources
When generic resources have been assigned to nodes using the server's nodes file, these resources can be
requested at the time of job submission using the other field. (See "Consumable Generic Resources" in the
Moab Workload Manager Administrator Guide for details on configuration within Moab).

Example 2-1: Generic

> qsub -l other=matlab /home/user/script.sh

This job will run on any node that has the generic resource matlab.

This can also be requested at the time of job submission using the -W x=GRES:matlab flag.

Related topics

l Requesting resources on page xxxix
l Job submission on page xxxvii

Requesting floating resources
When floating resources have been set up inside Moab, they can be requested in the same way as generic
resources. Moab will automatically understand that these resources are floating and will schedule the job
accordingly. (See "Floating Generic Resources" in the Moab Workload Manager Administrator Guide for
details on configuration within Moab.)

Example 2-1: Floating

> qsub -l other=matlab /home/user/script.sh

This job will run on any node when there are enough floating resources available.

This can also be requested at the time of job submission using the -W x=GRES:matlab flag.

Related topics

l Requesting resources on page xxxix
l Job submission on page xxxvii

xliv
Job submission

http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/

Chapter 2: Submitting and managing jobs

Requesting other resources
Many other resources can be requested at the time of job submission using the Moab Workload Manager.
See "Resource Manager Extensions" in the Moab Workload Manager Administrator Guide for a list of these
supported requests and correct syntax.

Related topics

l Requesting resources on page xxxix
l Job submission on page xxxvii

Exported batch environment variables
When a batch job is started, a number of variables are introduced into the job's environment that can be
used by the batch script in making decisions, creating output files, and so forth. These variables are listed
in the following table:

Variable Description

PBS_JOBNAME User specified jobname

PBS_ARRAYID Zero-based value of job array index for this job (in version 2.2.0 and later)

PBS_O_WORKDIR Job's submission directory

PBS_ENVIRONMENT N/A

PBS_TASKNUM Number of tasks requested

PBS_O_HOME Home directory of submitting user

PBS_MOMPORT Active port for MOM daemon

PBS_O_LOGNAME Name of submitting user

PBS_O_LANG Language variable for job

PBS_JOBCOOKIE Job cookie

PBS_NODENUM Node offset number

PBS_O_SHELL Script shell

xlv
Job submission

http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/

Chapter 2: Submitting and managing jobs

Variable Description

PBS_O_JOBID Unique pbs job id

PBS_O_HOST Host on which job script is currently running

PBS_QUEUE Job queue

PBS_NODEFILE File containing line delimited list on nodes allocated to the job

PBS_O_PATH Path variable used to locate executables within job script

Related topics

l Requesting resources on page xxxix
l Job submission on page xxxvii

Enabling trusted submit hosts
By default, only the node running the pbs_server daemon is allowed to submit jobs. Additional nodes can be
trusted as submit hosts by taking any of the following steps:

l Set the allow_node_submit server parameter (see Allowing job submission from compute hosts
on page xxviii).

Allows any host trusted as a compute host to also be trusted as a submit host.

l Set the submit_hosts server parameter (comma-delimited) (see Using the "submit_hosts" service
parameter on page xxvii).

Allows specified hosts to be trusted as a submit host.

l Use .rhosts to enable ruserok() based authentication (see Using RCmd authentication on page
xxvii).

See Configuring job submission hosts on page xxvii for more information.

If allow_node_submit is set, the allow_proxy_user must be set to allow user proxying when
submitting/running jobs.

Related topics

l Job submission on page xxxvii

Example submit scripts
The following is an example job test script:

xlvi
Job submission

Chapter 2: Submitting and managing jobs

#!/bin/sh
#
#This is an example script example.sh
#
#These commands set up the Grid Environment for your job:
#PBS -N ExampleJob
#PBS -l nodes=1,walltime=00:01:00
#PBS -q np_workq
#PBS -M YOURUNIQNAME@umich.edu
#PBS -m abe

#print the time and date
date

#wait 10 seconds
sleep 10

#print the time and date again
date

Related topics

l Job submission on page xxxvii

Monitoring jobs
TORQUE allows users and administrators to monitor submitted jobs with the qstat command. If the
command is run by a non-administrative user, it will output just that user's jobs. For example:

> qstat
Job id Name User Time Use S Queue
---------------- ---------------- ---------------- -------- - -----
4807 scatter user01 12:56:34 R batch
...

Related topics

l Submitting and managing jobs on page xxxvii

Canceling jobs
TORQUE allows users and administrators to cancel submitted jobs with the qdel command. The job will be
sent TERM and KILL signals killing the running processes. When the top-level job script exits, the job will
exit. The only parameter is the ID of the job to be canceled.

If a job is canceled by an operator or manager, an email notification will be sent to the user. Operators and
managers may add a comment to this email with the -m option.

$ qstat
Job id Name User Time Use S Queue
---------------- ---------------- ---------------- -------- - -----
4807 scatter user01 12:56:34 R batch
...
$ qdel -m "hey! Stop abusing the NFS servers" 4807
$

xlvii
Monitoring jobs

Chapter 2: Submitting and managing jobs

Related topics

l Submitting and managing jobs on page xxxvii

Job preemption
TORQUE supports job preemption by allowing authorized users to suspend and resume jobs. This is
supported using one of two methods. If the node supports OS-level preemption, TORQUE will recognize that
during the configure process and enable it. Otherwise, the MOM may be configured to launch a custom
checkpoint script in order to support preempting a job. Using a custom checkpoint script requires that the
job understand how to resume itself from a checkpoint after the preemption occurs.

Configuring a checkpoint script on a MOM
To configure the MOM to support a checkpoint script, the $checkpoint_script parameter must be set
in the MOM's configuration file found in TORQUE_HOME/mom_priv/config. The checkpoint script should
have execute permissions set. A typical configuration file might look as follows:

mom_priv/config:

$pbsserver node06
$logevent 255
$restricted *.mycluster.org
$checkpoint_script /opt/moab/tools/mom-checkpoint.sh

The second thing that must be done to enable the checkpoint script is to change the value of MOM_
CHECKPOINT to 1 in /src/include/pbs_config.h. In some instances, MOM_CHECKPOINT may already
be defined as 1. The new line should be as follows:

/src/include/pbs_config.h:

#define MOM_CHECKPOINT 1

Related topics

l Submitting and managing jobs on page xxxvii

Keeping completed jobs
TORQUE provides the ability to report on the status of completed jobs for a configurable duration after the
job has completed. This can be enabled by setting the keep_completed attribute on the job execution
queue. This should be set to the number of seconds that jobs should be held in the queue. Completed jobs
will be reported in the C state and the exit status is seen in the exit_status job attribute.

By maintaining status information about completed (or canceled, failed, etc.) jobs, administrators can
better track failures and improve system performance. This allows TORQUE to better communicate with
Moab Workload Manager and track the status of jobs. This gives Moab the ability to track specific failures
and to schedule the workload around possible hazards. (See NODEFAILURERESERVETIME in "Appendix A:
Parameters" of the Moab Workload Manager Administrator Guide for more information.)

xlviii
Job preemption

http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/

Chapter 2: Submitting and managing jobs

Related topics

l Submitting and managing jobs on page xxxvii

Job checkpoint and restart
While TORQUE has had a job checkpoint and restart capability for many years, this was tied to machine
specific features. Now TORQUE supports BLCR — an architecture independent package that provides for
process checkpoint and restart.

The support for BLCR is only for serial jobs, not for any MPI type jobs.

This section contains these topics:

l Introduction to BLCR on page xlix

l Configuration files and scripts on page l

l Starting a checkpointable job on page lvii

l Checkpointing a job on page lviii

l Restarting a job on page lviii

l Acceptance tests on page lix

Related topics

l Submitting and managing jobs on page xxxvii

Introduction to BLCR
BLCR is a kernel level package. It must be downloaded and installed from BLCR.

After building and making the package, it must be installed into the kernel with commands as follows.
These can be installed into the file /etc/modules but all of the testing was done with explicit invocations
of modprobe.

Installing BLCR into the kernel:

/sbin/insmod /usr/local/lib/blcr/2.6.12-1.234/blcr_imports.ko
/sbin/insmod /usr/local/lib/blcr/2.6.12-1.234/blcr_vmadump.ko
/sbin/insmod /usr/local/lib/blcr/2.6.12-1.234/blcr.ko

The BLCR system provides four command line utilities:

l cr_checkpoint

l cr_info

l cr_restart

l cr_run

For more information about BLCR, see the BLCR Administrator's Guide.

xlix
Job checkpoint and restart

https://ftg.lbl.gov/projects/CheckpointRestart/
http://upc-bugs.lbl.gov/blcr/doc/html/BLCR_Admin_Guide.html
http://upc-bugs.lbl.gov/blcr/doc/html/BLCR_Admin_Guide.html
http://upc-bugs.lbl.gov/blcr/doc/html/BLCR_Admin_Guide.html

Chapter 2: Submitting and managing jobs

Related topics

l Job checkpoint and restart on page xlix

Configuration files and scripts
Configuring and Building TORQUE for BLCR:

> ./configure --enable-unixsockets=no --enable-blcr
> make
> sudo make install

Depending on where BLCR is installed you may also need to use the following configure options to specify
BLCR paths:

Option Description

--with-blcr-include=DIR include path for libcr.h

--with-blcr-lib=DIR lib path for libcr

--with-blcr-bin=DIR bin path for BLCR utilities

The pbs_mom configuration file located in /var/spool/torque/mom_priv must be modified to identify
the script names associated with invoking the BLCR commands. The following variables should be used in
the configuration file when using BLCR checkpointing.

Variable Description

$checkpoint_inter-
val

How often periodic job checkpoints will be taken (minutes)

$checkpoint_script The name of the script file to execute to perform a job checkpoint

$restart_script The name of the script file to execute to perform a job restart

$checkpoint_run_
exe

The name of an executable program to be run when starting a checkpointable job (for BLCR,
cr_run)

The following example shows the contents of the configuration file used for testing the BLCR feature in
TORQUE.

The script files below must be executable by the user. Be sure to use chmod to set the permissions
to 754.

l
Job checkpoint and restart

Chapter 2: Submitting and managing jobs

Example 2-1: Script file permissions

chmod 754 blcr*
ls -l
total 20
-rwxr-xr-- 1 root root 2112 2008-03-11 13:14 blcr_checkpoint_script
-rwxr-xr-- 1 root root 1987 2008-03-11 13:14 blcr_restart_script
-rw-r--r-- 1 root root 215 2008-03-11 13:13 config
drwxr-x--x 2 root root 4096 2008-03-11 13:21 jobs
-rw-r--r-- 1 root root 7 2008-03-11 13:15 mom.lock

Example 2-2: mom_priv/config

$checkpoint_script /var/spool/torque/mom_priv/blcr_checkpoint_script$restart_script
/var/spool/torque/mom_priv/blcr_restart_script
$checkpoint_run_exe /usr/local/bin/cr_run
$pbsserver makua.cridomain
$loglevel 7

li
Job checkpoint and restart

Chapter 2: Submitting and managing jobs

Example 2-3: mom_priv/blcr_checkpoint_script

lii
Job checkpoint and restart

Chapter 2: Submitting and managing jobs

#! /usr/bin/perl
##
#
Usage: checkpoint_script
#
This script is invoked by pbs_mom to checkpoint a job.
#
##
use strict;
use Sys::Syslog;

Log levels:
0 = none -- no logging
1 = fail -- log only failures
2 = info -- log invocations
3 = debug -- log all subcommands
my $logLevel = 3;

logPrint(2, "Invoked: $0 " . join(' ', @ARGV) . "\n");

my ($sessionId, $jobId, $userId, $signalNum, $checkpointDir, $checkpointName);
my $usage =
 "Usage: $0 \n";

Note that depth is not used in this script but could control a limit to the number of
checkpoint
image files that are preserved on the disk.
#
Note also that a request was made to identify whether this script was invoked by the
job's
owner or by a system administrator. While this information is known to pbs_server, it
is not propagated to pbs_mom and thus it is not possible to pass this to the script.
Therefore, a workaround is to invoke qmgr and attempt to set a trivial variable.
This will fail if the invoker is not a manager.

if (@ARGV == 7)
{

($sessionId, $jobId, $userId, $checkpointDir, $checkpointName, $signalNum $depth) =
 @ARGV;
}
else { logDie(1, $usage); }

Change to the checkpoint directory where we want the checkpoint to be created
chdir $checkpointDir
 or logDie(1, "Unable to cd to checkpoint dir ($checkpointDir): $!\n")
 if $logLevel;

my $cmd = "cr_checkpoint";
$cmd .= " --signal $signalNum" if $signalNum;
$cmd .= " --tree $sessionId";
$cmd .= " --file $checkpointName";
my $output = `$cmd 2>&1`;
my $rc = $? >> 8;
logDie(1, "Subcommand ($cmd) failed with rc=$rc:\n$output")
 if $rc && $logLevel >= 1;
logPrint(3, "Subcommand ($cmd) yielded rc=$rc:\n$output")
 if $logLevel >= 3;
exit 0;

##
logPrint($message)
Write a message (to syslog) and die
##
sub logPrint
{
 my ($level, $message) = @_;
 my @severity = ('none', 'warning', 'info', 'debug');

liii
Job checkpoint and restart

Chapter 2: Submitting and managing jobs

 return if $level > $logLevel;

 openlog('checkpoint_script', '', 'user');
 syslog($severity[$level], $message);
 closelog();
}

##
logDie($message)
Write a message (to syslog) and die
##
sub logDie
{
 my ($level, $message) = @_;

 logPrint($level, $message);
 die($message);
}

liv
Job checkpoint and restart

Chapter 2: Submitting and managing jobs

Example 2-4: mom_priv/blcr_restart_script

lv
Job checkpoint and restart

Chapter 2: Submitting and managing jobs

#! /usr/bin/perl
##
#
Usage: restart_script
#
This script is invoked by pbs_mom to restart a job.
#
##
use strict;
use Sys::Syslog;

Log levels:
0 = none -- no logging
1 = fail -- log only failures
2 = info -- log invocations
3 = debug -- log all subcommands
my $logLevel = 3;

logPrint(2, "Invoked: $0 " . join(' ', @ARGV) . "\n");

my ($sessionId, $jobId, $userId, $checkpointDir, $restartName);
my $usage =
 "Usage: $0 \n";
if (@ARGV == 5)
{

($sessionId, $jobId, $userId, $checkpointDir, $restartName) =
@ARGV;

}
else { logDie(1, $usage); }

Change to the checkpoint directory where we want the checkpoint to be created
chdir $checkpointDir
 or logDie(1, "Unable to cd to checkpoint dir ($checkpointDir): $!\n")
 if $logLevel;

my $cmd = "cr_restart";
$cmd .= " $restartName";
my $output = `$cmd 2>&1`;
my $rc = $? >> 8;
logDie(1, "Subcommand ($cmd) failed with rc=$rc:\n$output")
 if $rc && $logLevel >= 1;
logPrint(3, "Subcommand ($cmd) yielded rc=$rc:\n$output")
 if $logLevel >= 3;
exit 0;

##
logPrint($message)
Write a message (to syslog) and die
##
sub logPrint
{
 my ($level, $message) = @_;
 my @severity = ('none', 'warning', 'info', 'debug');

 return if $level > $logLevel;
 openlog('restart_script', '', 'user');
 syslog($severity[$level], $message);
 closelog();
}

##
logDie($message)
Write a message (to syslog) and die
##
sub logDie
{
 my ($level, $message) = @_;

lvi
Job checkpoint and restart

Chapter 2: Submitting and managing jobs

 logPrint($level, $message);
 die($message);
}

Related topics

l Job checkpoint and restart on page xlix

Starting a checkpointable job
Not every job is checkpointable. A job for which checkpointing is desirable must be started with the -c
command line option. This option takes a comma-separated list of arguments that are used to control
checkpointing behavior. The list of valid options available in the 2.4 version of Torque is show below.

Option Description

none No checkpointing (not highly useful, but included for completeness).

enabled Specify that checkpointing is allowed, but must be explicitly invoked by either the qhold or
qchkpt commands.

shutdown Specify that checkpointing is to be done on a job at pbs_mom shutdown.

periodic Specify that periodic checkpointing is enabled. The default interval is 10 minutes and can be
changed by the $checkpoint_interval option in the MOM configuration file, or by spec-
ifying an interval when the job is submitted.

interval=minutes Specify the checkpoint interval in minutes.

depth=number Specify a number (depth) of checkpoint images to be kept in the checkpoint directory.

dir=path Specify a checkpoint directory (default is /var/spool/torque/checkpoint).

Example 2-1: Sample test program

#include "stdio.h"
int main(int argc, char *argv[])
{
int i;

for (i=0; i<100; i++)
{

 printf("i = %d\n", i);
 fflush(stdout);
 sleep(1);
 }
}

Example 2-2: Instructions for building test program

> gcc -o test test.c

lvii
Job checkpoint and restart

Chapter 2: Submitting and managing jobs

Example 2-3: Sample test script

#!/bin/bash ./test

Example 2-4: Starting the test job

> qstat
> qsub -c enabled,periodic,shutdown,interval=1 test.sh
77.jakaa.cridomain
> qstat
Job id Name User Time Use S Queue
------------------------- ---------------- --------------- -------- - -----
77.jakaa test.sh jsmith 0 Q batch
>

If you have no scheduler running, you might need to start the job with qrun.

As this program runs, it writes its output to a file in /var/spool/torque/spool. This file can be
observed with the command tail -f.

Related topics

l Job checkpoint and restart on page xlix

Checkpointing a job
Jobs are checkpointed by issuing a qhold command. This causes an image file representing the state of the
process to be written to disk. The directory by default is /var/spool/torque/checkpoint.

This default can be altered at the queue level with the qmgr command. For example, the command qmgr -
c set queue batch checkpoint_dir=/tmp would change the checkpoint directory to /tmp for the
queue 'batch'.

The default directory can also be altered at job submission time with the -c dir=/tmp command line
option.

The name of the checkpoint directory and the name of the checkpoint image file become attributes of the
job and can be observed with the command qstat -f. Notice in the output the names checkpoint_dir and
checkpoint_name. The variable checkpoint_name is set when the image file is created and will not exist if
no checkpoint has been taken.

A job can also be checkpointed without stopping or holding the job with the command qchkpt.

Related topics

l Job checkpoint and restart on page xlix

Restarting a job

Restarting a job in the Held state
The qrls command is used to restart the hibernated job. If you were using the tail -f command to watch
the output file, you will see the test program start counting again.

lviii
Job checkpoint and restart

Chapter 2: Submitting and managing jobs

It is possible to use the qalter command to change the name of the checkpoint file associated with a job.
This could be useful if there were several job checkpoints and it restarting the job from an older image
was specified.

Restarting a job in the Completed state
In this case, the job must be moved to the Queued state with the qrerun command. Then the job must go to
the Run state either by action of the scheduler or if there is no scheduler, through using the qrun
command.

Related topics

l Job checkpoint and restart on page xlix

Acceptance tests
A number of tests were made to verify the functioning of the BLCR implementation.See BLCR acceptance
tests on page cclxxv for a description of the testing.

Related topics

l Job checkpoint and restart on page xlix

Job exit status
Once a job under TORQUE has completed, the exit_status attribute will contain the result code
returned by the job script. This attribute can be seen by submitting a qstat -f command to show the entire
set of information associated with a job. The exit_status field is found near the bottom of the set of
output lines.

lix
Job exit status

Chapter 2: Submitting and managing jobs

Example 2-1: qstat -f (job failure)

Job Id: 179.host
 Job_Name = STDIN
 Job_Owner = user@host
 job_state = C
 queue = batchq
 server = host
 Checkpoint = u
 ctime = Fri Aug 29 14:55:55 2008
 Error_Path = host:/opt/moab/STDIN.e179
 exec_host = node1/0
 Hold_Types = n
 Join_Path = n
 Keep_Files = n
 Mail_Points = a
 mtime = Fri Aug 29 14:55:55 2008
 Output_Path = host:/opt/moab/STDIN.o179
 Priority = 0
 qtime = Fri Aug 29 14:55:55 2008
 Rerunable = True
 Resource_List.ncpus = 2
 Resource_List.nodect = 1
 Resource_List.nodes = node1
 Variable_List = PBS_O_HOME=/home/user,PBS_O_LOGNAME=user,
PBS_O_PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:,PBS_O_
SHELL=/bin/bash,PBS_O_HOST=host,
PBS_O_WORKDIR=/opt/moab,PBS_O_QUEUE=batchq
 sched_hint = Post job file processing error; job 179.host on host node1/0Ba
d UID for job execution REJHOST=pala.cridomain MSG=cannot find user 'user' in password
file
 etime = Fri Aug 29 14:55:55 2008
 exit_status = -1

This code can be useful in diagnosing problems with jobs that may have unexpectedly terminated.

If TORQUE was unable to start the job, this field will contain a negative number produced by the pbs_mom.

Otherwise, if the job script was successfully started, the value in this field will be the return value of the
script.

Example 2-2: TORQUE supplied exit codes

Name Value Description

JOB_EXEC_OK 0 Job execution successful

JOB_EXEC_FAIL1 -1 Job execution failed, before files, no retry

JOB_EXEC_FAIL2 -2 Job execution failed, after files, no retry

JOB_EXEC_RETRY -3 Job execution failed, do retry

JOB_EXEC_INITABT -4 Job aborted on MOM initialization

JOB_EXEC_INITRST -5 Job aborted on MOM init, chkpt, no migrate

lx
Job exit status

Chapter 2: Submitting and managing jobs

Name Value Description

JOB_EXEC_INITRMG -6 Job aborted on MOM init, chkpt, ok migrate

JOB_EXEC_BADRESRT -7 Job restart failed

JOB_EXEC_CMDFAIL -8 Exec() of user command failed

lxi
Job exit status

Chapter 2: Submitting and managing jobs

Example 2-3: Exit code from C program

$ cat error.c

#include
#include

int
main(int argc, char *argv)
{
 exit(256+11);
}

$ gcc -o error error.c

$ echo ./error | qsub
180.xxx.yyy

$ qstat -f
Job Id: 180.xxx.yyy
 Job_Name = STDIN
 Job_Owner = test.xxx.yyy
 resources_used.cput = 00:00:00
 resources_used.mem = 0kb
 resources_used.vmem = 0kb
 resources_used.walltime = 00:00:00
 job_state = C
 queue = batch
 server = xxx.yyy
 Checkpoint = u
 ctime = Wed Apr 30 11:29:37 2008
 Error_Path = xxx.yyy:/home/test/STDIN.e180
 exec_host = node01/0
 Hold_Types = n
 Join_Path = n
 Keep_Files = n
 Mail_Points = a
 mtime = Wed Apr 30 11:29:37 2008
 Output_Path = xxx.yyy:/home/test/STDIN.o180
 Priority = 0
 qtime = Wed Apr 30 11:29:37 2008
 Rerunable = True
 Resource_List.neednodes = 1
 Resource_List.nodect = 1
 Resource_List.nodes = 1
 Resource_List.walltime = 01:00:00
 session_id = 14107
 substate = 59
 Variable_List = PBS_O_HOME=/home/test,PBS_O_LANG=en_US.UTF-8,
 PBS_O_LOGNAME=test,
 PBS_O_PATH=/usr/local/perltests/bin:/home/test/bin:/usr/local/s
 bin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games,
 PBS_O_SHELL=/bin/bash,PBS_SERVER=xxx.yyy,
 PBS_O_HOST=xxx.yyy,PBS_O_WORKDIR=/home/test,
 PBS_O_QUEUE=batch
 euser = test
 egroup = test
 hashname = 180.xxx.yyy
 queue_rank = 8
 queue_type = E
 comment = Job started on Wed Apr 30 at 11:29
 etime = Wed Apr 30 11:29:37 2008
 exit_status = 11
 start_time = Wed Apr 30 11:29:37 2008
 start_count = 1

lxii
Job exit status

Chapter 2: Submitting and managing jobs

Notice that the C routine exit passes only the low order byte of its argument. In this case, 256+11 is really
267 but the resulting exit code is only 11 as seen in the output.

Related topics

l Job checkpoint and restart on page xlix
l Submitting and managing jobs on page xxxvii

Service jobs
TORQUE service jobs are a special kind of job that is treated differently by TORQUE than normal batch
jobs. TORQUE service jobs are not related to Moab's dynamic service jobs. A TORQUE service job cannot
dynamically grow and shrink in size over time.

Jobs are marked as service jobs at the time they are submitted to Moab or TORQUE. Just like a normal job,
a script file is specified with the job. In a batch job, the contents of the script file are taken by TORQUE and
executed on the compute nodes. For a service job, however, the script file is assumed to respond to certain
command-line arguments. Instead of just executing the script, TORQUE will use these command-line
arguments to start, stop, and check on the status of the job. Listed below are the three command-line
arguments that must be supported by any script submitted as part of a TORQUE service job:

l start: The script should take this argument and launch its service/workload. The script should
remain executing/running until the service stops.

l stop: The script should take this argument and stop the service/workload that was earlier started.

l status: The script should take this argument and return, via standard out, either "running" if the
service/workload is running as expected or "stopped" if the service is not running.

This feature was created with long-running services in mind. The command-line arguments should be
familiar to users who interact with Unix services, as each of the service scripts found in /etc/init.d/
also accept and respond to the arguments as explained above.

For example, if a user wants to start the Apache 2 server on a compute node, they can use a TORQUE
service job and specify a script which will start, stop, and check on the status of the "httpd" daemon--
possibly by using the already present /etc/init.d/httpd script.

If you wish to submit service jobs only through TORQUE, no special version of Moab is required. If
you wish to submit service jobs using Moab's msub, then Moab 5.4 or later is required.

For details, see these topics:

l Submitting service jobs on page lxiv

l Submitting service jobs in MCM on page lxiv

l Managing service jobs on page lxiv

lxiii
Service jobs

Chapter 2: Submitting and managing jobs

Submitting service jobs
There is a new option to qsub, "-s" which can take either a 'y' or 'n' (yes or no, respectively). When "-s y" is
present, then the job is marked as a service job.

qsub -l walltime=100:00:00,nodes=1 -s y service_job.py

The example above submits a job to TORQUE with a walltime of 100 hours, one node, and it is marked as a
service job. The script service_job.py will be used to start, stop, and check the status of the
service/workload started on the compute nodes.

Moab, as of version 5.4, is able to accept the "-s y" option when msub is used for submission. Moab will
then pass this information to TORQUE when the job is migrated.

Related topics

l Service jobs on page lxiii

Submitting service jobs in MCM
Submitting a service job in MCM requires the latest Adaptive Computing Suite snapshot of MCM. It also
requires MCM to be started with the --future=2 option.

Once MCM is started, open the Create Workload window and verify Show Advanced Options is checked.
Notice that there is a Service checkbox that can be selected in the Flags/Options area. Use this to specify
the job is a service job.

Related topics

l Service jobs on page lxiii

Managing service jobs
Managing a service job is done much like any other job; only a few differences exist.

Examining the job with qstat -f will reveal that the job has the service = True attribute. Non-service
jobs will not make any mention of the service attribute.

Canceling a service job is done with qdel, mjobctl -c, or through any of the GUI's as with any other job.
TORQUE, however, cancels the job by calling the service script with the "stop" argument instead of killing
it directly. This behavior also occurs if the job runs over its wallclock and TORQUE/Moab is configured to
cancel the job.

If a service job completes when the script exits after calling it with "start," or if TORQUE invokes the
script with "status" and does not get back "running," it will not be terminated by using the "stop"
argument.

Related topics

l Service jobs on page lxiii

lxiv
Service jobs

Chapter 3: Managing nodes
This section contains information about adding and configuring compute nodes. It explains how to work
with host security for systems that require dedicated access to compute nodes. It also contains information
about scheduling specific cores on a node at job submission.

For details, see these topics:

l Adding nodes on page lxv

l Node properties on page lxvi

l Changing node state on page lxvii

l Host security on page lxvii

l Linux cpuset support on page lxviii

l Scheduling cores on page lxx

l Scheduling GPUs on page lxxi

Adding nodes
TORQUE can add and remove nodes either dynamically with qmgr or by manually editing the TORQUE_
HOME/server_priv/nodes file (see Initializing/Configuring TORQUE on the server (pbs_server) on
page xv).

Run-time node changes
TORQUE can dynamically add nodes with the qmgr command. For example, the following command will add
node node003:

> qmgr -c "create node node003"

The above command appends the $TORQUE_HOME/server_priv/nodes file with:

node003

Nodes can also be removed with a similar command:

> qmgr -c "delete node node003"

lxv
Adding nodes

Chapter 3: Managing nodes

Typically, an administrator will want to change the state of a node instead of remove it (for details,
see Changing node state on page lxvii).

It is highly recommended that you restart the pbs_server after you make any node changes, or just
edit the nodes file manually and restart it.

Related topics

l Managing nodes on page lxv

Node properties
TORQUE can associate properties with nodes to aid in identifying groups of nodes. It's typical for a site to
conglomerate a heterogeneous sets of resources. To identify the different sets, properties can be given to
each node in a set. For example, a group of nodes that has a higher speed network connection could have
the property "ib". TORQUE can set, update, or remove properties either dynamically with qmgr or by
manually editing the nodes file.

Run-time node changes
TORQUE can dynamically change the properties of a node with the qmgr command. For example, note the
following to give node001 the properties of "bigmem" and "dualcore":

> qmgr -c "set node node001 properties = bigmem"
> qmgr -c "set node node001 properties += dualcore"

To relinquish a stated property, use the "-=" operator.

Manual node changes
The properties of each node are enumerated in TORQUE_HOME/server_priv/nodes. The feature(s)
must be in a space delimited list after the node name. For example, to give node001 the properties of
"bigmem" and "dualcore" and node002 the properties of "bigmem" and "matlab," edit the nodes file to
contain the following:

server_priv/nodes:

node001 bigmem dualcore
node002 np=4 bigmem matlab

For changes to the nodes file to be activated, pbs_server must be restarted.

For a full description of this file, please see the PBS Administrator Guide.

lxvi
Node properties

Chapter 3: Managing nodes

Related topics

l Job submission on page xxxvii
l Managing nodes on page lxv

Changing node state
A common task is to prevent jobs from running on a particular node by marking it offline with pbsnodes
-o nodename. Once a node has been marked offline, the scheduler will no longer consider it available for
new jobs. Simply use pbsnodes -c nodename when the node is returned to service.

Also useful is pbsnodes -l, which lists all nodes with an interesting state, such as down, unknown, or
offline. This provides a quick glance at nodes that might be having a problem. (See pbsnodes for details.)

Related topics

l Managing nodes on page lxv

Host security
Enabling PAMwith TORQUE
TORQUE is able to take advantage of the authentication services provided through Pluggable
Authentication Modules (PAM) to help administrators manage access to compute nodes by users. The PAM
module available in TORQUE is located in the PAM security directory. This module, when used in
conjunction with other PAM modules, restricts access to the compute node unless the user has a job
currently running on the node.

To enable TORQUE PAM configure TORQUE using the --with-pam option. Using --with-pam is sufficient
but if your PAM security modules are not in the default /lib/security or /lib64/security
directory, you can specify the location using --with-pam=<DIR> where <DIR> is the directory where you
want the modules to be installed. When TORQUE is installed the files pam_pbssimpleauth.la and pam_
pbssimpleauth.so appear in /lib/security, /lib64/security, or the directory designated on the
configuration line.

PAM is very flexible and policies vary greatly from one site to another. The following example restricts
users trying to access a node using SSH. Administrators need to assess their own installations and decide
how to apply the TORQUE PAM restrictions.

After installing TORQUE with PAM enabled, add the following two lines to /etc/pam.c/sshd:

account required pam_pbssimpleauth.so
account required pam_access.so

In /etc/security/access.conf make sure all users who access the compute node are added to the
configuration. This is an example which allows the users root, george, allen, and michael access.

-:ALL EXCEPT root george allen michael torque:ALL

lxvii
Changing node state

Chapter 3: Managing nodes

With this configuration, if user george has a job currently running on the compute node, george can use ssh
to login to the node. If there are currently no jobs running, george is disconnected when attempting to
login.

TORQUE PAM is good at keeping users out who do not have jobs running on a compute node. However, it
does not have the ability to force a user to log out once they are in. To accomplish this use epilogue or
prologue scripts to force users off the system.

Legacy TORQUE PAM configuration
There is an alternative PAM configuration for TORQUE that has been available since 2006. It can be found
in the contrib/pam_authuser directory of the source tree. Adaptive Computing does not currently
support this method but the instructions are given here for those who are currently using it and for those
who wish to use it.

For systems requiring dedicated access to compute nodes (for example, users with sensitive data),
TORQUE prologue and epilogue scripts provide a vehicle to leverage the authentication provided by linux-
PAM modules. (See Prologue and epilogue scripts on page ccliii for more information.)

To allow only users with running jobs (and root) to access compute nodes

1. Untar contrib/pam_authuser.tar.gz (found in the src tar ball).

2. Compile pam_authuser.c with make and make install on every compute node.

3. Edit /etc/system-auth as described in README.pam_authuser, again on every compute node.

4. Either make a tarball of the epilogue* and prologue* scripts (to preserve the symbolic link) and untar
it in the mom_priv directory, or just copy epilogue* and prologue* to mom_priv/.

The prologue* scripts are Perl scripts that add the user of the job to /etc/authuser. The epilogue*
scripts then remove the first occurrence of the user from /etc/authuser. File locking is employed in all
scripts to eliminate the chance of race conditions. There is also some commented code in the epilogue*
scripts, which, if uncommented, kills all processes owned by the user (using pkill), provided that the user
doesn't have another valid job on the same node.

prologue and epilogue scripts were added to the pam_authuser tarball in version 2.1 of TORQUE.

Related topics

l Managing nodes on page lxv

Linux cpuset support
l Cpuset overview on page lxix

l Cpuset support on page lxix

l Cpuset configuration on page lxix

l Cpuset advantages / disadvantages on page lxix

lxviii
Linux cpuset support

Chapter 3: Managing nodes

Cpuset overview
Linux kernel 2.6 Cpusets are logical, hierarchical groupings of CPUs and units of memory. Once created,
individual processes can be placed within a cpuset. The processes will only be allowed to run/access the
specified CPUs and memory. Cpusets are managed in a virtual file system mounted at /dev/cpuset. New
cpusets are created by simply making new directories. Cpusets gain CPUs and memory units by simply
writing the unit number to files within the cpuset.

Cpuset support

All nodes using cpusets must have the hwlock library (version 1.1 or higher) installed.

When started, pbs_mom will create an initial top-level cpuset at /dev/cpuset/torque. This cpuset
contains all CPUs and memory of the host machine. If this "torqueset" already exists, it will be left
unchanged to allow the administrator to override the default behavior. All subsequent cpusets are created
within the torqueset.

When a job is started, the jobset is created at /dev/cpuset/torque/$jobid and populated with the
CPUs listed in the exec_host job attribute. Also created are individual tasksets for each CPU within the
jobset. This happens before prologue, which allows it to be easily modified, and it happens on all nodes.

The top-level batch script process is executed in the jobset. Tasks launched through the TM interface
(pbsdsh and PW's mpiexec) will be executed within the appropriate taskset.

On job exit, all tasksets and the jobset are deleted.

Cpuset configuration

To configure cpuset

1. As root, mount the virtual filesystem for cpusets:

mount -t cpuset none /dev/cpuset

Do this for each MOM that is to use cpusets.

2. Because cpuset usage is a build-time option in TORQUE, you must add -enable-cpuset to your
configure options:

./configure --enable-cpuset

3. Use this configuration for the MOMs across your system.

Cpuset advantages / disadvantages
Presently, any job can request a single CPU and proceed to use everything available in the machine. This is
occasionally done to circumvent policy, but most often is simply an error on the part of the user. Cpuset
support will easily constrain the processes to not interfere with other jobs.

lxix
Linux cpuset support

Chapter 3: Managing nodes

Jobs on larger NUMA systems may see a performance boost if jobs can be intelligently assigned to specific
CPUs. Jobs may perform better if striped across physical processors, or contained within the fewest
number of memory controllers.

TM tasks are constrained to a single core, thus a multi-threaded process could seriously suffer.

Related topics

l Managing nodes on page lxv
l Geometry request configuration on page lxx

Scheduling cores
In TORQUE 2.4 and later, you can request specific cores on a node at job submission by using geometry
requests. To use this feature, specify the procs_bitmap resource request of qsub-l (see qsub) at job
submission.

For details about scheduling cores, see these topics:

l Geometry request configuration on page lxx

l Geometry request usage on page lxxi

l Geometry request considerations on page lxxi

Geometry request configuration
A Linux kernel of 2.6 or later is required to use geometry requests, because this feature uses Linux cpusets
in its implementation. In order to use this feature, the cpuset directory has to be mounted. For more
information on how to mount the cpuset directory, see Linux cpuset support on page lxviii. If the
operating environment is suitable for geometry requests, configure TORQUE with the --enable-
geometry-requests option.

> ./configure --prefix=/home/john/torque --enable-geometry-requests

TORQUEis configured to install to /home/john/torque and to enable the geometry requests feature.

The geometry request feature uses a subset of the cpusets feature. When you configure TORQUE
using --enable-cpuset and --enable-geometry-requests at the same time, and use -l
procs_bitmap=X, the job will get the requested cpuset. Otherwise, the job is treated as if only --
enable-cpuset was configured.

Related topics

l Scheduling cores on page lxx

lxx
Scheduling cores

Chapter 3: Managing nodes

Geometry request usage
Once enabled, users can submit jobs with a geometry request by using the procs_bitmap=<string>
resource request. procs_bitmap requires a numerical string made up of 1's and 0's. A 0 in the bitmap
means the job can not run on the core that matches the 0's index in the bitmap. The index is in reverse
order of the number of cores available. If a job is submitted with procs_bitmap=1011, then the job
requests a node with four free cores, and uses only cores one, two, and four.

The geometry request feature requires a node that has all cores free. A job with a geometry request
cannot run on a node that has cores that are busy, even if the node has more than enough cores
available to run the job.

qsub -l procs_bitmap=0011 ossl.sh

The job ossl.sh is submitted with a geometry request of 0011.

In the above example, the submitted job can run only on a node that has four cores. When a suitable node
is found, the job runs exclusively on cores one and two.

Related topics

l Scheduling cores on page lxx

Geometry request considerations
As previously stated, jobs with geometry requests require a node with all of its cores available. After the
job starts running on the requested cores, the node cannot run other jobs, even if the node has enough free
cores to meet the requirements of the other jobs. Once the geometry requesting job is done, the node is
available to other jobs again.

Related topics

l Scheduling cores on page lxx

Scheduling GPUs
In TORQUE 2.5.4 and later, users can request GPUs on a node at job submission by specifying a nodes
resource request, using the qsub -l option. The number of GPUs a node has must be specified in the
nodes file (see Server node file configuration on page xxxi). The GPU is then reported in the output of
pbsnodes:

lxxi
Scheduling GPUs

Chapter 3: Managing nodes

napali
state = free
np = 2
ntype = cluster
status = rectime=1288888871,varattr=,jobs=,state=free,netload=1606207294,gres=tom:!
/home/dbeer/dev/scripts/dynamic_resc.sh,loadave=0.10,ncpus=2,physmem=3091140kb,
availmem=32788032348kb,
totmem=34653576492kb,idletime=4983,nusers=3,nsessions=14,sessions=3136 1805 2380 2428
1161 3174 3184
3191 3209 3228 3272 3333 20560 32371,uname=Linux napali 2.6.32-25-generic #45-Ubuntu SMP
Sat Oct 16 19:52:42
UTC 2010 x86_64,opsys=linux
mom_service_port = 15002
mom_manager_port = 15003
gpus = 1

The $PBS_GPUFILE has been created to include GPU awareness. The GPU appears as a separate line in
$PBS_GPUFILE and follows this syntax:

<hostname>-gpu<index>

If a job were submitted to run on a server called "napali" (the submit command would look something like:
qsub test.sh -l nodes=1:ppn=2:gpus=1), the $PBS_GPUFILE would contain:

napali-gpu0

It is left up to the job's owner to make sure that the job executes properly on the GPU. By default, TORQUE
treats GPUs exactly the same as ppn (which corresponds to CPUs).

For more information, see these topics:

l Using GPUs with NUMA on page lxxii

l TORQUE NVIDIA GPGPUs on page lxxiii

Using GPUs with NUMA
The pbs_server requires awareness of how the MOM is reporting nodes since there is only one MOM
daemon and multiple MOM nodes. Configure the server_priv/nodes file with the num_node_boards
and numa_gpu_node_str attributes. The attribute num_node_boards tells pbs_server how many NUMA
nodes are reported by the MOM. If each NUMA node has the same number of GPUs, add the total number of
GPUs to the nodes file. Following is an example of how to configure the nodes file with num_node_
boards:

numahost gpus=12 num_node_boards=6

This line in the nodes file tells pbs_server there is a host named numahost and that it has 12 GPUs and 6
nodes. The pbs_server divides the value of GPUs (12) by the value for num_node_boards (6) and
determines there are 2 GPUs per NUMA node.

In this example, the NUMA system is uniform in its configuration of GPUs per node board, but a system
does not have to be configured with the same number of GPUs per node board. For systems with non-
uniform GPU distributions, use the attribute numa_gpu_node_str to let pbs_server know where GPUs
are located in the cluster.

lxxii
Scheduling GPUs

Chapter 3: Managing nodes

If there are equal numbers of GPUs on each NUMA node, you can specify them with a string. For example, if
there are 3 NUMA nodes and the first has 0 GPUs, the second has 3, and the third has 5, you would add this
to the nodes file entry:

numa_gpu_node_str=0,3,5

In this configuration, pbs_server knows it has three MOM nodes and the nodes have 0, 3s, and 5 GPUs
respectively. Note that the attribute gpus is not used. The gpus attribute is ignored because the number of
GPUs per node is specifically given.

In TORQUE 3.0.2 or later, qsub supports the mapping of -l gpus=X to -l gres=gpus:X. This allows
users who are using NUMA systems to make requests such as -l ncpus=20,gpus=5 (or -l
ncpus=20:gpus=5)indicating they are not concerned with the GPUs in relation to the NUMA nodes they
request; they only want a total of 20 cores and 5 GPUs.

Related topics

l Scheduling GPUs on page lxxi
l TORQUE NVIDIA GPGPUs on page lxxiii

TORQUE NVIDIA GPGPUs
The pbs_mom file can now query for GPU hardware information and report status to the pbs_server.
gpustatus will appear in pbsnodes output. New commands allow for setting GPU modes and for resetting
GPU ECC error counts.

This feature is only available in TORQUE 2.5.6, 3.0.2, and later.

This document assumes that you have installed the NVIDIA CUDA TooolKit and the NVIDIA
development drivers on a compute node with a NVIDAI GPU. (Both can be downloaded from
http://developer.nvidia.com/category/zone/cuda-zone).

You will want to download the latest version if you run into problems compiling.

If the pbs_server does not have GPUs, it only needs to be configured with --enable-nvidia-gpus. All
other systems that have NVIDIA GPUs will need:

l --enable-nvidia-gpus

l --with-nvml-include=DIR (include path for nvml.h)

l --with-nvml-lib=DIR (*lib path for libnvidia-ml)

For example, you would configure the a PBS_SERVER that does not have GPUs, but will be managing
compute nodes with NVIDIA GPUs in this way:

Server

./configure --with-debug --with-nvidia-gpus

Compute nodes (with NVIDIA GPUs)

lxxiii
Scheduling GPUs

http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone

Chapter 3: Managing nodes

./configure --with-debug --enable-nvidia-gpus --with-nvml-lib=/usr/lib64 --with-nvml-
include=/cuda/NVML

If all of the compute nodes have the same hardware and software configuration, you can choose to compile
on one compute node and then run make packages.

> make packages
Building ./torque-package-clients-linux-x86_64.sh ...
Building ./torque-package-mom-linux-x86_64.sh ...
Building ./torque-package-server-linux-x86_64.sh ...
Building ./torque-package-gui-linux-x86_64.sh ...
Building ./torque-package-devel-linux-x86_64.sh ...
Done.

The package files are self-extracting packages that can be copied and executed on your production
machines. (Use --help for options.)

For more information, see Compute nodes on page xiii.

When updating, it is good practice to stop the pbs_server and make a backup of the TORQUE home
directory. You will also want to backup the output of qmgr -c 'p s'. The update will only overwrite
the binaries.

For further details, see these topics:

l TORQUE configuration on page lxxiv
l GPU modes for NVIDIA 260.x driver on page lxxv
l GPU Modes for NVIDIA 270.x driver on page lxxv
l gpu_status on page lxxv
l New NVIDIA GPU support on page lxxv

TORQUE configuration
There are three configuration (./configure) options available for use with Nvidia GPGPUs:

l --enable-nvidia-gpus

l --with-nvml-lib=DIR

l --with-nvml-include=DIR

--enable-nvidia-gpus is used to enable the new features for the Nvidia GPGPUs. By default, the pbs_
moms use the nvidia_smi command to interface with the Nvidia GPUs.

./configure --enable-nvidia-gpus

To use the NVML (NVIDIA Management Library) API instead of nvidia-smi, configure TORQUE using --
with-nvml-lib=DIR and --with-nvml-include=DIR. These commands specify the location of the
libnvidia-ml library and the location of the nvml.h include file.

lxxiv
Scheduling GPUs

Chapter 3: Managing nodes

./configure –with-nvml-lib=/usr/lib
--with-nvml-include=/usr/local/cuda/Tools/NVML
server_priv/nodes:
node001 gpus=1
node002 gpus=4
…
pbsnodes -a
node001
 …
 gpus = 1
...

By default, when TORQUE is configured with --enable-nvidia-gpus the $TORQUE_HOME/nodes file is
automatically updated with the correct GPU count for each MOM node.

GPU modes for NVIDIA 260.x driver
l 0 – Default - Shared mode available for multiple processes

l 1 – Exclusive - Only one COMPUTE thread is allowed to run on the GPU

l 2 – Prohibited - No COMPUTE contexts are allowed to run on the GPU

GPU Modes for NVIDIA 270.x driver
l 0 – Default - Shared mode available for multiple processes

l 1 – Exclusive Thread - Only one COMPUTE thread is allowed to run on the GPU (v260 exclusive)

l 2 – Prohibited - No COMPUTE contexts are allowed to run on the GPU

l 3 – Exclusive Process - Only one COMPUTE process is allowed to run on the GPU

gpu_status

root@gpu:~# pbsnodes gpu
gpu
...
 gpus = 2
 gpu_status = gpu[1]=gpu_id=0:6:0;gpu_product_name=Tesla
 C2050;gpu_display=Disabled;gpu_pci_device_id=6D110DE;gpu_pci_location_id=0:6:0;
 gpu_fan_speed=54 %;gpu_memory_total=2687 Mb;gpu_memory_used=74
Mb;gpu_mode=Default;gpu_state=Unallocated;gpu_utilization=96
%;gpu_memory_utilization=10
%;gpu_ecc_mode=Enabled;gpu_single_bit_ecc_errors=0;gpu_double_bit_ecc_errors=
0;gpu_temperature=88 C,gpu[0]=gpu_id=0:5:0;gpu_product_name=Tesla
C2050;gpu_display=Enabled;gpu_pci_device_id=6D110DE;gpu_pci_location_id=0:5:0;
gpu_fan_speed=66 %;gpu_memory_total=2687 Mb;gpu_memory_used=136
Mb;gpu_mode=Default;gpu_state=Unallocated;gpu_utilization=96
%;gpu_memory_utilization=10
%;gpu_ecc_mode=Enabled;gpu_single_bit_ecc_errors=0;
gpu_double_bit_ecc_errors=0;gpu_temperature=86 C,driver_ver=270.41.06,timestamp=Wed May
4 13:00:35
2011

NewNVIDIA GPU support
qsub allows specifying required compute mode when requesting GPUs. If no GPU mode is requested, it will
default to "exclusive" for Nvidia driver version 260 or "exclusive_thread" for Nvidia driver version 270 and
above.

lxxv
Scheduling GPUs

Chapter 3: Managing nodes

l qsub -l nodes=1:ppn=1:gpus=1

l qsub -l nodes=1:gpus=1

l qsub -l nodes=1:gpus=1:exclusive_thread

l qsub -l nodes=1:gpus=1:exclusive_process

l qsub -l nodes=1:gpus=1:reseterr

l qsub -l nodes=1:gpus=1:reseterr:exclusive_thread (exclusive_thread:reseterr)

l qsub -l nodes=1:gpus=1:reseterr:exclusive_process

Related topics

l Scheduling GPUs on page lxxi
l Using GPUs with NUMA on page lxxii

lxxvi
Scheduling GPUs

Chapter 4: Setting server policies
This section explains how to set up and configure your queue. It lists the queue attributes and describes
how to set up a routing queue. This section also explains how to set up TORQUE to run in high availability
mode. For details, see these topics:

l Queue configuration on page lxxvii

l Server high availability on page xc

Queue configuration
Under TORQUE, queue configuration is accomplished using the qmgr command. With this tool, the first step
is to create the queue. This is accomplished using the create subcommand of qmgr as in the following
example:

> qmgr -c "create queue batch queue_type=execution"

Once created, the queue must be configured to be operational. At a minimum, this includes setting the
options started and enabled. Further configuration is possible using any combination of the attributes
listed in what follows.

For Boolean attributes, T, t, 1, Y, and y are all synonymous with true, and F, f, 0, N, and n all mean false.

For queue_type, E and R are synonymous with Execution and Routing.

See these topics for more details:

l Queue attributes on page lxxviii

l Example queue configuration on page lxxxvii

l Setting a default queue on page lxxxviii

l Mapping a queue to subset of resources on page lxxxviii

l Creating a routing queue on page lxxxviii

Related topics

l Server parameters on page ccvii
l qalter on page clix - command which can move jobs from one queue to another

lxxvii
Queue configuration

Chapter 4: Setting server policies

Queue attributes
This section lists the following queue attributes:

l acl_groups on page lxxix

l acl_group_enable on page lxxix

l acl_group_sloppy on page lxxix

l acl_hosts on page lxxx

l acl_host_enable on page lxxx

l acl_logic_or on page lxxx

l acl_users on page lxxx

l acl_user_enable on page lxxxi

l disallowed_types on page lxxxi

l enabled on page lxxxi

l keep_completed on page lxxxii

l kill_delay on page lxxxii

l max_queuable on page lxxxii

l max_running on page lxxxiii

l max_user_queuable on page lxxxiii

l max_user_run on page lxxxiii

l priority on page lxxxiii

l queue_type on page lxxxiv

l resources_available on page lxxxiv

l resources_default on page lxxxiv

l resources_max on page lxxxv

l resources_min on page lxxxv

l route_destinations on page lxxxv

l started on page lxxxv

This section also lists some queue resource limits (see Assigning queue resource limits on page lxxxvi).

For Boolean attributes, T, t, 1, Y, and y are all synonymous with "TRUE," and F, f, 0, N, and n all
mean "FALSE."

lxxviii
Queue configuration

Chapter 4: Setting server policies

acl_groups

Format <GROUP>[@<HOST>][+<USER>[@<HOST>]]...

Default ---

Description Specifies the list of groups which may submit jobs to the queue. If acl_group_enable is set to true,
only users with a primary group listed in acl_groups may utilize the queue.

If the PBSACLUSEGROUPLIST variable is set in the pbs_server environment, acl_groups
checks against all groups of which the job user is a member.

Example > qmgr -c "set queue batch acl_groups=staff"
> qmgr -c "set queue batch acl_groups+=ops@h2"
> qmgr -c "set queue batch acl_groups+=staff@h3"

Used in conjunction with acl_group_enable.

acl_group_enable

Format <BOOLEAN>

Default FALSE

Description If TRUE, constrains TORQUE to only allow jobs submitted from groups specified by the acl_groups
parameter.

Example qmgr -c "set queue batch acl_group_enable=true"

acl_group_sloppy

Format <BOOLEAN>

Default FALSE

Description If TRUE, acl_groups will be checked against all groups of which the job users is a member.

Example ---

lxxix
Queue configuration

Chapter 4: Setting server policies

acl_hosts

Format <HOST>[+<HOST>]...

Default ---

Description Specifies the list of hosts that may submit jobs to the queue.

Example qmgr -c "set queue batch acl_hosts=h1+h2+h3"

Used in conjunction with acl_host_enable.

acl_host_enable

Format <BOOLEAN>

Default FALSE

Description If TRUE, constrains TORQUE to only allow jobs submitted from hosts specified by the acl_hosts
parameter.

Example qmgr -c "set queue batch acl_logic_or=true"

acl_logic_or

Format <BOOLEAN>

Default FALSE

Description If TRUE, user and group acls are logically OR'd together, meaning that either acl may be met to allow
access. If FALSE or unset, then both acls are AND'd, meaning that both acls must be satisfied.

Example qmgr -c "set queue batch acl_logic_or=true"

acl_users

Format <USER>[@<HOST>][+<USER>[@<HOST>]]...

Default ---

lxxx
Queue configuration

Chapter 4: Setting server policies

acl_users

Description Specifies the list of users who may submit jobs to the queue. If acl_user_enable is set to TRUE, only
users listed in acl_users may use the queue.

Example > qmgr -c "set queue batch acl_users=john"
> qmgr -c "set queue batch acl_users+=steve@h2"
> qmgr -c "set queue batch acl_users+=stevek@h3"

Used in conjunction with acl_user_enable.

acl_user_enable

Format <BOOLEAN>

Default FALSE

Description If TRUE, constrains TORQUE to only allow jobs submitted from users specified by the acl_users
parameter.

Example qmgr -c "set queue batch acl_user_enable=true"

disallowed_types

Format <type>[+<type>]...

Default ---

Description Specifies classes of jobs that are not allowed to be submitted to this queue. Valid types are inter-
active, batch, rerunable, nonrerunable, fault_tolerant (as of version 2.4.0 and later), fault_intolerant
(as of version 2.4.0 and later), and job_array (as of version 2.4.1 and later).

Example qmgr -c "set queue batch disallowed_types = interactive"
qmgr -c "set queue batch disallowed_types += job_array"

enabled

Format <BOOLEAN>

Default FALSE

lxxxi
Queue configuration

Chapter 4: Setting server policies

enabled

Description Specifies whether the queue accepts new job submissions.

Example qmgr -c "set queue batch enabled=true"

keep_completed

Format <INTEGER>

Default 0

Description Specifies the number of seconds jobs should be held in the Completed state after exiting.

Example qmgr -c "set queue batch keep_completed=120"

kill_delay

Format <INTEGER>

Default 2

Description Specifies the number of seconds between sending a SIGTERM and a SIGKILL to a job being canceled.

Example qmgr -c "set queue batch kill_delay=30"

max_queuable

Format <INTEGER>

Default unlimited

Description Specifies the maximum number of jobs allowed in the queue at any given time (includes idle, run-
ning, and blocked jobs).

Example qmgr -c "set queue batch max_queuable=20"

lxxxii
Queue configuration

Chapter 4: Setting server policies

max_running

Format <INTEGER>

Default unlimited

Description Specifies the maximum number of jobs in the queue allowed to run at any given time.

Example qmgr -c "set queue batch max_running=20"

max_user_queuable

Format <INTEGER>

Default unlimited

Description Specifies the maximum number of jobs, per user, allowed in the queue at any given time (includes
idle, running, and blocked jobs). Version 2.1.3 and greater.

Example qmgr -c "set queue batch max_user_queuable=20"

max_user_run

Format <INTEGER>

Default unlimited

Description Specifies the maximum number of jobs, per user, in the queue allowed to run at any given time.

Example qmgr -c "set queue batch max_user_run=10"

priority

Format <INTEGER>

Default 0

Description Specifies the priority value associated with the queue.

lxxxiii
Queue configuration

Chapter 4: Setting server policies

priority

Example qmgr -c "set queue batch priority=20"

queue_type

Format One of e, execution, r, or route (see Creating a routing queue on page lxxxviii)

Default ---

Description Specifies the queue type.

This value must be explicitly set for all queues.

Example qmgr -c "set queue batch queue_type=execution"

resources_available

Format <STRING>

Default ---

Description Specifies to cumulative resources available to all jobs running in the queue.

Example qmgr -c "set queue batch resources_available.nodect=20"

You must restart pbs_server for changes to take effect.
Also, resources_available is constrained by the smallest of queue.resources_available and

server.resources_available.

resources_default

Format <STRING>

Default ---

Description Specifies default resource requirements for jobs submitted to the queue.

Example qmgr -c "set queue batch resources_default.walltime=3600"

lxxxiv
Queue configuration

Chapter 4: Setting server policies

resources_max

Format <STRING>

Default ---

Description Specifies the maximum resource limits for jobs submitted to the queue.

Example qmgr -c "set queue batch resources_max.nodect=16"

resources_min

Format <STRING>

Default ---

Description Specifies the minimum resource limits for jobs submitted to the queue.

Example qmgr -c "set queue batch resources_min.nodect=2"

route_destinations

Format <queue>[@<host>][+<queue>[@<host>]]...

Default ---

Description Specifies the potential destination queues for jobs submitted to the associated routing queue.

This attribute is only valid for routing queues (see Creating a routing queue on page
lxxxviii).

Example > qmgr -c "set queue route route_destinations=fast"
> qmgr -c "set queue route route_destinations+=slow"
> qmgr -c "set queue route route_destinations+=medium@hostname"

started

Format <BOOLEAN>

lxxxv
Queue configuration

Chapter 4: Setting server policies

started

Default FALSE

Description Specifies whether jobs in the queue are allowed to execute.

Example qmgr -c "set queue batch started=true"

Resources may include one or more of the following: arch, mem, nodes, ncpus, nodect, procct,
pvmem, and walltime.

Assigning queue resource limits
Administrators can use resources limits to help direct what kind of jobs go to different queues. There are
four queue attributes where resource limits can be set: resources_available, resources_default,
resources_max, and resources_min. The list of supported resources that can be limited with these
attributes are arch, mem, ncpus, nodect, nodes, procct, pvmemvmem, and walltime.

Resource Format Description

arch string Specifies the administrator defined system architecture required.

mem *size Amount of physical memory used by the job. (Ignored on Darwin, Digital Unix, Free BSD,
HPUX 11, IRIX, NetBSD, and SunOS. Also ignored on Linux if number of nodes is not 1.
Not implemented on AIX and HPUX 10.)

ncpus integer An artifact of job centric mode is that if a job does not have an attribute set, the server
and routing queue defaults are not applied when queue resource limits are checked.
Consequently, a job that requests 32 nodes (not ncpus=32) will not be checked against
a min_resource.ncpus limit.

nodect integer Sets the number of nodes available. By default, TORQUE will set the number of nodes
available to the number of nodes listed in the $TORQUE_HOME/server_priv/nodes
file. nodect can be set to be greater than or less than that number. Generally, it is used to
set the node count higher than the number of physical nodes in the cluster.

nodes integer Specifies the number of nodes.

procct integer Sets limits on the total number of execution slots (procs) allocated to a job. The number
of procs is calculated by summing the products of all node and ppn entries for a job.
For example qsub -l nodes=2:ppn=2+3:ppn=4 job.sh would yield a procct of 16.
2*2 (2:ppn=2) + 3*4 (3:ppn=4).

lxxxvi
Queue configuration

Chapter 4: Setting server policies

Resource Format Description

pvmem *size Amount of virtual memory used by any single process in a job.

vmem *size Amount of virtual memory used by all concurrent processes in the job.

walltime seconds,
or [[HH:]
MM:]SS

Amount of real time during which a job can be in a running state.

*size

The size format specifies the maximum amount in terms of bytes or words. It is expressed in the form
integer[suffix]. The suffix is a multiplier defined in the following table ("b" means bytes [the default] and
"w" means words). The size of a word is calculated on the execution server as its word size.

Suffix Multiplier

b w 1

kb kw 1024

mb mw 1,048,576

gb gw 1,073,741,824

tb tw 1,099,511,627,776

Related topics

l Queue configuration on page lxxvii
l Example queue configuration on page lxxxvii

Example queue configuration
The following series of qmgr commands will create and configure a queue named batch:

qmgr -c "create queue batch queue_type=execution"
qmgr -c "set queue batch started=true"
qmgr -c "set queue batch enabled=true"
qmgr -c "set queue batch resources_default.nodes=1"
qmgr -c "set queue batch resources_default.walltime=3600"

This queue will accept new jobs and, if not explicitly specified in the job, will assign a nodecount of 1 and a
walltime of 1 hour to each job.

lxxxvii
Queue configuration

Chapter 4: Setting server policies

Related topics

l Queue configuration on page lxxvii

Setting a default queue
By default, a job must explicitly specify which queue it is to run in. To change this behavior, the server
parameter default_queue may be specified as in the following example:

qmgr -c "set server default_queue=batch"

Related topics

l Queue configuration on page lxxvii

Mapping a queue to subset of resources
TORQUE does not currently provide a simple mechanism for mapping queues to nodes. However,
schedulers such as Moab and Maui can provide this functionality.

The simplest method is using default_resources.neednodes on an execution queue, setting it to a
particular node attribute. Maui/Moab will use this information to ensure that jobs in that queue will be
assigned nodes with that attribute. For example, suppose we have some nodes bought with money from the
chemistry department, and some nodes paid by the biology department.

$TORQUE_HOME/server_priv/nodes:
node01 np=2 chem
node02 np=2 chem
node03 np=2 bio
node04 np=2 bio
qmgr:
set queue chem resources_default.neednodes=chem
set queue bio resources_default.neednodes=bio

This example does not preclude other queues from accessing those nodes. One solution is to use
some other generic attribute with all other nodes and queues.

More advanced configurations can be made with standing reservations and QoSes.

Related topics

l Queue configuration on page lxxvii

Creating a routing queue
A routing queue will steer a job to a destination queue based on job attributes and queue constraints. It is
set up by creating a queue of queue_type "Route" with a route_destinations attribute set, as in the
following example.

lxxxviii
Queue configuration

http://www.adaptivecomputing.com/resources/docs/mwm/7-0/help.htm
http://www.adaptivecomputing.com/resources/docs/maui/

Chapter 4: Setting server policies

qmgr

routing queue
create queue route
set queue route queue_type = Route
set queue route route_destinations = reg_64
set queue route route_destinations += reg_32
set queue route route_destinations += reg
set queue route enabled = True
set queue route started = True

queue for jobs using 1-15 nodes
create queue reg
set queue reg queue_type = Execution
set queue reg resources_min.ncpus = 1
set queue reg resources_min.nodect = 1
set queue reg resources_default.ncpus = 1
set queue reg resources_default.nodes = 1
set queue reg enabled = True
set queue reg started = True

queue for jobs using 16-31 nodes
create queue reg_32
set queue reg_32 queue_type = Execution
set queue reg_32 resources_min.ncpus = 31
set queue reg_32 resources_min.nodes = 16
set queue reg_32 resources_default.walltime = 12:00:00
set queue reg_32 enabled = True
set queue reg_32 started = True

queue for jobs using 32+ nodes
create queue reg_64
set queue reg_64 queue_type = Execution
set queue reg_64 resources_min.ncpus = 63
set queue reg_64 resources_min.nodes = 32
set queue reg_64 resources_default.walltime = 06:00:00
set queue reg_64 enabled = True
set queue reg_64 started = True

have all jobs go through the routing queue
set server default_queue = batch
set server resources_default.ncpus = 1
set server resources_default.walltime = 24:00:00
 ...

In this example, the compute nodes are dual processors and default walltimes are set according to the
number of processors/nodes of a job. Jobs with 32 nodes (63 processors) or more will be given a default
walltime of 6 hours. Also, jobs with 16-31 nodes (31-62 processors) will be given a default walltime of 12
hours. All other jobs will have the server default walltime of 24 hours.

The ordering of the route_destinations is important. In a routing queue, a job is assigned to the first
possible destination queue based on the resources_max, resources_min, acl_users, and acl_groups
attributes. In the preceding example, the attributes of a single processor job would first be checked against
the reg_64 queue, then the reg_32 queue, and finally the reg queue.

Adding the following settings to the earlier configuration elucidates the queue resource requirements:

qmgr

set queue reg resources_max.ncpus = 30
set queue reg resources_max.nodect = 15

set queue reg_16 resources_max.ncpus = 62
set queue reg_16 resources_max.ncpus = 31

lxxxix
Queue configuration

Chapter 4: Setting server policies

The time of enforcement of server and queue defaults is important in this example. TORQUE applies server
and queue defaults differently in job centric and queue centric modes. For job centric mode, TORQUE waits
to apply the server and queue defaults until the job is assigned to its final execution queue. For queue
centric mode, it enforces server defaults before it is placed in the routing queue. In either mode, queue
defaults override the server defaults. TORQUE defaults to job centric mode. To set queue centric mode, set
queue_centric_limits, as in what follows:

qmgr

set server queue_centric_limits = true

An artifact of job centric mode is that if a job does not have an attribute set, the server and routing queue
defaults are not applied when queue resource limits are checked. Consequently, a job that requests 32
nodes (not ncpus=32) will not be checked against a min_resource.ncpus limit. Also, for the preceding
example, a job without any attributes set will be placed in the reg_64 queue, since the server ncpus default
will be applied after the job is assigned to an execution queue.

Routine queue defaults are not applied to job attributes in versions 2.1.0 and before.

If the error message "qsub: Job rejected by all possible destinations" is reported
when submitting a job, it may be necessary to add queue location information, (i.e., in the routing
queue's route_destinations attribute, change "batch" to "batch@localhost").

Related topics

l Queue configuration on page lxxvii
l Queue attributes on page lxxviii

Server high availability
You can now run TORQUE in a redundant or high availability mode. This means that there can be multiple
instances of the server running and waiting to take over processing in the event that the currently running
server fails.

The high availability feature is available in the 2.3 and later versions of TORQUE. TORQUE 2.4
includes several enhancements to high availability (see Enhanced high availability on page xci).

For more details, see these sections:

l Redundant server host machines on page xci

l Enhanced high availability on page xci

l Enhanced high availability with Moab on page xcii

l How commands select the correct server host on page xcii

l Job names on page xciii

l Persistence of the pbs_server process on page xciii

xc
Server high availability

Chapter 4: Setting server policies

l High availability of the NFS server on page xciii

l Example setup of high availability on page xciii

Redundant server host machines
High availability enables TORQUE to continue running even if pbs_server is brought down. This is done by
running multiple copies of pbs_server which have their torque/server_priv directory mounted on a
shared file system. The torque/server_name must include the host names of all nodes that run pbs_
server. All MOM nodes also must include the host names of all nodes running pbs_server in their
torque/server_name file. The syntax of the torque/server_name is a comma delimited list of host
names.

For example:

host1,host2,host3

All instances of pbs_server need to be started with the --ha command line option that allows the servers
to run at the same time. Only the first server to start will complete the full startup. The second server to
start will block very early in the startup when it tries to lock the file torque/server_
priv/server.lock. When the second server cannot obtain the lock, it will spin in a loop and wait for the
lock to clear. The sleep time between checks of the lock file is one second.

Notice that not only can the servers run on independent server hardware, there can also be multiple
instances of the pbs_server running on the same machine. This was not possible before as the second one
to start would always write an error and quit when it could not obtain the lock.

Because the file server_priv/serverdb is created in a way which is not compatible between hardware
architectures, the machines that are running pbs_server in high-availability mode must be of similar
architecture. For example, a 32-bit machine is unable to read the server_priv/serverdb file of a 64-bit
machine. Therefore, when choosing hardware, verify all servers are of the same architecture.

Enhanced high availability
The default high availability configuration of TORQUE 2.4 is backward compatible with version 2.3, but an
enhanced high availability option is available with version 2.4. The enhanced version in 2.4 fixes some
shortcomings in the default configuration and is more robust. The lock file mechanism used to trigger a
fail-over in TORQUE 2.3 works correctly only if the primary pbs_server is taken down gracefully, and
releases the lock on the file being used as the semaphore. If the server crashes, the lock stays in place and
the backup server will not start unless the lock is manually removed by the administrator. With 2.4
enhanced high availability the reliance on the file system is bypassed with a much more reliable
mechanism.

In order to use enhanced high availability with TORQUE 2.4, TORQUE must be configured using the --
enable-high-availability option (in addition to all other configuration options you specify).

> ./configure --prefix=/usr/var/torque --enable-high-availability

In the above example, TORQUE installs to the /usr/var/torque directory and is configured to use the
high availability features.

Once TORQUE has been compiled and installed, it is launched the same way as with TORQUE 2.3; start
each instance of pbs_server with the --ha option.

xci
Server high availability

Chapter 4: Setting server policies

In addition to the new fail-over mechanism, three server options have been added to help manage
enhanced high availability in TORQUE 2.4. The server parameters are lock_file, lock_file_update_time, and
lock_file_check_time.

The lock_file option allows the administrator to change the location of the lock file. The default location is
torque/server_priv. If the lock_file option is used, the new location must be on the shared partition so
all servers have access.

The lock_file_update_time and lock_file_check_time parameters are used by the servers to determine if the
primary server is active. The primary pbs_server will update the lock file based on the lock_file_update_
time (default value of 3 seconds). All backup pbs_servers will check the lock file as indicated by the lock_
file_check_time parameter (default value of 9 seconds). The lock_file_update_time must be less than the
lock_file_check_time. When a failure occurs, the backup pbs_server takes up to the lock_file_check_time
value to take over.

> qmgr -c "set server lock_file_check_time=5"

In the above example, after the primary pbs_server goes down, the backup pbs_server takes up to 5
seconds to take over. It takes additional time for all MOMs to switch over to the new pbs_server.

The clock on the primary and redundant servers must be synchronized in order for high availability
to work. Use a utility such as NTP to ensure your servers have a synchronized time.

Enhanced high availability with Moab
When TORQUE is run with an external scheduler such as Moab, and the pbs_server is not running on the
same host as Moab, pbs_server needs to know where to find the scheduler. To do this, use the following
syntax (the port is required and the default is 15004):

> pbs_server --ha -l <moabhost:port>

If Moab is running in HA mode, add a -l option for each redundant server.

> pbs_server --ha -l <moabhost1:port> -l <moabhost2:port>

The root user of each Moab host must be added to the operators and managers lists of the server. This
enables Moab to execute root level operations in TORQUE.

How commands select the correct server host
The various commands that send messages to pbs_server usually have an option of specifying the server
name on the command line, or if none is specified will use the default server name. The default server
name comes either from the environment variable PBS_DEFAULT or from the file torque/server_name.

When a command is executed and no explicit server is mentioned, an attempt is made to connect to the
first server name in the list of hosts from PBS_DEFAULT or torque/server_name. If this fails, the next
server name is tried. If all servers in the list are unreachable, an error is returned and the command fails.

Note that there is a period of time after the failure of the current server during which the new server is
starting up where it is unable to process commands. The new server must read the existing configuration
and job information from the disk, so the length of time that commands cannot be received varies.
Commands issued during this period of time might fail due to timeouts expiring.

xcii
Server high availability

Chapter 4: Setting server policies

Job names
One aspect of this enhancement is in the construction of job names. Job names normally contain the name
of the host machine where pbs_server is running. When job names are constructed, only the first name
from the server specification list is used in building the job name.

Persistence of the pbs_server process
The system administrator must ensure that pbs_server continues to run on the server nodes. This could be
as simple as a cron job that counts the number of pbs_server's in the process table and starts some more
if needed.

High availability of the NFS server
One consideration of this implementation is that it depends on NFS file system also being redundant. NFS
can be set up as a redundant service. See the following.

l Setting Up A Highly Available NFS Server

l Making NFS Work On Your Network

l Sourceforge Linux NFS FAQ

l NFS v4 main site

There are also other ways to set up a shared file system. See the following:

l Red Hat Global File System

l Data sharing with a GFS storage cluster

Example setup of high availability
1. The machines running pbs_server must have access to a shared server_priv/ directory (usually an

NFS share on a MoM).

2. All MoMs must have the same content in their server_name file. This can be done manually or via an
NFS share. The server_name file contains a comma-delimited list of the hosts that run pbs_server.

List of all servers running pbs_server
server1,server2

3. The machines running pbs_server must be listed in acl_hosts.

> qmgr -c "set server acl_hosts += server1"
> qmgr -c "set server acl_hosts += server2"

4. Start pbs_server with the --ha option.

[root@server1]$ pbs_server --ha

[root@server2]$ pbs_server --ha

Related topics

l Setting server policies on page lxxvii
l Queue configuration on page lxxvii

xciii
Server high availability

http://www.howtoforge.com/high_availability_nfs_drbd_heartbeat
http://www.howtoforge.com/high_availability_nfs_drbd_heartbeat
http://www.howtoforge.com/high_availability_nfs_drbd_heartbeat
http://www.howtoforge.com/high_availability_nfs_drbd_heartbeat
http://www.howtoforge.com/high_availability_nfs_drbd_heartbeat
http://www.howtoforge.com/high_availability_nfs_drbd_heartbeat
http://www.howtoforge.com/high_availability_nfs_drbd_heartbeat
http://www.networkcomputing.com/netdesign/nfs1.html
http://www.networkcomputing.com/netdesign/nfs1.html
http://www.networkcomputing.com/netdesign/nfs1.html
http://www.networkcomputing.com/netdesign/nfs1.html
http://www.networkcomputing.com/netdesign/nfs1.html
http://www.networkcomputing.com/netdesign/nfs1.html
http://nfs.sourceforge.net/
http://nfs.sourceforge.net/
http://nfs.sourceforge.net/
http://nfs.sourceforge.net/
http://www.nfsv4.org/
http://www.nfsv4.org/
http://www.nfsv4.org/
http://www.nfsv4.org/
http://www.redhat.com/rhel/add-ons/high_availability.html
http://www.redhat.com/rhel/add-ons/high_availability.html
http://www.redhat.com/rhel/add-ons/high_availability.html
http://www.redhat.com/rhel/add-ons/high_availability.html
http://www.redhat.com/rhel/add-ons/high_availability.html
http://www.redhat.com/magazine/006apr05/features/gfs/
http://www.redhat.com/magazine/006apr05/features/gfs/
http://www.redhat.com/magazine/006apr05/features/gfs/
http://www.redhat.com/magazine/006apr05/features/gfs/
http://www.redhat.com/magazine/006apr05/features/gfs/
http://www.redhat.com/magazine/006apr05/features/gfs/
http://www.redhat.com/magazine/006apr05/features/gfs/

Chapter 5: Integrating schedulers for
TORQUE

Selecting the cluster scheduler is an important decision and significantly affects cluster utilization,
responsiveness, availability, and intelligence. The default TORQUE scheduler, pbs_sched, is very basic and
will provide poor utilization of your cluster's resources. Other options, such as Maui Scheduler or Moab
Workload Manager, are highly recommended. If you are using Maui or Moab, refer to the Moab-PBS
Integration Guide. If using pbs_sched, simply start the pbs_sched daemon.

If you are installing Moab Cluster Suite, TORQUE and Moab were configured at installation for
interoperability and no further action is required.

xcv

http://www.adaptivecomputing.com/resources/docs/maui
http://www.adaptivecomputing.com/resources/docs/mwm/7-0/help.htm

Chapter 6: Configuring data management
This section contains information about SCP-based data management with TORQUE. It describes how to use
TORQUE with NFS and other networked filesystems. It also outlines file staging requirements. For details,
see these topics:

l SCP setup on page xcvii

l NFS and other networked filesystems on page c

l File stage-in/stage-out on page ci

SCP setup
To use SCP-based data management, TORQUE must be authorized to migrate data to any of the compute
nodes. If this is not already enabled within the cluster, this can be achieved with the process described
below. This process enables uni-directional access for a particular user from a source host to a destination
host.

These directions were written using OpenSSH version 3.6 and may not transfer correctly to older
versions.

To set up TORQUE for SCP, follow the directions in each of these topics:

l Generating SSH key on source host on page xcviii

l Copying public SSH key to each destination host on page xcviii

l Configuring the SSH daemon on each destination host on page xcviii

l Validating correct SSH configuration on page xcix

l Enabling bi-directional SCP access on page xcix

l Compiling TORQUE to support SPC on page xcix

l Troubleshooting on page c

Related topics

l Configuring data management on page xcvii

xcvii
SCP setup

http://www.openssh.org/
http://www.openssh.org/
http://www.openssh.org/

Chapter 6: Configuring data management

Generating SSH key on source host
On the source host as the transfer user, execute the following:

> ssh-keygen -t rsa

This will prompt for a passphrase (optional) and create two files (id_rsa and id_rsa.pub) inside
~/.ssh/.

Related topics

l SCP setup on page xcvii
l Copying public SSH key to each destination host on page xcviii

Copying public SSH key to each destination host
Transfer public key to each destination host as the transfer user:

Easy key copy:

ssh-copy-id [-i [identity_file]] [user@]machine

Manual steps to copy keys:

> scp ~/.ssh/id_rsa.pub destHost:~ (enter password)

Create an authorized_keys file on each destination host:

> ssh destHost (enter password)
> cat id_rsa.pub >> .ssh/authorized_keys

If the .ssh directory does not exist, create it with 700 privileges (mkdir .ssh; chmod 700 .ssh):

> chmod 700 .ssh/authorized_keys

Related topics

l Generating SSH key on source host on page xcviii
l SCP setup on page xcvii

Configuring the SSH daemon on each destination host
Some configuration of the SSH daemon may be required on the destination host. (Because this is not
always the case, see Validating correct SSH configuration on page xcix and test the changes made to this
point. If the tests fail, proceed with this step and then try testing again.) Typically, this is done by editing
the /etc/ssh/sshd_config file (root access needed). To verify correct configuration, see that the
following attributes are set (not commented):

RSAAuthentication yes
PubkeyAuthentication yes

If configuration changes were required, the SSH daemon will need to be restarted (root access needed):

xcviii
SCP setup

Chapter 6: Configuring data management

> /etc/init.d/sshd restart

Related topics

l SCP setup on page xcvii

Validating correct SSH configuration
If all is properly configured, the following command issued on the source host should succeed and not
prompt for a password:

> scp destHost:/etc/motd /tmp

If this is your first time accessing destination from source, it may ask you if you want to add the
fingerprint to a file of known hosts. If you specify yes, this message should no longer appear and
should not interfere with scp copying via TORQUE. Also, it is important that the full hostname
appear in the known_hosts file. To do this, use the full hostname for destHost, as in
machine.domain.org instead of just machine.

Related topics

l SCP setup on page xcvii

Enabling bi-directional SCP access
The preceding steps allow source access to destination without prompting for a password. The reverse,
however, is not true. Repeat the steps, but this time using the destination as the source, etc. to enable bi-
directional SCP access (i.e. source can send to destination and destination can send to source without
password prompts.)

Related topics

l SCP setup on page xcvii

Compiling TORQUE to support SPC

In TORQUE 2.1 and later, SCP is the default remote copy protocol. These instructions are only
necessary for earlier versions.

TORQUE must be re-configured (and then rebuilt) to use SCP by passing in the --with-scp flag to the
configure script:

> ./configure --prefix=xxx --with-scp
> make

xcix
SCP setup

Chapter 6: Configuring data management

If special SCP flags are required in your local setup, these can be specified using the $rcpcmd
parameter.

Related topics

l SCP setup on page xcvii

Troubleshooting
If, after following all of the instructions in this section (see SCP setup on page xcvii), TORQUE is still
having problems transferring data with SCP, set the PBSDEBUG environment variable and restart the pbs_
mom for details about copying. Also check the MOM log files for more details.

Related topics

l SCP setup on page xcvii

NFS and other networked filesystems
When a batch job starts, its stdin file (if specified) is copied from the submission directory on the remote
submission host. This file is placed in the $PBSMOMHOME directory on the mother superior node (i.e.,
/usr/spool/PBS/spool). As the job runs, stdout and stderr files are generated and placed in this
directory using the naming convention $JOBID.OU and $JOBID.ER.

When the job completes, the MOM copies the files into the directory from which the job was submitted. By
default, this file copying will be accomplished using a remote copy facility such as rcp or scp.

If a shared file system such as NFS, DFS, or AFS is available, a site can specify that the MOM should take
advantage of this by specifying the $usecp directive inside the MOM configuration file (located in the
$PBSMOMHOME/mom_priv directory) using the following format:

$usecp <HOST>:<SRCDIR> <DSTDIR>

<HOST> can be specified with a leading wildcard ('*') character. The following example demonstrates this
directive:

mom_priv/config

/home is NFS mounted on all hosts
$usecp *:/home /home
submission hosts in domain fte.com should map '/data' directory on submit host to
'/usr/local/data' on compute host
$usecp *.fte.com:/data /usr/local/data

If for any reason the MOM daemon is unable to copy the output or error files to the submission directory,
these files are instead copied to the undelivered directory also located in $PBSMOMHOME.

Related topics

l Configuring data management on page xcvii

c
NFS and other networked filesystems

Chapter 6: Configuring data management

File stage-in/stage-out
File staging requirements are specified using the stagein and stageout directives of the qsub
command. Stagein requests occur before the job starts execution, while stageout requests happen after a
job completes.

On completion of the job, all staged-in and staged-out files are removed from the execution system. The
file_list is in the form local_file@hostname:remote_file[,...] regardless of the direction
of the copy. The name local_file is the name of the file on the system where the job executed. It may
be an absolute path or relative to the home directory of the user. The name remote_file is the
destination name on the host specified by hostname. The name may be absolute or relative to the user's
home directory on the destination host. The use of wildcards in the file name is not recommended.

The file names map to a remote copy program (rcp/scp/cp, depending on configuration) called on the
execution system in the following manner:

For stagein: rcp/scp hostname:remote_file local_file

For stageout: rcp/scp local_file hostname:remote_file

Examples

stage /home/john/input_source.txt from node13.fsc to /home/john/input_destination.txt
on master compute node
> qsub -l nodes=1,walltime=100 -W stagein=input_source.txt@node13.fsc:/home/john/input_
destination.txt

stage /home/bill/output_source.txt on master compute node to /tmp/output_destination.txt
on node15.fsc
> qsub -l nodes=1,walltime=100 -W stageout=/tmp/output_
source.txt@node15.fsc:/home/bill/output_destination.txt

$ fortune >xxx;echo cat xxx|qsub -W stagein=xxx@`hostname`:xxx
199.myhost.mydomain
$ cat STDIN*199
Anyone who has had a bull by the tail knows five or six more things
than someone who hasn't.
-- Mark Twain

Related topics

l Configuring data management on page xcvii

ci
File stage-in/stage-out

Chapter 7: MPI (Message Passing Interface)
support

A message passing library is used by parallel jobs to augment communication between the tasks
distributed across the cluster. TORQUE can run with any message passing library and provides limited
integration with some MPI libraries.

For more information, see these topics:

l MPICH on page ciii

l MPICH-VMI on page civ

l Open MPI on page cv

MPICH
One of the most popular MPI libraries is MPICH available from Argonne National Lab. If using this release,
you may want to consider also using the mpiexec tool for launching MPI applications. Support for mpiexec
has been integrated into TORQUE.

MPIExec Overview
mpiexec is a replacement program for the script mpirun, which is part of the mpich package. It is used to
initialize a parallel job from within a PBS batch or interactive environment. mpiexec uses the task
manager library of PBS to spawn copies of the executable on the nodes in a PBS allocation.

Reasons to use mpiexec rather than a script (mpirun) or an external daemon (mpd):

l Starting tasks with the task manager (TM) interface is much faster than invoking a separate rsh *
once for each process.

l Resources used by the spawned processes are accounted correctly with mpiexec, and reported in the
PBS logs, because all the processes of a parallel job remain under the control of PBS, unlike when
using mpirun-like scripts.

l Tasks that exceed their assigned limits of CPU time, wallclock time, memory usage, or disk space
are killed cleanly by PBS. It is quite hard for processes to escape control of the resource manager
when using mpiexec.

l You can use mpiexec to enforce a security policy. If all jobs are forced to spawn using mpiexec and
the PBS execution environment, it is not necessary to enable rsh or ssh access to the compute nodes
in the cluster.

ciii
MPICH

http://www.mcs.anl.gov/research/projects/mpi/
http://www.mcs.anl.gov/research/projects/mpi/mpich1/
http://www.anl.gov/
http://www.anl.gov/
http://www.anl.gov/
http://www.osc.edu/~djohnson/mpiexec/

Chapter 7: MPI (Message Passing Interface) support

For more information, see the mpiexec homepage.

MPIExec Troubleshooting
Although problems with mpiexec are rare, if issues do occur, the following steps may be useful:

l Determine current version using mpiexec --version and review the change log available on the
MPI homepage to determine if the reported issue has already been corrected.

l Send email to the mpiexec mailing list at mpiexec@osc.edu.

l Browse the mpiexec user list archives for similar problems and resolutions.

l Read the FAQ contained in the README file and the mpiexec man pages contained within the mpiexec
distribution.

l Increase the logging of mpiexec operation with mpiexec --verbose (reports messages to
stderr).

l Increase logging of the master and slave resource manager execution daemons associated with the
job (with TORQUE, use $loglevel to 5 or higher in $TORQUEROOT/mom_priv/config and look
for 'tm' messages after associated join job messages).

l Use tracejob (included with TORQUE) or qtracejob (included with OSC's pbstools package) to
isolate failures within the cluster.

l If the message 'exec: Error: get_hosts: pbs_connect: Access from host not
allowed, or unknown host' appears, this indicates that mpiexec cannot communicate with the
pbs_server daemon. In most cases, this indicates that the $TORQUEROOT/server_name file points
to the wrong server or the node cannot resolve the server's name. The qstat command can be run
on the node to test this.

General MPI Troubleshooting
When using MPICH, some sites have issues with orphaned MPI child processes remaining on the system
after the master MPI process has been terminated. To address this, TORQUE epilogue scripts can be
created that properly clean up the orphaned processes (see Prologue and epilogue scripts on page ccliii).

Related topics

l MPI (Message Passing Interface) support on page ciii

MPICH-VMI
MPICH-VMI is a highly-optimized open-source message passing layer available from NCSA. Additional
information can be found in the VMI tutorial.

Related topics

l MPI (Message Passing Interface) support on page ciii

civ
MPICH-VMI

http://www.osc.edu/~djohnson/mpiexec/
http://www.osc.edu/~djohnson/mpiexec/index.php#Changes
http://www.osc.edu/~djohnson/mpiexec/index.php#Changes
http://www.osc.edu/~djohnson/mpiexec/index.php
http://www.osc.edu/~djohnson/mpiexec/index.php
mailto:mpiexec@osc.edu
http://www.open-mpi.org/community/lists/users/
http://vmi.ncsa.uiuc.edu/
http://vmi.ncsa.uiuc.edu/
http://vmi.ncsa.uiuc.edu/VMISendRecvTutorial.php
http://vmi.ncsa.uiuc.edu/VMISendRecvTutorial.php

Chapter 7: MPI (Message Passing Interface) support

OpenMPI
Open MPI is a new MPI implementation that combines technologies from multiple projects to create the
best possible library. It supports the TM interface for integration with TORQUE. More information is
available in the FAQ.

Related topics

l MPI (Message Passing Interface) support on page ciii

cv
OpenMPI

http://www.open-mpi.org/
http://www.open-mpi.org/
http://www.open-mpi.org/faq

Chapter 8: Resources
A primary task of any resource manager is to monitor the state, health, configuration, and utilization of
managed resources. TORQUE is specifically designed to monitor compute hosts for use in a batch
environment. TORQUE is not designed to monitor non-compute host resources such as software licenses,
networks, file systems, and so forth, although these resources can be integrated into the cluster using
some scheduling systems.

With regard to monitoring compute nodes, TORQUE reports about a number of attributes broken into three
major categories:

l Configuration on page cvii

l Utilization on page cviii

l Node states on page cviii

Configuration
Configuration includes both detected hardware configuration and specified batch attributes.

Attribute Description Details

Architecture
(arch)

operating sys-
tem of the
node

The value reported is a derivative of the operating system installed.

Node Fea-
tures (prop-
erties)

arbitrary
string attrib-
utes asso-
ciated with the
node

No node features are specified by default. If required, they are set using the
nodes file located in the TORQUE_HOME/server_priv directory. They may
specify any string and are most commonly used to allow users to request certain
subsets of nodes when submitting jobs.

Local Disk
(size)

configured
local disk

By default, local disk space is not monitored. If the MOM configuration size
[fs=<FS>][xref] parameter is set, TORQUE will report, in kilobytes, configured
disk space within the specified directory.

Memory
(physmem)

local mem-
ory/RAM

Local memory/RAM is monitored and reported in kilobytes.

cvii

Chapter 8: Resources

Attribute Description Details

Processors
(ncpus/np)

real/virtual
processors

The number of processors detected by TORQUE is reported via the ncpus attrib-
ute. However, for scheduling purposes, other factors are taken into account. In
its default configuration, TORQUE operates in "dedicated" mode with each node
possessing a single virtual processor. In dedicated mode, each job task will con-
sume one virtual processor and TORQUE will accept workload on each node
until all virtual processors on that node are in use. While the number of virtual
processors per node defaults to 1, this may be configured using the nodes file
located in the TORQUE_HOME/server_priv directory. An alternative to ded-
icated mode is "timeshared" mode. If TORQUE's timeshared mode is enabled,
TORQUE will accept additional workload on each node until the node's maxload
limit is reached.

Swap (tot-
mem)

virtual mem-
ory/Swap

Virtual memory/Swap is monitored and reported in kilobytes.

Utilization
Utilization includes information regarding the amount of node resources currently in use as well as
information about who or what is consuming it.

Attribute Description Details

Disk (size) local disk
availability

By default, local disk space is not monitored. If the MOM configuration size
[fs=<FS>][xref] parameter is set, TORQUE will report configured and currently
available disk space within the specified directory in kilobytes.

Memory
(availmem)

real mem-
ory/RAM

Available real memory/RAM is monitored and reported in kilobytes.

Network
(netload)

local network
adapter
usage

Reports total number of bytes transferred in or out by the network adapter.

Processor
Utilization
(loadave)

node's cpu
load average

Reports the node's 1 minute bsd load average.

Node states
State information includes administrative status, general node health information, and general usage
status.

cviii

Chapter 8: Resources

Attribute Description Details

Idle Time
(idletime)

time since local key-
board/mouse activity has been
detected

Time in seconds since local keyboard/mouse activity has been
detected.

State
(state)

monitored/admin node state A node can be in one or more of the following states:
l busy - node is full and will not accept additional work
l down - node is failing to report, is detecting local failures

with node
l free - node is ready to accept additional work
l job-exclusive - all available virtual processors are

assigned to jobs
l job-sharing - node has been allocated to run multiple

shared jobs and will remain in this state until jobs are
complete

l offline - node has been instructed by an admin to no
longer accept work

l reserve - node has been reserved by the server
l time-shared - node always allows multiple jobs to run

concurrently
l unknown - node has not been detected

cix

Chapter 9: Accounting records
TORQUE maintains accounting records for batch jobs in the following directory:

$TORQUEROOT/server_priv/accounting/<TIMESTAMP>

$TORQUEROOT defaults to /usr/spool/PBS and <TIMESTAMP> is in the format: YYYYMMDD.

These records include events, time stamps, and information on resources requested and used.

Records for four different event types are produced and are described in the following table:

Record
marker

Record
type Description

D delete Job has been deleted

E exit Job has exited (either successfully or unsuccessfully)

Q queue Job has been submitted/queued

S start Attempt to start the job has been made (if the job fails to properly start, it may have
multiple job start records)

Accounting Variables
The following table offers accounting variable descriptions. Descriptions for accounting variables not
indicated in the table, particularly those prefixed with Resources_List, are available at Job submission on
page xxxvii.

Variable Description

ctime Time job was created

etime Time job became eligible to run

qtime Time job was queued

start Time job started to run

A sample record in this file can look like the following:

cxi

Chapter 9: Accounting records

06/06/2005 14:04:25;D;408.ign1.zeta2.org;requestor=guest@ign1.zeta2.org
06/06/2005 14:04:35;Q;409.ign1.zeta2.org;queue=batch
06/06/2005 14:04:44;Q;410.ign1.zeta2.org;queue=batch
06/06/2005 14:06:06;S;407.ign1.zeta2.org;user=guest group=guest jobname=STDIN
queue=batch ctime=1118087915 qtime=1118087915 etime=1118087915 start=1118088366 exec_
host=ign1.zeta2.org/0 Resource_List.neednodes=ign1.zeta2.org Resource_List.nodect=1
Resource_List.nodes=1 Resource_List.walltime=00:16:40
06/06/2005 14:07:17;D;407.ign1.zeta2.org;requestor=guest@ign1.zeta2.org
06/06/2005 14:07:17;E;407.ign1.zeta2.org;user=guest group=guest jobname=STDIN
queue=batch ctime=1118087915 qtime=1118087915 etime=1118087915 start=1118088366 exec_
host=ign1.zeta2.org/0 Resource_List.nodect=1 Resource_List.nodes=1 Resource_
List.walltime=00:16:40 session=6365 end=1118088437 Exit_status=271 resources_
used.cput=00:00:00 resources_used.mem=3068kb resources_used.vmem=16080kb resources_
used.walltime=00:01:11

cxii

Chapter 10: Job logging
New in TORQUE 2.5.3 is the ability to log job information for completed jobs. The information stored in the
log file is the same information produced with the command qstat -f. The log file data is stored using an
XML format. Data can be extracted from the log using the utility showjobs found in the contrib/
directory of the TORQUE source tree. Custom scripts that can parse the XML data can also be used.

For details about job logging, see these topics:

l Job log location and name on page cxiii

l Enabling job logs on page cxiii

Job log location and name
The job log is kept at $TORQUE_HOME/job_logs. The naming convention for the job log is the same as
for the server log or MOM log. The log name is created from the current year/month/day.

For example, if today's date is 26 October, 2010 the log file is named 20101026.

A new log file is created each new day that data is written to the log.

Related topics

l Enabling job logs on page cxiii
l Job logging on page cxiii

Enabling job logs
There are five new server parameters used to enable job logging. These parameters control what
information is stored in the log and manage the log files.

Parameter Description

record_job_
info

This must be set to true in order for job logging to be enabled. If not set to true, the remaining
server parameters are ignored.

cxiii
Job log location and name

Chapter 10: Job logging

Parameter Description

record_job_
script

If set to true, this adds the contents of the script executed by a job to the log.

job_log_file_
max_size

This specifies a soft limit (in kilobytes) for the job log's maximum size. The file size is checked every
five minutes and if the current day file size is greater than or equal to this value, it is rolled from
<filename> to <filename.1> and a new empty log is opened. If the current day file size exceeds the
maximum size a second time, the <filename.1> log file is rolled to <filename.2>, the current log is rolled
to <filename.1>, and a new empty log is opened. Each new log causes all other logs to roll to an exten-
sion that is one greater than its current number. Any value less than 0 is ignored by pbs_server
(meaning the log will not be rolled).

job_log_file_
roll_depth

This sets the maximum number of new log files that are kept in a day if the job_log_file_max_size
parameter is set. For example, if the roll depth is set to 3, no file can roll higher than <filename.3>. If a
file is already at the specified depth, such as <filename.3>, the file is deleted so it can be replaced by
the incoming file roll, <filename.2>.

job_log_
keep_days

This maintains logs for the number of days designated. If set to 4, any log file older than 4 days old is
deleted.

Related topics

l Job log location and name on page cxiii
l Job logging on page cxiii

cxiv
Enabling job logs

Chapter 11: Troubleshooting
There are a few general strategies that can be followed to determine the cause of unexpected behavior.
These are a few of the tools available to help determine where problems occur. See these topics for
details:

l Host resolution on page cxv

l Firewall configuration on page cxvi

l TORQUE log files on page cxvi

l Using "tracejob" to locate job failures on page cxvi

l Using GDB to locate job failures on page cxix

l Other diagnostic options on page cxix

l Stuck jobs on page cxx

l Frequently asked questions (FAQ) on page cxxi

l Compute node health check on page cxxvi

l Debugging on page cxxviii

Host resolution
The TORQUE server host must be able to perform both forward and reverse name lookup on itself and on
all compute nodes. Likewise, each compute node must be able to perform forward and reverse name
lookup on itself, the TORQUE server host, and all other compute nodes. In many cases, name resolution is
handled by configuring the node's /etc/hosts file although DNS and NIS services may also be used.
Commands such as nslookup or dig can be used to verify proper host resolution.

Invalid host resolution may exhibit itself with compute nodes reporting as down within the output of
pbsnodes-a and with failure of the momctl -d3 command.

Related topics

l Troubleshooting on page cxv

cxv
Host resolution

Chapter 11: Troubleshooting

Firewall configuration
If you have firewalls running on the server or node machines, be sure to allow connections on the
appropriate ports for each machine. TORQUE pbs_mom daemons use UDP ports 1023 and below if
privileged ports are configured (privileged ports is the default). The pbs_server and pbs_mom daemons use
TCP and UDP ports 15001-15004 by default.

Firewall-based issues are often associated with server-to-MOM communication failures and messages such
as 'premature end of message' in the log files.

Also, the tcpdump program can be used to verify the correct network packets are being sent.

Related topics

l Troubleshooting on page cxv

TORQUE log files
The pbs_server keeps a daily log of all activity in the TORQUE_HOME/server_logs directory. The pbs_
mom also keeps a daily log of all activity in the TORQUE_HOME/mom_logs/ directory. These logs contain
information on communication between server and MOM as well as information on jobs as they enter the
queue and as they are dispatched, run, and terminated. These logs can be very helpful in determining
general job failures. For MOM logs, the verbosity of the logging can be adjusted by setting the $loglevel
[xref] parameter in the mom_priv/config file. For server logs, the verbosity of the logging can be
adjusted by setting the server log_level[xref] attribute in qmgr.

For both pbs_mom and pbs_server daemons, the log verbosity level can also be adjusted by setting the
environment variable PBSLOGLEVEL to a value between 0 and 7. Further, to dynamically change the log
level of a running daemon, use the SIGUSR1 and SIGUSR2 signals to increase and decrease the active
loglevel by one. Signals are sent to a process using the kill command.

For example, kill -USR1 `pgrep pbs_mom` would raise the log level up by one.

The current loglevel for pbs_mom can be displayed with the command momctl -d3.

Related topics

l Troubleshooting on page cxv

Using "tracejob" to locate job failures
Overview
The tracejob utility extracts job status and job events from accounting records, MOM log files, server log
files, and scheduler log files. Using it can help identify where, how, a why a job failed. This tool takes a job
id as a parameter as well as arguments to specify which logs to search, how far into the past to search,
and other conditions.

cxvi
Firewall configuration

Chapter 11: Troubleshooting

Syntax
tracejob [-a|s|l|m|q|v|z] [-c count] [-w size] [-p path] [-n <DAYS>] [-f
filter_type] <JOBID>

-p : path to PBS_SERVER_HOME
-w : number of columns of your terminal
-n : number of days in the past to look for job(s) [default 1]
-f : filter out types of log entries, multiple -f's can be specified
 error, system, admin, job, job_usage, security, sched, debug,
 debug2, or absolute numeric hex equivalent
-z : toggle filtering excessive messages
-c : what message count is considered excessive
-a : don't use accounting log files
-s : don't use server log files
-l : don't use scheduler log files
-m : don't use MOM log files
-q : quiet mode - hide all error messages
-v : verbose mode - show more error messages

cxvii
Using "tracejob" to locate job failures

Chapter 11: Troubleshooting

Example

> tracejob -n 10 1131

Job: 1131.icluster.org

03/02/2005 17:58:28 S enqueuing into batch, state 1 hop 1
03/02/2005 17:58:28 S Job Queued at request of dev@icluster.org, owner =
 dev@icluster.org, job name = STDIN, queue = batch
03/02/2005 17:58:28 A queue=batch
03/02/2005 17:58:41 S Job Run at request of dev@icluster.org
03/02/2005 17:58:41 M evaluating limits for job
03/02/2005 17:58:41 M phase 2 of job launch successfully completed
03/02/2005 17:58:41 M saving task (TMomFinalizeJob3)
03/02/2005 17:58:41 M job successfully started
03/02/2005 17:58:41 M job 1131.koa.icluster.org reported successful start on 1 node
(s)
03/02/2005 17:58:41 A user=dev group=dev jobname=STDIN queue=batch ctime=1109811508

qtime=1109811508 etime=1109811508 start=1109811521
 exec_host=icluster.org/0 Resource_List.neednodes=1 Resource_
List.nodect=1
 Resource_List.nodes=1 Resource_List.walltime=00:01:40
03/02/2005 18:02:11 M walltime 210 exceeded limit 100
03/02/2005 18:02:11 M kill_job
03/02/2005 18:02:11 M kill_job found a task to kill
03/02/2005 18:02:11 M sending signal 15 to task
03/02/2005 18:02:11 M kill_task: killing pid 14060 task 1 with sig 15
03/02/2005 18:02:11 M kill_task: killing pid 14061 task 1 with sig 15
03/02/2005 18:02:11 M kill_task: killing pid 14063 task 1 with sig 15
03/02/2005 18:02:11 M kill_job done
03/02/2005 18:04:11 M kill_job
03/02/2005 18:04:11 M kill_job found a task to kill
03/02/2005 18:04:11 M sending signal 15 to task
03/02/2005 18:06:27 M kill_job
03/02/2005 18:06:27 M kill_job done
03/02/2005 18:06:27 M performing job clean-up
03/02/2005 18:06:27 A user=dev group=dev jobname=STDIN queue=batch ctime=1109811508
 qtime=1109811508 etime=1109811508 start=1109811521
 exec_host=icluster.org/0 Resource_List.neednodes=1 Resource_
List.nodect=1

Resource_List.nodes=1 Resource_List.walltime=00:01:40
session=14060
 end=1109811987 Exit_status=265 resources_used.cput=00:00:00
 resources_used.mem=3544kb resources_used.vmem=10632kb

resources_used.walltime=00:07:46

...

The tracejob command operates by searching the pbs_server accounting records and the pbs_
server, mom, and scheduler logs. To function properly, it must be run on a node and as a user which
can access these files. By default, these files are all accessible by the user root and only available on
the cluster management node. In particular, the files required by tracejob are located in the
following directories:

TORQUE_HOME/server_priv/accounting

TORQUE_HOME/server_logs

TORQUE_HOME/mom_logs

TORQUE_HOME/sched_logs

cxviii
Using "tracejob" to locate job failures

Chapter 11: Troubleshooting

tracejob may only be used on systems where these files are made available. Non-root users may
be able to use this command if the permissions on these directories or files is changed
appropriately.

Related topics

l Troubleshooting on page cxv

Using GDB to locate job failures
If either the pbs_mom or pbs_server fail unexpectedly (and the log files contain no information on the
failure) gdb can be used to determine whether or not the program is crashing. To start pbs_mom or pbs_
server under GDB export the environment variable PBSDEBUG=yes and start the program (i.e., gdb pbs_
mom and then issue the run subcommand at the gdb prompt).

GDB may run for some time until a failure occurs and at which point, a message will be printed to the
screen and a gdb prompt again made available. If this occurs, use the gdb where subcommand to
determine the exact location in the code. The information provided may be adequate to allow local
diagnosis and correction. If not, this output may be sent to the mailing list or to help for further assistance.

See the PBSCOREDUMP parameter for enabling creation of core files (see Debugging on page
cxxviii).

Related topics

l Troubleshooting on page cxv

Other diagnostic options
When PBSDEBUG is set, some client commands will print additional diagnostic information.

$ export PBSDEBUG=yes
$ cmd

To debug different kinds of problems, it can be useful to see where in the code time is being spent. This is
called profiling and there is a Linux utility "gprof" that will output a listing of routines and the amount of
time spent in these routines. This does require that the code be compiled with special options to
instrument the code and to produce a file, gmon.out, that will be written at the end of program execution.

The following listing shows how to build TORQUE with profiling enabled. Notice that the output file for pbs_
mom will end up in the mom_priv directory because its startup code changes the default directory to this
location.

cxix
Using GDB to locate job failures

http://www.gnu.org/software/gdb/
mailto:help@supercluster.org

Chapter 11: Troubleshooting

./configure "CFLAGS=-pg -lgcov -fPIC"
make -j5
make install
pbs_mom ... do some stuff for a while ...
momctl -s
cd /var/spool/torque/mom_priv
gprof -b `which pbs_mom` gmon.out |less
#

Another way to see areas where a program is spending most of its time is with the valgrind program. The
advantage of using valgrind is that the programs do not have to be specially compiled.

valgrind --tool=callgrind pbs_mom

Related topics

l Troubleshooting on page cxv

Stuck jobs
If a job gets stuck in TORQUE, try these suggestions to resolve the issue:

l Use the qdel command to cancel the job.

l Force the MOM to send an obituary of the job ID to the server.

> qsig -s 0 <JOBID>

l You can try clearing the stale jobs by using the momctl command on the compute nodes where the
jobs are still listed.

> momctl -c 58925 -h compute-5-20

l Setting the qmgr server setting mom_job_sync to True might help prevent jobs from hanging.

> qmgr -c "set server mom_job_sync = True"

To check and see if this is already set, use:

> qmgr -c "p s"

l If the suggestions above cannot remove the stuck job, you can try qdel -p. However, since the -p
option purges all information generated by the job, this is not a recommended option unless the
above suggestions fail to remove the stuck job.

> qdel -p <JOBID>

l The last suggestion for removing stuck jobs from compute nodes is to restart the pbs_mom.

For additional troubleshooting, run a tracejob on one of the stuck jobs. You can then create an online
support ticket with the full server log for the time period displayed in the trace job.

Related topics

l Troubleshooting on page cxv

cxx
Stuck jobs

http://support.clusterresources.com/
http://support.clusterresources.com/
http://support.clusterresources.com/

Chapter 11: Troubleshooting

Frequently asked questions (FAQ)
l Cannot connect to server: error=15034 on page cxxi

l Deleting 'stuck' jobs on page cxxi

l Which user must run TORQUE? on page cxxii

l Scheduler cannot run jobs - rc: 15003 on page cxxii

l PBS_Server: pbsd_init, Unable to read server database on page cxxii

l qsub will not allow the submission of jobs requesting many processors on page cxxiii

l qsub reports 'Bad UID for job execution' on page cxxiv

l Why does my job keep bouncing from running to queued? on page cxxiv

l How do I use PVM with TORQUE? on page cxxiv

l My build fails attempting to use the TCL library on page cxxv

l My job will not start, failing with the message 'cannot send job to mom, state=PRERUN' on page
cxxv

l I want to submit and run jobs as root on page cxxv

l How do I determine what version of TORQUE I am using? on page cxxv

l How do I resolve autogen.sh errors that contain "error: possibly undefined macro: AC_MSG_
ERROR"? on page cxxv

Cannot connect to server: error=15034
This error occurs in TORQUE clients (or their APIs) because TORQUE cannot find the server_name file
and/or the PBS_DEFAULT environment variable is not set. The server_name file or PBS_DEFAULT
variable indicate the pbs_server's hostname that the client tools should communicate with. The server_
name file is usually located in TORQUE's local state directory. Make sure the file exists, has proper
permissions, and that the version of TORQUE you are running was built with the proper directory settings.
Alternatively, you can set the PBS_DEFAULT environment variable. Restart TORQUE daemons if you make
changes to these settings.

Deleting 'stuck' jobs
To manually delete a "stale" job which has no process, and for which the mother superior is still alive,
sending a sig 0 with qsig will often cause MOM to realize the job is stale and issue the proper JobObit
notice. Failing that, use momctl -c to forcefully cause MOM to purge the job. The following process should
never be necessary:

l Shut down the MOM on the mother superior node.

l Delete all files and directories related to the job from TORQUE_HOME/mom_priv/jobs.

l Restart the MOM on the mother superior node.

cxxi
Frequently asked questions (FAQ)

Chapter 11: Troubleshooting

If the mother superior MOM has been lost and cannot be recovered (i.e, hardware or disk failure), a job
running on that node can be purged from the output of qstat using the qdel on page clxviii -p command or
can be removed manually using the following steps:

To remove job X

1. Shutdown pbs_server.

> qterm

2. Remove job spool files.

> rm TORQUE_HOME/server_priv/jobs/X.SC TORQUE_HOME/server_priv/jobs/X.JB

3. Restart pbs_server

> pbs_server

Which user must run TORQUE?
TORQUE (pbs_server & pbs_mom) must be started by a user with root privileges.

Scheduler cannot run jobs - rc: 15003
For a scheduler, such as Moab or Maui, to control jobs with TORQUE, the scheduler needs to be run be a
user in the server operators / managers list (see qmgr). The default for the server operators / managers
list is root@localhost. For TORQUE to be used in a grid setting with Silver, the scheduler needs to be run
as root.

PBS_Server: pbsd_init, Unable to read server database
If this message is displayed upon starting pbs_server it means that the local database cannot be read. This
can be for several reasons. The most likely is a version mismatch. Most versions of TORQUE can read each
others' databases. However, there are a few incompatibilities between OpenPBS and TORQUE. Because of
enhancements to TORQUE, it cannot read the job database of an OpenPBS server (job structure sizes have
been altered to increase functionality). Also, a compiled in 32-bit mode cannot read a database generated
by a 64-bit pbs_server and vice versa.

cxxii
Frequently asked questions (FAQ)

http://www.adaptivecomputing.com/resources/docs/mwm/7-0/help.htm
http://www.adaptivecomputing.com/resources/docs/maui

Chapter 11: Troubleshooting

To reconstruct a database (excluding the job database)

1. First, print out the old data with this command:

%> qmgr -c "p s"
#
Create queues and set their attributes.
#
#
Create and define queue batch
create queue batch
set queue batch queue_type = Execution
set queue batch acl_host_enable = False
set queue batch resources_max.nodect = 6
set queue batch resources_default.nodes = 1
set queue batch resources_default.walltime = 01:00:00
set queue batch resources_available.nodect = 18
set queue batch enabled = True
set queue batch started = True
#
Set server attributes.
#
set server scheduling = True
set server managers = griduser@oahu.icluster.org
set server managers += scott@*.icluster.org
set server managers += wightman@*.icluster.org
set server operators = griduser@oahu.icluster.org
set server operators += scott@*.icluster.org
set server operators += wightman@*.icluster.org
set server default_queue = batch
set server log_events = 511
set server mail_from = adm
set server resources_available.nodect = 80
set server scheduler_iteration = 600
set server node_ping_rate = 300
set server node_check_rate = 600
set server tcp_timeout = 6

2. Copy this information somewhere.

3. Restart pbs_server with the following command:

> pbs_server -t create

4. When you are prompted to overwrite the previous database, enter y, then enter the data exported by
the qmgr command as in this example:

> cat data | qmgr

5. Restart pbs_server without the flags:

> qterm
> pbs_server

This will reinitialize the database to the current version.

Reinitializing the server database will reset the next jobid to 1.

qsubwill not allow the submission of jobs requesting many processors
TORQUE's definition of a node is context sensitive and can appear inconsistent. The qsub -l nodes=<X>
expression can at times indicate a request for X processors and other time be interpreted as a request for

cxxiii
Frequently asked questions (FAQ)

Chapter 11: Troubleshooting

X nodes. While qsub allows multiple interpretations of the keyword nodes, aspects of the TORQUE server's
logic are not so flexible. Consequently, if a job is using -l nodes to specify processor count and the
requested number of processors exceeds the available number of physical nodes, the server daemon will
reject the job.

To get around this issue, the server can be told it has an inflated number of nodes using the resources_
available attribute. To take affect, this attribute should be set on both the server and the associated
queue as in the example below. (See resources_available for more information.)

> qmgr
Qmgr: set server resources_available.nodect=2048
Qmgr: set queue batch resources_available.nodect=2048

The pbs_server daemon will need to be restarted before these changes will take affect.

qsub reports 'Bad UID for job execution'

[guest@login2]$ qsub test.job
qsub: Bad UID for job execution

Job submission hosts must be explicitly specified within TORQUE or enabled via RCmd security mechanisms
in order to be trusted. In the example above, the host 'login2' is not configured to be trusted. This
process is documented in Configuring job submission hosts on page xxvii.

Why does my job keep bouncing from running to queued?
There are several reasons why a job will fail to start. Do you see any errors in the MOM logs? Be sure to
increase the loglevel on MOM if you don't see anything. Also be sure TORQUE is configured with --
enable-syslog and look in /var/log/messages (or wherever your syslog writes).

Also verify the following on all machines:

l DNS resolution works correctly with matching forward and reverse

l Time is synchronized across the head and compute nodes

l User accounts exist on all compute nodes

l User home directories can be mounted on all compute nodes

l Prologue scripts (if specified) exit with 0

If using a scheduler such as Moab or Maui, use a scheduler tool such as checkjob to identify job start
issues.

How do I use PVMwith TORQUE?
l Start the master pvmd on a compute node and then add the slaves

l mpiexec can be used to launch slaves using rsh or ssh (use export PVM_RSH=/usr/bin/ssh to use
ssh)

cxxiv
Frequently asked questions (FAQ)

http://www.adaptivecomputing.com/resources/docs/mwm/7-0/help.htm
http://www.adaptivecomputing.com/resources/docs/maui

Chapter 11: Troubleshooting

Access can be managed by rsh/ssh without passwords between the batch nodes, but denying it from
anywhere else, including the interactive nodes. This can be done with xinetd and sshd configuration
(root is allowed to ssh everywhere). This way, the pvm daemons can be started and killed from the
job script.

The problem is that this setup allows the users to bypass the batch system by writing a job script that
uses rsh/ssh to launch processes on the batch nodes. If there are relatively few users and they can more
or less be trusted, this setup can work.

My build fails attempting to use the TCL library
TORQUE builds can fail on TCL dependencies even if a version of TCL is available on the system. TCL is
only utilized to support the xpbsmon client. If your site does not use this tool (most sites do not use
xpbsmon), you can work around this failure by rerunning configure with the --disable-gui argument.

My job will not start, failing with the message 'cannot send job tomom,
state=PRERUN'
If a node crashes or other major system failures occur, it is possible that a job may be stuck in a corrupt
state on a compute node. TORQUE 2.2.0 and higher automatically handle this when the mom_job_sync
parameter is set via qmgr (the default). For earlier versions of TORQUE, set this parameter and restart
the pbs_mom daemon.

This error can also occur if not enough free space is available on the partition that holds TORQUE.

I want to submit and run jobs as root
While this can be a very bad idea from a security point of view, in some restricted environments this can
be quite useful and can be enabled by setting the acl_roots parameter via qmgr command as in the
following example:

qmgr

> qmgr -c 's s acl_roots+=root@*'

How do I determine what version of TORQUE I am using?
There are times when you want to find out what version of TORQUE you are using. An easy way to do this
is to run the following command:

qmgr

> qmgr -c "p s" | grep pbs_ver

How do I resolve autogen.sh errors that contain "error: possibly undefined
macro: AC_MSG_ERROR"?
Verify the pkg-config package is installed.

cxxv
Frequently asked questions (FAQ)

Chapter 11: Troubleshooting

Related topics

l Troubleshooting on page cxv

Compute node health check
TORQUE provides the ability to perform health checks on each compute node. If these checks fail, a failure
message can be associated with the node and routed to the scheduler. Schedulers (such as Moab) can
forward this information to administrators by way of scheduler triggers, make it available through
scheduler diagnostic commands, and automatically mark the node down until the issue is resolved. (See the
RMMSGIGNORE parameter in the "Parameters" Appendix of the Moab Workload Manager Administrator's
Guide for more information.)

For more information about node health checks, see these topics:

l Configuring MOMs to launch a health check on page cxxvi

l Creating the health check script on page cxxvii

l Adjusting node state based on the health check output on page cxxvii

l Example health check script on page cxxvii

Related topics

l Troubleshooting on page cxv

Configuring MOMs to launch a health check
The health check feature is configured via the mom_priv/config file using the parameters described
below:

Parameter Format Default Description

$node_
check_
script

<STRING> N/A (Required) Specifies the fully qualified pathname of the health check
script to run

$node_
check_inter-
val

<INTEGER> 1 (Optional) Specifies the number of MOM intervals between health
checks (by default, each MOM interval is 45 seconds long - this is con-
trolled via the DEFAULT_SERVER_STAT_UPDATES #define located in
TORQUE_HOME/src/resmom/mom_main.c). The integer may be fol-
lowed by a list of event names (currently supported are jobstart
and jobend). (For more information, see pbs_mom.)

Related topics

l Compute node health check on page cxxvi

cxxvi
Compute node health check

http://www.adaptivecomputing.com/resources/docs/mwm/7-0/help.htm

Chapter 11: Troubleshooting

Creating the health check script
The health check script is executed directly by the pbs_mom daemon under the root user id. It must be
accessible from the compute node and may be a script or compile executable program. It may make any
needed system calls and execute any combination of system utilities but should not execute resource
manager client commands. Also, as of TORQUE 1.0.1, the pbs_mom daemon blocks until the health check is
completed and does not possess a built-in timeout. Consequently, it is advisable to keep the launch script
execution time short and verify that the script will not block even under failure conditions.

If the script detects a failure, it should return the keyword ERROR to stdout followed by an error message.
When a failure is detected, the ERROR keyword should be printed to stdout before any other data. The
message (up to 1024 characters) immediately following the ERROR keyword must all be contained on the
same line. The message is assigned to the node attribute 'message' of the associated node.

Related topics

l Compute node health check on page cxxvi

Adjusting node state based on the health check output
If the health check reports an error, the node attribute "message" is set to the error string returned.
Cluster schedulers can be configured to adjust a given node's state based on this information. For example,
by default, Moab sets a node's state to down if a node error message is detected and restores the state as
soon as the failure disappears.

Related topics

l Compute node health check on page cxxvi

Example health check script
As mentioned, the health check can be a shell script, PERL, Python, C-executable, or anything which can be
executed from the command line capable of setting STDOUT. The example below demonstrates a very
simple health check:

#!/bin/sh
/bin/mount | grep global
if [$? != "0"]
 then
 echo "ERROR cannot locate filesystem global"
fi

Related topics

l Compute node health check on page cxxvi

cxxvii
Compute node health check

http://www.adaptivecomputing.com/resources/docs/mwm/7-0/help.htm

Chapter 11: Troubleshooting

Debugging
TORQUE supports a number of diagnostic and debug options including the following:

PBSDEBUG environment variable - If set to 'yes', this variable will prevent pbs_server, pbs_mom, and/or
pbs_sched from backgrounding themselves allowing direct launch under a debugger. Also, some client
commands will provide additional diagnostic information when this value is set.

PBSLOGLEVEL environment variable - Can be set to any value between 0 and 7 and specifies the logging
verbosity level (default = 0)

PBSCOREDUMP environment variable - If set, it will cause the offending resource manager daemon to
create a core file if a SIGSEGV, SIGILL, SIGFPE, SIGSYS, or SIGTRAP signal is received. The core dump
will be placed in the daemon's home directory ($PBSHOME/mom_priv for pbs_mom).

NDEBUG #define - if set at build time, will cause additional low-level logging information to be output to
stdout for pbs_server and pbs_mom daemons.

tracejob reporting tool - can be used to collect and report logging and accounting information for specific
jobs (for more information, see Using "tracejob" to locate job failures on page cxvi)

PBSLOGLEVEL and PBSCOREDUMP must be added to the $PBSHOME/pbs_environment file, not
just the current environment. To set these variables, add a line to the pbs_environment file as either
"variable=value" or just "variable". In the case of "variable=value", the environment variable is set
up as the value specified. In the case of "variable", the environment variable is set based upon its
value in the current environment.

TORQUE error codes

Error code name Number Description

PBSE_NONE 15000 No error

PBSE_UNKJOBID 15001 Unknown job identifier

PBSE_NOATTR 15002 Undefined attribute

PBSE_ATTRRO 15003 Attempt to set READ ONLY attribute

PBSE_IVALREQ 15004 Invalid request

PBSE_UNKREQ 15005 Unknown batch request

PBSE_TOOMANY 15006 Too many submit retries

PBSE_PERM 15007 No permission

cxxviii
Debugging

Chapter 11: Troubleshooting

Error code name Number Description

PBSE_BADHOST 15008 Access from host not allowed

PBSE_JOBEXIST 15009 Job already exists

PBSE_SYSTEM 15010 System error occurred

PBSE_INTERNAL 15011 Internal server error occurred

PBSE_REGROUTE 15012 Parent job of dependent in rte queue

PBSE_UNKSIG 15013 Unknown signal name

PBSE_BADATVAL 15014 Bad attribute value

PBSE_MODATRRUN 15015 Cannot modify attribute in run state

PBSE_BADSTATE 15016 Request invalid for job state

PBSE_UNKQUE 15018 Unknown queue name

PBSE_BADCRED 15019 Invalid credential in request

PBSE_EXPIRED 15020 Expired credential in request

PBSE_QUNOENB 15021 Queue not enabled

PBSE_QACESS 15022 No access permission for queue

PBSE_BADUSER 15023 Bad user - no password entry

PBSE_HOPCOUNT 15024 Max hop count exceeded

PBSE_QUEEXIST 15025 Queue already exists

PBSE_ATTRTYPE 15026 Incompatible queue attribute type

PBSE_QUEBUSY 15027 Queue busy (not empty)

PBSE_QUENBIG 15028 Queue name too long

cxxix
Debugging

Chapter 11: Troubleshooting

Error code name Number Description

PBSE_NOSUP 15029 Feature/function not supported

PBSE_QUENOEN 15030 Cannot enable queue,needs add def

PBSE_PROTOCOL 15031 Protocol (ASN.1) error

PBSE_BADATLST 15032 Bad attribute list structure

PBSE_NOCONNECTS 15033 No free connections

PBSE_NOSERVER 15034 No server to connect to

PBSE_UNKRESC 15035 Unknown resource

PBSE_QUENODFLT 15036 No default queue defined

PBSE_EXCQRESC 15037 Job exceeds queue resource limits

PBSE_NORERUN 15038 Job not rerunnable

PBSE_ROUTEREJ 15039 Route rejected by all destinations

PBSE_ROUTEEXPD 15040 Time in route queue expired

PBSE_MOMREJECT 15041 Request to MOM failed

PBSE_BADSCRIPT 15042 (qsub) Cannot access script file

PBSE_STAGEIN 15043 Stage-In of files failed

PBSE_RESCUNAV 15044 Resources temporarily unavailable

PBSE_BADGRP 15045 Bad group specified

PBSE_MAXQUED 15046 Max number of jobs in queue

PBSE_CKPBSY 15047 Checkpoint busy, may be retries

PBSE_EXLIMIT 15048 Limit exceeds allowable

cxxx
Debugging

Chapter 11: Troubleshooting

Error code name Number Description

PBSE_BADACCT 15049 Bad account attribute value

PBSE_ALRDYEXIT 15050 Job already in exit state

PBSE_NOCOPYFILE 15051 Job files not copied

PBSE_CLEANEDOUT 15052 Unknown job id after clean init

PBSE_NOSYNCMSTR 15053 No master in sync set

PBSE_BADDEPEND 15054 Invalid dependency

PBSE_DUPLIST 15055 Duplicate entry in list

PBSE_DISPROTO 15056 Bad DIS based request protocol

PBSE_EXECTHERE 15057 Cannot execute there

PBSE_SISREJECT 15058 Sister rejected

PBSE_SISCOMM 15059 Sister could not communicate

PBSE_SVRDOWN 15060 Requirement rejected -server shutting down

PBSE_CKPSHORT 15061 Not all tasks could checkpoint

PBSE_UNKNODE 15062 Named node is not in the list

PBSE_UNKNODEATR 15063 Node-attribute not recognized

PBSE_NONODES 15064 Server has no node list

PBSE_NODENBIG 15065 Node name is too big

PBSE_NODEEXIST 15066 Node name already exists

PBSE_BADNDATVAL 15067 Bad node-attribute value

PBSE_MUTUALEX 15068 State values are mutually exclusive

cxxxi
Debugging

Chapter 11: Troubleshooting

Error code name Number Description

PBSE_GMODERR 15069 Error(s) during global modification of nodes

PBSE_NORELYMOM 15070 Could not contact Mom

PBSE_NOTSNODE 15071 No time-shared nodes

Related topics

l Troubleshooting on page cxv

cxxxii
Debugging

Appendices
The appendices provide tables of commands, parameters, configuration options, error codes, the Quick
Start Guide, and so forth.

l Commands overview on page cxxxv

l Server parameters on page ccvii

l Node manager (MOM) configuration on page ccxxiii

l Diagnostics and error codes on page ccxxxix

l Considerations before upgrading on page ccxlv

l Large cluster considerations on page ccxlvii

l Prologue and epilogue scripts on page ccliii

l Running multiple TORQUE servers and MOMs on the same node on page cclxi

l Security overview on page cclxiii

l Job submission filter ("qsub wrapper") on page cclxv

l "torque.cfg" configuration file on page cclxvii

l TORQUE Quick Start Guide on page cclxxi

l BLCR acceptance tests on page cclxxv

cxxxiii

Commands overview
Client commands

Command Description

momctl Manage/diagnose MOM (node execution) daemon

pbsdsh Launch tasks within a parallel job

pbsnodes View/modify batch status of compute nodes

qalter Modify queued batch jobs

qchkpt Checkpoint batch jobs

qdel Delete/cancel batch jobs

qgpumode Specifies new mode for GPU

qgpureset Reset the GPU

qhold Hold batch jobs

qmgr Manage policies and other batch configuration

qrerun Rerun a batch job

qrls Release batch job holds

qrun Start a batch job

qsig Send a signal to a batch job

cxxxv
Commands overview

Command Description

qstat View queues and jobs

qsub Submit jobs

qterm Shutdown pbs server daemon

tracejob Trace job actions and states recorded in TORQUE logs (see Using "tracejob" to locate job failures
on page cxvi)

Binary executables

Command Description

pbs_iff Interprocess authentication service

pbs_mom Start MOM (node execution) daemon

pbs_server Start server daemon

pbs_track Tell pbs_mom to track a new process

Related topics

l Node manager (MOM) configuration on page ccxxiii
l Server parameters on page ccvii

momctl
(PBS MOM Control)

Synopsis
momctl -c { <JOBID> | all }
momctl -C
momctl -d { <INTEGER> | <JOBID> }
momctl -f <FILE>
momctl -h <HOST>[,<HOST>]...
momctl -p <PORT_NUMBER>
momctl -q <ATTRIBUTE>
momctl -r { <FILE> | LOCAL:<FILE> }
momctl -s

cxxxvi
Commands overview

Overview
The momctl command allows remote shutdown, reconfiguration, diagnostics, and querying of the pbs_mom
daemon.

Format

-c — Clear

Format { <JOBID> | all }

Default ---

Description Clear stale job information

Example momctl - node1 -c 15406

-C — Cycle

Format ---

Default ---

Description Cycle pbs_mom(s)

Example momctl -h node1 -C

Cycle pbs_mom on node1.

-d — Diagnose

Format { <INTEGER> | <JOBID> }

Default 0

Description Diagnose mom(s)
(For more details, see Diagnose detail on page cxl below.)

Example momctl -h node1 -d 2

Print level 2 and lower diagnose information for the MOM on node1.

cxxxvii
Commands overview

-f — Host File

Format <FILE>

Default ---

Description A file containing only comma or whitespace (space, tab, or new line) delimited hostnames

Example momctl -f hosts.txt -d

Print diagnose information for the MOMs running on the hosts specified in hosts.txt.

-h — Host List

Format <HOST>[,<HOST>]...

Default localhost

Description A comma-separated list of hosts

Example momctl -h node1,node2,node3 -d

Print diagnose information for the MOMs running on node1, node2, and node3.

-p — Port

Format <PORT_NUMBER>

Default TORQUE's default port number

Description The port number for the specified MOM(s)

Example momctl -p 5455 -h node1 -d

Request diagnose information over port 5455 on node1.

-q — Query

Format <ATTRIBUTE>

Default ---

cxxxviii
Commands overview

-q — Query

Description Query <ATTRIBUTE> on specified MOM, where <ATTRIBUTE> is a property listed by pbsnodes -a

Example momctl -q physmem

Print the amount of physmem on localhost.

-r — Reconfigure

Format { <FILE> | LOCAL:<FILE> }

Default ---

Description Reconfigure MOM(s) with remote or local config file, <FILE>. This does not work if $remote_reconfig
is not set to true when the MOM is started.

Example momctl -r /home/user1/new.config -h node1

Reconfigure MOM on node1 with /home/user1/new.cofig on node1.

-s — Shutdown

Format

Default ---

Description Shutdown pbs_mom

Example momctl -s

Terminates pbs_mom process on localhost.

Query attributes

Attribute Description

arch node hardware architecture

availmem available RAM

cxxxix
Commands overview

Attribute Description

loadave 1 minute load average

ncpus number of CPUs available on the system

netload total number of bytes transferred over all network interfaces

nsessions number of sessions active

nusers number of users active

physmem configured RAM

sessions list of active sessions

totmem configured RAM plus configured swap

Diagnose detail

Level Description

0 Display the following information:
l Local hostname
l Expected server hostname
l Execution version
l MOM home directory
l MOM config file version (if specified)
l Duration MOM has been executing
l Duration since last request from pbs_server daemon
l Duration since last request to pbs_server daemon
l RM failure messages (if any)
l Log verbosity level
l Local job list

cxl
Commands overview

Level Description

1 All information for level 0 plus the following:
l Interval between updates sent to server
l Number of initialization messages sent to pbs_server

daemon
l Number of initialization messages received from pbs_server

daemon
l Prolog/epilog alarm time
l List of trusted clients

2 All information from level 1 plus the following:
l PID
l Event alarm status

Example A-1: MOM diagnostics

momctl -d 1

Host: nsrc/nsrc.fllcl.com Server: 10.10.10.113 Version: torque_1.1.0p4
HomeDirectory: /usr/spool/PBS/mom_priv
ConfigVersion: 147
MOM active: 7390 seconds
Last Msg From Server: 7389 seconds (CLUSTER_ADDRS)
Server Update Interval: 20 seconds
Server Update Interval: 20 seconds
Init Msgs Received: 0 hellos/1 cluster-addrs
Init Msgs Sent: 1 hellos
LOGLEVEL: 0 (use SIGUSR1/SIGUSR2 to adjust)
Prolog Alarm Time: 300 seconds
Trusted Client List: 12.14.213.113,127.0.0.1
JobList: NONE

diagnostics complete

Example A-2: System shutdown

> momctl -s -f /opt/clusterhostfile

shutdown request successful on node001
shutdown request successful on node002
shutdown request successful on node003
shutdown request successful on node004
shutdown request successful on node005
shutdown request successful on node006

pbs_mom
Start a pbs batch execution mini-server.

cxli
Commands overview

Synopsis
pbs_mom [-a alarm] [-A alias] [-C chkdirectory] [-c config] [-d directory] [-h
hostname]

[-L logfile] [-M MOMport] [-R RPPport] [-p|-r] [-P purge] [-w] [-x]

Description
The pbs_mom command is located within the TORQUE_HOME directory and starts the operation of a batch
Machine Oriented Mini-server (MOM) on the execution host. To insure that the pbs_mom command is not
runnable by the general user community, the server will only execute if its real and effective uid is zero.

The first function of pbs_mom is to place jobs into execution as directed by the server, establish resource
usage limits, monitor the job's usage, and notify the server when the job completes. If they exist, pbs_mom
will execute a prologue script before executing a job and an epilogue script after executing the job.

The second function of pbs_mom is to respond to resource monitor requests. This was done by a separate
process in previous versions of PBS but has now been combined into one process. It provides information
about the status of running jobs, memory available etc.

The last function of pbs_mom is to respond to task manager requests. This involves communicating with
running tasks over a TCP socket as well as communicating with other MOMs within a job (a.k.a. a
"sisterhood").

pbs_mom will record a diagnostic message in a log file for any error occurrence. The log files are
maintained in the mom_logs directory below the home directory of the server. If the log file cannot be
opened, the diagnostic message is written to the system console.

Options

Flag Name Description

-a alarm Used to specify the alarm timeout in seconds for computing a resource. Every time a
resource request is processed, an alarm is set for the given amount of time. If the request
has not completed before the given time, an alarm signal is generated. The default is 5 sec-
onds.

-C chkdirectory Specifies The path of the directory used to hold checkpoint files. (Currently this is only
valid on Cray systems.) The default directory is TORQUE_HOME/spool/checkpoint (see
the -d option). The directory specified with the -C option must be owned by root and acces-
sible (rwx) only by root to protect the security of the checkpoint files.

-c config Specifies an alternative configuration file, see description below. If this is a relative file
name it will be relative to TORQUE_HOME/mom_priv, (see the -d option). If the specified
file cannot be opened, pbs_mom will abort. If the -C option is not supplied, pbs_mom will
attempt to open the default configuration file "config" in TORQUE_HOME/mom_priv. If this
file is not present, pbs_mom will log the fact and continue.

cxlii
Commands overview

Flag Name Description

-d directory Specifies the path of the directory which is the home of the server's working files, TORQUE_
HOME. This option is typically used along with -M when debugging MOM. The default direc-
tory is given by $PBS_SERVER_HOME which is typically /usr/spool/PBS.

-h hostname Set MOM's hostname. This can be useful on multi-homed networks.

-L logfile Specify an absolute path name for use as the log file. If not specified, MOM will open a file
named for the current date in the TORQUE_HOME/mom_logs directory (see the -d option).

-M port Specifies the port number on which the mini-server (MOM) will listen for batch requests.

-p n/a Specifies the impact on jobs which were in execution when the mini-server shut down. On
any restart of MOM, the new mini-server will not be the parent of any running jobs, MOM
has lost control of her offspring (not a new situation for a mother). With the -p option,
MOM will allow the jobs to continue to run and monitor them indirectly via polling. This flag
is redundant in that this is the default behavior when starting the server. The -p option is
mutually exclusive with the -R and -q options.

-P purge Specifies the impact on jobs which were in execution when the mini-server shut down.
With the -P option, it is assumed that either the entire system has been restarted or the
MOM has been down so long that it can no longer guarantee that the pid of any running
process is the same as the recorded job process pid of a recovering job. Unlike the -p
option, no attempt is made to try and preserve or recover running jobs. All jobs are ter-
minated and removed from the queue.

-q n/a Specifies the impact on jobs which were in execution when the mini-server shut down.
With the -q option, MOM will allow the processes belonging to jobs to continue to run, but
will not attempt to monitor them. The -q option is mutually exclusive with the -p and -R
options.

-R port Specifies the port number on which the mini-server (MOM) will listen for resource monitor
requests, task manager requests and inter-MOM messages. Both a UDP and a TCP port of
this number will be used.

-r n/a Specifies the impact on jobs which were in execution when the mini-server shut down.
With the -r option, MOM will kill any processes belonging to jobs, mark the jobs as
terminated, and notify the batch server which owns the job. The -r option is mutually
exclusive with the -p and -q options.
Normally the mini-server is started from the system boot file without the -p or the -r
option. The mini-server will make no attempt to signal the former session of any job which
may have been running when the mini-server terminated. It is assumed that on reboot, all
processes have been killed. If the -r option is used following a reboot, process IDs (pids)
may be reused and MOM may kill a process that is not a batch session.

cxliii
Commands overview

Flag Name Description

-x n/a Disables the check for privileged port resource monitor connections. This is used mainly for
testing since the privileged port is the only mechanism used to prevent any ordinary user
from connecting.

Configuration file
The configuration file may be specified on the command line at program start with the -C flag. The use of
this file is to provide several types of run time information to pbs_mom: static resource names and values,
external resources provided by a program to be run on request via a shell escape, and values to pass to
internal set up functions at initialization (and re-initialization).

Each item type is on a single line with the component parts separated by white space. If the line starts
with a hash mark (pound sign, #), the line is considered to be a comment and is skipped.

Static Resources

For static resource names and values, the configuration file contains a list of resource names/values pairs,
one pair per line and separated by white space. An example of static resource names and values could be
the number of tape drives of different types and could be specified by:

l tape3480 4

l tape3420 2

l tapedat 1

l tape8mm 1

Shell Commands

If the first character of the value is an exclamation mark (!), the entire rest of the line is saved to be
executed through the services of the system(3) standard library routine.

The shell escape provides a means for the resource monitor to yield arbitrary information to the
scheduler. Parameter substitution is done such that the value of any qualifier sent with the query, as
explained below, replaces a token with a percent sign (%) followed by the name of the qualifier. For
example, here is a configuration file line which gives a resource name of "escape":

escape !echo %xxx %yyy

If a query for "escape" is sent with no qualifiers, the command executed would be echo %xxx %yyy.

If one qualifier is sent, escape[xxx=hi there], the command executed would be echo hi there
%yyy.

If two qualifiers are sent, escape[xxx=hi][yyy=there], the command executed would be echo hi
there.

If a qualifier is sent with no matching token in the command line, escape[zzz=snafu], an error is
reported.

size[fs=<FS>]

cxliv
Commands overview

Specifies that the available and configured disk space in the <FS> filesystem is to be reported to the pbs_
server and scheduler. To request disk space on a per job basis, specify the file resource, as in qsub -l
nodes=1,file=1000kb. For example, the available and configured disk space in the /localscratch
filesystem will be reported:

size[fs=/localscratch]

Initialization Value

An initialization value directive has a name which starts with a dollar sign ($) and must be known to the
MOM via an internal table. The entries in this table now are:

Entry Description

pbsclient Causes a host name to be added to the list of hosts which will be allowed to connect to
theMOM as long as they are using a privilaged port for the purposes of resource monitor
requests. For example, here are two configuration file lines which will allow the hosts "fred"
and "wilma" to connect:

$pbsclient fred
$pbsclient wilma

Two host names are always allowed to connect to pbs_mom "localhost" and the name
returned to pbs_mom by the system call gethostname(). These names need not be specified
in the configuration file. The hosts listed as "clients" can issue Resource Manager (RM)
requests. Other MOM nodes and servers do not need to be listed as clients.

restricted Causes a host name to be added to the list of hosts which will be allowed to connect to the
MOM without needing to use a privilaged port. These names allow for wildcard matching. For
example, here is a configuration file line which will allow queries from any host from the
domain "ibm.com".

$restricted *.ibm.com

The restriction which applies to these connections is that only internal queries may be made.
No resources from a config file will be found. This is to prevent any shell commands from
being run by a non-root process. This parameter is generally not required except for some
versions of OSX.

logevent Sets the mask that determines which event types are logged by pbs_mom. For example:

$logevent 0x1fff $logevent 255

The first example would set the log event mask to 0x1ff (511) which enables logging of all
events including debug events. The second example would set the mask to 0x0ff (255) which
enables all events except debug events.

cxlv
Commands overview

Entry Description

cputmult Sets a factor used to adjust cpu time used by a job. This is provided to allow adjustment of
time charged and limits enforced where the job might run on systems with different cpu
performance. If the MOM's system is faster than the reference system, set cputmult to a
decimal value greater than 1.0. If the MOM's system is slower, set cputmult to a value
between 1.0 and 0.0. For example:

$cputmult 1.5 $cputmult 0.75

usecp Specifies which directories should be staged with cp instead of rcp/scp. If a shared filesystem
is available on all hosts in a cluster, this directive is used to make these filesystems known to
the MOM. For example, if /home is NFS mounted on all nodes in a cluster:

$usecp *:/home /home

wallmult Sets a factor to adjust wall time usage by to job to a common reference system. The factor is
used for walltime calculations and limits in the same way that cputmult is used for cpu time.

configversion Specifies the version of the config file data, a string.

check_poll_time Specifies the MOM interval in seconds. The MOM checks each job for updated resource
usages, exited processes, over-limit conditions, etc., once per interval. This value should be
equal or lower to pbs_server's job_stat_rate. High values result in stale information
reported to pbs_server. Low values result in increased system usage by the MOM. Default is
45 seconds.

down_on_error Causes the MOM to report itself as state "down" to pbs_server in the event of a failed health
check. This feature is experimental. (For more information, see Health check on page cxlix.)

ideal_load Ideal processor load. Represents a low water mark for the load average. A node that is cur-
rently busy will consider itself free after falling below ideal_load.

loglevel Specifies the verbosity of logging with higher numbers specifying more verbose logging.
Values may range between 0 and 7.

log_file_max_size If this is set to a value > 0, then pbs_mom will roll the current log file to log-file-name.1 when
its size is greater than or equal to the value of log_file_max_size. This value is interpreted as kil-
obytes.

log_file_roll_depth If this is set to a value >=1 and log_file_max_size is set, then pbs_mom will allow logs to be
rolled up to the specified number of logs. At every roll, the oldest log will be the one to be
deleted to make room for rolling. pbs_mom will continue rolling the log files to log-file-
name.log_file_roll_depth.

cxlvi
Commands overview

Entry Description

max_load Maximum processor load. Nodes over this load average are considered busy (see ideal_load
above).

enablemomrestart Enables automatic restarts of the MOM. If enabled, the MOM will check if its binary has been
updated and restart itself at a safe point when no jobs are running; thus making upgrades
easier. The check is made by comparing the mtime of the pbs_mom executable. Command-
line args, the process name, and the PATH env variable are preserved across restarts. It is rec-
ommended that this not be enabled in the config file, but enabled when desired with momctl
(see Resources on page cxlviii for more information.)

node_check_script Specifies the fully qualified pathname of the health check script to run (see Health check on
page cxlix for more information).

node_check_inter-
val

Specifies when to run the MOM health check. The check can be either periodic, event-driven,
or both. The value starts with an integer specifying the number of MOM intervals between
subsequent executions of the specified health check. After the integer is an optional comma-
separated list of event names. Currently supported are "jobstart" and "jobend". This value
defaults to 1 with no events indicating the check is run every MOM interval. (see Health
check on page cxlix for more information.)

$node_check_interval 0,Disabled
$node_check_interval 0,jobstartOnly
$node_check_interval 10,jobstart,jobend

prologalarm Specifies maximum duration (in seconds) which the MOM will wait for the job prolog or job
job epilog to complete. This parameter defaults to 300 seconds (5 minutes).

rcpcmd Specify the full path and argument to be used for remote file copies. This overrides the
compile-time default found in configure. This must contain 2 words: the full path to the
command and the options. The copy command must be able to recursively copy files to the
remote host and accept arguments of the form "user@host:files." For example:

$rcpcmd /usr/bin/rcp -rp
$rcpcmd /usr/bin/scp -rpB

remote_reconfig Enables the ability to remotely reconfigure pbs_mom with a new config file. Default is dis-
abled. This parameter accepts various forms of true, yes, and 1.

timeout Specifies the number of seconds before TCP messages will time out. TCP messages include job
obituaries, and TM requests if RPP is disabled. Default is 60 seconds.

cxlvii
Commands overview

Entry Description

tmpdir Sets the directory basename for a per-job temporary directory. Before job launch, the MOM
will append the jobid to the tmpdir basename and create the directory. After the job exit, the
MOM will recursively delete it. The env variable TMPDIR will be set for all prolog/epilog
scripts, the job script, and TM tasks.
Directory creation and removal is done as the job owner and group, so the owner must have
write permission to create the directory. If the directory already exists and is owned by the
job owner, it will not be deleted after the job. If the directory already exists and is NOT owned
by the job owner, the job start will be rejected.

status_update_time Specifies (in seconds) how often the MOM updates its status information to pbs_server. This
value should correlate with the server's scheduling interval and its "node_check_rate" attrib-
ute. High values for "status_update_time" cause pbs_server to report stale information, while
low values increase the load of pbs_server and the network. Default is 45 seconds.

varattr This is similar to a shell escape above, but includes a TTL. The command will only be run
every TTL seconds. A TTL of -1 will cause the command to be executed only once. A TTL of 0
will cause the command to be run every time varattr is requested. This parameter may be
used multiple times, but all output will be grouped into a single "varattr" attribute in the
request and status output. If the command has no output, the name will be skipped in the
output.

$varattrseta
$varattrsetb

xauthpath Specifies the path to the xauth binary to enable X11 fowarding.

ignvmem If set to true, then pbs_mom will ignore vmem/pvmem limit enforcement.

ignwalltime If set to true, then pbs_mom will ignore walltime limit enforcement.

mom_host Sets the local hostname as used by pbs_mom.

Resources
Resource Manager queries can be made with momctl -q options to retrieve and set pbs_mom options. Any
configured static resource may be retrieved with a request of the same name. These are resource requests
not otherwise documented in the PBS ERS.

Request Description

cycle Forces an immediate MOM cycle.

status_update_time Retrieve or set the $status_update_time parameter.

cxlviii
Commands overview

Request Description

check_poll_time Retrieve or set the $check_poll_time parameter.

configversion Retrieve the config version.

jobstartblocktime Retrieve or set the $jobstartblocktime parameter.

enablemomrestart Retrieve or set the $enablemomrestart parameter.

loglevel Retrieve or set the $loglevel parameter.

down_on_error Retrieve or set the EXPERIMENTAL $down_on_error parameter.

diag0 - diag4 Retrieves various diagnostic information.

rcpcmd Retrieve or set the $rcpcmd parameter.

version Retrieves the pbs_mom version.

Health check
The health check script is executed directly by the pbs_mom daemon under the root user id. It must be
accessible from the compute node and may be a script or compiled executable program. It may make any
needed system calls and execute any combination of system utilities but should not execute resource
manager client commands. Also, as of TORQUE 1.0.1, the pbs_mom daemon blocks until the health check is
completed and does not possess a built-in timeout. Consequently, it is advisable to keep the launch script
execution time short and verify that the script will not block even under failure conditions.

If the script detects a failure, it should return the keyword Error to stdout followed by an error message.
The message (up to 256 characters) immediately following the Error string will be assigned to the node
attribute message of the associated node.

If the script detects a failure when run from "jobstart", then the job will be rejected. This should probably
only be used with advanced schedulers like Moab so that the job can be routed to another node.

TORQUE currently ignores Error messages by default, but advanced schedulers like Moab can be
configured to react appropriately.

If the experimental $down_on_error MOM setting is enabled, the MOM will set itself to state down and
report to pbs_server, and pbs_server will report the node as "down". Additionally, the experimental "down_
on_error" server attribute can be enabled which has the same effect but moves the decision to pbs_server.
It is redundant to have MOM's $down_on_error and pbs_servers down_on_error features enabled. See
"down_on_error" in pbs_server_attributes(7B).

cxlix
Commands overview

Files

File Description

$PBS_SERVER_HOME/server_name Contains the hostname running pbs_server

$PBS_SERVER_HOME/mom_priv The default directory for configuration files, typically (/usr/spool/pbs)
/mom_priv

$PBS_SERVER_HOME/mom_logs Directory for log files recorded by the server

$PBS_SERVER_HOME/mom_
priv/prologue

The administrative script to be run before job execution

$PBS_SERVER_HOME/mom_priv/epi-
logue

The administrative script to be run after job execution

Signal handling
pbs_mom handles the following signals:

Signal Description

SIGHUP Causes pbs_mom to re-read its configuration file, close and reopen the log file, and rein-
itialize resource structures.

SIGALRM Results in a log file entry. The signal is used to limit the time taken by certain children
processes, such as the prologue and epilogue.

SIGINT and SIGTERM Results in pbs_mom exiting without terminating any running jobs. This is the action for
the following signals as well: SIGXCPU, SIGXFSZ, SIGCPULIM, and SIGSHUTDN.

SIGUSR1, SIGUSR2 Causes the MOM to increase and decrease logging levels, respectively.

SIGPIPE, SIGINFO Are ignored.

SIGBUS, SIGFPE,
SIGILL, SIGTRAP, and
SIGSYS

Cause a core dump if the PBSCOREDUMP environmental variable is defined.

All other signals have their default behavior installed.

Exit status
If the pbs_mom command fails to begin operation, the server exits with a value greater than zero.

cl
Commands overview

Related topics

l pbs_server(8B)

Non-Adaptive Computing topics

l pbs_scheduler_basl(8B)
l pbs_scheduler_tcl(8B)
l PBS External Reference Specification
l PBS Administrators Guide

pbs_server
(PBS Server) pbs batch system manager

Synopsis
pbs_server [-a active] [-d config_path] [-p port] [-A acctfile]

[-L logfile] [-M mom_port] [-R momRPP_port] [-S scheduler_port]
[-h hostname] [-t type] [--ha]

Description
The pbs_server command starts the operation of a batch server on the local host. Typically, this command
will be in a local boot file such as /etc/rc.local. If the batch server is already in execution, pbs_server
will exit with an error. To ensure that the pbs_server command is not runnable by the general user
community, the server will only execute if its real and effective uid is zero.

The server will record a diagnostic message in a log file for any error occurrence. The log files are
maintained in the server_logs directory below the home directory of the server. If the log file cannot be
opened, the diagnostic message is written to the system console.

Options

Option Name Description

-A acctfile Specifies an absolute path name of the file to use as the accounting file. If not specified,
the file name will be the current date in the PBS_HOME/server_priv/accounting
directory.

-a active Specifies if scheduling is active or not. This sets the server attribute scheduling. If the
option argument is "true" ("True", "t", "T", or "1"), the server is active and the PBS job
scheduler will be called. If the argument is "false" ("False", "f", "F", or "0), the server is
idle, and the scheduler will not be called and no jobs will be run. If this option is not spec-
ified, the server will retain the prior value of the scheduling attribute.

cli
Commands overview

Option Name Description

-d config_
path

Specifies the path of the directory which is home to the servers configuration files, PBS_
HOME. A host may have multiple servers. Each server must have a different configuration
directory. The default configuration directory is given by the symbol $PBS_SERVER_
HOME which is typically var/spool/torque.

-h hostname Causes the server to start under a different hostname as obtained from gethostname(2).
Useful for servers with multiple network interfaces to support connections from clients
over an interface that has a hostname assigned that differs from the one that is returned
by gethost name(2).

-ha high_avail-
ability

Starts server in high availability mode (for details, see Server high availability on page
xc).

-L logfile Specifies an absolute path name of the file to use as the log file. If not specified, the file
will be the current date in the PBS_HOME/server_logs directory (see the -d option).

-M mom_port Specifies the host name and/or port number on which the server should connect the job
executor, MOM. The option argument, mom_conn, is one of the forms: host_name, [:]port_
number, or host_name:port_number. If host_name not specified, the local host is assumed.
If port_number is not specified, the default port is assumed.

-p port Specifies the port number on which the server will listen for batch requests. If multiple
servers are running on a single host, each must have its own unique port number. This
option is for use in testing with multiple batch systems on a single host.

-R mom_
RPPport

Specifies the port number on which the server should query the up/down status of the
MOM.

-S scheduler_
port

Specifies the port number to which the server should connect when contacting the sched-
uler. The argument scheduler_conn is of the same syntax as under the -M option.

clii
Commands overview

Option Name Description

-t type Specifies the impact on jobs which were in execution, running, when the server shut
down. If the running job is not rerunnable or restartable from a checkpoint image, the job
is aborted. If the job is rerunnable or restartable, then the actions described below are
taken. When the type argument is:

l hot – All jobs are requeued except non-rerunnable jobs that were executing. Any
rerunnable job which was executing when the server went down will be run
immediately. This returns the server to the same state as when it went down.
After those jobs are restarted, then normal scheduling takes place for all
remaining queued jobs.
If a job cannot be restarted immediately because of a missing resource, such as a
node being down, the server will attempt to restart it periodically for up to 5
minutes. After that period, the server will revert to a normal state, as if warm
started, and will no longer attempt to restart any remaining jobs which were
running prior to the shutdown.

l warm – All rerunnable jobs which were running when the server went down are
requeued. All other jobs are maintained. New selections are made for which jobs
are placed into execution. Warm is the default if -t is not specified.

l cold – All jobs are deleted. Positive confirmation is required before this direction
is accepted.

l create – The server will discard any existing configuration files, queues and jobs,
and initialize configuration files to the default values. The server is idled.

Files

File Description

TORQUE_HOME/server_priv Default directory for configuration files, typically /usr/spool/pbs/server_
priv

TORQUE_HOME/server_logs Directory for log files recorded by the server

Signal handling
On receipt of the following signals, the server performs the defined action:

Action Description

SIGHUP The current server log and accounting log are closed and reopened. This allows for the prior log to be
renamed and a new log started from the time of the signal.

SIGINT Causes an orderly shutdown of pbs_server.

cliii
Commands overview

Action Description

SIGUSR1,
SIGURS2

Causes server to increase and decrease logging levels, respectively.

SIGTERM Causes an orderly shutdown of pbs_server.

SIGSHUTDN On systems (Unicos) where SIGSHUTDN is defined, it also causes an orderly shutdown of the server.

SIGPIPE This signal is ignored.

All other signals have their default behavior installed.

Exit status
If the server command fails to begin batch operation, the server exits with a value greater than zero.

Related topics

l pbs_mom(8B)
l pbsnodes(8B)
l qmgr(1B)
l qrun(8B)
l qsub(1B)
l qterm(8B)

Non-Adaptive Computing topics

l pbs_connect(3B)
l pbs_sched_basl(8B)
l pbs_sched_tcl(8B)
l qdisable(8B)
l qenable(8B)
l qstart(8B)
l qstop(8B)
l PBS External Reference Specification

pbs_track
Starts a new process and informs pbs_mom to start tracking it.

Synopsis
pbs_track -j <JOBID> [-b] <executable> [args]

cliv
Commands overview

Description
The pbs_track command tells a pbs_mom daemon to monitor the lifecycle and resource usage of the
process that it launches using exec(). The pbs_mom is told about this new process via the Task Manager
API, using tm_adopt(). The process must also be associated with a job that already exists on the pbs_mom.

By default, pbs_track will send its PID to TORQUE via tm_adopt(). It will then perform an exec(), causing
<executable> to run with the supplied arguments. pbs_track will not return until the launched process has
completed because it becomes the launched process.

This command can be considered related to the pbsdsh command which uses the tm_spawn() API call. The
pbsdsh command asks a pbs_mom to launch and track a new process on behalf of a job. When it is not
desirable or possible for the pbs_mom to spawn processes for a job, pbs_track can be used to allow an
external entity to launch a process and include it as part of a job.

This command improves integration with TORQUE and SGI's MPT MPI implementation.

Options

Option Description

-j
<JOBID>

Job ID the new process should be associated with.

-b Instead of having pbs_track send its PID to TORQUE, it will fork() first, send the child PID to TORQUE,
and then execute from the forked child. This essentially "backgrounds" pbs_track so that it will return
after the new process is launched.

Operands
The pbs_track command accepts a path to a program/executable (<executable>) and, optionally, one or
more arguments to pass to that program.

Exit status
Because the pbs_track command becomes a new process (if used without -b), its exit status will match that
of the new process. If the -b option is used, the exit status will be zero if no errors occurred before
launching the new process.

If pbs_track fails, whether due to a bad argument or other error, the exit status will be set to a non-zero
value.

Related topics

l pbsdsh(1B)

Non-Adaptive Computing topics

l tm_spawn(3B)

clv
Commands overview

pbsdsh
Distribute tasks to nodes under pbs.

Synopsis
pbsdsh [-c copies] [-o] [-s] [-u] [-v] program [args]
pbsdsh [-n node] [-o] [-s] [-u] [-v] program [args]
pbsdsh [-h nodename] [-o] [-v] program [args]

Description
Executes (spawns) a normal Unix® program on one or more nodes under control of the Portable Batch
System, PBS. Pbsdsh uses the Task Manager API (see tm_spawn(3)) to distribute the program on the
allocated nodes.

When run without the -c or the -n option, pbsdsh will spawn the program on all nodes allocated to the PBS
job. The spawns take place concurrently – all execute at (about) the same time.

Users will find the PBS_TASKNUM, PBS_NODENUM, and the PBS_VNODENUM environmental variables
useful. They contain the TM task id, the node identifier, and the cpu (virtual node) identifier.

Options

Option Name Description

-c copies The program is spawned on the first Copies nodes allocated. This option is mutual exclu-
sive with -n.

-h hostname The program is spawned on the node specified.

-n node The program is spawned on one node which is the n-th node allocated. This option is
mutual exclusive with -c.

-o --- Capture stdout of the spawned program. Normally stdout goes to the job's output.

-s --- If this option is given, the program is run in turn on each node, one after the other.

-u --- The program is run once on each node (unique). This ignores the number of allocated
processors on a given node.

-v --- Verbose output about error conditions and task exit status is produced.

Operands
The first operand, program, is the program to execute.

Additional operands are passed as arguments to the program.

clvi
Commands overview

Standard error
The pbsdsh command will write a diagnostic message to standard error for each error occurrence.

Exit status
Upon successful processing of all the operands presented to the command, the exit status will be a value of
zero.

If the pbsdsh command fails to process any operand, or fails to contact the MOM daemon on the localhost
the command exits with a value greater than zero.

Related topics

l qsub(1B)

Non-Adaptive Computing topics

l tm_spawn(3B)

pbsnodes
PBS node manipulation.

Synopsis
pbsnodes [-{a|x}] [-q] [-s server] [node|:property]
pbsnodes -l [-q] [-s server] [state] [nodename|:property ...]
pbsnodes [-{c|d|o|r}] [-q] [-s server] [-n -l] [-N "note"] [node|:property]

Description
The pbsnodes command is used to mark nodes down, free or offline. It can also be used to list nodes and
their state. Node information is obtained by sending a request to the PBS job server. Sets of nodes can be
operated on at once by specifying a node property prefixed by a colon. (For more information, see Node
states.)

Nodes do not exist in a single state, but actually have a set of states. For example, a node can be
simultaneously "busy" and "offline". The "free" state is the absence of all other states and so is never
combined with other states.

In order to execute pbsnodes with other than the -a or -l options, the user must have PBS Manager or
Operator privilege.

Options

Option Description

-a All attributes of a node or all nodes are listed. This is the default if no flag is given.

clvii
Commands overview

Option Description

-x Same as -a, but the output has an XML-like format.

-c Clear OFFLINE from listed nodes.

-d Print MOM diagnosis on the listed nodes. Not yet implemented. Use momctl instead.

-o Add the OFFLINE state. This is different from being marked DOWN. OFFLINE prevents new jobs from run-
ning on the specified nodes. This gives the administrator a tool to hold a node out of service without
changing anything else. The OFFLINE state will never be set or cleared automatically by pbs_server; it is
purely for the manager or operator.

-p Purge the node record from pbs_server. Not yet implemented.

-r Reset the listed nodes by clearing OFFLINE and adding DOWN state. pbs_server will ping the node and, if
they communicate correctly, free the node.

-l List node names and their state. If no state is specified, only nodes in the DOWN, OFFLINE, or UNKNOWN
states are listed. Specifying a state string acts as an output filter. Valid state strings are "active", "all",
"busy", "down", "free", "offline", "unknown", and "up".

l Using all displays all nodes and their attributes.
l Using active displays all nodes which are job-exclusive, job-sharing, or busy.
l Using up displays all nodes in an "up state". Up states include job-exclusive, job-sharing, reserve,

free, busy and time-shared.
l All other strings display the nodes which are currently in the state indicated by the string.

-N Specify a "note" attribute. This allows an administrator to add an arbitrary annotation to the listed nodes.
To clear a note, use -N "" or -N n.

-n Show the "note" attribute for nodes that are DOWN, OFFLINE, or UNKNOWN. This option requires -l.

-q Suppress all error messages.

-s Specify the PBS server's hostname or IP address.

Related topics

l pbs_server(8B)

Non-Adaptive Computing topics

l PBS External Reference Specification

clviii
Commands overview

qalter
Alter batch job.

Synopsis
qalter [-a date_time][-A account_string][-c interval][-e path_name]

[-h hold_list][-j join_list][-k keep_list][-l resource_list]
[-m mail_options][-M mail_list][-n][-N name][-o path_name]
[-p priority][-q][-r y|n][-S path_name_list][-u user_list]
[-v variable_list][-W additional_attributes]
[-t array_range]
job_identifier ...

Description
The qalter command modifies the attributes of the job or jobs specified by job_identifier on the
command line. Only those attributes listed as options on the command will be modified. If any of the
specified attributes cannot be modified for a job for any reason, none of that job's attributes will be
modified.

The qalter command accomplishes the modifications by sending a Modify Job batch request to the batch
server which owns each job.

Options

Option Name Description

-a date_time Replaces the time at which the job becomes eligible for execution. The date_time
argument syntax is:
[[[[CC]YY]MM]DD]hhmm[.SS]

If the month, MM, is not specified, it will default to the current month if the specified day
DD, is in the future. Otherwise, the month will be set to next month. Likewise, if the day,
DD, is not specified, it will default to today if the time hhmm is in the future. Otherwise,
the day will be set to tomorrow.
This attribute can be altered once the job has begun execution, but it will not take effect
unless the job is rerun.

-A account_
string

Replaces the account string associated with the job. This attribute cannot be altered once
the job has begun execution.

clix
Commands overview

Option Name Description

-c checkpoint_
interval

Replaces the interval at which the job will be checkpointed. If the job executes upon a
host which does not support checkpointing, this option will be ignored.
The interval argument is specified as:

l n – No checkpointing is to be performed.
l s – Checkpointing is to be performed only when the server executing the job is

shutdown.
l c – Checkpointing is to be performed at the default minimum cpu time for the

queue from which the job is executing.
l c=minutes – Checkpointing is performed at intervals of the specified amount of

time in minutes. Minutes are the number of minutes of CPU time used, not
necessarily clock time.

This value must be greater than zero. If the number is less than the default
checkpoint time, the default time will be used.

This attribute can be altered once the job has begun execution, but the new value does
not take effect unless the job is rerun.

-e path_name Replaces the path to be used for the standard error stream of the batch job. The path
argument is of the form:
[hostname:]path_name

where hostname is the name of a host to which the file will be returned and path_name is
the path name on that host in the syntax recognized by POSIX 1003.1. The argument will
be interpreted as follows:

l path_name – Where path_name is not an absolute path name, then the qalter
command will expand the path name relative to the current working directory of
the command. The command will supply the name of the host upon which it is
executing for the hostname component.

l hostname:path_name – Where path_name is not an absolute path name, then the
qalter command will not expand the path name. The execution server will
expand it relative to the home directory of the user on the system specified by
hostname.

This attribute can be altered once the job has begun execution, but it will not take effect
unless the job is rerun.

clx
Commands overview

Option Name Description

-h hold_list Updates the the types of holds on the job. The hold_list argument is a string of one or
more of the following characters:

l u – Add the USER type hold.
l s – Add the SYSTEM type hold if the user has the appropriate level of privilege.

(Typically reserved to the batch administrator.)
l o – Add the OTHER (or OPERATOR) type hold if the user has the appropriate

level of privilege. (Typically reserved to the batch administrator and batch
operator.)

l n – Set to none and clear the hold types which could be applied with the users
level of privilege. Repetition of characters is permitted, but "n" may not appear in
the same option argument with the other three characters.

This attribute can be altered once the job has begun execution, but the hold will not take
effect unless the job is rerun.

-j join Declares which standard streams of the job will be merged together. The join argument
value may be the characters "oe" and "eo", or the single character "n".
A argument value of oe directs that the standard output and standard error streams of
the job will be merged, intermixed, and returned as the standard output. A argument
value of eo directs that the standard output and standard error streams of the job will
be merged, intermixed, and returned as the standard error.
A value of n directs that the two streams will be two separate files. This attribute can be
altered once the job has begun execution, but it will not take effect unless the job is
rerun.

clxi
Commands overview

Option Name Description

-k keep Defines which if either of standard output or standard error of the job will be retained
on the execution host. If set for a stream, this option overrides the path name for that
stream.
The argument is either the single letter "e", "o", or "n", or one or more of the letters "e"
and "o" combined in either order.

l n – No streams are to be retained.
l e – The standard error stream is to retained on the execution host. The stream

will be placed in the home directory of the user under whose user id the job
executed. The file name will be the default file name given by:
job_name.esequence

where job_name is the name specified for the job, and sequence is the sequence
number component of the job identifier.

l o – The standard output stream is to be retained on the execution host. The
stream will be placed in the home directory of the user under whose user id the
job executed. The file name will be the default file name given by:
job_name.osequence

where job_name is the name specified for the job, and sequence is the sequence
number component of the job identifier.

l eo – Both the standard output and standard error streams will be retained.
l oe – Both the standard output and standard error streams will be retained.

This attribute cannot be altered once the job has begun execution.

-l resource_
list

Modifies the list of resources that are required by the job. The resource_list argument is
in the following syntax:
resource_name[=[value]][,resource_name[=[value]],...]

If a requested modification to a resource would exceed the resource limits for jobs in the
current queue, the server will reject the request.
If the job is running, only certain resources can be altered. Which resources can be
altered in the run state is system dependent. A user may only lower the limit for those
resources.

-m mail_
options

Replaces the set of conditions under which the execution server will send a mail message
about the job. The mail_options argument is a string which consists of the single
character "n", or one or more of the characters "a", "b", and "e".
If the character "n" is specified, no mail will be sent.
For the letters "a", "b", and "e":

l a – Mail is sent when the job is aborted by the batch system.
l b – Mail is sent when the job begins execution.
l e – Mail is sent when the job ends.

clxii
Commands overview

Option Name Description

-M user_list Replaces the list of users to whom mail is sent by the execution server when it sends mail
about the job.
The user_list argument is of the form:
user[@host][,user[@host],...]

-n node-exclu-
sive

Sets or unsets exclusive node allocation on a job. Use the y and n options to enable or
disable the feature. This affects only cpusets and compatible schedulers.

> qalter ... -n y #enables exclusive node allocation on a job
> qalter ... -n n #disables exclusive node allocation on a job

-N name Renames the job. The name specified may be up to and including 15 characters in
length. It must consist of printable, non white space characters with the first character
alphabetic.

-o path Replaces the path to be used for the standard output stream of the batch job. The path
argument is of the form:
[hostname:]path_name

where hostname is the name of a host to which the file will be returned and path_name is
the path name on that host in the syntax recognized by POSIX. The argument will be
interpreted as follows:

l path_name – Where path_name is not an absolute path name, then the qalter
command will expand the path name relative to the current working directory of
the command. The command will supply the name of the host upon which it is
executing for the hostname component.

l hostname:path_name – Where path_name is not an absolute path name, then the
qalter command will not expand the path name. The execution server will
expand it relative to the home directory of the user on the system specified by
hostname.

This attribute can be altered once the job has begun execution, but it will not take effect
unless the job is rerun.

-p priority Replaces the priority of the job. The priority argument must be a integer between -1024
and +1023 inclusive.
This attribute can be altered once the job has begun execution, but it will not take effect
unless the job is rerun.

-r [y/n] Declares whether the job is rerunable (see the qrerun command). The option argument
c is a single character. PBS recognizes the following characters: y and n. If the argument
is "y", the job is marked rerunable.
If the argument is "n", the job is marked as not rerunable.

clxiii
Commands overview

Option Name Description

-S path Declares the shell that interprets the job script.
The option argument path_list is in the form:
path[@host][,path[@host],...]

Only one path may be specified for any host named. Only one path may be specified
without the corresponding host name. The path selected will be the one with the host
name that matched the name of the execution host. If no matching host is found, then
the path specified (without a host) will be selected.
If the -S option is not specified, the option argument is the null string, or no entry from
the path_list is selected, the execution will use the login shell of the user on the execution
host.
This attribute can be altered once the job has begun execution, but it will not take effect
unless the job is rerun.

-t array_
range

The array_range argument is an integer id or a range of integers. Multiple ids or id
ranges can be combined in a comma delimted list. Examples: -t 1-100 or -t 1,10,
50-100

If an array range isn't specified, the command tries to operate on the entire array. The
command acts on the array (or specified range of the array) just as it would on an
individual job.
An optional "slot limit" can be specified to limit the amount of jobs that can run
concurrently in the job array. The default value is unlimited. The slot limit must be the
last thing specified in the array_request and is delimited from the array by a percent
sign (%).

qalter weatherSimulationArray[] -t %20

Here, the array weatherSimulationArray[] is configured to allow a maximum of 20
concurrently running jobs.
Slot limits can be applied at job submit time with qsub, or can be set in a global server
parameter policy with max_slot_limit.

-u user_list Replaces the user name under which the job is to run on the execution system.
The user_list argument is of the form:
user[@host][,user[@host],...]

Only one user name may be given for per specified host. Only one of the user
specifications may be supplied without the corresponding host specification. That user
name will be used for execution on any host not named in the argument list.
This attribute cannot be altered once the job has begun execution.

-W additional_
attributes

The -W option allows for the modification of additional job attributes.
Note if white space occurs anywhere within the option argument string or the equal sign,
"=", occurs within an attribute_value string, then the string must be enclosed with either
single or double quote marks.
To see the attributes PBS currently supports within the -W option, see Table A-1: -W
additional_attributes on page clxv.

clxiv
Commands overview

Table A-1: -W additional_attributes

Attribute Description

depend=dependency_
list

Redefines the dependencies between this and other jobs. The dependency_list is in the
form:
type[:argument[:argument...][,type:argument...]

The argument is either a numeric count or a PBS job id according to type. If argument is a
count, it must be greater than 0. If it is a job id and is not fully specified in the form: seq_
number.server.name, it will be expanded according to the default server rules. If
argument is null (the preceding colon need not be specified), the dependency of the
corresponding type is cleared (unset).

l synccount:count – This job is the first in a set of jobs to be executed at the same
time. Count is the number of additional jobs in the set.

l syncwith:jobid – This job is an additional member of a set of jobs to be executed
at the same time. In the above and following dependency types, jobid is the job
identifier of the first job in the set.

l after:jobid [:jobid...] – This job may be scheduled for execution at any point after
jobs jobid have started execution.

l afterok:jobid [:jobid...] – This job may be scheduled for execution only after jobs
jobid have terminated with no errors. See the csh warning under "Extended
Description".

l afternotok:jobid [:jobid...] – This job may be scheduled for execution only after
jobs jobid have terminated with errors. See the csh warning under "Extended
Description".

l afterany:jobid [:jobid...] – This job may be scheduled for execution after jobs jobid
have terminated, with or without errors.

l on:count – This job may be scheduled for execution after count dependencies on
other jobs have been satisfied. This dependency is used in conjunction with any of
the 'before' dependencies shown below. If job A has on:2, it will wait for two jobs
with 'before' dependencies on job A to be fulfilled before running.

l before:jobid [:jobid...] – When this job has begun execution, then jobs jobid... may
begin.

l beforeok:jobid [:jobid...] – If this job terminates execution without errors, then
jobs jobid... may begin. See the csh warning under "Extended Description".

l beforenotok:jobid [:jobid...] – If this job terminates execution with errors, then
jobs jobid... may begin. See the csh warning under "Extended Description".

l beforeany:jobid [:jobid...] – When this job terminates execution, jobs jobid... may
begin.
If any of the before forms are used, the job referenced by jobid must have been
submitted with a dependency type of on.
If any of the before forms are used, the jobs referenced by jobid must have the
same owner as the job being altered. Otherwise, the dependency will not take
effect.

Error processing of the existence, state, or condition of the job specified to qalter is a
deferred service, i.e. the check is performed after the job is queued. If an error is detected,
the job will be deleted by the server. Mail will be sent to the job submitter stating the error.

clxv
Commands overview

Attribute Description

group_list=g_list Alters the group name under which the job is to run on the execution system.
The g_list argument is of the form:
group[@host][,group[@host],...]

Only one group name may be given per specified host. Only one of the group specifications
may be supplied without the corresponding host specification. That group name will used
for execution on any host not named in the argument list.

stagein=file_list
stageout=file_list

Alters which files are staged (copied) in before job start or staged out after the job
completes execution. The file_list is in the form:
local_file@hostname:remote_file[,...]

The name local_file is the name on the system where the job executes. It may be an
absolute path or a path relative to the home directory of the user. The name remote_file is
the destination name on the host specified by hostname. The name may be absolute or
relative to the users home directory on the destination host.

Operands
The qalter command accepts one or more job_identifier operands of the form:

sequence_number[.server_name][@server]

Standard error
Any error condition, either in processing the options or the operands, or any error received in reply to the
batch requests will result in an error message being written to standard error.

Exit status
Upon successful processing of all the operands presented to the qalter command, the exit status will be a
value of zero.

If the qalter command fails to process any operand, the command exits with a value greater than zero.

Copyright
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1, 2003 Edition,
Standard for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base
Specifications Issue 6, Copyright © 2001-2003 by the Institute of Electrical and Electronics Engineers, Inc
and The Open Group. In the event of any discrepancy between this version and the original IEEE and The
Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The
original Standard can be obtained online at http://www.opengroup.org/unix/online.html.

Related topics

l qdel
l qhold

clxvi
Commands overview

http://www.opengroup.org/unix/online.html

l qrls
l qsub

Non-Adaptive Computing topics

l Batch Environment Services
l qmove
l touch

qchkpt
Checkpoint pbs batch jobs.

Synopsis
qchkpt <JOBID>[<JOBID>] ...

Description
The qchkpt command requests that the PBS Mom generate a checkpoint file for a running job.

This is an extension to POSIX.2d.

The qchkpt command sends a Chkpt Job batch request to the server as described in the general section.

Options
None.

Operands
The qchkpt command accepts one or more job_identifier operands of the form:

sequence_number[.server_name][@server]

Examples

> qchkpt 3233 request a checkpoint for job 3233

Standard error
The qchkpt command will write a diagnostic message to standard error for each error occurrence.

Exit status
Upon successful processing of all the operands presented to the qchkpt command, the exit status will be a
value of zero.

If the qchkpt command fails to process any operand, the command exits with a value greater than zero.

clxvii
Commands overview

Related topics

l qhold(1B)
l qrls(1B)
l qalter(1B)
l qsub(1B)

Non-Adaptive Computing topics

l pbs_alterjob(3B)
l pbs_holdjob(3B),
l pbs_rlsjob(3B)
l pbs_job_attributes(7B)
l pbs_resources_unicos8(7B)

qdel
(delete job)

Synopsis
qdel [{-a <asynchronous delete>|-m <message>|-p|-W <delay>|-t <array_range>}]
<JOBID>[<JOBID>]... | 'all' | 'ALL'

Description
The qdel command deletes jobs in the order in which their job identifiers are presented to the command. A
job is deleted by sending a Delete Job batch request to the batch server that owns the job. A job that has
been deleted is no longer subject to management by batch services.

A batch job may be deleted by its owner, the batch operator, or the batch administrator.

A batch job being deleted by a server will be sent a SIGTERM signal following by a SIGKILL signal. The time
delay between the two signals is an attribute of the execution queue from which the job was run (set table
by the administrator). This delay may be overridden by the -W option.

See the PBS ERS section 3.1.3.3, "Delete Job Request", for more information.

Options

Option Name Description

-a asynchronous
delete

Performs an asynchronous delete. The server responds to the user before contacting
the MOM. The option qdel -a all performs qdel all due to restrictions from
being single-threaded.

clxviii
Commands overview

Option Name Description

-W delay Specifies the wait delay between the sending of the SIGTERM and SIGKILL signals. The
argument is the length of time in seconds of the delay.

-p purge Forcibly purges the job from the server. This should only be used if a running job will
not exit because its allocated nodes are unreachable. The admin should make every
attempt at resolving the problem on the nodes. If a job's mother superior recovers
after purging the job, any epilogue scripts may still run. This option is only available to
a batch operator or the batch administrator.

-m message Specify a comment to be included in the email. The argument message specifies the
comment to send. This option is only available to a batch operator or the batch admin-
istrator.

-t array_range The array_range argument is an integer id or a range of integers. Multiple ids or id
ranges can be combined in a comma delimited list (examples: -t 1-100 or -t 1,10,50-
100).
If an array range isn't specified, the command tries to operate on the entire array. The
command acts on the array (or specified range of the array) just as it would on an
individual job.

Operands
The qdel command accepts one or more job_identifier operands of the form:

sequence_number[.server_name][@server]

or

all

Examples

> qdel 1324
> qdel 1324-3 To delete one job of a job array
> qdel all To delete all jobs (Version 2.3.0 and later)

Standard error
The qdel command will write a diagnostic messages to standard error for each error occurrence.

Exit status
Upon successful processing of all the operands presented to the qdel command, the exit status will be a
value of zero.

If the qdel command fails to process any operand, the command exits with a value greater than zero.

clxix
Commands overview

Related topics

l qsub(1B)
l qsig(1B)

Non-Adaptive Computing topics

l pbs_deljob(3B)

qgpumode
(GPU mode)

Synopsis
qgpumode -H host -g gpuid -m mode

Description
The qgpumode command specifies the mode for the GPU. This command triggers an immediate update of
the pbs_server.

Options

Option Description

-H Specifies the host where the GPU is located.

-g Specifies the ID of the GPU. This varies depending on the version of the Nvidia driver used. For driver
260.x, it is 0, 1, and so on. For driver 270.x, it is the PCI bus address, i.e., 0:5:0.

-m Specifies the new mode for the GPU.

Related topics

l qgpureset on page clxx

qgpureset
(reset GPU)

Synopsis
qgpureset -H host -g gpuid -p -v

clxx
Commands overview

Description
The qgpureset command resets the GPU.

Options

Option Description

-H Specifies the host where the GPU is located.

-g Specifies the ID of the GPU. This varies depending on the version of the Nvidia driver used. For driver
260.x, it is 0, 1, and so on. For driver 270.x, it is the PCI bus address, i.e., 0:5:0.

-p Specifies to reset the GPU's permanent ECC error count.

-v Specifies to reset the GPU's volatile ECC error count.

Related topics

l qgpumode on page clxx

qhold
(hold job)

Synopsis
qhold [{-h <HOLD LIST>|-t <array_range>}] <JOBID>[<JOBID>] ...

Description
The qhold command requests that the server place one or more holds on a job. A job that has a hold is not
eligible for execution. There are three supported holds: USER, OTHER (also known as operator), and
SYSTEM.

A user may place a USER hold upon any job the user owns. An "operator", who is a user with "operator
privilege," may place ether an USER or an OTHER hold on any job. The batch administrator may place any
hold on any job.

If no -h option is given, the USER hold will be applied to the jobs described by the job_identifier operand
list.

If the job identified by job_identifier is in the queued, held, or waiting states, then the hold type is added to
the job. The job is then placed into held state if it resides in an execution queue.

If the job is in running state, then the following additional action is taken to interrupt the execution of the
job. If checkpoint/restart is supported by the host system, requesting a hold on a running job will (1) cause

clxxi
Commands overview

the job to be checkpointed, (2) the resources assigned to the job will be released, and (3) the job is placed
in the held state in the execution queue.

If checkpoint/restart is not supported, qhold will only set the requested hold attribute. This will have no
effect unless the job is rerun with the qrerun command.

Options

Option Name Description

-h hold_
list

The hold_list argument is a string consisting of one or more of the letters "u", "o", or "s" in any
combination. The hold type associated with each letter is:

l u – USER
l o – OTHER
l s – SYSTEM

-t array_
range

The array_range argument is an integer id or a range of integers. Multiple ids or id ranges
can be combined in a comma delimited list (examples: -t 1-100 or -t 1,10,50-100) .
If an array range isn't specified, the command tries to operate on the entire array. The
command acts on the array (or specified range of the array) just as it would on an individual
job.

Operands
The qhold command accepts one or more job_identifier operands of the form:

sequence_number[.server_name][@server]

Example

> qhold -h u 3233 place user hold on job 3233

Standard error
The qhold command will write a diagnostic message to standard error for each error occurrence.

Exit status
Upon successful processing of all the operands presented to the qhold command, the exit status will be a
value of zero.

If the qhold command fails to process any operand, the command exits with a value greater than zero.

Related topics

l qrls(1B)
l qalter(1B)
l qsub(1B)

clxxii
Commands overview

Non-Adaptive Computing topics

l pbs_alterjob(3B)
l pbs_holdjob(3B)
l pbs_rlsjob(3B)
l pbs_job_attributes(7B)
l pbs_resources_unicos8(7B)

qmgr
(PBS Queue Manager) PBS batch system manager.

Synopsis
qmgr [-a] [-c command] [-e] [-n] [-z] [server...]

Description
The qmgr command provides an administrator interface to query and configure batch system parameters
(see Server parameters on page ccvii).

The command reads directives from standard input. The syntax of each directive is checked and the
appropriate request is sent to the batch server or servers.

The list or print subcommands of qmgr can be executed by general users. Creating or deleting a queue
requires PBS Manager privilege. Setting or unsetting server or queue attributes requires PBS Operator or
Manager privilege.

By default, the user root is the only PBS Operator and Manager. To allow other users to be
privileged, the server attributes operators and managers will need to be set (i.e., as root, issue
'qmgr -c 'set server managers += <USER1>@<HOST>'). See "TORQUE/PBS Integration
Guide - RM Access Control" in the Moab Workload Manager Administrator's Guide.

If qmgr is invoked without the -c option and standard output is connected to a terminal, qmgr will write a
prompt to standard output and read a directive from standard input.

Commands can be abbreviated to their minimum unambiguous form. A command is terminated by a new
line character or a semicolon, ";", character. Multiple commands may be entered on a single line. A
command may extend across lines by escaping the new line character with a back-slash "\".

Comments begin with the "#" character and continue to end of the line. Comments and blank lines are
ignored by qmgr.

clxxiii
Commands overview

http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/

Options

Option Name Description

-a --- Abort qmgr on any syntax errors or any requests rejected by a server.

-c command Execute a single command and exit qmgr.

-e --- Echo all commands to standard output.

-n --- No commands are executed, syntax checking only is performed.

-z --- No errors are written to standard error.

Operands
The server operands identify the name of the batch server to which the administrator requests are sent.
Each server conforms to the following syntax:

host_name[:port]

where host_name is the network name of the host on which the server is running and port is the port
number to which to connect. If port is not specified, the default port number is used.

If server is not specified, the administrator requests are sent to the local server.

Standard input
The qmgr command reads standard input for directives until end of file is reached, or the exit or quit
directive is read.

Standard output
If Standard Output is connected to a terminal, a command prompt will be written to standard output when
qmgr is ready to read a directive.

If the -e option is specified, qmgr will echo the directives read from standard input to standard output.

Standard error
If the -z option is not specified, the qmgr command will write a diagnostic message to standard error for
each error occurrence.

Directive syntax
A qmgr directive is one of the following forms:

command server [names] [attr OP value[,attr OP value,...]]
command queue [names] [attr OP value[,attr OP value,...]]
command node [names] [attr OP value[,attr OP value,...]]

clxxiv
Commands overview

where command is the command to perform on a object.

Commands are:

Command Description

active Sets the active objects. If the active objects are specified, and the name is not given in a qmgr cmd the
active object names will be used.

create Is to create a new object, applies to queues and nodes.

delete Is to destroy an existing object, applies to queues and nodes.

set Is to define or alter attribute values of the object.

unset Is to clear the value of attributes of the object.

This form does not accept an OP and value, only the attribute name.

list Is to list the current attributes and associated values of the object.

print Is to print all the queue and server attributes in a format that will be usable as input to the qmgr
command.

names Is a list of one or more names of specific objects The name list is in the form:
[name][@server][,queue_name[@server]...]

with no intervening white space. The name of an object is declared when the object is first created. If
the name is @server, then all the objects of specified type at the server will be affected.

attr Specifies the name of an attribute of the object which is to be set or modified. If the attribute is one
which consist of a set of resources, then the attribute is specified in the form:
attribute_name.resource_name

OP Operation to be performed with the attribute and its value:
l "=" – set the value of the attribute. If the attribute has a existing value, the current value is

replaced with the new value.
l "+=" – increase the current value of the attribute by the amount in the new value.
l "-=" – decrease the current value of the attribute by the amount in the new value.

value The value to assign to an attribute. If the value includes white space, commas or other special char-
acters, such as the "#" character, the value string must be enclosed in quote marks (").

The following are examples of qmgr directives:

clxxv
Commands overview

create queue fast priority=10,queue_type=e,enabled = true,max_running=0
set queue fast max_running +=2
create queue little
set queue little resources_max.mem=8mw,resources_max.cput=10
unset queue fast max_running
set node state = "down,offline"
active server s1,s2,s3
list queue @server1
set queue max_running = 10 - uses active queues

Exit status
Upon successful processing of all the operands presented to the qmgr command, the exit status will be a
value of zero.

If the qmgr command fails to process any operand, the command exits with a value greater than zero.

Related topics

l pbs_server(8B)

Non-Adaptive Computing topics

l pbs_queue_attributes (7B)
l pbs_server_attributes (7B)
l qstart (8B), qstop (8B)
l qenable (8B), qdisable (8)
l PBS External Reference Specification

qrerun
(Rerun a batch job)

Synopsis
qrerun [{-f}] <JOBID>[<JOBID>] ...

Description
The qrerun command directs that the specified jobs are to be rerun if possible. To rerun a job is to
terminate the session leader of the job and return the job to the queued state in the execution queue in
which the job currently resides.

If a job is marked as not rerunable then the rerun request will fail for that job. If the mini-server running
the job is down, or it rejects the request, the Rerun Job batch request will return a failure unless -f is used.

Using -f violates IEEE Batch Processing Services Standard and should be handled with great care. It should
only be used under exceptional circumstances. The best practice is to fix the problem mini-server host and
let qrerun run normally. The nodes may need manual cleaning (see the -r option on the qsub and qalter
commands).

clxxvi
Commands overview

Options

Option Description

-f Force a rerun on a job

qrerun -f 15406

Operands
The qrerun command accepts one or more job_identifier operands of the form:

sequence_number[.server_name][@server]

Standard error
The qrerun command will write a diagnostic message to standard error for each error occurrence.

Exit status
Upon successful processing of all the operands presented to the qrerun command, the exit status will be a
value of zero.

If the qrerun command fails to process any operand, the command exits with a value greater than zero.

Examples

> qrerun 3233

Job 3233 will be re-run.

Related topics

l qsub(1B)
l qalter(1B)

Non-Adaptive Computing topics

l pbs_alterjob(3B)
l pbs_rerunjob(3B)

qrls
(Release hold on PBS batch jobs)

Synopsis
qrls [{-h <HOLD LIST>|-t <array_range>}] <JOBID>[<JOBID>] ...

clxxvii
Commands overview

Description
The qrls command removes or releases holds which exist on batch jobs.

A job may have one or more types of holds which make the job ineligible for execution. The types of holds
are USER, OTHER, and SYSTEM. The different types of holds may require that the user issuing the qrls
command have special privileges. A user may always remove a USER hold on their own jobs, but only
privileged users can remove OTHER or SYSTEM holds. An attempt to release a hold for which the user
does not have the correct privilege is an error and no holds will be released for that job.

If no -h option is specified, the USER hold will be released.

If the job has no execution_time pending, the job will change to the queued state. If an execution_time is
still pending, the job will change to the waiting state.

Options

Command Name Description

-h hold_
list

Defines the types of hold to be released from the jobs. The hold_list option argument is a
string consisting of one or more of the letters "u", "o", and "s" in any combination. The
hold type associated with each letter is:

l u – USER
l o – OTHER
l s – SYSTEM

-t array_
range

The array_range argument is an integer id or a range of integers. Multiple ids or id ranges
can be combined in a comma delimited list. Examples: -t 1-100 or -t 1,10,50-100
If an array range isn't specified, the command tries to operate on the entire array. The
command acts on the array (or specified range of the array) just as it would on an
individual job.

Operands
The qrls command accepts one or more job_identifier operands of the form:

sequence_number[.server_name][@server]

Examples

> qrls -h u 3233 release user hold on job 3233

Standard error
The qrls command will write a diagnostic message to standard error for each error occurrence.

clxxviii
Commands overview

Exit status
Upon successful processing of all the operands presented to the qrls command, the exit status will be a
value of zero.

If the qrls command fails to process any operand, the command exits with a value greater than zero.

Related topics

Related topics

l qsub(1B)
l qalter(1B)
l qhold(1B)

Non-Adaptive Computing topics)

l pbs_alterjob(3B)
l pbs_holdjob(3B)
l pbs_rlsjob(3B)

qrun
(Run a batch job)

Synopsis
qrun [{-H <HOST>|-a}] <JOBID>[<JOBID>] ...

Overview
The qrun command runs a job.

Format

-H

Format <STRING> Host Identifier

Default ---

Description Specifies the host within the cluster on which the job(s) are to be run. The host argument is the
name of a host that is a member of the cluster of hosts managed by the server. If the option is not
specified, the server will select the "worst possible" host on which to execute the job.

Example qrun -H hostname 15406

clxxix
Commands overview

-a

Format ---

Default ---

Description Run the job(s) asynchronously.

Example qrun -a 15406

Command details
The qrun command is used to force a batch server to initiate the execution of a batch job. The job is run
regardless of scheduling position or resource requirements.

In order to execute qrun, the user must have PBS Operation or Manager privileges.

Examples

> qrun 3233

Run job 3233.

qsig
(Signal a job)

Synopsis
qsig [{-s <SIGNAL>}] <JOBID>[<JOBID>] ...

[-a]

Description
The qsig command requests that a signal be sent to executing batch jobs. The signal is sent to the session
leader of the job. If the -s option is not specified, SIGTERM is sent. The request to signal a batch job will be
rejected if:

l The user is not authorized to signal the job.

l The job is not in the running state.

l The requested signal is not supported by the system upon which the job is executing.

The qsig command sends a Signal Job batch request to the server which owns the job.

clxxx
Commands overview

Options

Option Name Description

-s signal Declares which signal is sent to the job.
The signal argument is either a signal name, e.g. SIGKILL, the signal name without
the SIG prefix, e.g. KILL, or a unsigned signal number, e.g. 9. The signal name
SIGNULL is allowed; the server will send the signal 0 to the job which will have no
effect on the job, but will cause an obituary to be sent if the job is no longer
executing. Not all signal names will be recognized by qsig. If it doesn't recognize the
signal name, try issuing the signal number instead.
Two special signal names, "suspend" and "resume", are used to suspend and resume
jobs. Cray systems use the Cray-specific suspend()/resume() calls.
On non-Cray system, suspend causes a SIGTSTP to be sent to all processes in the
job's top task, wait 5 seconds, and then send a SIGSTOP to all processes in all tasks on
all nodes in the job. This differs from TORQUE 2.0.0 which did not have the ability to
propagate signals to sister nodes. Resume sends a SIGCONT to all processes in all
tasks on all nodes.
When suspended, a job continues to occupy system resources but is not executing
and is not charged for walltime. The job will be listed in the "S" state. Manager or
operator privilege is required to suspend or resume a job.

Interactive jobs may not resume properly because the top-level shell will
background the suspended child process.

-a asynchronously Makes the command run asynchronously.

Operands
The qsig command accepts one or more job_identifier operands of the form:

sequence_number[.server_name][@server]

Examples

> qsig -s SIGKILL 3233 send a SIGKILL to job 3233
> qsig -s KILL 3233 send a SIGKILL to job 3233
> qsig -s 9 3233 send a SIGKILL to job 3233

Standard error
The qsig command will write a diagnostic messages to standard error for each error occurrence.

Exit status
Upon successful processing of all the operands presented to the qsig command, the exit status will be a
value of zero.

If the qsig command fails to process any operand, the command exits with a value greater than zero.

clxxxi
Commands overview

Related topics

l qsub(1B)

Non-Adaptive Computing topics

l pbs_sigjob(3B)
l pbs_resources_*(7B) where * is system type
l PBS ERS

qstat
Show status of PBS batch jobs.

Synopsis
qstat [-f [-1]][-W site_specific] [job_identifier... | destination...] [time]
qstat [-a|-i|-r|-e] [-n [-1]] [-s] [-G|-M] [-R] [-u user_list]
[job_identifier... | destination...]
qstat -Q [-f [-1]][-W site_specific] [destination...]
qstat -q [-G|-M] [destination...]
qstat -B [-f [-1]][-W site_specific] [server_name...]
qstat -t

Description
The qstat command is used to request the status of jobs, queues, or a batch server. The requested status is
written to standard out.

When requesting job status, synopsis format 1 or 2, qstat will output information about each job_identifier
or all jobs at each destination. Jobs for which the user does not have status privilege are not displayed.

When requesting queue or server status, synopsis format 3 through 5, qstat will output information about
each destination.

Options

Option Description

-f Specifies that a full status display be written to standard out. The [time] value is the amount of walltime,
in seconds, remaining for the job. [time] does not account for walltime multipliers.

-a All jobs are displayed in the alternative format (see Standard output on page clxxxiv). If the operand is a
destination id, all jobs at that destination are displayed. If the operand is a job id, information about that
job is displayed.

clxxxii
Commands overview

Option Description

-e If the operand is a job id or not specified, only jobs in executable queues are displayed. Setting the PBS_
QSTAT_EXECONLY environment variable will also enable this option.

-i Job status is displayed in the alternative format. For a destination id operand, status for jobs at that des-
tination which are not running are displayed. This includes jobs which are queued, held or waiting. If an
operand is a job id, status for that job is displayed regardless of its state.

-r If an operand is a job id, status for that job is displayed. For a destination id operand, status for jobs at
that destination which are running are displayed, this includes jobs which are suspended.

-n In addition to the basic information, nodes allocated to a job are listed.

-1 In combination with -n, the -1 option puts all of the nodes on the same line as the job ID. In combination
with -f, attributes are not folded to fit in a terminal window. This is intended to ease the parsing of the
qstat output.

-s In addition to the basic information, any comment provided by the batch administrator or scheduler is
shown.

-G Show size information in giga-bytes.

-M Show size information, disk or memory in mega-words. A word is considered to be 8 bytes.

-R In addition to other information, disk reservation information is shown. Not applicable to all systems.

-t Normal qstat output displays a summary of the array instead of the entire array, job for job. qstat -t
expands the output to display the entire array. Note that arrays are now named with brackets following
the array name; for example:
dbeer@napali:~/dev/torque/array_changes$ echo sleep 20 | qsub -t 0-299 189
[].napali

Individual jobs in the array are now also noted using square brackets instead of dashes; for example,
here is part of the output of qstat -t for the preceding array:
189[299].napali STDIN[299] dbeer 0 Q batch

-u Job status is displayed in the alternative format. If an operand is a job id, status for that job is displayed.
For a destination id operand, status for jobs at that destination which are owned by the user(s) listed in
user_list are displayed. The syntax of the user_list is:
user_name[@host][,user_name[@host],...]

Host names may be wild carded on the left end, e.g. "*.nasa.gov". User_name without a "@host" is
equivalent to "user_name@*", that is at any host.

clxxxiii
Commands overview

Option Description

-Q Specifies that the request is for queue status and that the operands are destination identifiers.

-q Specifies that the request is for queue status which should be shown in the alternative format.

-B Specifies that the request is for batch server status and that the operands are the names of servers.

Operands
If neither the -Q nor the -B option is given, the operands on the qstat command must be either job
identifiers or destinations identifiers.

If the operand is a job identifier, it must be in the following form:

sequence_number[.server_name][@server]

where sequence_number.server_name is the job identifier assigned at submittal time (see qsub). If the
.server_name is omitted, the name of the default server will be used. If @server is supplied, the request will

be for the job identifier currently at that Server.

If the operand is a destination identifier, it is one of the following three forms:

l queue

l @server

l queue@server

If queue is specified, the request is for status of all jobs in that queue at the default server. If the @server
form is given, the request is for status of all jobs at that server. If a full destination identifier,
queue@server, is given, the request is for status of all jobs in the named queue at the named server.

If the -Q option is given, the operands are destination identifiers as specified above. If queue is specified,
the status of that queue at the default server will be given. If queue@server is specified, the status of the
named queue at the named server will be given. If @server is specified, the status of all queues at the
named server will be given. If no destination is specified, the status of all queues at the default server will
be given.

If the -B option is given, the operand is the name of a server.

Standard output

Displaying job status

If job status is being displayed in the default format and the -f option is not specified, the following items
are displayed on a single line, in the specified order, separated by white space:

l the job identifier assigned by PBS.

l the job name given by the submitter.

l the job owner.

clxxxiv
Commands overview

l the CPU time used.

l the job state:

Item Description

C Job is completed after having run.

E Job is exiting after having run.

H Job is held.

Q Job is queued, eligible to run or routed.

R Job is running.

T Job is being moved to new location.

W Job is waiting for its execution time (-a option) to be reached.

S (Unicos only) Job is suspended.

l the queue in which the job resides.

If job status is being displayed and the -f option is specified, the output will depend on whether qstat was
compiled to use a Tcl interpreter. See Configuration on page clxxxvii for details. If Tcl is not being used,
full display for each job consists of the header line:

Job Id: job identifier

Followed by one line per job attribute of the form:

attribute_name = value

If any of the options -a, -i, -r, -u, -n, -s, -G, or -M are provided, the alternative display format for jobs is
used. The following items are displayed on a single line, in the specified order, separated by white space:

l the job identifier assigned by PBS

l the job owner

l the queue in which the job currently resides

l the job name given by the submitter

l the session id (if the job is running)

l the number of nodes requested by the job

l the number of cpus or tasks requested by the job

l the amount of memory requested by the job

l either the cpu time, if specified, or wall time requested by the job, (hh:mm)

clxxxv
Commands overview

l the jobs current state

l the amount of cpu time or wall time used by the job (hh:mm)

If the -r option is provided, the line contains:

l the job identifier assigned by PBS

l the job owner

l the queue in which the job currently resides

l the number of nodes requested by the job

l the number of cpus or tasks requested by the job

l the amount of memory requested by the job

l either the cpu time or wall time requested by the job

l the jobs current state

l the amount of cpu time or wall time used by the job

l the amount of SRFS space requested on the big file system

l the amount of SRFS space requested on the fast file system

l the amount of space requested on the parallel I/O file system

The last three fields may not contain useful information at all sites or on all systems

Displaying queue status

If queue status is being displayed and the -f option was not specified, the following items are displayed on a
single line, in the specified order, separated by white space:

l the queue name

l the maximum number of jobs that may be run in the queue concurrently

l the total number of jobs in the queue

l the enable or disabled status of the queue

l the started or stopped status of the queue

l for each job state, the name of the state and the number of jobs in the queue in that state

l the type of queue, execution or routing

If queue status is being displayed and the -f option is specified, the output will depend on whether qstat
was compiled to use a Tcl interpreter. See the configuration section for details. If Tcl is not being used, the
full display for each queue consists of the header line:

Queue: queue_name

Followed by one line per queue attribute of the form:

attribute_name = value

clxxxvi
Commands overview

If the -Q option is specified, queue information is displayed in the alternative format: The following
information is displayed on a single line:

l the queue name

l the maximum amount of memory a job in the queue may request

l the maximum amount of cpu time a job in the queue may request

l the maximum amount of wall time a job in the queue may request

l the maximum amount of nodes a job in the queue may request

l the number of jobs in the queue in the running state

l the number of jobs in the queue in the queued state

l the maximum number (limit) of jobs that may be run in the queue concurrently

l the state of the queue given by a pair of letters:

o either the letter E if the queue is Enabled or D if Disabled

and

o either the letter R if the queue is Running (started) or S if Stopped.

Displaying server status

If batch server status is being displayed and the -f option is not specified, the following items are displayed
on a single line, in the specified order, separated by white space:

l the server name

l the maximum number of jobs that the server may run concurrently

l the total number of jobs currently managed by the server

l the status of the server

l for each job state, the name of the state and the number of jobs in the server in that state

If server status is being displayed and the -f option is specified, the output will depend on whether qstat
was compiled to use a Tcl interpreter. See the configuration section for details. If Tcl is not being used, the
full display for the server consist of the header line:

Server: server name

Followed by one line per server attribute of the form:

attribute_name = value

Standard error
The qstat command will write a diagnostic message to standard error for each error occurrence.

Configuration
If qstat is compiled with an option to include a Tcl interpreter, using the -f flag to get a full display causes
a check to be made for a script file to use to output the requested information. The first location checked is

clxxxvii
Commands overview

$HOME/.qstatrc. If this does not exist, the next location checked is administrator configured. If one of
these is found, a Tcl interpreter is started and the script file is passed to it along with three global
variables. The command line arguments are split into two variable named flags and operands . The status
information is passed in a variable named objects . All of these variables are Tcl lists. The flags list
contains the name of the command (usually "qstat") as its first element. Any other elements are command
line option flags with any options they use, presented in the order given on the command line. They are
broken up individually so that if two flags are given together on the command line, they are separated in
the list. For example, if the user typed:

qstat -QfWbigdisplay

the flags list would contain

qstat -Q -f -W bigdisplay

The operands list contains all other command line arguments following the flags. There will always be at
least one element in operands because if no operands are typed by the user, the default destination or
server name is used. The objects list contains all the information retrieved from the server(s) so the Tcl
interpreter can run once to format the entire output. This list has the same number of elements as the
operands list. Each element is another list with two elements.

The first element is a string giving the type of objects to be found in the second. The string can take the
values "server", "queue", "job" or "error".

The second element will be a list in which each element is a single batch status object of the type given by
the string discussed above. In the case of "error", the list will be empty. Each object is again a list. The
first element is the name of the object. The second is a list of attributes.

The third element will be the object text.

All three of these object elements correspond with fields in the structure batch_status which is described
in detail for each type of object by the man pages for pbs_statjob(3), pbs_statque(3), and pbs_statserver(3).
Each attribute in the second element list whose elements correspond with the attrl structure. Each will be
a list with two elements. The first will be the attribute name and the second will be the attribute value.

Exit status
Upon successful processing of all the operands presented to the qstat command, the exit status will be a
value of zero.

If the qstat command fails to process any operand, the command exits with a value greater than zero.

Related topics

l qalter(1B)
l qsub(1B)

Non-Adaptive Computing topics

l pbs_alterjob(3B)
l pbs_statjob(3B)
l pbs_statque(3B)
l pbs_statserver(3B)
l pbs_submit(3B)

clxxxviii
Commands overview

l pbs_job_attributes(7B)
l pbs_queue_attributes(7B)
l pbs_server_attributes(7B)
l qmgr query_other_jobs parameter (allow non-admin users to see other users' jobs
l pbs_resources_*(7B) where * is system type
l PBS ERS

qsub
Submit PBS job.

Synopsis
qsub [-a date_time] [-A account_string] [-b secs] [-c checkpoint_options]

[-C directive_prefix] [-d path] [-D path] [-e path] [-f] [-F] [-h]
[-I] [-j join] [-k keep] [-l resource_list]
[-m mail_options] [-M user_list] [-n] [-N name] [-o path]
[-p priority] [-P user[:group]] [-q destination] [-r c] [-S path_to_shell

(s)]
[-t array_request] [-u user_list]
[-v variable_list] [-V] [-W additional_attributes] [-x] [-X] [-z] [script]

Description
To create a job is to submit an executable script to a batch server. The batch server will be the default
server unless the -q option is specified. The command parses a script prior to the actual script execution;
it does not execute a script itself. All script-writing rules remain in effect, including the "#!" at the head of
the file (see discussion of PBS_DEFAULT under Environment variables on page ccii). Typically, the script
is a shell script which will be executed by a command shell such as sh or csh.

Options on the qsub command allow the specification of attributes which affect the behavior of the job.

The qsub command will pass certain environment variables in the Variable_List attribute of the job. These
variables will be available to the job. The value for the following variables will be taken from the
environment of the qsub command: HOME, LANG, LOGNAME, PATH, MAIL, SHELL, and TZ. These values will
be assigned to a new name which is the current name prefixed with the string "PBS_O_". For example, the
job will have access to an environment variable named PBS_O_HOME which have the value of the variable
HOME in the qsub command environment.

In addition to the above, the following environment variables will be available to the batch job:

Variable Description

PBS_O_HOST The name of the host upon which the qsub command is running.

PBS_SERVER The hostname of the pbs_server which qsub submits the job to.

clxxxix
Commands overview

Variable Description

PBS_O_QUEUE The name of the original queue to which the job was submitted.

PBS_O_WORK-
DIR

The absolute path of the current working directory of the qsub command.

PBS_ARRAYID Each member of a job array is assigned a unique identifier (see -t option).

PBS_ENVI-
RONMENT

Set to PBS_BATCH to indicate the job is a batch job, or to PBS_INTERACTIVE to indicate the job is a
PBS interactive job (see -I option).

PBS_JOBID The job identifier assigned to the job by the batch system. It can be used in the stdout and stderr
paths. TORQUE replaces $PBS_JOBID with the job's jobid (for example, #PBS -o /tmp/$PBS_
JOBID.output).

PBS_JOBNAME The job name supplied by the user.

PBS_NODEFILE The name of the file contain the list of nodes assigned to the job (for parallel and cluster sys-
tems).

PBS_QUEUE The name of the queue from which the job is executed.

Options

Option Name Description

-a date_time Declares the time after which the job is eligible for execution.
The date_time argument is in the form:
[[[[CC]YY]MM]DD]hhmm[.SS]

where CC is the first two digits of the year (the century), YY is the second two digits of
the year, MM is the two digits for the month, DD is the day of the month, hh is the hour,
mm is the minute, and the optional SS is the seconds.
If the month (MM) is not specified, it will default to the current month if the specified
day (DD) is in the future. Otherwise, the month will be set to next month. Likewise, if the
day (DD) is not specified, it will default to today if the time (hhmm) is in the future.
Otherwise, the day will be set to tomorrow.
For example, if you submit a job at 11:15 am with a time of -a 1110, the job will be
eligible to run at 11:10 am tomorrow.

-A account_
string

Defines the account string associated with the job. The account_string is an undefined
string of characters and is interpreted by the server which executes the job. See section
2.7.1 of the PBS ERS.

cxc
Commands overview

Option Name Description

-b seconds Defines the maximum number of seconds qsub will block attempting to contact pbs_
server. If pbs_server is down, or for a variety of communication failures, qsub will
continually retry connecting to pbs_server for job submission.
This value overrides the CLIENTRETRY parameter in torque.cfg. This is a non-
portable TORQUE extension. Portability-minded users can use the PBS_CLIENTRETRY
environmental variable. A negative value is interpreted as infinity. The default is 0.

-c checkpoint_
options

Defines the options that will apply to the job. If the job executes upon a host which does
not support checkpoint, these options will be ignored.
Valid checkpoint options are:

l none – No checkpointing is to be performed.
l enabled – Specify that checkpointing is allowed but must be explicitly invoked by

either the qhold or qchkpt commands.
l shutdown – Specify that checkpointing is to be done on a job at pbs_mom

shutdown.
l periodic – Specify that periodic checkpointing is enabled. The default interval is

10 minutes and can be changed by the $checkpoint_interval option in the MOM
config file or by specifying an interval when the job is submitted

l interval=minutes – Checkpointing is to be performed at an interval of minutes,
which is the integer number of minutes of wall time used by the job. This value
must be greater than zero.

l depth=number – Specify a number (depth) of checkpoint images to be kept in
the checkpoint directory.

l dir=path – Specify a checkpoint directory (default is
/var/spool/torque/checkpoint).

-C directive_
prefix

Defines the prefix that declares a directive to the qsub command within the script file.
(See the paragraph on script directives under Extended description on page cciii.)
If the -C option is presented with a directive_prefix argument that is the null string,
qsub will not scan the script file for directives.

-d path Defines the working directory path to be used for the job. If the -d option is not spec-
ified, the default working directory is the home directory. This option sets the envi-
ronment variable PBS_O_INITDIR.

-D path Defines the root directory to be used for the job. This option sets the environment var-
iable PBS_O_ROOTDIR.

cxci
Commands overview

Option Name Description

-e path Defines the path to be used for the standard error stream of the batch job. The path
argument is of the form:
[hostname:]path_name

where hostname is the name of a host to which the file will be returned, and path_name is
the path name on that host in the syntax recognized by POSIX. The argument will be
interpreted as follows:

l path_name – where path_name is not an absolute path name, then the qsub
command will expand the path name relative to the current working directory of
the command. The command will supply the name of the host upon which it is
executing for the hostname component.

l hostname:path_name – where path_name is not an absolute path name, then the
qsub command will not expand the path name relative to the current working
directory of the command. On delivery of the standard error, the path name will
be expanded relative to the users home directory on the hostname system.

l path_name – where path_name specifies an absolute path name, then the qsub
will supply the name of the host on which it is executing for the hostname.

l hostname:path_name – where path_name specifies an absolute path name, the
path will be used as specified.

If the -e option is not specified, the default file name for the standard error stream will
be used. The default name has the following form:

l job_name.esequence_number – where job_name is the name of the job (see the -
n name option) and sequence_number is the job number assigned when the job is
submitted.

-f --- Job is made fault tolerant. Jobs running on multiple nodes are periodically polled by
mother superior. If one of the nodes fails to report, the job is canceled by mother
superior and a failure is reported. If a job is fault tolerant, it will not be canceled based
on failed polling (no matter how many nodes fail to report). This may be desirable if
transient network failures are causing large jobs not to complete, where ignoring one
failed polling attempt can be corrected at the next polling attempt.

If TORQUE is compiled with PBS_NO_POSIX_VIOLATION (there is no config option
for this), you have to use -W fault_tolerant=true to mark the job as fault

tolerant.

-F --- Specfies the arguments that will be passed to the job script when the script is launched.
The accepted syntax is:
qsub -F "myarg1 myarg2 myarg3=myarg3value" myscript2.sh

Quotation marks are required. qsub will fail with an error message if the
argument following -F is not a quoted value. The pbs_mom server will pass the

quoted value as arguments to the job script when it launches the script.

-h --- Specifies that a user hold be applied to the job at submission time.

cxcii
Commands overview

Option Name Description

-I --- Declares that the job is to be run "interactively". The job will be queued and scheduled
as any PBS batch job, but when executed, the standard input, output, and error streams
of the job are connected through qsub to the terminal session in which qsub is running.
Interactive jobs are forced to not rerunable. See Extended description on page cciii for
additional information of interactive jobs.

-j join Declares if the standard error stream of the job will be merged with the standard output
stream of the job.
An option argument value of oe directs that the two streams will be merged, intermixed,
as standard output. An option argument value of eo directs that the two streams will be
merged, intermixed, as standard error.
If the join argument is n or the option is not specified, the two streams will be two
separate files.

-k keep Defines which (if either) of standard output or standard error will be retained on the
execution host. If set for a stream, this option overrides the path name for that stream. If
not set, neither stream is retained on the execution host.
The argument is either the single letter "e" or "o", or the letters "e" and "o" combined in
either order. Or the argument is the letter "n".

l e – The standard error stream is to retained on the execution host. The stream
will be placed in the home directory of the user under whose user id the job
executed. The file name will be the default file name given by:
job_name.esequence

where job_name is the name specified for the job, and sequence is the sequence
number component of the job identifier.

l o – The standard output stream is to retained on the execution host. The stream
will be placed in the home directory of the user under whose user id the job
executed. The file name will be the default file name given by:
job_name.osequence

where job_name is the name specified for the job, and sequence is the sequence
number component of the job identifier.

l eo – Both the standard output and standard error streams will be retained.
l oe – Both the standard output and standard error streams will be retained.
l n – Neither stream is retained.

cxciii
Commands overview

Option Name Description

-l resource_
list

Defines the resources that are required by the job and establishes a limit to the amount
of resource that can be consumed. If not set for a generally available resource, such as
CPU time, the limit is infinite. The resource_list argument is of the form:
resource_name[=[value]][,resource_name[=[value]],...]

In this situation, you should request the more inclusive resource first. For
example, a request for procs should come before a gres request.

For information on specifying multiple types of resources for allocation, see "Multi-Req
Support" under "General Job Policies" in the Moab Workload Manager documentation.

-m mail_
options

Defines the set of conditions under which the execution server will send a mail message
about the job. The mail_options argument is a string which consists of either the single
character "n", or one or more of the characters "a", "b", and "e".
If the character "n" is specified, no normal mail is sent. Mail for job cancels and other
events outside of normal job processing are still sent.
For the letters "a", "b", and "e":

l a – Mail is sent when the job is aborted by the batch system.
l b – Mail is sent when the job begins execution.
l e – Mail is sent when the job terminates.

If the -m option is not specified, mail will be sent if the job is aborted.

-M user_list Declares the list of users to whom mail is sent by the execution server when it sends mail
about the job.
The user_list argument is of the form:
user[@host][,user[@host],...]

If unset, the list defaults to the submitting user at the qsub host, i.e. the job owner.

-n node-exclu-
sive

Allows a user to specify an exclusive-node access/allocation request for the job. This
affects only cpusets and compatible schedulers (see Linux cpuset support on page
lxviii).

-N name Declares a name for the job. The name specified may be an unlimited number of
characters in length. It must consist of printable, non white space characters with the
first character alphabetic.
If the -N option is not specified, the job name will be the base name of the job script file
specified on the command line. If no script file name was specified and the script was
read from the standard input, then the job name will be set to STDIN.

cxciv
Commands overview

http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/

Option Name Description

-o path Defines the path to be used for the standard output stream of the batch job. The path
argument is of the form:
[hostname:]path_name

where hostname is the name of a host to which the file will be returned, and path_name is
the path name on that host in the syntax recognized by POSIX. The argument will be
interpreted as follows:

l path_name – where path_name is not an absolute path name, then the qsub
command will expand the path name relative to the current working directory of
the command. The command will supply the name of the host upon which it is
executing for the hostname component.

l hostname:path_name – where path_name is not an absolute path name, then the
qsub command will not expand the path name relative to the current working
directory of the command. On delivery of the standard output, the path name
will be expanded relative to the users home directory on the hostname system.

l path_name – where path_name specifies an absolute path name, then the qsub
will supply the name of the host on which it is executing for the hostname.

l hostname:path_namewhere path_name specifies an absolute path name, the
path will be used as specified.

If the -o option is not specified, the default file name for the standard output stream will
be used. The default name has the following form:

l job_name.osequence_number – where job_name is the name of the job (see the
-n name option) and sequence_number is the job number assigned when the job is
submitted.

-p priority Defines the priority of the job. The priority argument must be a integer between -1024
and +1023 inclusive. The default is no priority which is equivalent to a priority of zero.

-P user
[:group]

Allows a root user to submit a job as another user. TORQUE treats proxy jobs as though
the jobs were submitted by the supplied username. This feature is available in TORQUE
2.4.7 and later, however, TORQUE 2.4.7 does not have the ability to supply the
[:group] option; it is available in TORQUE 2.4.8 and later.

cxcv
Commands overview

Option Name Description

-q destination Defines the destination of the job. The destination names a queue, a server, or a queue at
a server.
The qsub command will submit the script to the server defined by the destination
argument. If the destination is a routing queue, the job may be routed by the server to a
new destination.
If the -q option is not specified, the qsub command will submit the script to the default
server. (See Environment variables on page ccii and the PBS ERS section 2.7.4, "Default
Server".)
If the -q option is specified, it is in one of the following three forms:

l queue
l @server
l queue@server

If the destination argument names a queue and does not name a server, the job will be
submitted to the named queue at the default server.
If the destination argument names a server and does not name a queue, the job will be
submitted to the default queue at the named server.
If the destination argument names both a queue and a server, the job will be submitted
to the named queue at the named server.

-r y/n Declares whether the job is rerunable (see the qrerun command). The option argument
is a single character, either y or n.
If the argument is "y", the job is rerunable. If the argument is "n", the job is not
rerunable. The default value is y, rerunable.

-S path_list Declares the path to the desires shell for this job.
qsub script.sh -S /bin/tcsh

The option argument path_list is in the form:
path[@host][,path[@host],...]
Only one path may be specified for any host named. Only one path may be specified
without the corresponding host name. The path selected will be the one with the host
name that matched the name of the execution host. If no matching host is found, then
the path specified without a host will be selected, if present.
If the -S option is not specified, the option argument is the null string, or no entry from
the path_list is selected, the execution will use the users login shell on the execution host.

cxcvi
Commands overview

Option Name Description

-t array_
request

Specifies the task ids of a job array. Single task arrays are allowed.
The array_request argument is an integer id or a range of integers. Multiple ids or id
ranges can be combined in a comma delimted list. Examples: -t 1-100 or -t 1,10,
50-100

An optional slot limit can be specified to limit the amount of jobs that can run
concurrently in the job array. The default value is unlimited. The slot limit must be the
last thing specified in the array_request and is delimited from the array by a percent
sign (%).

qsub script.sh -t 0-299%5

This sets the slot limit to 5. Only 5 jobs from this array can run at the same time.
You can use qalter to modify slot limits on an array. The server parameter max_slot_
limit can be used to set a global slot limit policy. When using slot limits in TORQUE with
Moab or Maui, you should also set the moab_array_compatible server parameter to TRUE.

-u user_list Defines the user name under which the job is to run on the execution system.
The user_list argument is of the form:
user[@host][,user[@host],...]

Only one user name may be given per specified host. Only one of the user specifications
may be supplied without the corresponding host specification. That user name will used
for execution on any host not named in the argument list. If unset, the user list defaults
to the user who is running qsub.

-v variable_
list

Expands the list of environment variables that are exported to the job.
In addition to the variables described in the "Description" section above, variable_list
names environment variables from the qsub command environment which are made
available to the job when it executes. The variable_list is a comma separated list of strings
of the form variable or variable=value. These variables and their values are
passed to the job.

-V --- Declares that all environment variables in the qsub commands environment are to be
exported to the batch job.

cxcvii
Commands overview

Option Name Description

-W additional_
attributes

The -W option allows for the specification of additional job attributes. The general syntax
of -W is in the form:
-W attr_name=attr_value[,attr_name=attr_value...]

If white space occurs anywhere within the option argument string or the equal
sign, "=", occurs within an attribute_value string, then the string must be

enclosed with either single or double quote marks.

PBS currently supports the following attributes within the -W option:
l depend=dependency_list – Defines the dependency between this and other

jobs. The dependency_list is in the form:
type[:argument[:argument...][,type:argument...]

The argument is either a numeric count or a PBS job id according to type. If
argument is a count, it must be greater than 0. If it is a job id and not fully
specified in the form seq_number.server.name, it will be expanded according
to the default server rules which apply to job IDs on most commands. If
argument is null (the preceding colon need not be specified), the dependency of
the corresponding type is cleared (unset). For more information, see
depend=dependency_list valid dependencies on page cxcix.

l group_list=g_list – Defines the group name under which the job is to run on the
execution system. The g_list argument is of the form:
group[@host][,group[@host],...]

Only one group name may be given per specified host. Only one of the group
specifications may be supplied without the corresponding host specification. That
group name will used for execution on any host not named in the argument list.
If not set, the group_list defaults to the primary group of the user under which
the job will be run.

l interactive=true – If the interactive attribute is specified, the job is an
interactive job. The -I option is a alternative method of specifying this attribute.

l stagein=file_list
l stageout=file_list – Specifies which files are staged (copied) in before job start

or staged out after the job completes execution. On completion of the job, all
staged-in and staged-out files are removed from the execution system. The file_
list is in the form:
local_file@hostname:remote_file[,...]

regardless of the direction of the copy. The name local_file is the name of the file
on the system where the job executed. It may be an absolute path or relative to
the home directory of the user. The name remote_file is the destination name on
the host specified by hostname. The name may be absolute or relative to the
users home directory on the destination host. The use of wildcards in the file
name is not recommended. The file names map to a remote copy program (rcp)
call on the execution system in the follow manner:

o For stagein: rcp hostname:remote_file local_file
o For stageout: rcp local_file hostname:remote_file

Data staging examples:

cxcviii
Commands overview

Option Name Description

-W stagein=/tmp/input.txt@headnode:/home/user/input.txt

-W stageout=/tmp/output.txt@headnode:/home/user/output.txt

If TORQUE has been compiled with wordexp support, then variables can be used
in the specified paths. Currently only $PBS_JOBID, $HOME, and $TMPDIR are
supported for stagein.

l umask=XXX – Sets umask used to create stdout and stderr spool files in pbs_
mom spool directory. Values starting with 0 are treated as octal values, otherwise
the value is treated as a decimal umask value.

-X --- Enables X11 forwarding. The DISPLAY environment variable must be set.

-z --- Directs that the qsub command is not to write the job identifier assigned to the job to the
commands standard output.

depend=dependency_list valid dependencies

Dependency Description

synccount:count This job is the first in a set of jobs to be executed at the same
time. Count is the number of additional jobs in the set.

syncwith:jobid This job is an additional member of a set of jobs to be executed
at the same time. In the above and following dependency types,
jobid is the job identifier of the first job in the set.

after:jobid[:jobid...] This job may be scheduled for execution at any point after jobs
jobid have started execution.

afterok:jobid[:jobid...] This job may be scheduled for execution only after jobs jobid
have terminated with no errors. See the csh warning under
Extended description on page cciii.

afternotok:jobid[:jobid...] This job may be scheduled for execution only after jobs jobid
have terminated with errors. See the csh warning under
Extended description on page cciii.

afterany:jobid[:jobid...] This job may be scheduled for execution after jobs jobid have
terminated, with or without errors.

on:count This job may be scheduled for execution after count depend-
encies on other jobs have been satisfied. This form is used in
conjunction with one of the "before" forms (see below).

cxcix
Commands overview

Dependency Description

before:jobid[:jobid...] When this job has begun execution, then jobs jobid... may begin.

beforeok:jobid[:jobid...] If this job terminates execution without errors, then jobs jobid...
may begin. See the csh warning under Extended description
on page cciii.

beforenotok:jobid[:jobid...] If this job terminates execution with errors, then jobs jobid...
may begin. See the csh warning under Extended description
on page cciii.

beforeany:jobid[:jobid...] When this job terminates execution, jobs jobid... may begin.
If any of the before forms are used, the jobs referenced by
jobid must have been submitted with a dependency type of on.
If any of the before forms are used, the jobs referenced by
jobid must have the same owner as the job being submitted.
Otherwise, the dependency is ignored.

Array dependencies make a job depend on an array or part of an array. If no count is given, then the entire
array is assumed. For examples, see Dependency examples on page cci.

afterstartarray:arrayid[count] After this many jobs have started from arrayid, this job may
start.

afterokarray:arrayid[count] This job may be scheduled for execution only after jobs in
arrayid have terminated with no errors.

afternotokarray:arrayid[count] This job may be scheduled for execution only after jobs in
arrayid have terminated with errors.

afteranyarray:arrayid[count] This job may be scheduled for execution after jobs in arrayid
have terminated, with or without errors.

beforestartarray:arrayid[count] Before this many jobs have started from arrayid, this job may
start.

beforeokarray:arrayid[count] If this job terminates execution without errors, then jobs in
arrayid may begin.

beforenotokarray:arrayid[count] If this job terminates execution with errors, then jobs in arrayid
may begin.

cc
Commands overview

Dependency Description

beforeanyarray:arrayid[count] When this job terminates execution, jobs in arrayid may begin.
If any of the before forms are used, the jobs referenced by
arrayid must have been submitted with a dependency type of
on.
If any of the before forms are used, the jobs referenced by
arrayid must have the same owner as the job being submitted.
Otherwise, the dependency is ignored.

Error processing of the existence, state, or condition of he job on which the newly submitted job is a deferred
service, i.e. the check is performed after the job is queued. If an error is detected, the new job will be deleted

by the server. Mail will be sent to the job submitter stating the error.

Dependency examples

qsub -W depend=afterok:123.big.iron.com /tmp/script

qsub -W depend=before:234.hunk1.com:235.hunk1.com

/tmp/script

qsub script.sh -W depend=afterokarray:427[]

This assumes every job in array 427 has to finish successfully for the dependency to be satisfied.

qsub script.sh -W depend=afterokarray:427[][5]

This means that 5 of the jobs in array 427 have to successfully finish in order for the dependency to be
satisfied.

Operands
The qsub command accepts a script operand that is the path to the script of the job. If the path is relative,
it will be expanded relative to the working directory of the qsub command.

If the script operand is not provided or the operand is the single character "-", the qsub command reads the
script from standard input. When the script is being read from Standard Input, qsub will copy the file to a
temporary file. This temporary file is passed to the library interface routine pbs_submit. The temporary
file is removed by qsub after pbs_submit returns or upon the receipt of a signal which would cause qsub to
terminate.

Standard input
The qsub command reads the script for the job from standard input if the script operand is missing or is
the single character "-".

cci
Commands overview

Input files
The script file is read by the qsub command. qsub acts upon any directives found in the script.

When the job is created, a copy of the script file is made and that copy cannot be modified.

Standard output
Unless the -z option is set, the job identifier assigned to the job will be written to standard output if the
job is successfully created.

Standard error
The qsub command will write a diagnostic message to standard error for each error occurrence.

Environment variables
The values of some or all of the variables in the qsub commands environment are exported with the job
(see the -v and -v options).

The environment variable PBS_DEFAULT defines the name of the default server. Typically, it corresponds
to the system name of the host on which the server is running. If PBS_DEFAULT is not set, the default is
defined by an administrator established file.

The environment variable PBS_DPREFIX determines the prefix string which identifies directives in the
script.

The environment variable PBS_CLIENTRETRY defines the maximum number of seconds qsub will block (see
the -b option). Despite the name, currently qsub is the only client that supports this option.

torque.cfg
The torque.cfg file, located in PBS_SERVER_HOME (/var/spool/torque by default) controls the
behavior of the qsub command. This file contains a list of parameters and values separated by whitespace.

l QSUBSLEEP – takes an integer operand which specifies time to sleep when running qsub command.
Used to prevent users from overwhelming the scheduler.

l SUBMITFILTER – specifies the path to the submit filter used to pre-process job submission. The
default path is libexecdir/qsub_filter, which falls back to /usr/local/sbin/torque_submitfilter for
backwards compatibility. This torque.cfg parameter overrides this default.

l SERVERHOST

l QSUBHOST

l QSUBSENDUID

l XAUTHPATH

l CLIENTRETRY

l VALIDATEGROUP

l DEFAULTCKPT

ccii
Commands overview

l VALIDATEPATH

l RERUNNABLEBYDEFAULT

For example:

QSUBSLEEP 2

RERUNNABLEBYDEFAULT false

Extended description

Script Processing:

A job script may consist of PBS directives, comments and executable statements. A PBS directive provides
a way of specifying job attributes in addition to the command line options. For example:

:
#PBS -N Job_name
#PBS -l walltime=10:30,mem=320kb
#PBS -m be
#
step1 arg1 arg2
step2 arg3 arg4

The qsub command scans the lines of the script file for directives. An initial line in the script that begins
with the characters "#!" or the character ":" will be ignored and scanning will start with the next line.
Scanning will continue until the first executable line, that is a line that is not blank, not a directive line, nor
a line whose first non white space character is "#". If directives occur on subsequent lines, they will be
ignored.

A line in the script file will be processed as a directive to qsub if and only if the string of characters
starting with the first non white space character on the line and of the same length as the directive prefix
matches the directive prefix.

The remainder of the directive line consists of the options to qsub in the same syntax as they appear on
the command line. The option character is to be preceded with the "-" character.

If an option is present in both a directive and on the command line, that option and its argument, if any,
will be ignored in the directive. The command line takes precedence.

If an option is present in a directive and not on the command line, that option and its argument, if any, will
be processed as if it had occurred on the command line.

The directive prefix string will be determined in order of preference from:

l The value of the -c option argument if the option is specified on the command line.

l The value of the environment variable PBS_DPREFIX if it is defined.

l The four character string #PBS.

If the -c option is found in a directive in the script file, it will be ignored.

cciii
Commands overview

User Authorization:

When the user submits a job from a system other than the one on which the PBS Server is running, the
name under which the job is to be executed is selected according to the rules listed under the -u option.
The user submitting the job must be authorized to run the job under the execution user name. This
authorization is provided if:

l The host on which qsub is run is trusted by the execution host (see /etc/hosts.equiv).

l The execution user has an .rhosts file naming the submitting user on the submitting host.

C-Shell .logout File:

The following warning applies for users of the c-shell, csh. If the job is executed under the csh and a
.logout file exists in the home directory in which the job executes, the exit status of the job is that of

the .logout script, not the job script. This may impact any inter-job dependencies. To preserve the job
exit status, either remove the .logout file or place the following line as the first line in the .logout
file:

set EXITVAL = $status

and the following line as the last executable line in .logout:

exit $EXITVAL

Interactive Jobs:

If the -I option is specified on the command line or in a script directive, or if the "interactive" job attribute
declared true via the -W option, -W interactive=true, either on the command line or in a script
directive, the job is an interactive job. The script will be processed for directives, but will not be included
with the job. When the job begins execution, all input to the job is from the terminal session in which qsub
is running.

When an interactive job is submitted, the qsub command will not terminate when the job is submitted.
qsub will remain running until the job terminates, is aborted, or the user interrupts qsub with an SIGINT
(the control-C key). If qsub is interrupted prior to job start, it will query if the user wishes to exit. If the
user response "yes", qsub exits and the job is aborted.

One the interactive job has started execution, input to and output from the job pass through qsub.
Keyboard generated interrupts are passed to the job. Lines entered that begin with the tilde (~) character
and contain special sequences are escaped by qsub. The recognized escape sequences are:

Sequence Description

~. qsub terminates execution. The batch job is also terminated.

~susp Suspend the qsub program if running under the C shell. "susp" is the suspend character (usually
CNTL-Z).

~asusp Suspend the input half of qsub (terminal to job), but allow output to continue to be displayed. Only
works under the C shell. "asusp" is the auxiliary suspend character, usually CNTL-Y.

cciv
Commands overview

Exit status
Upon successful processing, the qsub exit status will be a value of zero.

If the qsub command fails, the command exits with a value greater than zero.

Related topics

l qalter(1B)
l qdel(1B)
l qhold(1B)
l qrls(1B)
l qsig(1B)
l qstat(1B)
l pbs_server(8B)

Non-Adaptive Computing topics

l pbs_connect(3B)
l pbs_job_attributes(7B)
l pbs_queue_attributes(7B)
l pbs_resources_irix5(7B)
l pbs_resources_sp2(7B)
l pbs_resources_sunos4(7B)
l pbs_resources_unicos8(7B)
l pbs_server_attributes(7B)
l qselect(1B)
l qmove(1B)
l qmsg(1B)
l qrerun(1B)

qterm
Terminate processing by a PBS batch server.

Synopsis
qterm [-t type] [server...]

Description
The qterm command terminates a batch server. When a server receives a terminate command, the server
will go into the "Terminating" state. No new jobs will be allowed to be started into execution nor enqueued
into the server. The impact on jobs currently being run by the server depends

In order to execute qterm, the user must have PBS Operation or Manager privileges.

ccv
Commands overview

Options

Option Name Decription

-t type Specifies the type of shut down. The types are:
l immediate – All running jobs are to immediately stop execution. If checkpointing is

supported, running jobs that can be checkpointed are checkpointed, terminated, and
requeued. If checkpoint is not supported or the job cannot be checkpointed, running
jobs are requeued if the rerunable attribute is true. Otherwise, jobs are killed.

l delay – If checkpointing is supported, running jobs that can be checkpointed are
checkpointed, terminated, and requeued. If a job cannot be checkpointed, but can be
rerun, the job is terminated and requeued. Otherwise, running jobs are allowed to
continue to run.

The operator or administrator may use the qrerun and qdel commands to
remove running jobs.

l quick – This is the default action if the -t option is not specified. This option is used
when you wish that running jobs be left running when the server shuts down. The
server will cleanly shutdown and can be restarted when desired. Upon restart of the
server, jobs that continue to run are shown as running; jobs that terminated during
the server's absence will be placed into the exiting state.

Operands
The server operand specifies which servers are to shutdown. If no servers are given, then the default
server will be terminated.

Standard error
The qterm command will write a diagnostic message to standard error for each error occurrence.

Exit status
Upon successful processing of all the operands presented to the qterm command, the exit status will be a
value of zero.

If the qterm command fails to process any operand, the command exits with a value greater than zero.

Related topics(non-Adaptive Computing topics)

l pbs_server(8B)
l qmgr(8B)
l pbs_resources_aix4(7B)
l pbs_resources_irix5(7B)
l pbs_resources_sp2(7B)
l pbs_resources_sunos4(7B)
l pbs_resources_unicos8(7B)

ccvi
Commands overview

Server parameters
TORQUE server parameters are specified using the qmgr command. The set subcommand is used to
modify the server object. For example:

> qmgr -c 'set server default_queue=batch'

Parameters

acl_hosts

Format <HOST>[,<HOST>]... or <HOST>[range] or <HOST*> where the asterisk (*) can appear anywhere in the
host name

Default (Only the host running pbs_server may submit jobs.)

Description Specifies a list of hosts from which jobs may be submitted. Hosts in the server nodes file located at
$TORQUE/server_priv/nodes cannot be added to the list using the acl_hosts parameter (see
Server node file configuration on page xxxi). To submit batch or interactive jobs (see Server
configuration on page xxvi) through hosts that are specified in the server nodes file, use the
submit_hosts parameter.

Qmgr: set queue batch acl_hosts = "hostA,hostB"
Qmgr: set queue batch acl_hosts += "hostE,hostF,hostG"

In version 2.5 and later, the wildcard (*) character can appear anywhere in the host name, and
ranges are supported; these specifications also work for managers and operators.

Qmgr: set server acl_hosts = "galaxy*.tom.org"
Qmgr: set server acl_hosts += "galaxy[0-50].tom.org"
Qmgr: set server managers+=tom@galaxy[0-50].tom.org

acl_host_enable

Format <BOOLEAN>

Default FALSE

Description Specifies if the acl_hosts value is enabled.

ccvii
Server parameters

acl_logic_or

Format <BOOLEAN>

Default FALSE

Description Specifies if user and group queue ACL's should be logically AND'd or logically OR'd.

acl_roots

Format <username>@<domain>

Default ---

Description Specifies which root users are allowed to submit and run jobs.

allow_node_submit

Format <BOOLEAN>

Default FALSE

Description Specifies if users can submit jobs directly from any trusted compute host directly or from within
batch jobs (see Configuring job submission hosts on page xxvii).

allow_proxy_user

Format <BOOLEAN>

Default FALSE

Description Specifies if users can proxy from one user to another. Proxy requests will be either validated by
ruserok() or by the scheduler (see Job submission on page xxxvii).

auto_node_np

Format <BOOLEAN>

Default DISABLED

ccviii
Server parameters

auto_node_np

Description Automatically configures a node's np (number of processors) value based on the ncpus value from
the status update. Requires full manager privilege to set or alter.

checkpoint_defaults

Format <STRING>

Default ---

Description Specifies for a queue the default checkpoint values for a job that does not have checkpointing
specified. The checkpoint_defaults parameter only takes effect on execution queues.

set queue batch checkpoint_defaults="enabled, periodic, interval=5"

clone_batch_delay

Format <INTEGER>

Default 1

Description Specifies the delay (in seconds) between clone batches (see clone_batch_size).

clone_batch_size

Format <INTEGER>

Default 256

Description Job arrays are created in batches of size X. X jobs are created, and after the clone_batch_delay, X
more are created. This repeats until all are created.

default_queue

Format <STRING>

Default ---

Description Indicates the queue to assign to a job if no queue is explicitly specified by the submitter.

ccix
Server parameters

disable_server_id_check

Format <BOOLEAN>

Default FALSE

Description Makes it so the user for the job doesn't have to exist on the server. The user must still exist on all the
compute nodes or the job will fail when it tries to execute.

If you have disable_server_id_check set to TRUE, a user could request a group to which they
do not belong. Setting VALIDATEGROUP to TRUE in the torque.cfg file prevents such a

scenario.

display_job_server_suffix

Format <BOOLEAN>

Default TRUE

Description If this parameter is set to TRUE, TORQUE will display both the job ID and the host name. If it is set to
FALSE, only the job ID will be displayed.

job_force_cancel_time

Format <INTEGER>

Default Disabled

Description If a job has been deleted and is still in the system after x seconds, the job will be purged from the sys-
tem. This is mostly useful when a job is running on a large number of nodes and one node goes
down. The job cannot be deleted because the MOM cannot be contacted. The qdel fails and none of
the other nodes can be reused. This parameter can used to remedy such situations.

job_log_file_max_size

Format <INTEGER>

Default ---

ccx
Server parameters

job_log_file_max_size

Description This specifies a soft limit (in kilobytes) for the job log's maximum size. The file size is checked every
five minutes and if the current day file size is greater than or equal to this value, it is rolled from
<filename> to <filename.1> and a new empty log is opened. If the current day file size exceeds
the maximum size a second time, the <filename.1> log file is rolled to <filename.2>, the current
log is rolled to <filename.1>, and a new empty log is opened. Each new log causes all other logs to
roll to an extension that is one greater than its current number. Any value less than 0 is ignored by
pbs_server (meaning the log will not be rolled).

job_log_file_roll_depth

Format <INTEGER>

Default ---

Description This sets the maximum number of new log files that are kept in a day if the job_log_file_max_size
parameter is set. For example, if the roll depth is set to 3, no file can roll higher than <filename.3>.
If a file is already at the specified depth, such as <filename.3>, the file is deleted so it can be
replaced by the incoming file roll, <filename.2>.

job_log_keep_days

Format <INTEGER>

Default ---

Description This maintains logs for the number of days designated. If set to 4, any log file older than 4 days old is
deleted.

job_nanny

Format <BOOLEAN>

Default FALSE

Description Enables the experimental "job deletion nanny" feature. All job cancels will create a repeating task
that will resend KILL signals if the initial job cancel failed. Further job cancels will be rejected with
the message "job cancel in progress." This is useful for temporary failures with a job's execution
node during a job delete request.

ccxi
Server parameters

job_stat_rate

Format <INTEGER>

Default 45 (30 in TORQUE 1.2.0p5 and earlier)

Description Specifies the maximum age of MOM level job data which is allowed when servicing a qstat request. If
data is older than this value, the pbs_server daemon will contact the MOMs with stale data to request
an update.
For large systems, this value should be increased to 5 minutes or higher.

job_start_timeout

Format <INTEGER>

Default ---

Description Specifies the pbs_server to pbs_mom TCP socket timeout in seconds that is used when the pbs_server
sends a job start to the pbs_mom. It is useful when the MOM has extra overhead involved in starting
jobs. If not specified, then the tcp_timeout parameter is used.

lock_file

Format <STRING>

Default torque/server_priv/server.lock

Description Specifies the name and location of the lock file used to determine which high availability server
should be active.
If a full path is specified, it is used verbatim by TORQUE. If a relative path is specified, TORQUE will
prefix it with torque/server_priv.

lock_file_update_time

Format <INTEGER>

Default 3

Description Specifies how often (in seconds) the thread will update the lockfile.

ccxii
Server parameters

lock_file_check_time

Format <INTEGER>

Default 9

Description Specifies how often (in seconds) a high availability server will check to see if it should become active.

log_events

Format Bitmap

Default ---

Description By default, all events are logged. However, you can customize things so that only certain events show
up in the log file. These are the bitmaps for the different kinds of logs:
#define PBSEVENT_ERROR 0x0001 /* internal errors */
#define PBSEVENT_SYSTEM 0x0002 /* system (server) events */
#define PBSEVENT_ADMIN 0x0004 /* admin events */
#define PBSEVENT_JOB 0x0008 /* job related events */
#define PBSEVENT_JOB_USAGE 0x0010 /* End of Job accounting */
#define PBSEVENT_SECURITY 0x0020 /* security violation events */
#define PBSEVENT_SCHED 0x0040 /* scheduler events */
#define PBSEVENT_DEBUG 0x0080 /* common debug messages */
#define PBSEVENT_DEBUG2 0x0100 /* less needed debug messages */
#define PBSEVENT_FORCE 0x8000 /* set to force a message */

If you want to log only error, system, and job information, use qmgr to set log_events to 11:

set server log_events = 11

log_file_max_size

Format <INTEGER>

Default 0

Description Specifies a soft limit, in kilobytes, for the server's log file. The filesize is checked every 5 minutes, and
if the current day filesize is greater than or equal to this value then it will be rolled from X to X.1 and
a new empty log will be opened. Any value less than or equal to 0 will be ignored by pbs_server (the
log will not be rolled).

ccxiii
Server parameters

log_file_roll_depth

Format <INTEGER>

Default 1

Description Controls how deep the current day log files will be rolled, if log_file_max_size is set, before they are
deleted.

log_keep_days

Format <INTEGER>

Default 0

Description Specifies how long (in days) a server or MOM log should be kept.

log_level

Format <INTEGER>

Default 0

Description Specifies the pbs_server logging verbosity. Maximum value is 7.

mail_body_fmt

Format A printf-like format string

Default PBS Job Id: %i Job Name: %j Exec host: %h %m %d

ccxiv
Server parameters

mail_body_fmt

Description Override the default format for the body of outgoing mail messages. A number of printf-like format
specifiers and escape sequences can be used:
\n new line
\t tab
\\ backslash
\' single quote
\" double quote
%d details concerning the message
%h PBS host name
%i PBS job identifier
%j PBS job name
%m long reason for message
%r short reason for message
%% a single %

mail_domain

Format <STRING>

Default ---

Description Override the default domain for outgoing mail messages. If set, emails will be addressed to
<user>@<hostdomain>. If unset, the job's Job_Owner attribute will be used. If set to never, TORQUE
will never send emails.

mail_subject_fmt

Format A printf-like format string

Default PBS JOB %i

ccxv
Server parameters

mail_subject_fmt

Description Override the default format for the subject of outgoing mail messages. A number of printf-like format
specifiers and escape sequences can be used:
\n new line
\t tab
\\ backslash
\' single quote
\" double quote
%d details concerning the message
%h PBS host name
%i PBS job identifier
%j PBS job name
%m long reason for message
%r short reason for message
%% a single %

managers

Format <user>@<host.sub.domain>[,<user>@<host.sub.domain>...]

Default root@localhost

Description List of users granted batch administrator privileges. The host, sub-domain, or domain name may be
wildcarded by the use of an asterisk character (*). Requires full manager privilege to set or alter.

max_job_array_size

Format <INTEGER>

Default Unlimited

Description Sets the maximum number of jobs that can be in a single job array.

max_slot_limit

Format <INTEGER>

Default Unlimited

ccxvi
Server parameters

max_slot_limit

Description This is the maximum number of jobs that can run concurrently in any job array. Slot limits can be
applied at submission time with qsub, or it can be modified with qalter.

qmgr -c 'set server max_slot_limit=10'

No array can request a slot limit greater than 10. Any array that does not request a slot limit receives
a slot limit of 10. Using the example above, slot requests greater than 10 are rejected with the
message: "Requested slot limit is too large, limit is 10."

max_threads

Format <INTEGER>

Default 5

Description This is the minimum number of threads that should exist in the threadpool at any time.

min_threads

Format <INTEGER>

Default 5

Description This is the minimum number of threads that should exist in the threadpool at any time.

moab_array_compatible

Format <BOOLEAN>

Default TRUE

Description Places a hold on jobs that exceed the slot limit in a job array. When one of the active jobs is com-
pleted or deleted, one of the held jobs goes to a queued state.

mom_job_sync

Format <BOOLEAN>

Default TRUE

ccxvii
Server parameters

mom_job_sync

Description Specifies that the pbs_server will synchronize its view of the job queue and resource allocation with
compute nodes as they come online. If a job exists on a compute node in a pre-execution or corrupt
state, it will be automatically cleaned up and purged. (Enabled by default in TORQUE 2.2.0 and
higher.)

node_check_rate

Format <INTEGER>

Default 600

Description Specifies the minimum duration (in seconds) that a node can be unresponsive to server queries
before being marked down by the pbs_server daemon.

node_pack

Format <BOOLEAN>

Default ---

Description Controls how multiple processor nodes are allocated to jobs. If this attribute is set to true, jobs will be
assigned to the multiple processor nodes with the fewest free processors. This packs jobs into the
fewest possible nodes leaving multiple processor nodes free for jobs which need many processors on
a node. If set to false, jobs will be scattered across nodes reducing conflicts over memory between
jobs. If unset, the jobs are packed on nodes in the order that the nodes are declared to the server (in
the nodes file). Default value: unset - assigned to nodes as nodes in order that were declared.

node_ping_rate

Format <INTEGER>

Default 300

Description Specifies the maximum interval (in seconds) between successive "pings" sent from the pbs_server
daemon to the pbs_mom daemon to determine node/daemon health.

np_default

Format <INTEGER>

ccxviii
Server parameters

np_default

Default ---

Description Allows the administrator to unify the number of processors (np) on all nodes. The value can be
dynamically changed. A value of 0 tells pbs_server to use the value of np found in the nodes file. The
maximum value is 32767.

operators

Format <user>@<host.sub.domain>[,<user>@<host.sub.domain>...]

Default root@localhost

Description List of users granted batch operator privileges. Requires full manager privilege to set or alter.

poll_jobs

Format <BOOLEAN>

Default TRUE (FALSE in TORQUE 1.2.0p5 and earlier)

Description If set to TRUE, pbs_server will poll job info from MOMs over time and will not block on handling
requests which require this job information. If set to FALSE, no polling will occur and if requested
job information is stale, pbs_server may block while it attempts to update this information. For large
systems, this value should be set to TRUE.

query_other_jobs

Format <BOOLEAN>

Default FALSE

Description Specifies whether or not non-admin users may view jobs they do not own.

record_job_info

Format <BOOLEAN>

Default FALSE

ccxix
Server parameters

record_job_info

Description This must be set to true in order for job logging to be enabled.

record_job_script

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, this adds the contents of the script executed by a job to the log.

resources_available

Format <STRING>

Default ---

Description Allows overriding of detected resource quantity limits (see Assigning queue resource limits on
page lxxxvi). pbs_server must be restarted for changes to take effect. Also, resources_available is con-
strained by the smallest of queue.resources_available and the server.resources_available.

submit_hosts

Format "<HOSTNAME>[,<HOSTNAME>]..."

Default ---

Description Indicates which hosts included in the server nodes file located at $TORQUE/server_priv/nodes
(see Server node file configuration on page xxxi) can submit batch or interactive jobs (see Con-
figuring job submission hosts on page xxvii). For more information on adding hosts that are not
included in the first nodes file, see the acl_hosts parameter.

tcp_timeout

Format <INTEGER>

Default 8

Description Specifies the pbs_server to pbs_mom TCP socket timeout in seconds. (See Large cluster con-
siderations on page ccxlvii.)

ccxx
Server parameters

thread_idle_seconds

Format <INTEGER>

Default -1

Description This is the number of seconds a thread can be idle in the threadpool before it is deleted. If threads
should not be deleted, set to -1 (which is the default). TORQUE will always maintain at least min_
threads number of threads, even if all are idle.

ccxxi
Server parameters

Nodemanager (MOM) configuration
Under TORQUE, MOM configuration is accomplished using the mom_priv/config file located in the PBS
directory on each execution server.

For details, see these topics:

l Parameters on page ccxxiii

l Node features and generic consumable resource specification on page ccxxxvi

l Command-line arguments on page ccxxxvi

Related topics

l Commands overview on page cxxxv
l Prologue and epilogue scripts on page ccliii

Parameters

arch

Format <STRING>

Description Specifies the architecture of the local machine. This information is used by the scheduler only.

Example arch ia64

$alias_server_name

Format <STRING>

ccxxiii
Node manager (MOM) configuration

$alias_server_name

Description (Applicable in version 2.5.0 and later.) Allows the MOM to accept an additional pbs_server host name as
a trusted address.
This feature was added to overcome a problem with UDP and RPP where alias IP addresses are used
on a server. With alias IP addresses a UDP packet can be sent to the alias address but the UDP reply
packet will come back on the primary IP address. RPP matches addresses from its connection table to
incoming packets. If the addresses do not match an entry in the RPP table, the packet is dropped.
This feature allows an additional address for the server to be added to the table so legitimate
packets are not dropped.

Example $alias_server_name node01

$clienthost

Format <STRING>

Description Specifies the machine running pbs_server.

This parameter is deprecated. Use
$pbsserver.

Example $clienthost node01.teracluster.org

$check_poll_time

Format <STRING>

Description Amount of time between checking running jobs, polling jobs, and trying to resend obituaries for jobs
that haven't sent successfully. Default is 45 seconds.

Example $check_poll_time 90

$configversion

Format <STRING>

Description Specifies the version of the config file data.

Example $configversion 113

ccxxiv
Node manager (MOM) configuration

$cputmult

Format <FLOAT>

Description CPU time multiplier.

If set to 0.0, MOM level cputime enforcement is
disabled.

Example $cputmult 2.2

$exec_with_exec

Format <BOOLEAN>

Description pbs_mom uses the exec command to start the job script rather than the TORQUE default method,
which is to pass the script's contents as the input to the shell. This means that if you trap signals in
the job script, they will be trapped for the job. Using the default method, you would need to con-
figure the shell to also trap the signals. Default is FALSE.

Example

$ideal_load

Format <FLOAT>

Description Ideal processor load.

Example $ideal_load 4.0

$igncput

Format <BOOLEAN>

Description Ignores limit violation pertaining to CPU time. Default is FALSE.

Example $igncput true

ccxxv
Node manager (MOM) configuration

$ignmem

Format <BOOLEAN>

Description Ignores limit violations pertaining to physical memory. Default is FALSE.

Example $ignmem true

$ignvmem

Format <BOOLEAN>

Description Ignores limit violations pertaining to virtual memory. Default is FALSE.

Example $ignvmem true

$ignwalltime

Format <BOOLEAN>

Description Ignore walltime (do not enable mom based walltime limit enforcement).

Example $ignwalltime true

$job_output_file_unmask

Format <STRING>

Description Uses the specified umask when creating job output and error files. Values can be specified in base 8,
10, or 16; leading 0 implies octal and leading 0x or 0X hexadecimal. A value of "userdefault" will use
the user's default umask. This parameter is in version 2.3.0 and later.

Example $job_output_file_umask 027

$job_starter

Format <STRING>

ccxxvi
Node manager (MOM) configuration

$job_starter

Description Specifies the fully qualified pathname of the job starter. If this parameter is specified, instead of
executing the job command and job arguments directly, the MOM will execute the job starter, pass-
ing the job command and job arguments to it as its arguments. The job starter can be used to launch
jobs within a desired environment.

Example $job_starter /var/torque/mom_priv/job_starter.sh
> cat /var/torque/mom_priv/job_starter.sh
#!/bin/bash
export FOOHOME=/home/foo
ulimit -n 314
$*

$log_directory

Format <STRING>

Description Changes the log directory. Default is TORQUE_HOME/mom_logs/. TORQUE_HOME default is
/var/spool/torque/ but can be changed in the ./configure script. The value is a string and
should be the full path to the desired mom log directory.

Example $log_directory /opt/torque/mom_logs/

$log_file_suffix

Format <STRING>

Description Optional suffix to append to log file names. If %h is the suffix, pbs_mom appends the hostname for
where the log files are stored if it knows it, otherwise it will append the hostname where the mom is
running.

Example $log_file_suffix %h = 20100223.mybox
$log_file_suffix foo = 20100223.foo

$logevent

Format <STRING>

Description Specifies a bitmap for event types to log.

Example $logevent 255

ccxxvii
Node manager (MOM) configuration

$loglevel

Format <INTEGER>

Description Specifies the verbosity of logging with higher numbers specifying more verbose logging. Values may
range between 0 and 7.

Example $loglevel 4

$log_file_max_size

Format <INTEGER>

Description Soft limit for log file size in kilobytes. Checked every 5 minutes. If the log file is found to be greater
than or equal to log_file_max_size the current log file will be moved from X to X.1 and a new empty
file will be opened.

Example $log_file_max_size = 100

$log_file_roll_depth

Format <INTEGER>

Description Specifies how many times a log fill will be rolled before it is deleted.

Example $log_file_roll_depth = 7

$log_keep_days

Format <INTEGER>

Description Specifies how many days to keep log files. pbs_mom deletes log files older than the specified number
of days. If not specified, pbs_mom won't delete log files based on their age.

Example $log_keep_days 10

$max_load

Format <FLOAT>

ccxxviii
Node manager (MOM) configuration

$max_load

Description Maximum processor load.

Example $max_load 4.0

$node_check_script

Format <STRING>

Description Specifies the fully qualified pathname of the health check script to run (see Compute node health
check on page cxxvi for more information).

Example $node_check_script /opt/batch_tools/nodecheck.pl

$node_check_interval

Format <STRING>

Description Specifies the number of MOM intervals between subsequent executions of the specified health
check. This value default to 1 indicating the check is run every mom interval (see Compute node
health check on page cxxvi for more information).
$node_check_interval has two special strings that can be set:

l jobstart – makes the node health script run when a job is started.
l jobend – makes the node health script run after each job has completed on a node.

Example $node_check_interval 5

$nodefile_suffix

Format <STRING>

Description Specifies the suffix to append to a host names to denote the data channel network adapter in a mul-
tihomed compute node.

Example $nodefile_suffix i

with the suffix of "i" and the control channel adapter with the name node01, the data channel would
have a hostname of node01i.

ccxxix
Node manager (MOM) configuration

$nospool_dir_list

Format <STRING>

Description If this is configured, the job's output is spooled in the working directory of the job or the specified
output directory.
Specify the list in full paths, delimited by commas. If the job's working directory (or specified output
directory) is in one of the paths in the list (or a subdirectory of one of the paths in the list), the job is
spooled directly to the output location. $nospool_dir_list * is accepted.
The user that submits the job must have write permission on the folder where the job is written, and
read permission on the folder where the file is spooled.
Alternatively, you can use the $spool_as_final_name parameter to force the job to spool directly to the
final output.

This should generally be used only when the job can run on the same machine as where the
output file goes, or if there is a shared filesystem. If not, this parameter can slow down the

system or fail to create the output file.

Example $nospool_dir_list /home/mike/jobs/,/var/tmp/spool/

opsys

Format <STRING>

Description Specifies the operating system of the local machine. This information is used by the scheduler only.

Example opsys RHEL3

$pbsclient

Format <STRING>

Description Specifies machines which the mom daemon will trust to run resource manager commands via
momctl. This may include machines where monitors, schedulers, or admins require the use of this
command.

Example $pbsclient node01.teracluster.org

$pbsserver

Format <STRING>

ccxxx
Node manager (MOM) configuration

$pbsserver

Description Specifies the machine running pbs_server.

This parameter replaces the deprecated parameter
$clienthost.

Example $pbsserver node01.teracluster.org

$prologalarm

Format <INTEGER>

Description Specifies maximum duration (in seconds) which the mom will wait for the job prologue or job epi-
logue to complete. This parameter defaults to 300 seconds (5 minutes).

Example $prologalarm 60

$rcpcmd

Format <STRING>

Description Specifies the full path and optional additional command line args to use to perform remote copies.

Example mom_priv/config:
$rcpcmd /usr/local/bin/scp -i /etc/sshauth.dat

$remote_reconfig

Format <STRING>

Description Enables the ability to remotely reconfigure pbs_mom with a new config file. Default is disabled. This
parameter accepts various forms of true, yes, and 1. For more information on how to reconfigure
MOMs, see momctl -r.

Example $remote_reconfig true

$reduce_prolog_checks

Format <STRING>

ccxxxi
Node manager (MOM) configuration

$reduce_prolog_checks

Description If enabled, TORQUE will only check if the file is a regular file and is executable, instead of the normal
checks listed on the prologue and epilogue page. Default is FALSE.

Example $reduce_prolog_checks true

$restricted

Format <STRING>

Description Specifies hosts which can be trusted to access mom services as non-root. By default, no hosts are
trusted to access mom services as non-root.

Example $restricted *.teracluster.org

$rpp_throttle

Format <INTEGER>

Description This integer is in microseconds and causes a sleep after every RPP packet is sent. It is for systems
that experience job failures because of incomplete data.

Example $rpp_throttle 100

(will cause a 100 microsecond sleep)

size[fs=<FS>]

Format N/A

Description Specifies that the available and configured disk space in the <FS> filesystem is to be reported to the
pbs_server and scheduler.

To request disk space on a per job basis, specify the file resource as in qsub -l nodes=1,
file=1000kb.

Unlike most mom config options, the size parameter is not preceded by a "$" character.

Example size[fs=/localscratch]

The available and configured disk space in the /localscratch filesystem will be reported.

ccxxxii
Node manager (MOM) configuration

$source_login_batch

Format <STRING>

Description Specifies whether or not mom will source the /etc/profile, etc. type files for batch jobs. Param-
eter accepts various forms of true, false, yes, no, 1 and 0. Default is TRUE. This parameter is in version
2.3.1 and later.

Example $source_login_batch False

MOM will bypass the sourcing of /etc/profile, etc. type files.

$source_login_interactive

Format <STRING>

Description Specifies whether or not mom will source the /etc/profile, etc. type files for interactive jobs.
Parameter accepts various forms of true, false, yes, no, 1 and 0. Default is TRUE. This parameter is in
version 2.3.1 and later.

Example $source_login_interactive False

MOM will bypass the sourcing of /etc/profile, etc. type files.

$spool_as_final_name

Format <BOOLEAN>

Description This will spool the job under the final name that the output and error files will receive, instead of hav-
ing an intermediate file and then copying the result to the final file when the job has completed. This
allows users easier access to the file if they want to watch the jobs output as it runs.

Example $spool_as_final_name true

$status_update_time

Format <INTEGER>

Description Specifies the number of seconds between subsequent mom-to-server update reports. Default is 45
seconds.

Example status_update_time:
$status_update_time 120

MOM will send server update reports every 120 seconds.

ccxxxiii
Node manager (MOM) configuration

$thread_unlink_calls

Format <BOOLEAN>

Description Threads calls to unlink when deleting a job. Default is false. If it is set to TRUE, pbs_mom will use a
thread to delete the job's files.

Example thread_unlink_calls:
$thread_unlink_calls true

$timeout

Format <INTEGER>

Description Specifies the number of seconds before mom-to-mom messages will timeout if RPP is disabled.
Default is 60 seconds.

Example $timeout 120

MOM-to-MOM communication will allow up to 120 seconds before timing out.

$tmpdir

Format <STRING>

Description Specifies a directory to create job-specific scratch space (see Creating Per-Job Temporary
Directories).

Example $tmpdir /localscratch

$usecp

Format <HOST>:<SRCDIR> <DSTDIR>

Description Specifies which directories should be staged (see NFS and other networked filesystems on page c)

Example $usecp *.fte.com:/data /usr/local/data

ccxxxiv
Node manager (MOM) configuration

http://www.clusterresources.com/torquedocs21/users/2.2files.shtml#tmpdir
http://www.clusterresources.com/torquedocs21/users/2.2files.shtml#tmpdir
http://www.clusterresources.com/torquedocs21/users/2.2files.shtml#tmpdir
http://www.clusterresources.com/torquedocs21/users/2.2files.shtml#tmpdir
http://www.clusterresources.com/torquedocs21/users/2.2files.shtml#tmpdir

$use_smt

Format <BOOLEAN>

Description Indicates that the user would like to use SMT. If set, each logical core inside of a physical core will be
used as a normal core for cpusets. This parameter is on by default.

If SMT is used, you will need to set the np attribute so that each logical processor is counted.

Example $use_smt false

varattr

Format <INTEGER> <STRING>

Description Provides a way to keep track of dynamic attributes on nodes.
<INTEGER> is how many seconds should go by between calls to the script to update the dynamic
values. If set to -1, the script is read only one time.
<STRING> is the script path. This script should check for whatever dynamic attributes are desired,
and then output lines in this format:
name=value

Include any arguments after the script's full path. These features are visible in the output of
pbsnodes -a
varattr=Matlab=7.1;Octave=1.0.

Example varattr 25 /usr/local/scripts/nodeProperties.pl arg1 arg2 arg3

$wallmult

Format <FLOAT>

Description Sets a factor to adjust walltime usage by multiplying a default job time to a common reference
system. It modifies real walltime on a per-MOM basis (MOM configuration parameters). The factor is
used for walltime calculations and limits in the same way that cputmult is used for cpu time.

If set to 0.0, MOM level walltime enforcement is disabled.

Example $wallmult 2.2

Related topics

l Node manager (MOM) configuration on page ccxxiii

ccxxxv
Node manager (MOM) configuration

Node features and generic consumable resource
specification

Node features (a.k.a. "node properties") are opaque labels which can be applied to a node. They are not
consumable and cannot be associated with a value. (Use generic resources described below for these
purposes). Node features are configured within the global nodes file on the pbs_server head node and are
not specified on a per node basis. This file can be used to specify an arbitrary number of node features.

Additionally, per node consumable generic resources may be specified using the format "<ATTR> <VAL>"
with no leading dollar ("$") character. When specified, this information is routed to the scheduler and can
be used in scheduling decisions. For example, to indicate that a given host has two tape drives and one
node-locked matlab license available for batch jobs, the following could be specified:

mom_priv/config:

$clienthost 241.13.153.7
tape 2
matlab 1

Dynamic consumable resource information can be routed in by specifying a value preceded by a
exclamation point (!) as in the example below. If the resource value is configured in this manner, the
specified file will be periodically executed to load the effective resource value. (For more information, see
section 2.5.3 of the 'PBS Administrator Guide'.)

mom_priv/config:

$clienthost 241.13.153.7
tape !/opt/rm/gettapecount.pl
matlab !/opt/tools/getlicensecount.pl

Related topics

l Node manager (MOM) configuration on page ccxxiii

Command-line arguments
Below is a table of pbs_mom command-line startup flags.

Flag Description

a <integer> Alarm time in seconds.

c <file> Config file path.

C <direc-
tory>

Checkpoint path.

ccxxxvi
Node manager (MOM) configuration

Flag Description

d <direc-
tory>

Home directory.

L <file> Logfile.

M <integer> MOM port to listen on.

p Perform 'poll' based job recovery on restart (jobs persist until associated processes terminate).

P On restart, deletes all jobs that were running on MOM (Available in 2.4.X and later).

q On restart, requeues all jobs that were running on MOM (Available in 2.4.X and later).

r On restart, kills all processes associated with jobs that were running on MOM, and then requeues
the jobs.

R <integer> MOM 'RM' port to listen on.

S <integer> pbs_server port to connect to.

v Display version information and exit.

x Disable use of privileged port.

? Show usage information and exit.

For more details on these command-line options, see pbs_mom on page cxli.

Related topics

l Node manager (MOM) configuration on page ccxxiii

ccxxxvii
Node manager (MOM) configuration

Diagnostics and error codes
TORQUE has a diagnostic script to assist you in giving TORQUE Support the files they need to support
issues. It should be run by a user that has access to run all TORQUE commands and access to all TORQUE
directories (this is usually root).

The script (contrib/diag/tdiag.sh) is available in TORQUE 2.3.8, TORQUE 2.4.3, and later. The script
grabs the nodefile, server and MOM logfiles, and captures the output of qmgr -c 'p s'. These are put in
a tarfile.

The script also has the following options (this can be shown in the command line by entering ./tdiag.sh
-h):

USAGE: ./torque_diag [-d DATE] [-h] [-o OUTPUT_FILE] [-t TORQUE_HOME]

l DATE should be in the format YYYYmmdd. For example, " 20091130" would be the date for
November 30th, 2009. If no date is specified, today's date is used.

l OUTPUT_FILE is the optional name of the output file. The default output file is torque_
diag<today's_date>.tar.gz. TORQUE_HOME should be the path to your TORQUE directory. If
no directory is specified, /var/spool/torque is the default.

Table D-1: TORQUE error codes

Error code name Number Description

PBSE_NONE 15000 No error

PBSE_UNKJOBID 15001 Unknown job identifier

PBSE_NOATTR 15002 Undefined attribute

PBSE_ATTRRO 15003 Attempt to set READ ONLY attribute

PBSE_IVALREQ 15004 Invalid request

PBSE_UNKREQ 15005 Unknown batch request

PBSE_TOOMANY 15006 Too many submit retries

ccxxxix
Diagnostics and error codes

Error code name Number Description

PBSE_PERM 15007 No permission

PBSE_BADHOST 15008 Access from host not allowed

PBSE_JOBEXIST 15009 Job already exists

PBSE_SYSTEM 15010 System error occurred

PBSE_INTERNAL 15011 Internal server error occurred

PBSE_REGROUTE 15012 Parent job of dependent in rte queue

PBSE_UNKSIG 15013 Unknown signal name

PBSE_BADATVAL 15014 Bad attribute value

PBSE_MODATRRUN 15015 Cannot modify attribute in run state

PBSE_BADSTATE 15016 Request invalid for job state

PBSE_UNKQUE 15018 Unknown queue name

PBSE_BADCRED 15019 Invalid credential in request

PBSE_EXPIRED 15020 Expired credential in request

PBSE_QUNOENB 15021 Queue not enabled

PBSE_QACESS 15022 No access permission for queue

PBSE_BADUSER 15023 Bad user - no password entry

PBSE_HOPCOUNT 15024 Max hop count exceeded

PBSE_QUEEXIST 15025 Queue already exists

PBSE_ATTRTYPE 15026 Incompatible queue attribute type

PBSE_QUEBUSY 15027 Queue busy (not empty)

ccxl
Diagnostics and error codes

Error code name Number Description

PBSE_QUENBIG 15028 Queue name too long

PBSE_NOSUP 15029 Feature/function not supported

PBSE_QUENOEN 15030 Cannot enable queue, needs add def

PBSE_PROTOCOL 15031 Protocol (ASN.1) error

PBSE_BADATLST 15032 Bad attribute list structure

PBSE_NOCONNECTS 15033 No free connections

PBSE_NOSERVER 15034 No server to connect to

PBSE_UNKRESC 15035 Unknown resource

PBSE_EXCQRESC 15036 Job exceeds queue resource limits

PBSE_QUENODFLT 15037 No default queue defined

PBSE_NORERUN 15038 Job not rerunnable

PBSE_ROUTEREJ 15039 Route rejected by all destinations

PBSE_ROUTEEXPD 15040 Time in route queue expired

PBSE_MOMREJECT 15041 Request to the MOM failed

PBSE_BADSCRIPT 15042 (qsub) cannot access script file

PBSE_STAGEIN 15043 Stage In of files failed

PBSE_RESCUNAV 15044 Resources temporarily unavailable

PBSE_BADGRP 15045 Bad group specified

PBSE_MAXQUED 15046 Max number of jobs in queue

PBSE_CKPBSY 15047 Checkpoint busy, may be retries

ccxli
Diagnostics and error codes

Error code name Number Description

PBSE_EXLIMIT 15048 Limit exceeds allowable

PBSE_BADACCT 15049 Bad account attribute value

PBSE_ALRDYEXIT 15050 Job already in exit state

PBSE_NOCOPYFILE 15051 Job files not copied

PBSE_CLEANEDOUT 15052 Unknown job id after clean init

PBSE_NOSYNCMSTR 15053 No master in Sync Set

PBSE_BADDEPEND 15054 Invalid dependency

PBSE_DUPLIST 15055 Duplicate entry in List

PBSE_DISPROTO 15056 Bad DIS based request protocol

PBSE_EXECTHERE 15057 Cannot execute there

PBSE_SISREJECT 15058 Sister rejected

PBSE_SISCOMM 15059 Sister could not communicate

PBSE_SVRDOWN 15060 Requirement rejected -server shutting down

PBSE_CKPSHORT 15061 Not all tasks could checkpoint

PBSE_UNKNODE 15062 Named node is not in the list

PBSE_UNKNODEATR 15063 Node-attribute not recognized

PBSE_NONODES 15064 Server has no node list

PBSE_NODENBIG 15065 Node name is too big

PBSE_NODEEXIST 15066 Node name already exists

PBSE_BADNDATVAL 15067 Bad node-attribute value

ccxlii
Diagnostics and error codes

Error code name Number Description

PBSE_MUTUALEX 15068 State values are mutually exclusive

PBSE_GMODERR 15069 Error(s) during global modification of nodes

PBSE_NORELYMOM 15070 Could not contact the MOM

PBSE_NOTSNODE 15071 No time-shared nodes

ccxliii
Diagnostics and error codes

Considerations before upgrading
TORQUE is flexible in regards to how it can be upgraded. In most cases, a TORQUE "shutdown" followed by
a configure, make, make install procedure as documented in this guide is all that is required (see
Installing TORQUE on page xii). This process will preserve existing configuration and in most cases,
existing workload.

A few considerations are included below:

l If upgrading from OpenPBS, PBSPro, or TORQUE 1.0.3 or earlier, queued jobs whether active or idle
will be lost. In such situations, job queues should be completely drained of all jobs.

l If not using the pbs_mom -r or -p flag (see Command-line arguments on page ccxxxvi), running
jobs may be lost. In such cases, running jobs should be allowed to completed or should be requeued
before upgrading TORQUE.

l pbs_mom and pbs_server daemons of differing versions may be run together. However, not all
combinations have been tested and unexpected failures may occur.

To upgrade

1. Build new release (do not install).

2. Stop all TORQUE daemons (see qterm and momctl -s).

3. Install new TORQUE (use make install).

4. Start all TORQUE daemons.

Rolling upgrade
The enablemomrestart option causes a MOM to check if its binary has been updated and will restart itself
at a safe point when no jobs are running, making upgrades easier. This can be enabled in the MOM config
file, but it is recommended to enable it with momctl.

1. Prepare the new version MOM package.

2. Install the MOM package on the compute nodes.

3. Run momctl -q enablemomrestart=1 -h :ALL.

ccxlv
Considerations before upgrading

Large cluster considerations
TORQUE has enhanced much of the communication found in the original OpenPBS project. This has resulted
in a number of key advantages:

l Support for larger clusters

l Support for more jobs

l Support for larger jobs

l Support for larger messages

In most cases, enhancements made apply to all systems and no tuning is required. However, some changes
have been made configurable to allow site specific modification. The configurable communication
parameters are: node_check_rate, node_ping_rate, and tcp_timeout.

For details, see these topics:

l Scalability guidelines on page ccxlvii

l End user command caching on page ccxlviii

l Other considerations on page ccl

Scalability guidelines
In very large clusters (in excess of 1,000 nodes), it may be advisable to additionally tune a number of
communication layer timeouts. By default, PBS MOM daemons will timeout on inter-MOM messages after
60 seconds. In TORQUE 1.1.0p5 and higher, this can be adjusted by setting the timeout parameter in the
mom_priv/config file (see, Node manager (MOM) configuration on page ccxxiii). If 15059 errors
(cannot receive message from sisters) are seen in the MOM logs, it may be necessary to increase this
value.

Client-to-PBS server and MOM-to-PBS server communication timeouts are specified via the tcp_timeout
server option using the qmgr command.

On some systems, ulimit values may prevent large jobs from running. In particular, the open file
descriptor limit (i.e., ulimit -n) should be set to at least the maximum job size in procs + 20.
Further, there may be value in setting the fs.file-max in sysctl.conf to a high value, such as:

/etc/sysctl.conf:
fs.file-max = 65536

ccxlvii
Large cluster considerations

Related topics

l Large cluster considerations on page ccxlvii

End user command caching

qstat
In a large system, users may tend to place excessive load on the system by manual or automated use of
resource manager end user client commands. A simple way of reducing this load is through the use of
client command wrappers which cache data. The example script below will cache the output of the
command 'qstat -f' for 60 seconds and report this info to end users.

ccxlviii
Large cluster considerations

#!/bin/sh

USAGE: qstat $@

CMDPATH=/usr/local/bin/qstat
CACHETIME=60
TMPFILE=/tmp/qstat.f.tmp

if ["$1" != "-f"] ; then
 #echo "direct check (arg1=$1) "
 $CMDPATH $1 $2 $3 $4
 exit $?
fi

if [-n "$2"] ; then
 #echo "direct check (arg2=$2)"
 $CMDPATH $1 $2 $3 $4
 exit $?
fi

if [-f $TMPFILE] ; then
 TMPFILEMTIME=`stat -c %Z $TMPFILE`
else
 TMPFILEMTIME=0
fi

NOW=`date +%s`

AGE=$(($NOW - $TMPFILEMTIME))

#echo AGE=$AGE

for i in 1 2 3;do
 if ["$AGE" -gt $CACHETIME] ; then
 #echo "cache is stale "

 if [-f $TMPFILE.1] ; then
 #echo someone else is updating cache

 sleep 5

 NOW=`date +%s`

 TMPFILEMTIME=`stat -c %Z $TMPFILE`

AGE=$(($NOW - $TMPFILEMTIME))
 else
 break;
 fi
 fi
done

if [-f $TMPFILE.1] ; then
 #echo someone else is hung

 rm $TMPFILE.1
fi

if ["$AGE" -gt $CACHETIME] ; then
 #echo updating cache

 $CMDPATH -f > $TMPFILE.1

mv $TMPFILE.1 $TMPFILE

fi

#echo "using cache"

ccxlix
Large cluster considerations

cat $TMPFILE

exit 0

The above script can easily be modified to cache any command and any combination of arguments by
changing one or more of the following attributes:

l script name

l value of $CMDPATH

l value of $CACHETIME

l value of $TMPFILE

For example, to cache the command pbsnodes -a, make the following changes:

l Move original pbsnodes command to pbsnodes.orig.

l Save the script as 'pbsnodes'.

l Change $CMDPATH to pbsnodes.orig.

l Change $TMPFILE to /tmp/pbsnodes.a.tmp.

Related topics

l Large cluster considerations on page ccxlvii

Other considerations

job_stat_rate
In a large system, there may be many users, many jobs, and many requests for information. To speed up
response time for users and for programs using the API the job_stat_rate can be used to tweak when the
pbs_server daemon will query MOMs for job information. By increasing this number, a system will not be
constantly querying job information and causing other commands to block.

poll_jobs
The poll_jobs parameter allows a site to configure how the pbs_server daemon will poll for job
information. When set to TRUE, the pbs_server will poll job information in the background and not block on
user requests. When set to FALSE, the pbs_server may block on user requests when it has stale job
information data. Large clusters should set this parameter to TRUE.

Internal settings
On large, slow, and/or heavily loaded systems, it may be desirable to increase the pbs_tcp_timeout
setting used by the pbs_mom daemon in MOM-to-MOM communication. This setting defaults to 20 seconds
and requires rebuilding code to adjust. For client-server based communication, this attribute can be set
using the qmgr command. For MOM-to-MOM communication, a source code modification is required. To
make this change, edit the $TORQUEBUILDDIR/src/lib/Libifl/tcp_dis.c file and set pbs_tcp_
timeout to the desired maximum number of seconds allowed for a MOM-to-MOM request to be serviced.

ccl
Large cluster considerations

A system may be heavily loaded if it reports multiple 'End of File from addr' or 'Premature end of
message' failures in the pbs_mom or pbs_server logs.

Scheduler settings
If using Moab, there are a number of parameters which can be set on the scheduler which may improve
TORQUE performance. In an environment containing a large number of short-running jobs, the
JOBAGGREGATIONTIME parameter (see the "Parameters" section of the Moab Workload Manager
Administrator Guide) can be set to reduce the number of workload and resource queries performed by the
scheduler when an event based interface is enabled. If the pbs_server daemon is heavily loaded and PBS
API timeout errors (ie. "Premature end of message") are reported within the scheduler, the "TIMEOUT"
attribute of the RMCFG parameter may be set with a value of between 30 and 90 seconds.

File system
TORQUE can be configured to disable file system blocking until data is physically written to the disk by
using the --disable-filesync argument with configure. While having filesync enabled is more
reliable, it may lead to server delays for sites with either a larger number of nodes, or a large number of
jobs. Filesync is enabled by default.

Network ARP cache
For networks with more than 512 nodes it is mandatory to increase the kernel's internal ARP cache size.
For a network of ~1000 nodes, we use these values in /etc/sysctl.conf on all nodes and servers:

/etc/sysctl.conf

Don't allow the arp table to become bigger than this
net.ipv4.neigh.default.gc_thresh3 = 4096
Tell the gc when to become aggressive with arp table cleaning.
Adjust this based on size of the LAN.
net.ipv4.neigh.default.gc_thresh2 = 2048
Adjust where the gc will leave arp table alone
net.ipv4.neigh.default.gc_thresh1 = 1024
Adjust to arp table gc to clean-up more often
net.ipv4.neigh.default.gc_interval = 3600
ARP cache entry timeout
net.ipv4.neigh.default.gc_stale_time = 3600

Use sysctl -p to reload this file.

The ARP cache size on other Unixes® can presumably be modified in a similar way.

An alternative approach is to have a static /etc/ethers file with all hostnames and MAC addresses and
load this by arp -f /etc/ethers. However, maintaining this approach is quite cumbersome when nodes
get new MAC addresses (due to repairs, for example).

Related topics

l Large cluster considerations on page ccxlvii

ccli
Large cluster considerations

http://www.adaptivecomputing.com/resources/docs/mwm/7-0/help.htm
http://www.adaptivecomputing.com/resources/docs/mwm/7-0/help.htm

Prologue and epilogue scripts
TORQUE provides administrators the ability to run scripts before and/or after each job executes. With
such a script, a site can prepare systems, perform node health checks, prepend and append text to output
and error log files, cleanup systems, and so forth.

The following table shows which MOM runs which script. All scripts must be in the TORQUE_HOME/mom_
priv/ directory and be available on every compute node. "Mother Superior," as referenced in the
following table, is the pbs_mom on the first node allocated, and the term "Sisters" refers to pbs_moms,
although note that a Mother Superior is also a sister node.

The execution directory for each script is TORQUE_HOME/mom_priv/.

Script Execution location Execute
as File permissions

prologue Mother Superior root Readable and executable by
root and NOT writable by
anyone but root (e.g., -r-x---
--)

epilogue root

prologue.user user Readable and executable by
root and other (e.g., -r-x---
r-x)epilogue.user user

prologue.parallel Sister user Readable and executable by
user and NOT writable by
anyone but user (e.g., -r-x--
-r-x)

epilogue.parallel user

epilogue.precancel Mother Superior
This script runs after a job cancel request
is received from pbs_server and before a
kill signal is sent to the job process.

user

epilogue.parallel is available in version 2.1 and later.

This section contains these topics:

ccliii
Prologue and epilogue scripts

l Script order of execution on page ccliv

l Script environment on page ccliv

l Per job prologue and epilogue scripts on page cclvi

l Prologue and epilogue scripts time out on page cclvi

l Prologue error processing on page cclvii

Script order of execution
When jobs start, the order of script execution is prologue followed by prologue.user. On job exit, the
order of execution is epilogue.user followed by epilogue unless a job is canceled. In that case,
epilogue.precancel is executed first. epilogue.parallel is executed only on the Sister nodes when
the job is completed.

The epilogue and prologue scripts are controlled by the system administrator. However,
beginning in TORQUE version 2.4 a user epilogue and prologue script can be used on a per job
basis. (See Per job prologue and epilogue scripts on page cclvi for more information.)

Root squashing is now supported for epilogue and prologue scripts.

Related topics

l Prologue and epilogue scripts on page ccliii

Script environment
The prologue and epilogue scripts can be very simple. On most systems, the script must declare the
execution shell using the #!<SHELL> syntax (for example, "#!/bin/sh"). In addition, the script may want
to process context sensitive arguments passed by TORQUE to the script.

Prolog Environment
The following arguments are passed to the prologue, prologue.user, and prologue.parallel
scripts:

Argument Description

argv[1] job id

argv[2] job execution user name

argv[3] job execution group name

ccliv
Prologue and epilogue scripts

Argument Description

argv[4] job name (TORQUE 1.2.0p4 and higher only)

argv[5] list of requested resource limits (TORQUE 1.2.0p4 and higher only)

argv[6] job execution queue (TORQUE 1.2.0p4 and higher only)

argv[7] job account (TORQUE 1.2.0p4 and higher only)

Epilog Environment
TORQUE supplies the following arguments to the epilogue, epilogue.user, epilogue.precancel,
and epilogue.parallel scripts:

Argument Description

argv[1] job id

argv[2] job execution user name

argv[3] job execution group name

argv[4] job name

argv[5] session id

argv[6] list of requested resource limits

argv[7] list of resources used by job

argv[8] job execution queue

argv[9] job account

argv[10] job exit code

The epilogue.precancel script is run after a job cancel request is received by the MOM and before
any signals are sent to job processes. If this script exists, it is run whether the canceled job was active or
idle.

The cancel job command (qdel) will take as long to return as the epilogue.precancel script takes to
run. For example, if the script runs for 5 minutes, it takes 5 minutes for qdel to return.

cclv
Prologue and epilogue scripts

For all scripts, the environment passed to the script is empty. Also, standard input for both scripts is
connected to a system dependent file. Currently, for all systems this is /dev/null. Except for epilogue
scripts of an interactive job, prologue.parallel and epilogue.parallel, the standard output and
error are connected to input and error files associated with the job. For an interactive job, since the
pseudo terminal connection is released after the job completes, the standard input and error point to
/dev/null. For prologue.parallel and epilogue.parallel, the user will need to redirect stdout
and stderr manually.

Related topics

l Prologue and epilogue scripts on page ccliii

Per job prologue and epilogue scripts
TORQUE supports per job prologue and epilogue scripts when using the qsub -l option. The syntax is:

qsub -l prologue=<prologue_script_path> epilogue=<epilogue_script_path>
<script>.

The path can be either relative (from the directory where the job is submitted) or absolute. The files must
be owned by the user with at least execute and read privileges, and the permissions must not be writeable
by group or other.

/home/usertom/dev/

-r-x------ 1 usertom usertom 24 2009-11-09 16:11 prologue_script.sh
-r-x------ 1 usertom usertom 24 2009-11-09 16:11 epilogue_script.sh

Example G-1:

$ qsub -l prologue=/home/usertom/dev/prologue_script.sh,
epilogue=/home/usertom/dev/epilogue_script.sh job14.pl

This job submission executes the prologue script first. When the prologue script is complete,
job14.pl runs. When job14.pl completes, the epilogue script is executed.

Related topics

l Prologue and epilogue scripts on page ccliii

Prologue and epilogue scripts time out
TORQUE takes preventative measures against prologue and epilogue scripts by placing an alarm around
the scripts execution. By default, TORQUE sets the alarm to go off after 5 minutes of execution. If the script
exceeds this time, it will be terminated and the node will be marked down. This timeout can be adjusted by
setting the $prologalarm parameter in the mom_priv/config file.

While TORQUE is executing the epilogue, epilogue.user, or epilogue.precancel scripts,
the job will be in the E (exiting) state.

cclvi
Prologue and epilogue scripts

Related topics

l Prologue and epilogue scripts on page ccliii

Prologue error processing
If the prologue script executes successfully, it should exit with a zero status. Otherwise, the script should
return the appropriate error code as defined in the table below. The pbs_mom will report the script's exit
status to pbs_server which will in turn take the associated action. The following table describes each exit
code for the prologue scripts and the action taken.

Error Description Action

-4 The script timed out Job will be requeued

-3 The wait(2) call returned an error Job will be requeued

-2 Input file could not be opened Job will be requeued

-1 Permission error
(script is not owned by root, or is writable by others)

Job will be requeued

0 Successful completion Job will run

1 Abort exit code Job will be aborted

>1 other Job will be requeued

Example G-1:

Following are example prologue and epilogue scripts that write the arguments passed to them in the job's
standard out file:

prologue

Script #!/bin/sh
echo "Prologue Args:"
echo "Job ID: $1"
echo "User ID: $2"
echo "Group ID: $3"
echo ""

exit 0

cclvii
Prologue and epilogue scripts

prologue

stdout Prologue Args:
Job ID: 13724.node01
User ID: user1
Group ID: user1

epilogue

Script #!/bin/sh
echo "Epilogue Args:"
echo "Job ID: $1"
echo "User ID: $2"
echo "Group ID: $3"
echo "Job Name: $4"
echo "Session ID: $5"
echo "Resource List: $6"
echo "Resources Used: $7"
echo "Queue Name: $8"
echo "Account String: $9"
echo ""

exit 0

stdout Epilogue Args:
Job ID: 13724.node01
User ID: user1
Group ID: user1
Job Name: script.sh
Session ID: 28244
Resource List: neednodes=node01,nodes=1,walltime=00:01:00
Resources Used: cput=00:00:00,mem=0kb,vmem=0kb,walltime=00:00:07
Queue Name: batch
Account String:

Example G-2:

The Ohio Supercomputer Center contributed the following scripts:

"prologue creates a unique temporary directory on each node assigned to a job before the job begins to
run, and epilogue deletes that directory after the job completes.

Having a separate temporary directory on each node is probably not as good as having a good, high
performance parallel filesystem.

cclviii
Prologue and epilogue scripts

prologue

#!/bin/sh
Create TMPDIR on all the nodes
Copyright 1999, 2000, 2001 Ohio Supercomputer Center
prologue gets 3 arguments:
1 -- jobid
2 -- userid
3 -- grpid
#
jobid=$1
user=$2
group=$3
nodefile=/var/spool/pbs/aux/$jobid
if [-r $nodefile] ; then
 nodes=$(sort $nodefile | uniq)
else
 nodes=localhost
fi
tmp=/tmp/pbstmp.$jobid
for i in $nodes ; do
 ssh $i mkdir -m 700 $tmp \&\& chown $user.$group $tmp
done
exit 0

epilogue

#!/bin/sh
Clear out TMPDIR
Copyright 1999, 2000, 2001 Ohio Supercomputer Center
epilogue gets 9 arguments:
1 -- jobid
2 -- userid
3 -- grpid
4 -- job name
5 -- sessionid
6 -- resource limits
7 -- resources used
8 -- queue
9 -- account
#
jobid=$1
nodefile=/var/spool/pbs/aux/$jobid
if [-r $nodefile] ; then
 nodes=$(sort $nodefile | uniq)
else
 nodes=localhost
fi
tmp=/tmp/pbstmp.$jobid
for i in $nodes ; do
 ssh $i rm -rf $tmp
done
exit 0

prologue, prologue.user, and prologue.parallel scripts can have dramatic effects on job
scheduling if written improperly.

Related topics

l Prologue and epilogue scripts on page ccliii

cclix
Prologue and epilogue scripts

Running multiple TORQUE servers andMOMs on the
same node

TORQUE can be configured to allow multiple servers and MOMs to run on the same node. This example will
show how to configure, compile and install two different TORQUE servers and moms on the same node. For
details, see these topics:

l Configuring the first TORQUE on page cclxi

l Configuring the second TORQUE on page cclxi

l Bringing the first TORQUE server online on page cclxi

l Bringing the second TORQUE server online on page cclxii

Configuring the first TORQUE

./configure --with-server-home=/usr/spool/PBS1 --bindir=/usr/spool/PBS1/bin --
sbindir=/usr/spool/PBS1/sbin

Then make and make install will place the first TORQUE into /usr/spool/PBS1 with the executables in
their corresponding directories.

Configuring the second TORQUE

./configure --with-server-home=/usr/spool/PBS2 --bindir=/usr/spool/PBS2/bin --
sbindir=/usr/spool/PBS2/sbin

Then make and make install will place the second TORQUE into /usr/spool/PBS2 with the executables
in their corresponding directories.

Bringing the first TORQUE server online
Each command, including pbs_server and pbs_mom, takes parameters indicating which servers and ports to
connect to or listen on (when appropriate). Each of these is documented in their corresponding man pages
(configure with --enable-docs).

In this example the first TORQUE server will accept batch requests on port 35000, communicate with the
MOMs on port 35001, and communicate via RPP on port 35002. The first TORQUE MOM will try to connect
to the server on port 35000, it will listen for requests from the server on port 35001 and will communicate
via RPP on port 35002. (Each of these command arguments is discussed in further details on the
corresponding man page. In particular, -t create is only used the first time a server is run.)

cclxi
Running multiple TORQUE servers and MOMs on the same node

> pbs_server -p 35000 -M 35001 -R 35002 -t create
> pbs_mom -S 35000 -M 35001 -R 35002

Afterwards, when using a client command to make a batch request it is necessary to specify the
servername and serverport (35000):

> pbsnodes -a -s node01:35000

Submitting jobs can be accomplished using the -q option ([queue][@host[:port]]):

> qsub -q @node01:35000 /tmp/script.pbs

Bringing the second TORQUE server online
In this example the second TORQUE server will accept batch requests on port 36000, communicate with the
MOMS on port 36002, and communicate via RPP on port 36002. The second TORQUE MOM will try to
connect to the server on port 36000, it will listen for requests from the server on port 36001 and will
communicate via RPP on port 36002.

> pbs_server -p 36000 -M 36001 -R 36002 -t create
> pbs_mom -S 36000 -M 36001 -R 36002

Afterward, when using a client command to make a batch request it is necessary to specify the servername
and serverport (36002):

> pbsnodes -a -s node01:36000
> qsub -q @node01:36000 /tmp/script.pbs

cclxii
Running multiple TORQUE servers and MOMs on the same node

Security overview
SUID ssage
TORQUE uses setuid (SUID) permissions in a single location so as to validate the identity of a user request.
This is accomplished using the pbs_iff tool which is SUID root and performs the following actions:

l parse specified server hostname and port

l connect to specified server port using reserved/privileged port

l determine UID of executing user

l report UID and socket port info of caller to server

l verify response from server

/etc/hosts usage
In systems where security is a major concern, please be aware that some security experts consider adding
the compute nodes to the /etc/hosts file to be more secure than using ACL lists.

cclxiii
Security overview

Job submission filter ("qsub wrapper")
When a "submit filter" exists, TORQUE will send the command file (or contents of STDIN if piped to qsub)
to that script/executable and allow it to evaluate the submitted request based on specific site policies. The
resulting file is then handed back to qsub and processing continues. Submit filters can check user jobs for
correctness based on site policies. They can also modify user jobs as they are submitted. Some examples of
what a submit filter might evaluate and check for are:

l Memory Request - Verifiy that the job requests memory and rejects if it does not.

l Job event notifications - Check if the job does one of the following and rejects it if it:

o explicitly requests no notification.

o requests notifications but does not provide an email address.

l Walltime specified - Verify that the walltime is specified.

l Global Walltime Limit - Verify that the walltime is below the global max walltime.

l Test Walltime Limit - If the job is a test job, this check rejects the job it if it requests a walltime
longer than the testing maximum.

The script below reads the original submission request from STDIN and shows how you could insert
parameters into a job submit request:

#!/bin/sh
add default memory constraints to all requests
that did not specify it in user's script or on command line
echo "#PBS -l mem=16MB"
while read i
do
echo $i
done

Command line arguments passed to qsub are passed as arguments to the submit filter (filter won't see
them in STDIN) in the same order and may be used as needed. It should be noted that as of TORQUE 2.2.0
extended attributes are not passed to the filter. Exit status of -1 will cause qsub to reject the submission
with a message stating that it failed due to administrative policies.

The "submit filter" must be executable, must be available on each of the nodes where users may submit
jobs, and by default, must be located at ${libexecdir}/qsub_filter (for version 2.1 and older:
/usr/local/sbin/torque_submitfilter). At run time, if the file does not exist at this new preferred
path then qsub will fall back to the old hard-coded path. The submit filter location can be customized by
setting the SUBMITFILTER parameter inside the file (see "torque.cfg" configuration file on page cclxvii),
as in the following example:

torque.cfg:

cclxv
Job submission filter ("qsub wrapper")

SUBMITFILTER /opt/torque/submit.pl
...

Initial development courtesy of Oak Ridge National Laboratories.

cclxvi
Job submission filter ("qsub wrapper")

"torque.cfg" configuration file
The torque.cfg file should be placed in the TORQUE home directory (i.e., /var/spool/torque). Below
is a list of torque.cfg parameters.

CLIENTRETRY

Format <INT>

Default 0

Description Seconds between retry attempts to talk to pbs_server.

DEFAULTCKPT

Format <STRING>

Default None

Description Default value for job's checkpoint attribute.

FAULT_TOLERANT_BY-DEFAULT

Format <BOOLEAN>

Default FALSE

Description Sets all jobs to fault tolerant by default. (See qsub -f for more information on fault tolerance.)

QSUBHOST

Format <HOSTNAME>

cclxvii
"torque.cfg" configuration file

QSUBHOST

Default None

Description The hostname given as the argument of this option will be used as the PBS_O_HOST variable for job
submissions. By default, PBS_O_HOST is the hostname of the submission host. This option allows
administrators to override the default hostname and substitute a new name.

QSUBSENDUID

Format N/A

Default None

Description Integer for job's PBS_OUID variable. Specifying the parameter name anywhere in the config file ena-
bles the feature. Removing the parameter name disables the feature.

QSUBSLEEP

Format <INT>

Default 0

Description Specifies time to sleep when running qsub command. Used to prevent users from overwhelming the
scheduler.

RERUNNABLEBYDEFAULT

Format <BOOLEAN>

Default TRUE

Description Specifies if a job is re-runnable by default. Setting this to false causes the re-runnable attribute
value to be false unless the users specifies otherwise with the qsub -r option. (New in TORQUE
2.4.)

SERVERHOST

Format <STRING>

cclxviii
"torque.cfg" configuration file

SERVERHOST

Default localhost

Description If set, the server will open socket connections and communicate with client commands and other serv-
ices using the specified network interface. (useful with multi-homed hosts, i.e., nodes with multiple
network adapters)

SUBMITFILTER

Format <STRING>

Default ${libexecdir}/qsub_filter (for version 2.1 and older: /usr/local/sbin/torque_submitfilter)

Description Specifies the location of the submit filter (see Job submission filter ("qsub wrapper") on page
cclxv used to pre-process job submission.

TRQ_IFNAME

Format <STRING>

Default null

Description Allows you to specify a specific network interface to use for outbound TORQUE requests. The string is
the name of a network interface, such as eth0 or eth1, depending on which interface you want to
use.

VALIDATEGROUP

Format <BOOLEAN>

Default FALSE

Description Validate submit user's group on qsub commands. For TORQUE builds released after 2/8/2011, VAL-
IDATEGROUP also checks any groups requested in group_list at the submit host. Set VAL-
IDATEGROUP to TRUE if you set disable_server_id_check to TRUE.

VALIDATEPATH

Format <BOOLEAN>

cclxix
"torque.cfg" configuration file

VALIDATEPATH

Default TRUE

Description Validate local existence of '-d' working directory.

Example K-1:

torque.cfg:

QSUBSLEEP 2
SERVERHOST orion15

cclxx
"torque.cfg" configuration file

TORQUE Quick Start Guide
Initial installation
Download the TORQUE distribution file from http://clusterresources.com/downloads/torque.

Extract and build the distribution on the machine that will act as the "TORQUE server" - the machine that
will monitor and control all compute nodes by running the pbs_server daemon. See the example below:

> tar -xzvf torque.tar.gz
> cd torque
> ./configure
> make
> make install

OSX 10.4 users need to change the #define __TDARWIN in src/include/pbs_config.h to #define
__TDARWIN_8.

After installation, verify you have PATH environment variables configured for /usr/local/bin/
and /usr/local/sbin/. Client commands are installed to /usr/local/bin and server binaries
are installed to /usr/local/sbin.

In this document, TORQUE_HOME corresponds to where TORQUE stores its configuration files. The
default is /var/spool/torque.

Initialize/Configure TORQUE on the server (pbs_server)
l Once installation on the TORQUE server is complete, configure the pbs_server daemon by executing

the command torque.setup <USER> found packaged with the distribution source code, where
<USER> is a username that will act as the TORQUE admin. This script will set up a basic batch queue
to get you started. If you experience problems, make sure that the most recent TORQUE executables
are being executed, or that the executables are in your current PATH.

l If doing this step manually, be certain to run the command pbs_server -t create to create the
new batch database. If this step is not taken, the pbs_server daemon will be unable to start.

l Proper server configuration can be verified by following the steps listed in Testing server
configuration.

cclxxi
TORQUE Quick Start Guide

http://clusterresources.com/downloads/torque

Install TORQUE on the compute nodes
To configure a compute node do the following on each machine (see page 19, Section 3.2.1 of PBS
Administrator's Manual for full details):

l Create the self-extracting, distributable packages with make packages (See the INSTALL file for
additional options and features of the distributable packages) and use the parallel shell command
from your cluster management suite to copy and execute the package on all nodes (ie: xCAT users
might do prcp torque-package-linux-i686.sh main:/tmp/; psh main /tmp/torque-
package-linux-i686.sh --install). Optionally, distribute and install the clients package.

Configure TORQUE on the compute nodes
l For each compute host, the MOM daemon must be configured to trust the pbs_server daemon. In

TORQUE 2.0.0p4 and earlier, this is done by creating the TORQUE_HOME/mom_priv/config file
and setting the $pbsserver parameter. In TORQUE 2.0.0p5 and later, this can also be done by
creating the TORQUE_HOME/server_name file and placing the server hostname inside.

l Additional config parameters may be added to TORQUE_HOME/mom_priv/config (see Node
manager (MOM) configuration on page ccxxiii for details).

Configure data management on the compute nodes
Data management allows jobs' data to be staged in/out or to and from the server and compute nodes.

l For shared filesystems (i.e., NFS, DFS, AFS, etc.) use the $usecp parameter in the mom_
priv/config files to specify how to map a user's home directory.

(Example: $usecp gridmaster.tmx.com:/home /home)

l For local, non-shared filesystems, rcp or scp must be configured to allow direct copy without
prompting for passwords (key authentication, etc.)

Update TORQUE server configuration
On the TORQUE server, append the list of newly configured compute nodes to the TORQUE_
HOME/server_priv/nodes file:

server_priv/nodes

computenode001.cluster.org
computenode002.cluster.org
computenode003.cluster.org

Start the pbs_mom daemons on compute nodes
l Next start the pbs_mom daemon on each compute node by running the pbs_mom executable.

Verifying correct TORQUE installation
The pbs_server daemon was started on the TORQUE server when the torque.setup file was executed or
when it was manually configured. It must now be restarted so it can reload the updated configuration
changes.

cclxxii
TORQUE Quick Start Guide

shutdown server
> qterm # shutdown server

start server
> pbs_server

verify all queues are properly configured
> qstat -q

view additional server configuration
> qmgr -c 'p s'

verify all nodes are correctly reporting
> pbsnodes -a

submit a basic job
>echo "sleep 30" | qsub

verify jobs display
> qstat

At this point, the job will not start because there is no scheduler running. The scheduler is enabled in the
next step below.

Enabling the scheduler
Selecting the cluster scheduler is an important decision and significantly affects cluster utilization,
responsiveness, availability, and intelligence. The default TORQUE scheduler, pbs_sched, is very basic and
will provide poor utilization of your cluster's resources. Other options, such as Maui Scheduler or Moab
Workload Manager are highly recommended. If using Maui/Moab, refer to the Moab-PBS Integration Guide.
If using pbs_sched, start this daemon now.

If you are installing ClusterSuite, TORQUE and Moab were configured at installation for
interoperability and no further action is required.

Startup/Shutdown service script for TORQUE/Moab (OPTIONAL)
Optional startup/shutdown service scripts are provided as an example of how to run TORQUE as an OS
service that starts at bootup. The scripts are located in the contrib/init.d/ directory of the TORQUE
tarball you downloaded. In order to use the script you must:

l Determine which init.d script suits your platform the best.

l Modify the script to point to TORQUE's install location. This should only be necessary if you used a
non-default install location for TORQUE (by using the --prefix option of ./configure).

l Place the script in the /etc/init.d/ directory.

l Use a tool like chkconfig to activate the start-up scripts or make symbolic links (S99moab and
K15moab, for example) in desired runtimes (/etc/rc.d/rc3.d/ on Redhat, etc.).

Related topics

l Advanced configuration on page xix

cclxxiii
TORQUE Quick Start Guide

http://www.adaptivecomputing.com/resources/docs/maui
http://www.adaptivecomputing.com/resources/docs/maui
http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/
http://www.adaptivecomputing.com/resources/docs/

BLCR acceptance tests
This section contains a description of the testing done to verify the functionality of the BLCR
implementation. For details, see these topics:

l Test environment on page cclxxv

l Test 1 - Basic operation on page cclxxvi

l Test 2 - Persistence of checkpoint images on page cclxxviii

l Test 3 - Restart after checkpoint on page cclxxix

l Test 4 - Multiple checkpoint/restart on page cclxxx

l Test 5 - Periodic checkpoint on page cclxxx

l Test 6 - Restart from previous image on page cclxxxi

Test environment
All these tests assume the following test program and shell script, test.sh.

#include
int main(int argc, char *argv[])
{
int i;

 for (i=0; i<100; i++)
{

 printf("i = %d\n", i);
 fflush(stdout);
 sleep(1);
 }
}
#!/bin/bash

/home/test/test

Related topics

l BLCR acceptance tests on page cclxxv

cclxxv
BLCR acceptance tests

Test 1 - Basic operation

Introduction
This test determines if the proper environment has been established.

Test steps
Submit a test job and the issue a hold on the job.

> qsub -c enabled test.sh
999.xxx.yyy
> qhold 999

Possible failures
Normally the result of qhold is nothing. If an error message is produced saying that qhold is not a
supported feature then one of the following configuration errors might be present.

l The TORQUE images may have not be configured with --enable-blcr

l BLCR support may not be installed into the kernel with insmod.

l The config script in mom_priv may not exist with $checkpoint_script defined.

l The config script in mom_priv may not exist with $restart_script defined.

l The config script in mom_priv may not exist with $checkpoint_run_exe defined.

l The scripts referenced in the config file may not exist.

l The scripts referenced in the config file may not have the correct permissions.

Successful results
If no configuration was done to specify a specific directory location for the checkpoint file, the default
location is off of the TORQUE directory, which in my case is /var/spool/torque/checkpoint.

Otherwise, go to the specified directory for the checkpoint image files. This was done by either specifying
an option on job submission, i.e. -c dir=/home/test or by setting an attribute on the execution quere.
This is done with the command qmgr -c 'set queue batch checkpoint_dir=/home/test'.

Doing a directory listing shows the following.

cclxxvi
BLCR acceptance tests

find /var/spool/torque/checkpoint
/var/spool/torque/checkpoint
/var/spool/torque/checkpoint/999.xxx.yyy.CK
/var/spool/torque/checkpoint/999.xxx.yyy.CK/ckpt.999.xxx.yyy.1205266630
find /var/spool/torque/checkpoint |xargs ls -l
-r-------- 1 root root 543779 2008-03-11 14:17
/var/spool/torque/checkpoint/999.xxx.yyy.CK/ckpt.999.xxx.yyy.1205266630

/var/spool/torque/checkpoint:
total 4
drwxr-xr-x 2 root root 4096 2008-03-11 14:17 999.xxx.yyy.CK

/var/spool/torque/checkpoint/999.xxx.yyy.CK:
total 536
-r-------- 1 root root 543779 2008-03-11 14:17 ckpt.999.xxx.yyy.1205266630

Doing a qstat -f command should show the job in a held state, job_state = H. Note that the attribute
checkpoint_name is set to the name of the file seen above.

If a checkpoint directory has been specified, there will also be an attribute checkpoint_dir in the output of
qstat -f.

cclxxvii
BLCR acceptance tests

$ qstat -f
Job Id: 999.xxx.yyy
 Job_Name = test.sh
 Job_Owner = test@xxx.yyy
 resources_used.cput = 00:00:00
 resources_used.mem = 0kb
 resources_used.vmem = 0kb
 resources_used.walltime = 00:00:06
 job_state = H
 queue = batch
 server = xxx.yyy
 Checkpoint = u
 ctime = Tue Mar 11 14:17:04 2008
 Error_Path = xxx.yyy:/home/test/test.sh.e999
 exec_host = test/0
 Hold_Types = u
 Join_Path = n
 Keep_Files = n
 Mail_Points = a
 mtime = Tue Mar 11 14:17:10 2008
 Output_Path = xxx.yyy:/home/test/test.sh.o999
 Priority = 0
 qtime = Tue Mar 11 14:17:04 2008
 Rerunable = True
 Resource_List.neednodes = 1
 Resource_List.nodect = 1
 Resource_List.nodes = 1
 Resource_List.walltime = 01:00:00
 session_id = 9402 substate = 20
 Variable_List = PBS_O_HOME=/home/test,PBS_O_LANG=en_US.UTF-8,
 PBS_O_LOGNAME=test,
 PBS_O_PATH=/usr/local/perltests/bin:/home/test/bin:/usr/local/s
bin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games,
 PBS_O_SHELL=/bin/bash,PBS_SERVER=xxx.yyy,
 PBS_O_HOST=xxx.yyy,PBS_O_WORKDIR=/home/test,
 PBS_O_QUEUE=batch
 euser = test
 egroup = test
 hashname = 999.xxx.yyy
 queue_rank = 3
 queue_type = E comment = Job started on Tue Mar 11 at 14:17
 exit_status = 271
 submit_args = test.sh
 start_time = Tue Mar 11 14:17:04 2008
 start_count = 1
 checkpoint_dir = /var/spool/torque/checkpoint/999.xxx.yyy.CK
 checkpoint_name = ckpt.999.xxx.yyy.1205266630

Related topics

l BLCR acceptance tests on page cclxxv

Test 2 - Persistence of checkpoint images

Introduction
This test determines if the checkpoint files remain in the default directory after the job is removed from
the TORQUE queue.

Note that this behavior was requested by a customer but in fact may not be the right thing to do as it
leaves the checkpoint files on the execution node. These will gradually build up over time on the node

cclxxviii
BLCR acceptance tests

being limited only by disk space. The right thing would seem to be that the checkpoint files are copied to
the users home directory after the job is purged from the execution node.

Test steps
Assuming the steps of Test 1 (see Test 1 - Basic operation on page cclxxvi), delete the job and then wait
until the job leaves the queue after the completed job hold time. Then look at the contents of the default
checkpoint directory to see if the files are still there.

> qsub -c enabled test.sh
999.xxx.yyy
> qhold 999
> qdel 999
> sleep 100
> qstat
>
> find /var/spool/torque/checkpoint
... files ...

Possible failures
The files are not there, did Test 1 actually pass?

Successful results
The files are there.

Related topics

l BLCR acceptance tests on page cclxxv

Test 3 - Restart after checkpoint

Introduction
This test determines if the job can be restarted after a checkpoint hold.

Test steps
Assuming the steps of Test 1 (see Test 1 - Basic operation on page cclxxvi), issue a qrls command. Have
another window open into the /var/spool/torque/spool directory and tail the job.

Successful results
After the qrls, the job's output should resume.

Related topics

l BLCR acceptance tests on page cclxxv

cclxxix
BLCR acceptance tests

Test 4 - Multiple checkpoint/restart

Introduction
This test determines if the checkpoint/restart cycle can be repeated multiple times.

Test steps
Start a job and then while tail'ing the job output, do multiple qhold/qrls operations.

> qsub -c enabled test.sh
999.xxx.yyy
> qhold 999
> qrls 999
> qhold 999
> qrls 999
> qhold 999
> qrls 999

Successful results
After each qrls, the job's output should resume. Also tried "while true; do qrls 999; qhold 999; done" and
this seemed to work as well.

Related topics

l BLCR acceptance tests on page cclxxv

Test 5 - Periodic checkpoint

Introduction
This test determines if automatic periodic checkpoint will work.

Test steps
Start the job with the option -c enabled,periodic,interval=1 and look in the checkpoint directory
for checkpoint images to be generated about every minute.

> qsub -c enabled,periodic,interval=1 test.sh
999.xxx.yyy

Successful results
The checkpoint directory should contain multiple checkpoint images and the time on the files should be
roughly a minute apart.

Related topics

l BLCR acceptance tests on page cclxxv

cclxxx
BLCR acceptance tests

Test 6 - Restart from previous image

Introduction
This test determines if the job can be restarted from a previous checkpoint image.

Test steps
Start the job with the option -c enabled,periodic,interval=1 and look in the checkpoint directory
for checkpoint images to be generated about every minute. Do a qhold on the job to stop it. Change the
attribute checkpoint_name with the qalter command. Then do a qrls to restart the job.

> qsub -c enabled,periodic,interval=1 test.sh
999.xxx.yyy
> qhold 999
> qalter -W checkpoint_name=ckpt.999.xxx.yyy.1234567
> qrls 999

Successful results
The job output file should be truncated back and the count should resume at an earlier number.

Related topics

l BLCR acceptance tests on page cclxxv

cclxxxi
BLCR acceptance tests

	 Welcome
	 Introduction
	 TORQUE Administrator Guide overview

	Chapter 1: Overview
	 TORQUE installation overview
	 TORQUE architecture
	 Installing TORQUE
	 Compute nodes
	 Enabling TORQUE as a service

	 Initializing/Configuring TORQUE on the server (pbs_server)
	 Specifying compute nodes
	 Configuring TORQUE on compute nodes
	 Finalizing configurations

	 Advanced configuration
	 Customizing the install
	 Server configuration

	 Manual setup of initial server configuration
	 Server node file configuration
	 Basic node specification
	 Specifying virtual processor count for a node
	 Specifying GPU count for a node

	 Testing server configuration

	Chapter 2: Submitting and managing jobs
	 Job submission
	 Multiple job submission
	 Requesting resources
	 Requesting generic resources
	 Requesting floating resources
	 Requesting other resources
	 Exported batch environment variables
	 Enabling trusted submit hosts
	 Example submit scripts

	 Monitoring jobs
	 Canceling jobs
	 Job preemption
	 Keeping completed jobs
	 Job checkpoint and restart
	 Introduction to BLCR
	 Configuration files and scripts
	 Starting a checkpointable job
	 Checkpointing a job
	 Restarting a job
	 Acceptance tests

	 Job exit status
	 Service jobs
	 Submitting service jobs
	 Submitting service jobs in MCM
	 Managing service jobs

	Chapter 3: Managing nodes
	 Adding nodes
	 Node properties
	 Changing node state
	 Host security
	 Linux cpuset support
	 Scheduling cores
	 Geometry request configuration
	 Geometry request usage
	 Geometry request considerations

	 Scheduling GPUs
	 Using GPUs with NUMA
	 TORQUE NVIDIA GPGPUs

	Chapter 4: Setting server policies
	 Queue configuration
	 Queue attributes
	 Example queue configuration
	 Setting a default queue
	 Mapping a queue to subset of resources
	 Creating a routing queue

	 Server high availability

	Chapter 5: Integrating schedulers for TORQUE
	Chapter 6: Configuring data management
	 SCP setup
	 Generating SSH key on source host
	 Copying public SSH key to each destination host
	 Configuring the SSH daemon on each destination host
	 Validating correct SSH configuration
	 Enabling bi-directional SCP access
	 Compiling TORQUE to support SPC
	 Troubleshooting

	 NFS and other networked filesystems
	 File stage-in/stage-out

	Chapter 7: MPI (Message Passing Interface) support
	 MPICH
	 MPICH-VMI
	 Open MPI

	Chapter 8: Resources
	Chapter 9: Accounting records
	Chapter 10: Job logging
	 Job log location and name
	 Enabling job logs

	Chapter 11: Troubleshooting
	 Host resolution
	 Firewall configuration
	 TORQUE log files
	 Using "tracejob" to locate job failures
	 Using GDB to locate job failures
	 Other diagnostic options
	 Stuck jobs
	 Frequently asked questions (FAQ)
	 Compute node health check
	 Configuring MOMs to launch a health check
	 Creating the health check script
	 Adjusting node state based on the health check output
	 Example health check script

	 Debugging

	 Appendices
	 Commands overview
	 momctl
	 pbs_mom
	 pbs_server
	 pbs_track
	 pbsdsh
	 pbsnodes
	 qalter
	 qchkpt
	 qdel
	 qgpumode
	 qgpureset
	 qhold
	 qmgr
	 qrerun
	 qrls
	 qrun
	 qsig
	 qstat
	 qsub
	 qterm

	 Server parameters
	 Node manager (MOM) configuration
	 Parameters
	 Node features and generic consumable resource specification
	 Command-line arguments

	 Diagnostics and error codes
	 Considerations before upgrading
	 Large cluster considerations
	 Scalability guidelines
	 End user command caching
	 Other considerations

	 Prologue and epilogue scripts
	 Script order of execution
	 Script environment
	 Per job prologue and epilogue scripts
	 Prologue and epilogue scripts time out
	 Prologue error processing

	 Running multiple TORQUE servers and MOMs on the same node
	 Security overview
	 Job submission filter ("qsub wrapper")
	 "torque.cfg" configuration file
	 TORQUE Quick Start Guide
	 BLCR acceptance tests
	 Test environment
	 Test 1 - Basic operation
	 Test 2 - Persistence of checkpoint images
	 Test 3 - Restart after checkpoint
	 Test 4 - Multiple checkpoint/restart
	 Test 5 - Periodic checkpoint
	 Test 6 - Restart from previous image

